1
|
Shichijo T, Yasunaga JI, Sato K, Nosaka K, Toyoda K, Watanabe M, Zhang W, Koyanagi Y, Murphy EL, Bruhn RL, Koh KR, Akari H, Ikeda T, Harris RS, Green PL, Matsuoka M. Vulnerability to APOBEC3G linked to the pathogenicity of deltaretroviruses. Proc Natl Acad Sci U S A 2024; 121:e2309925121. [PMID: 38502701 PMCID: PMC10990082 DOI: 10.1073/pnas.2309925121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
Human retroviruses are derived from simian ones through cross-species transmission. These retroviruses are associated with little pathogenicity in their natural hosts, but in humans, HIV causes AIDS, and human T-cell leukemia virus type 1 (HTLV-1) induces adult T-cell leukemia-lymphoma (ATL). We analyzed the proviral sequences of HTLV-1, HTLV-2, and simian T-cell leukemia virus type 1 (STLV-1) from Japanese macaques (Macaca fuscata) and found that APOBEC3G (A3G) frequently generates G-to-A mutations in the HTLV-1 provirus, whereas such mutations are rare in the HTLV-2 and STLV-1 proviruses. Therefore, we investigated the mechanism of how HTLV-2 is resistant to human A3G (hA3G). HTLV-1, HTLV-2, and STLV-1 encode the so-called antisense proteins, HTLV-1 bZIP factor (HBZ), Antisense protein of HTLV-2 (APH-2), and STLV-1 bZIP factor (SBZ), respectively. APH-2 efficiently inhibits the deaminase activity of both hA3G and simian A3G (sA3G). HBZ and SBZ strongly suppress sA3G activity but only weakly inhibit hA3G, suggesting that HTLV-1 is incompletely adapted to humans. Unexpectedly, hA3G augments the activation of the transforming growth factor (TGF)-β/Smad pathway by HBZ, and this activation is associated with ATL cell proliferation by up-regulating BATF3/IRF4 and MYC. In contrast, the combination of APH-2 and hA3G, or the combination of SBZ and sA3G, does not enhance the TGF-β/Smad pathway. Thus, HTLV-1 is vulnerable to hA3G but utilizes it to promote the proliferation of infected cells via the activation of the TGF-β/Smad pathway. Antisense factors in each virus, differently adapted to control host cellular functions through A3G, seem to dictate the pathogenesis.
Collapse
Affiliation(s)
- Takafumi Shichijo
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Jun-ichirou Yasunaga
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Kei Sato
- Division of Systems Virology, Institute of Medical Science, The University of Tokyo, Tokyo108-8639, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama332-0012, Japan
| | - Kisato Nosaka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
| | - Kosuke Toyoda
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Miho Watanabe
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
| | - Wenyi Zhang
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| | - Edward L. Murphy
- Department of Laboratory Medicine, University of California, San Francisco94158
- Department of Epidemiology/Biostatistics, University of California, San Francisco
- Vitalant Research Institute, San Francisco94105
| | | | - Ki-Ryang Koh
- Department of Hematology, Osaka General Hospital of West Japan Railway Company, Osaka545-0053, Japan
| | - Hirofumi Akari
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi484-8506, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto860-0811, Japan
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX78229
- HHMI, University of Texas Health San Antonio, San Antonio, TX78229
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX78229
- HHMI, University of Texas Health San Antonio, San Antonio, TX78229
| | - Patrick L. Green
- Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH43210
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH
| | - Masao Matsuoka
- Department of Hematology, Rheumatology and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto860-8556, Japan
- Laboratory of Virus Control, Institute for Life and Medical Sciences, Kyoto University, Kyoto606-8507, Japan
| |
Collapse
|
2
|
Plant E, Bellefroid M, Van Lint C. A complex network of transcription factors and epigenetic regulators involved in bovine leukemia virus transcriptional regulation. Retrovirology 2023; 20:11. [PMID: 37268923 PMCID: PMC10236774 DOI: 10.1186/s12977-023-00623-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023] Open
Abstract
Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leukosis, a disease characterized by the neoplastic proliferation of B cells in cattle. While most European countries have introduced efficient eradication programs, BLV is still present worldwide and no treatment is available. A major feature of BLV infection is the viral latency, which enables the escape from the host immune system, the maintenance of a persistent infection and ultimately the tumoral development. BLV latency is a multifactorial phenomenon resulting in the silencing of viral genes due to genetic and epigenetic repressions of the viral promoter located in the 5' Long Terminal Repeat (5'LTR). However, viral miRNAs and antisense transcripts are expressed from two different proviral regions, respectively the miRNA cluster and the 3'LTR. These latter transcripts are expressed despite the viral latency affecting the 5'LTR and are increasingly considered to take part in tumoral development. In the present review, we provide a summary of the experimental evidence that has enabled to characterize the molecular mechanisms regulating each of the three BLV transcriptional units, either through cis-regulatory elements or through epigenetic modifications. Additionally, we describe the recently identified BLV miRNAs and antisense transcripts and their implications in BLV-induced tumorigenesis. Finally, we discuss the relevance of BLV as an experimental model for the closely related human T-lymphotropic virus HTLV-1.
