1
|
Abstract
Sickness behavior was conceptualized initially as the behavioral counterpart of the fever response to infectious pathogens. It helps to raise body temperature to its higher setpoint and to maintain it at this new level and it has the additional benefit of enabling a weakened organism to protect itself from other dangers. The discovery of the behavioral effects of proinflammatory cytokines produced by activated immune cells provided a cellular and molecular basis to this phenomenon. The administration of cytokines or cytokine inducers like lipopolysaccharide to healthy rodents allowed to reveal the similarities and differences between inflammation-induced sickness behavior and the fever response. It also led to the understanding of how the inflammatory response that is triggered at the periphery can propagate into the brain and induce the behavioral manifestations of sickness. At the behavioral level, the demonstration that sickness behavior is the expression of a motivational state that reorganizes perception and action in face of a microbial pathogen just like fear in face of a predator appeared at first glance to strengthen the adaptive value of this behavior. However, all aspects of sickness behavior are not always favorable for the organism. This is the case for anorexia that is beneficial in the context of bacterial infection but detrimental in the context of viral infection. In addition, studies of sickness behavior in natural conditions revealed that like any other defensive behavior, sickness behavior requires trade-offs between its survival benefits for the sick individual and the costs incurred especially in the context of gregarious groups. Thanks to these studies, evidence is emerging that sickness behavior is much more variable in its expression than initially thought, and that part of this variability depends not only on the pathogen and the social context in which the infection develops but also on individual factors including species, sex, age, nutrition, and physiological status.
Collapse
Affiliation(s)
- Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Felger JC, Haroon E, Patel TA, Goldsmith DR, Wommack EC, Woolwine BJ, Le NA, Feinberg R, Tansey MG, Miller AH. What does plasma CRP tell us about peripheral and central inflammation in depression? Mol Psychiatry 2020; 25:1301-1311. [PMID: 29895893 PMCID: PMC6291384 DOI: 10.1038/s41380-018-0096-3] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022]
Abstract
Peripheral blood C-reactive protein (CRP) is a biomarker used clinically to measure systemic inflammation and is reproducibly increased in a subset of patients with major depressive disorder (MDD). Furthermore, increased peripheral blood CRP in MDD has been associated with altered reward circuitry and increased brain glutamate in relation with symptoms of anhedonia. Nevertheless, the relationship between peripheral CRP and other peripheral and central markers of inflammation in depressed patients has not been established. Plasma (n = 89) and CSF (n = 73) was collected from medically stable, currently unmedicated adult outpatients with MDD. Associations among plasma and CSF CRP and plasma and CSF inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF] and IL-1beta) and their soluble receptors/antagonists were examined. Relationships between plasma and CSF inflammatory markers and depressive symptoms including anhedonia and reduced motivation (RM) were also explored. Plasma CRP was correlated with multiple plasma inflammatory markers (all p < 0.05), and a strong correlation was found between plasma and CSF CRP (r = 0.855, p < 0.001). CSF CRP in turn correlated with CSF cytokine receptors/antagonists (all p < 0.05). Principal component analyses revealed clusters of CSF inflammatory markers that were associated with high plasma CRP (>3 mg/L) and correlated with depressive symptom severity. These findings were driven by CSF TNF, which correlated with RM (r = 0.236, p = 0.045), and CSF IL-6 soluble receptor, which correlated with anhedonia (r = 0.301, p = 0.010) in the sample as a whole and particularly females. CRP appears to be a peripheral biomarker that reflects peripheral and central inflammation and seems well-suited for guiding immunotherapies targeting TNF and IL-6 in patients with MDD.
Collapse
Affiliation(s)
- Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA.
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Trusharth A Patel
- Department of Anesthesiology, Emory University, Atlanta, GA, 30322, USA
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Evanthia C Wommack
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Bobbi J Woolwine
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Ngoc-Anh Le
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Rachel Feinberg
- Biomarker Core Laboratory, Atlanta VAMC, Decatur, GA, 30033, USA
| | - Malu G Tansey
- Department of Physiology, Emory University, Atlanta, GA, 30322, USA
| | - Andrew H Miller
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
- The Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
3
|
Agorastos A, Hauger RL, Barkauskas DA, Lerman IR, Moeller-Bertram T, Snijders C, Haji U, Patel PM, Geracioti TD, Chrousos GP, Baker DG. Relations of combat stress and posttraumatic stress disorder to 24-h plasma and cerebrospinal fluid interleukin-6 levels and circadian rhythmicity. Psychoneuroendocrinology 2019; 100:237-245. [PMID: 30390522 DOI: 10.1016/j.psyneuen.2018.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/28/2018] [Accepted: 09/08/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Acute and chronic stress can lead to a dysregulation of the immune response. Growing evidence suggests peripheral immune dysregulation and low-grade systemic inflammation in posttraumatic stress disorder (PTSD), with numerous reports of elevated plasma interleukin-6 (IL-6) levels. However, only a few studies have assessed IL-6 levels in the cerebrospinal fluid (CSF). Most of those have used single time-point measurements, and thus cannot take circadian level variability and CSF-plasma IL-6 correlations into account. METHODS This study used time-matched, sequential 24-h plasma and CSF measurements to investigate the effects of combat stress and PTSD on physiologic levels and biorhythmicity of IL-6 in 35 male study volunteers, divided in 3 groups: (PTSD = 12, combat controls, CC = 12, and non-deployed healthy controls, HC = 11). RESULTS Our findings show no differences in diurnal mean concentrations of plasma and CSF IL-6 across the three comparison groups. However, a significantly blunted circadian rhythm of plasma IL-6 across 24 h was observed in all combat-zone deployed participants, with or without PTSD, in comparison to HC. CSF IL-6 rhythmicity was unaffected by combat deployment or PTSD. CONCLUSIONS Although no significant group differences in mean IL-6 concentration in either CSF or plasma over a 24-h timeframe was observed, we provide first evidence for a disrupted peripheral IL-6 circadian rhythm as a sequel of combat deployment, with this disruption occurring in both PTSD and CC groups. The plasma IL-6 circadian blunting remains to be replicated and its cause elucidated in future research.
