1
|
Xia YF, Wang ZP, Zhou YC, Yan T, Li ST. Cerebral protective effect of nicorandil premedication on patients undergoing liver transplantation. Hepatobiliary Pancreat Dis Int 2012; 11:132-6. [PMID: 22484579 DOI: 10.1016/s1499-3872(12)60137-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Neurological injury is a common complication in the early period after liver transplantation, posing an enormous obstacle to treatment efficiency and patient survival. Nicorandil is a mitochondrial ATP-sensitive potassium channel (mitoKATP) opener. It has been reported to be effective in reducing brain injury in recent studies. However, it is still unclear whether nicorandil has cerebral protective effect in patients undergoing liver transplantation. METHODS Fifty patients scheduled for liver transplantation were randomly divided into a nicorandil group (group N) (n=25), in which patients received 10 mg nicorandil through a nasogastric tube 30 minutes before induction of anesthesia, and a control group (group C) (n=25) who received 10 mL normal saline. The Mini-Mental State Examination (MMSE) was performed before anesthesia (day 0), and on days 3 and 7 after surgery. Blood samples were obtained before induction of anesthesia (T1), and at 12 (T2) and 36 hours (T3) after surgery for determination of serum neuron-specific enolase (NSE) and S100β protein (S100β) concentrations. RESULTS During surgery, 5 patients in each group were eliminated due to severe reperfusion or renal insufficiency. Therefore, 20 patients remained in each group. The MMSE scores after operation were significantly lower than those before operation in group C. However, there was no difference at days 3 and 7 compared with day 0 in group N. Serum NSE concentrations after surgery were significantly higher than baseline (at T1) in both groups, except at T3 in group N. Serum S100β concentration after surgery was significantly higher than baseline (at T1) in both groups. The MMSE scores at days 3 and 7 in group N were significantly higher than those in group C. The concentrations of serum NSE and S100β at T2 and T3 in group N were significantly lower than those in group C. CONCLUSIONS Oral nicorandil, as a premedication before liver transplantation, improves postoperative MMSE scores. It also attenuates the increase of NSE and S100β in blood, indicating its cerebral protective effect.
Collapse
Affiliation(s)
- Yun-Fei Xia
- Department of Anesthesiology, Shanghai First People's Hospital, Medical College, Shanghai Jiaotong University, Shanghai 200080, China
| | | | | | | | | |
Collapse
|
2
|
Cao H, Zhang GR, Geller AI. Antibody-mediated targeted gene transfer of helper virus-free HSV-1 vectors to rat neocortical neurons that contain either NMDA receptor 2B or 2A subunits. Brain Res 2011; 1415:127-35. [PMID: 21885042 PMCID: PMC3176983 DOI: 10.1016/j.brainres.2011.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 07/13/2011] [Accepted: 08/05/2011] [Indexed: 02/04/2023]
Abstract
Because of the numerous types of neurons in the brain, and particularly the forebrain, neuron type-specific expression will benefit many potential applications of direct gene transfer. The two most promising approaches for achieving neuron type-specific expression are targeted gene transfer to a specific type of neuron and using a neuron type-specific promoter. We previously developed antibody-mediated targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors by modifying glycoprotein C (gC) to replace the heparin binding domain, which mediates the initial binding of HSV-1 particles to many cell types, with the Staphylococcus A protein ZZ domain, which binds immunoglobulin (Ig) G. We showed that a chimeric gC-ZZ protein is incorporated into vector particles and binds IgG. As a proof-of-principle for antibody-mediated targeted gene transfer, we isolated complexes of these vector particles and an anti-NMDA NR1 subunit antibody, and demonstrated targeted gene transfer to neocortical cells that contain NR1 subunits. However, because most forebrain neurons contain NR1, we obtained only a modest increase in the specificity of gene transfer, and this targeting specificity is of limited utility for physiological experiments. Here, we report efficient antibody-mediated targeted gene transfer to NMDA NR2B- or NR2A-containing cells in rat postrhinal cortex, and a neuron-specific promoter further restricted recombinant expression to neurons. Of note, because NR2A-containing neurons are relatively rare, these results show that antibody-mediated targeted gene transfer with HSV-1 vectors containing neuron type-specific promoters can restrict recombinant expression to specific types of forebrain neurons of physiological significance.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | | | | |
Collapse
|
3
|
Cao H, Zhang GR, Geller AI. Antibody-mediated targeted gene transfer to NMDA NR1-containing neurons in rat neocortex by helper virus-free HSV-1 vector particles containing a chimeric HSV-1 glycoprotein C-staphylococcus A protein. Brain Res 2010; 1351:1-12. [PMID: 20599821 PMCID: PMC2929402 DOI: 10.1016/j.brainres.2010.06.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 11/16/2022]
Abstract