Collapse
Affiliation(s)
- Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Maxime Bellefroid
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université Libre de Bruxelles (ULB), 6041, Gosselies, Belgium.
| |
Collapse
|
3
|
De Brun ML, Cosme B, Petersen M, Alvarez I, Folgueras-Flatschart A, Flatschart R, Panei CJ, Puentes R. Development of a droplet digital PCR assay for quantification of the proviral load of bovine leukemia virus. J Vet Diagn Invest 2022; 34:439-447. [PMID: 35369822 PMCID: PMC9254064 DOI: 10.1177/10406387221085581] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Droplet digital PCR (ddPCR) is a highly sensitive tool developed for the detection and quantification of short-sequence variants—a tool that offers unparalleled precision enabling measurement of smaller-fold changes. We describe here the use of ddPCR for the detection of Bovine leukemia virus (BLV) DNA provirus. Serum samples and whole blood from experimentally infected sheep and naturally infected cattle were analyzed through ddPCR to detect the BLV gp51 gene, and then compared with serologic and molecular tests. The ddPCR assay was significantly more accurate and sensitive than AGID, ELISA, nested PCR, and quantitative PCR. The limit of detection of ddPCR was 3.3 copies/µL, detecting positive experimentally infected sheep beginning at 6 d post-infection. The ddPCR methodology offers a promising tool for evaluating the BLV proviral load, particularly for the detection of low viral loads.
Collapse
Affiliation(s)
- María L. De Brun
- Instituto de Patobiología, Unidad de Microbiología, Facultad de Veterinaria–Universidad de la República, Montevideo, Uruguay
| | - Bruno Cosme
- Instituto Nacional de Metrología, Calidad y Tecnología (Inmetro), Rio de Janeiro, Brazil
| | - Marcos Petersen
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), Buenos Aires, Argentina
| | - Irene Alvarez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas (IVIT), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Roberto Flatschart
- Instituto Nacional de Metrología, Calidad y Tecnología (Inmetro), Rio de Janeiro, Brazil
| | - Carlos Javier Panei
- Laboratorio de Virología, Facultad de Ciencias Veterinarias, Universidad Nacional de la Plata (FCV-UNLP), La Plata, Argentina
| | - Rodrigo Puentes
- Instituto de Patobiología, Unidad de Microbiología, Facultad de Veterinaria–Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
SANTOS ED, KALB AL, BARBOSA AA, RABASSA VR, CORRÊA MN. Multicentric lymphoma in sheep (case report). REVISTA BRASILEIRA DE SAÚDE E PRODUÇÃO ANIMAL 2020. [DOI: 10.1590/s1519-99402121112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT The present study describes a case report in sheep with multicentric lymphoma. Clinical examination revealed the animal presented tachycardia, tachypnea, congested ocular mucous membranes, fever, cachexia, mild dehydration, decreased ruminal motility, difficulty in standing, and dysuria. Supportive treatment and complementary examination (complete blood count, radiography, ultrasound and abdominocentesis) were performed. The results showed neutrophilic leukocytosis, persistent lymphocytosis, exudate with high cell concentration, and imaging examination showed abundant fluid in the abdominal cavity, and enlarged iliac and mesenteric lymph nodes. Due to the severe clinical condition, the animal died and referred for necropsy. Samples from different organs were collected for histopathological analysis. At necropsy, abundant light brown exudate was observed in the thoracic and abdominal cavities, multiple white lobulated masses in different organs, in addition to pink, irregular, multifocal and coalescent nodules in the omentum, with neoplastic cells arranged in cords and cloak of cells supported by a thin fibrovascular stroma. Macroscopic and microscopic findings are characteristic of multicentric lymphoma.