Collapse
Affiliation(s)
- Agorastos Agorastos
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; Department of Psychiatry, Division of Neurosciences, School of Medicine, Faculty of Medical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Richard L Hauger
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego (UCSD), CA, USA
| | - Donald A Barkauskas
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California (USC), Los Angeles, CA, USA
| | - Imanuel R Lerman
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Tobias Moeller-Bertram
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Clara Snijders
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Uzair Haji
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Piyush M Patel
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, San Diego, CA, USA
| | - Thomas D Geracioti
- University of Cincinnati Medical Center, Department of Psychiatry and Neurobehavioral Sciences, Cincinnati, OH, USA
| | - George P Chrousos
- First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Dewleen G Baker
- VA Center of Excellence for Stress and Mental Health, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA; Department of Psychiatry, University of California, San Diego (UCSD), CA, USA.
| |
Collapse
|
4
|
Abstract
Positron-emission tomography (PET) imaging is a valuable research tool that enables in vivo quantification of molecular targets in the brain or of a physiologic process. PET imaging can be combined with various experimental and clinical model systems that are commonly used in psychoneuroimmunology research. As PET imaging can be used in animals and humans, promising results can therefore often be translated from an animal model to human disease.
Collapse
|
5
|
Zhu Y, Chai YL, Hilal S, Ikram MK, Venketasubramanian N, Wong BS, Chen CP, Lai MKP. Serum IL-8 is a marker of white-matter hyperintensities in patients with Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2017; 7:41-47. [PMID: 28239640 PMCID: PMC5318538 DOI: 10.1016/j.dadm.2017.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Neuroinflammation and cerebrovascular disease (CeVD) have been implicated in cognitive impairment and Alzheimer's disease (AD). The present study aimed to examine serum inflammatory markers in preclinical stages of dementia and in AD, as well as to investigate their associations with concomitant CeVD. METHODS We performed a cross-sectional case-control study including 96 AD, 140 cognitively impaired no dementia (CIND), and 79 noncognitively impaired participants. All subjects underwent neuropsychological and neuroimaging assessments, as well as collection of blood samples for measurements of serum samples interleukin (IL)-6, IL-8, and tumor necrosis factor α levels. Subjects were classified as CIND or dementia based on clinical criteria. Significant CeVD, including white-matter hyperintensities (WMHs), lacunes, and cortical infarcts, was assessed by magnetic resonance imaging. RESULTS After controlling for covariates, higher concentrations of IL-8, but not the other measured cytokines, were associated with both CIND and AD only in the presence of significant CeVD (CIND with CeVD: odds ratios [ORs] 4.53; 95% confidence interval [CI] 1.5-13.4 and AD with CeVD: OR 7.26; 95% CI 1.2-43.3). Subsequent multivariate analyses showed that among the types of CeVD assessed, only WMH was associated with higher IL-8 levels in CIND and AD (WMH: OR 2.81; 95% CI 1.4-5.6). DISCUSSION Serum IL-8 may have clinical utility as a biomarker for WMH in AD. Longitudinal follow-up studies would help validate these findings.
Collapse
Affiliation(s)
- Yanan Zhu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Radiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Narayanaswamy Venketasubramanian
- Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore; Raffles Neuroscience Centre, Raffles Hospital, Singapore, Singapore
| | - Boon-Seng Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore; Memory Aging and Cognition Centre, National University Health System, Kent Ridge, Singapore
| |
Collapse
|
6
|
Circadian rhythmicity, variability and correlation of interleukin-6 levels in plasma and cerebrospinal fluid of healthy men. Psychoneuroendocrinology 2014; 44:71-82. [PMID: 24767621 DOI: 10.1016/j.psyneuen.2014.02.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 01/02/2023]
Abstract
BACKGROUND Interleukin-6 (IL-6) is a cytokine with pleiotropic actions in both the periphery of the body and the central nervous system (CNS). Altered IL-6 secretion has been associated with inflammatory dysregulation and several adverse health consequences. However, little is known about the physiological circadian characteristics and dynamic inter-correlation between circulating and CNS IL-6 levels in humans, or their significance. METHODS Simultaneous assessment of plasma and cerebrospinal fluid (CSF) IL-6 levels was performed hourly in 11 healthy male volunteers over 24h, to characterize physiological IL-6 secretion levels in both compartments. RESULTS IL-6 levels showed considerable within- and between-subject variability in both plasma and CSF, with plasma/CSF ratios revealing consistently higher levels in the CSF. Both CSF and plasma IL-6 levels showed a distinctive circadian variation, with CSF IL-6 levels exhibiting a main 24h, and plasma a biphasic 12h, circadian component. Plasma peaks were roughly at 4 p.m. and 4 a.m., while the CSF peak was at around 7 p.m. There was no correlation between coincident CSF and plasma IL-6 values, but evidence for significant correlations at a negative 7-8h time lag. CONCLUSIONS This study provides evidence in humans for a circadian IL-6 rhythm in CSF and confirms prior observations reporting a plasma biphasic circadian pattern. Our results indicate differential IL-6 regulation across the two compartments and are consistent with local production of IL-6 in the CNS. Possible physiological significance is discussed and implications for further research are highlighted.
Collapse
|
7
|
Willette AA, Coe CL, Birdsill AC, Bendlin BB, Colman RJ, Alexander AL, Allison DB, Weindruch RH, Johnson SC. Interleukin-8 and interleukin-10, brain volume and microstructure, and the influence of calorie restriction in old rhesus macaques. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2215-2227. [PMID: 23463321 PMCID: PMC3825005 DOI: 10.1007/s11357-013-9518-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/17/2013] [Indexed: 06/01/2023]
Abstract
Higher systemic levels of the proinflammatory cytokine interleukin-6 (IL-6) were found to be associated with lower gray matter volume and tissue density in old rhesus macaques. This association between IL-6, and these brain indices were attenuated by long-term 30 % calorie restriction (CR). To extend these findings, the current analysis determined if a CR diet in 27 aged rhesus monkeys compared to 17 normally fed controls reduced circulating levels of another proinflammatory cytokine, interleukin-8 (IL-8), and raised levels of anti-inflammatory interleukin-10 (IL-10). Further, these cytokines were regressed onto imaged brain volume and microstructure using voxel-wise regression analyses. CR significantly lowered IL-8 and raised IL-10 levels. Across the two dietary conditions, higher IL-8 predicted smaller gray matter volumes in bilateral hippocampus. Higher IL-10 was associated with more white matter volume in visual areas and tracts. Consuming a CR diet reduced the association between systemic IL-8 and hippocampal volumes. Conversely, CR strengthened associations between IL-10 and microstructural tissue density in the prefrontal cortex and other areas, particularly in a region of dorsal prefrontal cortex, which concurred with our prior findings for IL-6. Consumption of a CR diet lowered proinflammatory and increased anti-inflammatory cytokine concentrations, which lessened the statistical association between systemic inflammation and the age-related alterations in important brain regions, including the hippocampus.
Collapse
Affiliation(s)
- A. A. Willette
- />Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, D-4225 Veterans Administration Hospital, 2500 Overlook Terrace, Madison, WI 53705 USA
- />Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705 USA
- />Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705 USA
| | - C. L. Coe
- />Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705 USA
- />Harlow Primate Laboratory, Department of Psychology, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - A. C. Birdsill
- />Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, D-4225 Veterans Administration Hospital, 2500 Overlook Terrace, Madison, WI 53705 USA
- />Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705 USA
| | - B. B. Bendlin
- />Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, D-4225 Veterans Administration Hospital, 2500 Overlook Terrace, Madison, WI 53705 USA
- />Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705 USA
| | - R. J. Colman
- />Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - A. L. Alexander
- />Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705 USA
| | - D. B. Allison
- />Office of Energetics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - R. H. Weindruch
- />Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, D-4225 Veterans Administration Hospital, 2500 Overlook Terrace, Madison, WI 53705 USA