Collapse
|
6
|
Ruiz V, Porta NG, Lomónaco M, Trono K, Alvarez I. Bovine Leukemia Virus Infection in Neonatal Calves. Risk Factors and Control Measures. Front Vet Sci 2018; 5:267. [PMID: 30410920 PMCID: PMC6209627 DOI: 10.3389/fvets.2018.00267] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). Although efficient eradication programs have been successfully implemented in most European countries and Oceania, BLV infection rates are still high worldwide. BLV naturally infects cattle, inducing a persistent infection with diverse clinical outcomes. The virus infects lymphocytes and integrates a DNA intermediate as a provirus into the genome of the cells. Therefore, exposure to biological fluids contaminated with infected lymphocytes potentially spreads the virus. Vertical transmission may occur in utero or during delivery, and about 10% of calves born to BLV-infected dams are already infected at birth. Most frequently, transmission from dams to their offspring occurs through the ingestion of infected colostrum or milk. Therefore, although EBL is not a disease specific to the neonatal period, during this period the calves are at special risk of becoming infected, especially in dairy farms, where they ingest colostrum and/or raw milk either naturally or artificially. Calves infected during the first week of life could play an active role in early propagation of BLV to susceptible animals. This review discusses the main factors that contribute to neonatal BLV infection in dairy herds, as well as different approaches and management practices that could be implemented to reduce the risk of BLV transmission during this period, aiming to decrease BLV infection in dairy herds.
Collapse
Affiliation(s)
- Vanesa Ruiz
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Natalia Gabriela Porta
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Marina Lomónaco
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina
| | - Karina Trono
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Irene Alvarez
- Instituto Nacional de Tecnología Agropecuaria-Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
7
|
Restricted viral cDNA synthesis in cell lines that fail to support productive infection by bovine leukemia virus. Arch Virol 2018; 163:2415-2422. [PMID: 29796925 DOI: 10.1007/s00705-018-3887-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis, which results in significant economic losses on many affected farms. BLV infects a wide range of animals as well as cell lines derived from various mammalian species and organs; however, studies show that only some cell lines support sustained production of viral progeny. The differences between cells that produce viral progeny and those that do not are unclear. The aim of this study was to identify the steps of BLV replication that are associated with the capacity of a cell to support a productive infection. Eleven cell lines derived from various species were categorized into two groups, those that produce BLV progeny and those that do not, and the efficiency of viral attachment was compared. In addition, viral entry and reverse transcription were compared for two BLV-producing cell lines and three non-producing cell lines. BLV attached to and entered all of the tested cells. However, synthesis of viral DNA was inhibited in all three non-virus-producing cell lines, suggesting that BLV production was blocked either prior to or at the stage of reverse transcription. These results increase our understanding of the BLV life cycle and should enable better control over the spread of BLV.
Collapse
|
8
|
|
9
|
Lairmore MD. Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: insights in transmission and pathogenesis. Annu Rev Anim Biosci 2013; 2:189-208. [PMID: 25384140 DOI: 10.1146/annurev-animal-022513-114117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bovine leukemia virus (BLV) and human T-lymphotrophic virus type-1 (HTLV-1) are related retroviruses associated with persistent and lifelong infections and a low incidence of lymphomas within their hosts. Both viruses can be spread through contact with bodily fluids containing infected cells, most often from mother to offspring through breast milk. Each of these complex retroviruses contains typical gag, pol, and env genes but also unique, nonstructural proteins encoded from the pX region. These nonstructural genes encode the Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo. Improvements in the molecular tools to test these viral determinants in cellular and animal models have provided new insights into the pathogenesis of each virus. Comparisons of BLV and HTLV-1 provide insights into mechanisms of spread and tumor formation, as well as potential approaches to therapeutic intervention against the infections.