- />Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705 USA
| | - S. C. Johnson
- />Geriatric Research Education and Clinical Center, Wm. S. Middleton Memorial Veterans Hospital, D-4225 Veterans Administration Hospital, 2500 Overlook Terrace, Madison, WI 53705 USA
- />Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, Madison, WI 53705 USA
- />Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705 USA
- />Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715 USA
| |
Collapse
|
8
|
Glucagon-like peptide 1 receptor induced suppression of food intake, and body weight is mediated by central IL-1 and IL-6. Proc Natl Acad Sci U S A 2013; 110:16199-204. [PMID: 24048027 DOI: 10.1073/pnas.1306799110] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1), produced in the intestine and the brain, can stimulate insulin secretion from the pancreas and alleviate type 2 diabetes. The cytokine interleukin-6 (IL-6) may enhance insulin secretion from β-cells by stimulating peripheral GLP-1 production. GLP-1 and its analogs also reduce food intake and body weight, clinically beneficial actions that are likely exerted at the level of the CNS, but otherwise are poorly understood. The cytokines IL-6 and interleukin 1β (IL-1β) may exert an anti-obesity effect in the CNS during health. Here we found that central injection of a clinically used GLP-1 receptor agonist, exendin-4, potently increased the expression of IL-6 in the hypothalamus (11-fold) and the hindbrain (4-fold) and of IL-1β in the hypothalamus, without changing the expression of other inflammation-associated genes. Furthermore, hypothalamic and hindbrain interleukin-associated intracellular signals [phosphorylated signal transducer and activator of transcription-3 (pSTAT3) and suppressor of cytokine signaling-1 (SOCS1)] were also elevated by exendin-4. Pharmacologic disruption of CNS IL-1 receptor or IL-6 biological activity attenuated anorexia and body weight loss induced by central exendin-4 administration in a rat. Simultaneous blockade of IL-1 and IL-6 activity led to a more potent attenuation of exendin-4 effects on food intake. Mice with global IL-1 receptor gene knockout or central IL-6 receptor knockdown showed attenuated decrease in food intake and body weight in response to peripheral exendin-4 treatment. GLP-1 receptor activation in the mouse neuronal Neuro2A cell line also resulted in increased IL-6 expression. These data outline a previously unidentified role of the central IL-1 and IL-6 in mediating the anorexic and body weight loss effects of GLP-1 receptor activation.
Collapse
|
9
|
Neurophysiological and Neurochemical Mechanisms of Behavioral Disorders in Rats with Chronic Inflammation of Back Tissues. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9357-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Abstract
Positron emission tomography (PET) imaging is a research tool that allows in vivo measurements of brain metabolism and specific target molecules. PET imaging can be used to measure these brain variables in a variety of species, including human and non-human primates, and rodents. PET imaging can therefore be combined with various experimental and clinical model systems that are commonly used in psychoneuroimmunology research.
Collapse
Affiliation(s)
- Jonas Hannestad
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
11
|
Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol 2012; 33:315-27. [PMID: 23000204 PMCID: PMC3484236 DOI: 10.1016/j.yfrne.2012.09.003] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/28/2012] [Accepted: 09/12/2012] [Indexed: 01/18/2023]
Abstract
Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise.
Collapse
|
12
|
Immune function and HPA axis activity in free-ranging rhesus macaques. Physiol Behav 2011; 104:507-14. [PMID: 21635909 DOI: 10.1016/j.physbeh.2011.05.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/15/2011] [Accepted: 05/18/2011] [Indexed: 11/20/2022]
Abstract
In mammals, the hypothalamic-pituitary-adrenal (HPA) axis and immune system play an important role in the maintenance of homeostasis. Dysregulation of either system resulting, for example, from psychosocial or reproductive stress increases susceptibility to disease and mortality risk, especially in aging individuals. In a study of free-ranging rhesus macaques, we examined how female age, reproductive state, social rank, and body condition influence (i) aspects of cytokine biology (plasma concentrations of interleukin-1 receptor antagonist (IL-1ra), IL-6 and IL-8), and (ii) HPA axis activity (plasma and fecal glucocorticoid levels). We also assessed individual differences in cytokine and hormone concentrations over time to determine their consistency and to investigate relations between these two indicators of physiological regulation and demand. Female monkeys showed marked increases in HPA axis activity during pregnancy and lactation, and increased circulating levels of IL-1ra with advancing age. Inter-individual differences in IL-1ra and IL-8 were consistent over successive years, suggesting that both are stable, trait-like characteristics. Furthermore, the concentrations of fecal glucocorticoid hormones in non-pregnant, non-lactating females were correlated with their plasma cortisol and IL-8 concentrations. Some individuals showed permanently elevated cytokine levels or HPA axis activity, or a combination of the two, suggesting chronic stress or disease. Our results enhance our understanding of within- and between-individual variation in cytokine levels and their relationship with glucocorticoid hormones in free-ranging primates. These findings can provide the basis for future research on stress and allostatic load in primates.