Collapse
Affiliation(s)
- Michael D Lairmore
- School of Veterinary Medicine, University of California, Davis, California, 95616;
| |
Collapse
|
10
|
Aida Y, Murakami H, Takahashi M, Takeshima SN. Mechanisms of pathogenesis induced by bovine leukemia virus as a model for human T-cell leukemia virus. Front Microbiol 2013; 4:328. [PMID: 24265629 PMCID: PMC3820957 DOI: 10.3389/fmicb.2013.00328] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/17/2013] [Indexed: 11/27/2022] Open
Abstract
Bovine leukemia virus (BLV) and human T-cell leukemia virus type 1 (HTLV-1) make up a unique retrovirus family. Both viruses induce chronic lymphoproliferative diseases with BLV affecting the B-cell lineage and HTLV-1 affecting the T-cell lineage. The pathologies of BLV- and HTLV-induced infections are notably similar, with an absence of chronic viraemia and a long latency period. These viruses encode at least two regulatory proteins, namely, Tax and Rex, in the pX region located between the env gene and the 3′ long terminal repeat. The Tax protein is a key contributor to the oncogenic potential of the virus, and is also the key protein involved in viral replication. However, BLV infection is not sufficient for leukemogenesis, and additional events such as gene mutations must take place. In this review, we first summarize the similarities between the two viruses in terms of genomic organization, virology, and pathology. We then describe the current knowledge of the BLV model, which may also be relevant for the understanding of leukemogenesis caused by HTLV-1. In addition, we address our improved understanding of Tax functions through the newly identified BLV Tax mutants, which have a substitution between amino acids 240 and 265.
Collapse
Affiliation(s)
- Yoko Aida
- Viral Infectious Diseases Unit, RIKEN Wako, Saitama, Japan
| | | | | | | |
Collapse
|
11
|
Hajj HE, Nasr R, Kfoury Y, Dassouki Z, Nasser R, Kchour G, Hermine O, de Thé H, Bazarbachi A. Animal models on HTLV-1 and related viruses: what did we learn? Front Microbiol 2012; 3:333. [PMID: 23049525 PMCID: PMC3448133 DOI: 10.3389/fmicb.2012.00333] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 08/28/2012] [Indexed: 12/22/2022] Open
Abstract
Retroviruses are associated with a wide variety of diseases, including immunological, neurological disorders, and different forms of cancer. Among retroviruses, Oncovirinae regroup according to their genetic structure and sequence, several related viruses such as human T-cell lymphotropic viruses types 1 and 2 (HTLV-1 and HTLV-2), simian T cell lymphotropic viruses types 1 and 2 (STLV-1 and STLV-2), and bovine leukemia virus (BLV). As in many diseases, animal models provide a useful tool for the studies of pathogenesis, treatment, and prevention. In the current review, an overview on different animal models used in the study of these viruses will be provided. A specific attention will be given to the HTLV-1 virus which is the causative agent of adult T-cell leukemia/lymphoma (ATL) but also of a number of inflammatory diseases regrouping the HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP), infective dermatitis and some lung inflammatory diseases. Among these models, rabbits, monkeys but also rats provide an excellent in vivo tool for early HTLV-1 viral infection and transmission as well as the induced host immune response against the virus. But ideally, mice remain the most efficient method of studying human afflictions. Genetically altered mice including both transgenic and knockout mice, offer important models to test the role of specific viral and host genes in the development of HTLV-1-associated leukemia. The development of different strains of immunodeficient mice strains (SCID, NOD, and NOG SCID mice) provide a useful and rapid tool of humanized and xenografted mice models, to test new drugs and targeted therapy against HTLV-1-associated leukemia, to identify leukemia stem cells candidates but also to study the innate immunity mediated by the virus. All together, these animal models have revolutionized the biology of retroviruses, their manipulation of host genes and more importantly the potential ways to either prevent their infection or to treat their associated diseases.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Merimi M, Klener P, Szynal M, Cleuter Y, Kerkhofs P, Burny A, Martiat P, Van den Broeke A. Suppression of viral gene expression in bovine leukemia virus-associated B-cell malignancy: interplay of epigenetic modifications leading to chromatin with a repressive histone code. J Virol 2007; 81:5929-39. [PMID: 17392371 PMCID: PMC1900279 DOI: 10.1128/jvi.02606-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ovine leukemia/lymphoma resulting from bovine leukemia virus infection of sheep offers a large animal model for studying mechanisms underlying leukemogenesis. Silencing of viral information including Tax, the major contributor to the oncogenic potential of the virus, is critical if not mandatory for tumor progression. In this study, we have identified epigenetic mechanisms that govern the complete suppression of viral expression, using a lymphoma-derived B-cell clone carrying a silent provirus. Silencing was not relieved by injection of the malignant B cells into sheep. However, exogenous expression of Tax or treatment with either the DNA methyltransferase inhibitor 5'azacytidine or the histone deacetylase (HDAC) inhibitor trichostatin A rescued viral expression, as demonstrated by in vivo infectivity trials. Comparing silent and reactivated provirus, we found mechanistic connections between chromatin conformation and tumor-associated transcriptional repression. Silencing is associated with DNA methylation and decreased accessibility of promoter sequences. HDAC1 and the transcriptional corepressor mSin3A are associated with the inactive but not the reactivated promoter. Silencing correlates with a repressed chromatin structure marked by histone H3 and H4 hypoacetylation, a loss of methylation at H3 lysine 4, and an increase of H3 lysine 9 methylation. These observations point to the critical role of epigenetic mechanisms in tumor-specific virus/oncogene silencing, a potential strategy to evade immune response and favor the propagation of the transformed cell.
Collapse
Affiliation(s)
- Makram Merimi
- Laboratory of Experimental Hematology, Bordet Institute, ULB, 121, Blvd. de Waterloo, 1000 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gillet N, Florins A, Boxus M, Burteau C, Nigro A, Vandermeers F, Balon H, Bouzar AB, Defoiche J, Burny A, Reichert M, Kettmann R, Willems L. Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in human. Retrovirology 2007; 4:18. [PMID: 17362524 PMCID: PMC1839114 DOI: 10.1186/1742-4690-4-18] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 03/16/2007] [Indexed: 12/15/2022] Open
Abstract
In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.
Collapse
Affiliation(s)
- Nicolas Gillet
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arnaud Florins
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Mathieu Boxus
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Catherine Burteau
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Annamaria Nigro
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Fabian Vandermeers
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Hervé Balon
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Amel-Baya Bouzar
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Julien Defoiche
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Arsène Burny
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | | | - Richard Kettmann
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
| | - Luc Willems
- Molecular and Cellular Biology, Faculté Universitaire des Sciences Agronomiques, Gembloux, Belgium
- Luc Willems, National fund for Scientific Research, Molecular and Cellular Biology laboratory, 13 avenue Maréchal Juin, 5030 Gembloux, Belgium
| |
Collapse
|
14
|
Takahashi M, Tajima S, Takeshima SN, Konnai S, Yin SA, Okada K, Davis WC, Aida Y. Ex vivo survival of peripheral blood mononuclear cells in sheep induced by bovine leukemia virus (BLV) mainly occurs in CD5- B cells that express BLV. Microbes Infect 2005; 6:584-95. [PMID: 15158193 DOI: 10.1016/j.micinf.2004.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Accepted: 02/09/2004] [Indexed: 10/26/2022]
Abstract
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leukosis (EBL). In a previous report, we found that in a sheep model, only CD5(-) B cells proliferated clonally, while CD5(+) B cells rapidly decreased when the disease progressed to the lymphoma stage. We demonstrate here that, although both CD5(+) and CD5(-) B cells, but not CD4(+) T, CD8(+) T and gammadeltaTCR(+)T cells, are protected from spontaneous ex vivo apoptosis in sheep infected with wild-type and a mutant BLV that encodes a mutant Tax D247G protein with elevated trans-activation activity, only CD5(-) B cells become the main target for ex vivo survival when the disease proceeds to the persistent lymphocytotic stage, which showed an increased expansion of the CD5(-) B cells. In addition, we identified, by four-color flow cytometric analysis, that in CD5(-) B cells, the apoptotic rates of cells that expressed wild-type and mutant BLV were greatly decreased compared with those of BLV-negative cells. There was only a slight reduction in the apoptotic rates in BLV-positive cells from CD5(+) B cells. In addition, supernatants from peripheral blood mononuclear cell (PBMC) cultures from wild-type- and mutant BLV-infected sheep mainly protected CD5(-) B cells from spontaneous apoptosis. Our results suggest that, although BLV can protect both CD5(+) and CD5(-) B cells from ex vivo apoptosis, the mechanisms accounting for the ex vivo survival between these two B-cell subsets differ. Therefore, it appears that the phenotypic changes in cells that express CD5 at the lymphoma stage could result from a difference in susceptibility to apoptosis in CD5(+) and CD5(-) B cells in BLV-infected sheep.