Collapse
|
13
|
Willette AA, Bendlin BB, McLaren DG, Canu E, Kastman EK, Kosmatka KJ, Xu G, Field AS, Alexander AL, Colman RJ, Weindruch RH, Coe CL, Johnson SC. Age-related changes in neural volume and microstructure associated with interleukin-6 are ameliorated by a calorie-restricted diet in old rhesus monkeys. Neuroimage 2010; 51:987-94. [PMID: 20298794 DOI: 10.1016/j.neuroimage.2010.03.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 03/02/2010] [Accepted: 03/04/2010] [Indexed: 11/24/2022] Open
Abstract
Systemic levels of proinflammatory cytokines such as interleukin-6 (IL-6) increase in old age and may contribute to neural atrophy in humans. We investigated IL-6 associations with age in T1-weighted segments and microstructural diffusion indices using MRI in aged rhesus monkeys (Macaca mulatta). Further, we determined if long-term 30% calorie restriction (CR) reduced IL-6 and attenuated its association with lower tissue volume and density. Voxel-based morphometry (VBM) and diffusion-weighted voxelwise analyses were conducted. IL-6 was associated with less global gray and white matter (GM and WM), as well as smaller parietal and temporal GM volumes. Lower fractional anisotropy (FA) was associated with higher IL-6 levels along the corpus callosum and various cortical and subcortical tracts. Higher IL-6 concentrations across subjects were also associated with increased mean diffusivity (MD) throughout many brain regions, particularly in corpus callosum, cingulum, and parietal, frontal, and prefrontal areas. CR monkeys had significantly lower IL-6 and less associated atrophy. An IL-6xCR interaction across modalities also indicated that CR mitigated IL-6 related changes in several brain regions compared to controls. Peripheral IL-6 levels were correlated with atrophy in regions sensitive to aging, and this relationship was decreased by CR.
Collapse
Affiliation(s)
- A A Willette
- Harlow Primate Laboratory, Department of Psychology, Madison, WI 53715, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
DellaGioia N, Hannestad J. A critical review of human endotoxin administration as an experimental paradigm of depression. Neurosci Biobehav Rev 2009; 34:130-43. [PMID: 19666048 DOI: 10.1016/j.neubiorev.2009.07.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/22/2009] [Accepted: 07/24/2009] [Indexed: 12/12/2022]
Abstract
The syndrome called depression may represent the common final pathway at which different aetiopathogenic processes converge. One such aetiopathogenic process is innate immune system activation. Some depressed patients have increased levels of inflammatory cytokines and other immunologic abnormalities. It is not known whether immune system activation contributes to the pathogenesis of depressive symptoms. Supporting this possibility is the observation that in both rodents and humans, exogenous immune stimuli such as endotoxin can produce symptoms that resemble depression. A new approach to depression research would be to use immune stimuli to elicit depressive symptoms in humans. Here we review each of the symptoms elicited in humans by endotoxin administration, and compare this model to two other immune depression paradigms: interferon-alpha treatment and typhoid vaccine administration, to assess to what degree endotoxin administration represents a valid model of immune depression. We also review corresponding behavioral changes in rodents and the potential molecular pathways through which immune system activation produces each symptom.
Collapse
Affiliation(s)
- Nicole DellaGioia
- Yale Department of Psychiatry, Clinical Neuroscience Research Unit, Yale University School of Medicine, New Haven, CT 06519, USA
| | | |
Collapse
|
15
|
Abstract
Multiple lines of evidence suggest that inflammation and glutamate dysfunction contribute to the pathophysiology of depression. In this review we provide an overview of how these two systems may interact. Excess levels of inflammatory mediators occur in a subgroup of depressed patients. Studies of acute experimental activation of the immune system with endotoxin and of chronic activation during interferon-alpha treatment show that inflammation can cause depression. Peripheral inflammation leads to microglial activation which could interfere with excitatory amino acid metabolism leading to inappropriate glutamate receptor activation. Loss of astroglia, a feature of depression, upsets the balance of anti- and pro-inflammatory mediators and further impairs the removal of excitatory amino acids. Microglia activated by excess inflammation, astroglial loss, and inappropriate glutamate receptor activation ultimately disrupt the delicate balance of neuroprotective versus neurotoxic effects in the brain, potentially leading to depression.
Collapse
|
16
|
Willette AA, Lubach GR, Coe CL. Environmental context differentially affects behavioral, leukocyte, cortisol, and interleukin-6 responses to low doses of endotoxin in the rhesus monkey. Brain Behav Immun 2007; 21:807-15. [PMID: 17336039 PMCID: PMC2277322 DOI: 10.1016/j.bbi.2007.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/08/2007] [Accepted: 01/09/2007] [Indexed: 11/17/2022] Open
Abstract
Bacterial infections and proinflammatory cytokines induce behavioral and physiological responses associated with withdrawal and sickness behavior. These effects in rodents are often exacerbated by stressful environmental contexts. To model this synergistic effect of arousal and stress, low doses of lipopolysaccharide (LPS), 4 or 40ng/kg, were administered to rhesus monkeys in different environmental contexts. Activity, emotional and social behaviors, cortisol, interleukin-6 (IL-6), and peripheral leukocyte trafficking were assessed in 4 experiments: an initial 3h time-course in a novel cage (Experiment 1); an extended 24h time-course (Experiment 2); a highly arousing context in which an animal was engaged in the Human Intruder Paradigm (HIP, Experiment 3); and finally in an undisturbed context in their Home Cage (Experiment 4). The moderately arousing novel cage potentiated leukocyte, neutrophilic, IL-6, and cortisol changes as compared to the Home Cage. Unlike the social withdrawal seen in rodents, monkeys engaged in a marked increase in social behavior. IL-6 levels were positively correlated with Proximal Contact, which was induced to a greater degree by the higher dose of LPS. In contrast, the high arousal HIP condition appeared to obviate the effects of LPS. Thus, the rhesus monkey provides an excellent animal model for investigating the behavioral and physiological actions of endotoxemia, which are profoundly influenced by the situational context in which the individual is evaluated.