Collapse
MESH Headings
- Animals
- Apoptosis
- B-Lymphocyte Subsets/physiology
- B-Lymphocyte Subsets/virology
- CD4 Antigens/analysis
- CD5 Antigens/analysis
- CD8 Antigens/analysis
- Cattle
- Cells, Cultured
- Deltaretrovirus Infections/physiopathology
- Deltaretrovirus Infections/virology
- Disease Progression
- Enzootic Bovine Leukosis/virology
- Flow Cytometry
- Genes, pX
- Leukemia Virus, Bovine/genetics
- Leukemia Virus, Bovine/physiology
- Leukocytes, Mononuclear/physiology
- Leukocytes, Mononuclear/virology
- Mutation, Missense
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Sheep
Collapse
Affiliation(s)
- Masahiko Takahashi
- Retrovirus Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Takahashi M, Tajima S, Okada K, Davis WC, Aida Y. Involvement of bovine leukemia virus in induction and inhibition of apoptosis. Microbes Infect 2004; 7:19-28. [PMID: 15716078 DOI: 10.1016/j.micinf.2004.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/17/2004] [Accepted: 09/21/2004] [Indexed: 11/18/2022]
Abstract
In a previous study, we identified an interesting mutant form of the Tax protein of bovine leukemia virus (BLV), designated D247G, that has an enhanced capacity to transactivate the long terminal repeat (LTR) of BLV and the cellular proto-oncogene c-fos when compared with wild-type Tax (wt-Tax). We demonstrate here that an infectious strain of BLV containing the mutant D247G form of Tax also differs in its capacity to modulate cell survival both positively and negatively. When peripheral blood mononuclear cells (PBMCs) infected with wild-type or mutant BLV are cultured ex vivo with staurosporine, an agent known to induce a mitochondrial caspase cascade pathway regulating apoptosis, the rate of apoptosis is reduced to a greater extent in cells infected with mutant BLV than wild-type BLV, consistent with previous observations in cultures without staurosporine. The increase in survival was associated with an increase in expression of mRNA of bcl-xl but not bcl-2 and bax ex vivo. In contrast, when a tissue culture-adapted cell line, 293T, was transiently transfected with either wild-type or mutant BLV, apoptosis was induced. The increase in the rate of apoptosis was higher in cells transfected with mutant BLV. The same difference was noted in cells transiently transfected with wild-type and mutant D247G Tax, suggesting that the observed positive and negative modulation of cell survival is attributed to the functional characteristics of mutant D247G Tax.
Collapse
|
16
|
Willems L, Burny A, Collete D, Dangoisse O, Dequiedt F, Gatot JS, Kerkhofs P, Lefèbvre L, Merezak C, Peremans T, Portetelle D, Twizere JC, Kettmann R. Genetic determinants of bovine leukemia virus pathogenesis. AIDS Res Hum Retroviruses 2000; 16:1787-95. [PMID: 11080828 DOI: 10.1089/08892220050193326] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The understanding of HTLV-induced disease is hampered by the lack of a suitable animal model allowing the study of both viral replication and leukemogenesis in vivo. Although valuable information has been obtained in different species, such as rabbits, mice, rats, and monkeys, none of these systems was able to conciliate topics as different as viral infectivity, propagation within the host, and generation of leukemic cells. An alternate strategy is based on the understanding of diseases induced by viruses closely related to HTLV-1, like bovine leukemia virus (BLV). Both viruses indeed belong to the same subfamily of retroviruses, harbor a similar genomic organization, and infect and transform cells of the hematopoietic system. The main advantage of the BLV system is that it allows direct experimentation in two different species, cattle and sheep.
Collapse
Affiliation(s)
- L Willems
- Department of Applied Biochemistry and Biology, Faculty of Agronomy, B5030 Gembloux, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Su M, He C, West CA, Mentzer SJ. Generation of sheep X (sheep X mouse) heterohybridoma cell line expressing the beta-1 integrin membrane molecule. Hybridoma (Larchmt) 2000; 19:81-7. [PMID: 10768844 DOI: 10.1089/027245700315824] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Sheep are an important biological model in such diverse areas as immunology and reproductive biology. The limitation of sheep as an experimental model is the absence of reliable cell lines. To establish cell lines that express functional sheep membrane molecules, we produced a sheep x mouse heterohybridoma by fusion of sheep efferent lymph T cells with the murine myeloma cell line NS1. A cloned heterohybridoma fusion partner was selected by treatment with 8-azaguanine. The resulting cell line HL1/385 was selected for hypoxanthine/aminopterin/thymidine (HAT) sensitivity and growth efficiency. The HL1/385 cell line was used as a back-fusion partner into lectin-stimulated efferent T lymphocytes. The back-fusion approach produced more than 50 heterohybrid cell lines with high growth efficiency. The expression of physiological levels of the sheep beta-1 integrin cell surface molecule on the HT4/6 cell line was stable for months in culture. These results suggest that somatic heterohybrids may provide a reliable source of cell lines for sheep studies in vitro.