Collapse
Affiliation(s)
- Auriel A Willette
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | | | | |
Collapse
|
17
|
Azuma H, Moriyama T, Ikeda H, Oshima M, Okuno A, Sekiguchi S. Analysis of soluble interleukin 6 receptor in cerebrospinal fluid in inflammatory and non-inflammatory conditions. Cytokine 2000; 12:160-4. [PMID: 10671302 DOI: 10.1006/cyto.1999.0534] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to investigate the pathophysiological roles of soluble interleukin 6 receptor (sIL-6R) in cerebrospinal fluid (CSF). CSF was obtained from patients suspected with meningitis. Eight patients without any meningeal signs or symptoms were enrolled as controls. An additional 34 CSF samples were collected to measure both biologically active and immunoreactive sIL-6R. All CSF samples were proven to be aseptic. IL-6 and sIL-6R were measured using specific ELISAs. Patients were divided into three groups on the basis of cell number in CSF; inflammatory group (cell number >5 microl, mean 241+/-363.1, n=61); non-inflammatory group (cell number < or =5 microl, mean=2.1+/-1.7, n=12) and controls (cell number < or =5 microl, mean=0.3+1.7, n=8). Among these three groups, the differences in protein (F (2,78)=8.274, P<0.0001) and IL-6 concentration (F (2,78)=6.475, P<0.001) were statistically significant but those of sIL-6R concentration were not. There were only weak correlations between log (sIL-6R) versus log (cell number) (r=0.23, P=0.0375), log (protein) (r=0.239, P=0.0358) and log (IL-6) (r=0.27, P=0.0167). Amounts of immunoreactive and biologically active sIL-6R were closely correlated (r=0.62, n=34, P<0.005). It was concluded that sIL-6R is present constitutively in CSF and its level may not increase significantly in inflammatory conditions; infiltrating cells in CSF are not the main source of sIL-6R; and sIL-6R in CSF can bind IL-6.
Collapse
Affiliation(s)
- H Azuma
- Hokkaido Red Cross Blood Center Yamanote, 2-2 Nishi-ku, Sapporo, 063-0002, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Reyes TM, Fabry Z, Coe CL. Brain endothelial cell production of a neuroprotective cytokine, interleukin-6, in response to noxious stimuli. Brain Res 1999; 851:215-20. [PMID: 10642846 DOI: 10.1016/s0006-8993(99)02189-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brain endothelial cells (BECs), specialized cells of the blood-brain barrier (BBB), are ideally positioned to monitor and respond to events in the periphery. The present study examined their potential role in transducing immune signals to the brain and in responding to noxious stimuli. BECs were isolated from rhesus monkeys at 3 age points (fetal/neonatal, adult, and very old animals). Cells were then challenged in vitro with either an immune stimulus (interleukin-1 beta (IL-1 beta), or lipopolysaccharide (LPS)) or an oxidative challenge (hypoxia). BECs released interleukin-6 (IL-6), which is known to have neurotrophic and neuroprotective functions. Furthermore, higher amounts of IL-6 were released in both baseline and stimulated conditions by BECs derived from aged animals. This research indicates a pathway whereby immune signals may be communicated to the CNS and has revealed one way that the BBB may protect neuronal survival under challenge conditions.
Collapse
Affiliation(s)
- T M Reyes
- Department of Psychology, University of Wisconsin, Madison 53706, USA.
| | | | | |
Collapse
|
19
|
Taylor FB, Tesh VL, DeBault L, Li A, Chang AC, Kosanke SD, Pysher TJ, Siegler RL. Characterization of the baboon responses to Shiga-like toxin: descriptive study of a new primate model of toxic responses to Stx-1. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1285-99. [PMID: 10233866 PMCID: PMC1866558 DOI: 10.1016/s0002-9440(10)65380-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The baboon response to intravenous infusion of Shiga toxin 1 (Stx-1) varied from acute renal failure, proteinuria, hyperkalemia, and melena with minimal perturbation of host inflammatory and hemostatic systems (high-dose group, 2.0 microg/kg; n = 5) to renal failure with hematuria, proteinuria, thrombocytopenia, schistocytosis, anemia, and melena (low-dose group, 0.05 to 0.2 microg/kg; n = 8). Both groups exhibited renal shutdown and died in 57 hours or less. Both groups produced urine that was positive for tumor necrosis factor and interleukin-6 although neither of these cytokines was detectable (</=5 ng/ml) in the general circulation. Light and electron microscopy showed organelle disintegration and necrosis of the renal proximal tubular epithelium and of the intestinal mucosal epithelium at the tips of the microvilli, both of which were previously shown to bear Gb3 receptors. The renal distal tubular epithelium was spared. The renal proximal tubular epithelial changes were accompanied by swelling of visceral epithelial cells (podocytes) and by swelling and detachment of endothelial cells of the glomerular capillaries. In addition, all of the animals receiving low-dose Stx-1 showed microvascular fibrin deposition and thrombosis in renal glomerular and peritubular capillaries in association with a fall in hematocrit and platelet count and a rise in schistocyte count. The gastrointestinal villous tip lesions were accompanied by varying degrees of mucosal and submucosal congestion, hemorrhage, or necrosis. Electron microscopic images of cerebral cortex and cerebellum showed diffuse unraveling of myelin sheaths with occasional disintegration of neuronal cell bodies. In contrast to the gastrointestinal mucosal and renal proximal tubular epithelium, the Gb3 receptor glycolipid of the renal glomerular and neuronal tissues as determined using toxin overlay thin-layer chromatography plates was below the limit of detection (<13 pM/g wet tissue). We conclude that, depending on the status of the host and amount of toxin infused, Stx-1 can produce a variety of responses ranging from damage to cells carrying the Gb3 receptor (renal proximal tubular epithelial cells and gastrointestinal mucosa) to damage to renal glomerular tissues with microvascular thrombosis as a result of the host's inflammatory response localized to the kidney. We conclude that this thrombotic coagulopathy arises from local changes in the kidney because the appearance of host inflammatory mediators was limited to the urine. This suggests that the initial host response is localized in the kidney, and that the systemic thrombocytopenia, anemia, and schistocytosis may arise secondarily.
Collapse
Affiliation(s)
- F B Taylor
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Turnbull AV, Rivier CL. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev 1999; 79:1-71. [PMID: 9922367 DOI: 10.1152/physrev.1999.79.1.1] [Citation(s) in RCA: 822] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glucocorticoids are hormone products of the adrenal gland, which have long been recognized to have a profound impact on immunologic processes. The communication between immune and neuroendocrine systems is, however, bidirectional. The endocrine and immune systems share a common "chemical language," with both systems possessing ligands and receptors of "classical" hormones and immunoregulatory mediators. Studies in the early to mid 1980s demonstrated that monocyte-derived or recombinant interleukin-1 (IL-1) causes secretion of hormones of the hypothalamic-pituitary-adrenal (HPA) axis, establishing that immunoregulators, known as cytokines, play a pivotal role in this bidirectional communication between the immune and neuroendocrine systems. The subsequent 10-15 years have witnessed demonstrations that numerous members of several cytokine families increase the secretory activity of the HPA axis. Because this neuroendocrine action of cytokines is mediated primarily at the level of the central nervous system, studies investigating the mechanisms of HPA activation produced by cytokines take on a more broad significance, with findings relevant to the more fundamental question of how cytokines signal the brain. This article reviews published findings that have documented which cytokines have been shown to influence hormone secretion from the HPA axis, determined under what physiological/pathophysiological circumstances endogenous cytokines regulate HPA axis activity, established the possible sites of cytokine action on HPA axis hormone secretion, and identified the potential neuroanatomic and pharmacological mechanisms by which cytokines signal the neuroendocrine hypothalamus.
Collapse
Affiliation(s)
- A V Turnbull
- The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California, USA
| | | |
Collapse
|
21
|
Abstract
To understand why sick animals do not eat, investigators have studied how the immune system interacts with the central nervous system (CNS), where motivation to eat is ultimately controlled. The focus has been on the cytokines secreted by activated mononuclear myeloid cells, which include interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha). Either central or peripheral injection of recombinant IL-1 beta, IL-6, and TNF-alpha reduce food-motivated behavior and food intake in rodents. Moreover, these cytokines and their receptors are present in the endocrine system and brain, and antagonism of this system (i.e., the cytokine network) has been shown to block or abrogate anorexia induced by inflammatory stimuli. Recent studies indicate that the same cytokines act on adipocytes and induce secretion of leptin, a protein whose activity has been neuroanatomically mapped to brain areas involved in regulating food intake and energy expenditure. Therefore, many findings converge to suggest that the reduction of food intake in sick animals is mediated by inflammatory cytokines, which convey a message from the immune system to the endocrine system and CNS. The nature of this interaction is the focus of this short review.