Collapse
Affiliation(s)
- M Su
- Laboratory of Immunophysiology, the Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
18
|
Kucerova L, Altanerova V, Altaner C, Boris-Lawrie K. Bovine leukemia virus structural gene vectors are immunogenic and lack pathogenicity in a rabbit model. J Virol 1999; 73:8160-6. [PMID: 10482566 PMCID: PMC112833 DOI: 10.1128/jvi.73.10.8160-8166.1999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection with a replication-competent bovine leukemia virus structural gene vector (BLV SGV) is an innovative vaccination approach to prevent disease by complex retroviruses. Previously we developed BLV SGV that constitutively expresses BLV gag, pol, and env and related cis-acting sequences but lacks tax, rex, RIII, and GIV and most of the BLV long terminal repeat sequences, including the cis-acting Tax and Rex response elements. The novel SGV virus is replication competent and replicates a selectable vector to a titer similar to that of the parental BLV in cell culture. The overall goal of this study was to test the hypothesis that infection with BLV SGV is nonpathogenic in rabbits. BLV infection of rabbits by inoculation of cell-free BLV or cell-associated BLV typically causes an immunodeficiency-like syndrome and death by 1 year postinfection. We sought to evaluate whether in vivo transfection of BLV provirus recapitulates pathogenic BLV infection and to compare BLV and BLV SGV with respect to infection, immunogenicity, and clinical outcome. Three groups of rabbits were subjected to in vivo transfection with BLV, BLV SGV, or negative control DNA. The results of our 20-month study indicate that in vivo transfection of rabbits with BLV recapitulates the fatal BLV infection produced by cell-free or cell-associated BLV. The BLV-infected rabbits exhibited sudden onset of clinical decline and immunodeficiency-like symptoms that culminated in death. BLV and BLV SGV infected peripheral blood mononuclear cells and induced similar levels of seroconversion to BLV structural proteins. However, BLV SGV exhibited a reduced proviral load and did not trigger the immunodeficiency-like syndrome. These results are consistent with the hypothesis that BLV SGV is infectious and immunogenic and lacks BLV pathogenicity in rabbits, and they support the use of this modified proviral vector delivery system for vaccines against complex retroviruses like BLV.
Collapse
Affiliation(s)
- L Kucerova
- Cancer Research Institute, Slovak Academy of Sciences, SK-833 91 Bratislava, Slovakia
| | | | | | | |
Collapse
|
19
|
Boris-Lawrie K, Altanerova V, Altaner C, Kucerova L, Temin HM. In vivo study of genetically simplified bovine leukemia virus derivatives that lack tax and rex. J Virol 1997; 71:1514-20. [PMID: 8995677 PMCID: PMC191208 DOI: 10.1128/jvi.71.2.1514-1520.1997] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Genetically simplified derivatives of complex retroviruses that replicate in animal models are useful tools to study the role of the complex regulatory genes in virus infection and pathogenesis and were proposed as a novel approach toward the development of vaccines against complex retroviruses. Previously we developed genetically simple derivatives of bovine leukemia virus (BLV) that can replicate in tissue culture independently of the BLV regulatory proteins, Tax and Rex, and the RIII and GIV open reading frames (K. Boris-Lawrie and H. M. Temin, J. Virol. 69:1920-1924, 1995). These derivatives are encoded on novel, hybrid retrovirus genomes that contain transcriptional control sequences of a simple retrovirus and gag-pol or env genes of the complex BLV. The first-generation simple BLV derivatives replicate as complementary viruses (coviruses) by using separate gag-pol or env genomes, and therefore virus spread is limited to cells that are infected with both covirus genomes. Here we describe a second-generation simple BLV derivative that is encoded on a single hybrid genome. We show the virus to be replication competent by successive passage on D17 target cells and by analysis of viral RNA and proteins in the infected cells. Furthermore, we evaluate the immunogenicity and infectivity of the simple BLV derivatives in a BLV animal model. Small groups of rats were injected either with virus-producing cells or with proviral DNA. Western immunoblot analysis revealed that antibodies against the major viral antigenic determinants are induced in response to either method of introduction and that seroconversion is sustained in most of the rats for at least 6 months (the duration of the study). The magnitudes of the antiviral responses were similar in rats infected with the first-generation simple BLV coviruses, the second-generation replication-competent derivative, or wild-type BLV. Wild-type BLV typically infects peripheral blood mononuclear cells (PBMC), and the simple BLV derivatives were also found to infect PBMC as demonstrated by PCR amplification of proviral sequences and reverse transcriptase PCR amplification of viral RNA in treated rats. These results establish that simple BLV derivatives lacking tax and rex are infectious and immunogenic in rats. These viruses will be useful tools in comparative studies with BLV to evaluate the role of tax and rex in maintenance of virus load and in disease outcome.
Collapse
Affiliation(s)
- K Boris-Lawrie
- Department of Veterinary Biosciences and Center for Retrovirus Research, Ohio State University, Columbus 43210, USA.
| | | | | | | | | |
Collapse
|
20
|
Rovnak J, Boyd AL, Casey JW, Gonda MA, Jensen WA, Cockerell GL. Pathogenicity of molecularly cloned bovine leukemia virus. J Virol 1993; 67:7096-105. [PMID: 8230433 PMCID: PMC238171 DOI: 10.1128/jvi.67.12.7096-7105.1993] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To delineate the mechanisms of bovine leukemia virus (BLV) pathogenesis, four full-length BLV clones, 1, 8, 9, and 13, derived from the transformed cell line FLK-BLV and a clone construct, pBLV913, were introduced into bovine spleen cells by microinjection. Microinjected cells exhibited cytopathic effects and produced BLV p24 and gp51 antigens and infectious virus. The construct, pBLV913, was selected for infection of two sheep by inoculation of microinjected cells. After 15 months, peripheral blood mononuclear cells from these sheep served as inocula for the transfer of infection to four additional sheep. All six infected sheep seroconverted to BLV and had detectable BLV DNA in peripheral blood mononuclear cells after amplification by polymerase chain reaction. Four of the six sheep developed altered B/T-lymphocyte ratios between 33 and 53 months postinfection. One sheep died of unrelated causes, and one remained hematologically normal. Two of the affected sheep developed B lymphocytosis comparable to that observed in animals inoculated with peripheral blood mononuclear cells from BLV-infected cattle. This expanded B-lymphocyte population was characterized by elevated expression of B-cell surface markers, spontaneous blastogenesis, virus expression in vitro, and increased, polyclonally integrated provirus. One of these two sheep developed lymphocytic leukemia-lymphoma at 57 months postinfection. Leukemic cells had the same phenotype and harbored a single, monoclonally integrated provirus but produced no virus after in vitro cultivation. The range in clinical response to in vivo infection with cloned BLV suggests an important role for host immune response in the progression of virus replication and pathogenesis.
Collapse
Affiliation(s)
- J Rovnak
- Department of Pathology, Colorado State University, Fort Collins 80523
| | | | | | | | | | | |
Collapse
|
21
|
Borisenko A, Miroschnickhenko O, Tikchonenko TI. Inhibition of bovine leukaemia virus replication by the antisense RNA in cell line CC81. Virus Res 1992; 23:89-97. [PMID: 1318628 DOI: 10.1016/0168-1702(92)90069-l] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A model system has been developed for quantitative evaluation of bovine leukaemia virus (BLV) replication in a permanent cell line CC81. Transfection of the BLV DNA into these cells evoked typical signs of retroviral infection: formation of syncytia, manifestation of reverse transcriptase activity and appearance of characteristic budding retroviral particles. To inhibit BLV replication, a recombinant plasmid pAGR with an antisense RNA gene targeted at the R-U5 region (147th-342th nt) of the viral genome has been engineered. Cotransfection of CC81 cells with infectious BLV DNA and pAGR led to effective inhibition of BLV replication by the antisense RNA, evidenced by a drop in the number of syncytia and reverse transcriptase activity. Maximal inhibition of BLV replication (95-97%) was observed at a weight ratio of input viral and plasmid DNAs equal to 1:10.
Collapse
Affiliation(s)
- A Borisenko
- Institute of Agricultural Biotechnology, Moscow, Russia
| | | | | |
Collapse
|