Collapse
Affiliation(s)
- R W Johnson
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| |
Collapse
|
22
|
Reyes TM, Coe CL. Resistance of central nervous system interleukin-6 to glucocorticoid inhibition in monkeys. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R612-8. [PMID: 9688700 DOI: 10.1152/ajpregu.1998.275.2.r612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability of both exogenous and endogenous glucocorticoids (GCs) to inhibit proinflammatory cytokine production was investigated in vivo. Specifically, we investigated the effects of elevated GC levels on interleukin (IL)-1-induced release of IL-6 into both blood and cerebrospinal fluid (CSF). Three experiments were conducted in rhesus macaques to elevate corticoid levels for at least 4 h before administration of IL-1beta. The first study used dexamethasone pretreatment, the second utilized ACTH to stimulate endogenous cortisol release, while the third relied on a psychological challenge to stimulate the hypothalamic-pituitary-adrenal axis. Contrary to our a priori predictions, none of these treatments attenuated the IL-1-induced release of IL-6 into CSF. Additionally, the pattern in the blood response was similar, such that the IL-6 response was not blocked, although there was a trend toward a reduction of this response. These data indicated that the IL-1-induced IL-6 response is for the most part resistant to corticosteroid influence, such that even when a partial inhibition was sometimes evident in blood, cytokine release in the central nervous system was not affected.
Collapse
Affiliation(s)
- T M Reyes
- Department of Psychology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
23
|
Hampel H, Sunderland T, Kötter HU, Schneider C, Teipel SJ, Padberg F, Dukoff R, Levy J, Möller HJ. Decreased soluble interleukin-6 receptor in cerebrospinal fluid of patients with Alzheimer's disease. Brain Res 1998; 780:356-9. [PMID: 9507194 DOI: 10.1016/s0006-8993(97)01355-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The function of the cytokine interleukin-6 (IL-6) is augmented by soluble IL-6 receptors (sIL-6R). We investigated cerebrospinal fluid sIL-6R concentrations in patients with Alzheimer's disease (AD) compared to age-matched healthy subjects and individuals with at least one first degree relative with AD. We found a statistically significant decrease in sIL-6R levels in the AD group compared to controls. Complete analysis of the IL-6R complex seems crucial to better understand the impact of IL-6 in AD pathophysiology.
Collapse
Affiliation(s)
- H Hampel
- Department of Psychiatry, Ludwig-Maximilian University Munich, School of Medicine, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Reyes TM, Coe CL. The proinflammatory cytokine network: interactions in the CNS and blood of rhesus monkeys. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R139-44. [PMID: 9458910 DOI: 10.1152/ajpregu.1998.274.1.r139] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proinflammatory cytokines [interleukin (IL)-1 and -6 and tumor necrosis factor-alpha] function within a complex network, stimulating the release of one another, as well as other cytokine agonists and antagonists. These interactions have not been as widely studied in vivo. Therefore, the following studies measured cytokines in blood and cerebrospinal fluid (CSF) from juvenile rhesus monkeys after intravenous administration of cytokines. IL-1 alpha and IL-1 beta were equally effective in elevating blood levels of IL-6. In contrast, IL-1 beta was the only cytokine that significantly elevated IL-6 levels in the CSF. Interestingly, both IL-1 and IL-6 increased levels of IL-1 receptor antagonist in the blood and comparably stimulated the release of cortisol. A second study confirmed that the IL-1-induced IL-6 in CSF was brain derived and not a result of diffusion from blood. This research extends studies of the cytokine cascade to the central nervous system (CNS), highlighting the brain response to peripheral activation.
Collapse
Affiliation(s)
- T M Reyes
- Department of Psychology, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
25
|
Reyes TM, Coe CL. Prenatal manipulations reduce the proinflammatory response to a cytokine challenge in juvenile monkeys. Brain Res 1997; 769:29-35. [PMID: 9374270 DOI: 10.1016/s0006-8993(97)00687-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two studies were conducted to assess the potential long-term effects of prenatal stress on the cytokine-related inflammatory response in juvenile rhesus monkeys. Subjects were derived from two different pregnancy conditions. Study 1 involved endocrine activation of the pregnant female by daily adrenocorticotropic hormone (ACTH) injection across a 2-week period (days 120-133 post-conception). Pregnant females in Study 2 experienced a psychological stressor, 10 minutes per day, for a 6-week period (days 106-147 post-conception). When the offspring from these pregnancies were 1.5-2 years of age, they were administered recombinant human interleukin-1beta (rhIL-1beta) to stimulate the release of endogenous cytokines, elicit fever, and activate the hypothalamic-pituitary-adrenal (HPA) axis. Cerebrospinal fluid (CSF) and blood levels of interleukin-6 (IL-6) were measured, as well as cortisol levels and body temperature. The prenatal ACTH treatment altered the postnatal response to IL-1beta in juvenile offspring. These monkeys showed a significantly blunted response to the IL-1beta, with smaller increments in blood and CSF levels of IL-6 and diminished temperature responses to the IL-1beta. In contrast, the prenatal psychological stressor was not as potent and did not have lasting effects on this physiological response in juvenile monkeys. IL-1beta also induced significant increases in cortisol secretion, but this adrenal response was comparable in all monkeys. These data suggest that differences in the prenatal environment could have a selective effect on cytokine physiology accounting for individual differences in the inflammatory response.
Collapse
Affiliation(s)
- T M Reyes
- Department of Psychology, University of Wisconsin, Madison 53706, USA.
| | | |
Collapse
|