Because of the heterogeneous cellular composition of the brain, and especially the forebrain, cell type-specific expression will benefit many potential applications of direct gene transfer. The two prevalent approaches for achieving cell type-specific expression are using a cell type-specific promoter or targeting gene transfer to a specific cell type. Targeted gene transfer with Herpes Simplex Virus (HSV-1) vectors modifies glycoprotein C (gC) to replace the heparin binding domain, which binds to many cell types, with a binding activity for a specific cell surface protein. We previously reported targeted gene transfer to nigrostriatal neurons using chimeric gC-glial cell line-derived neurotrophic factor or gC-brain-derived neurotrophic factor protein. Unfortunately, this approach is limited to cells that express the cognate receptor for either neurotrophic factor. Thus, a general strategy for targeting gene transfer to many different types of neurons is desirable. Antibody-mediated targeted gene transfer has been developed for targeting specific virus vectors to specific peripheral cell types; a specific vector particle protein is modified to contain the Staphylococcus A protein ZZ domain, which binds immunoglobulin (Ig) G. Here, we report antibody-mediated targeted gene transfer of HSV-1 vectors to a specific type of forebrain neuron. We constructed a chimeric gC-ZZ protein, and showed this protein is incorporated into vector particles and binds Ig G. Complexes of these vector particles and an antibody to the NMDA receptor NR1 subunit supported targeted gene transfer to NR1-containing neocortical neurons in the rat brain, with long-term (2 months) expression.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Guo-Rong Zhang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Alfred I Geller
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA.
| |
Collapse
|
4
|
Abstract
AbstractThe work of Sinden et al. suggests that it may be possible to produce improvement in the “highest” areas of brain function by transplanting brain tissue. What appears to be the limiting factor is not the complexity of the mental process under consideration but the discreteness of the lesion which causes the impairment and the appropriateness and accuracy of placement of the grafted tissue.
Collapse
|
5
|
Abstract
AbstractIn spite of Stein and Glasier's justifiable conclusion that initial optimism concerning the immediate clinical applicability of neural transplantation was premature, there exists much experimental evidence to support the potential for incorporating this procedure into a therapeutic arsenal in the future. To realize this potential will require continued evolution of our knowledge at multiple levels of the clinical and basic neurosciences.
Collapse
|
6
|
Abstract
AbstractThe concept of structure, operation, and functionality, as they may be understood by clinicians or researchers using neural transplantation techniques, are briefly defined. Following Stein & Glasier, we emphasize that the question of whether an intracerebral graft is really functional should be addressed not only in terms of what such a graft does in a given brain structure, but also in terms of what it does at the level of the organism.
Collapse
|
7
|
The NGF superfamily of neurotrophins: Potential treatment for Alzheimer's and Parkinson's disease. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStein & Glasier suggest embryonic neural tissue grafts as a potential treatment strategy for Alzheimer's and Parkinson's disease. As an alternative, we suggest that the family of nerve growth factor-related neurotrophins and their trk (tyrosine kinase) receptors underlie cholinergic basal forebrain (CBF) and dopaminergic substantia nigra neuron degeneration in these diseases, respectively. Therefore, treatment approaches for these disorders could utilize neurotrophins.
Collapse
|
8
|
Some practical and theoretical issues concerning fetal brain tissue grafts as therapy for brain dysfunctions. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00037250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractGrafts of embryonic neural tissue into the brains of adult patients are currently being used to treat Parkinson's disease and are under serious consideration as therapy for a variety of other degenerative and traumatic disorders. This target article evaluates the use of transplants to promote recovery from brain injury and highlights the kinds of questions and problems that must be addressed before this form of therapy is routinely applied. It has been argued that neural transplantation can promote functional recovery through the replacement of damaged nerve cells, the reestablishment of specific nerve pathways lost as a result of injury, the release of specific neurotransmitters, or the production of factors that promote neuronal growth. The latter two mechanisms, which need not rely on anatomical connections to the host brain, are open to examination for nonsurgical, less intrusive therapeutic use. Certain subjective judgments used to select patients who will receive grafts and in assessment of the outcome of graft therapy make it difficult to evaluate the procedure. In addition, little long-term assessment of transplant efficacy and effect has been done in nonhuman primates. Carefully controlled human studies, with multiple testing paradigms, are also needed to establish the efficacy of transplant therapy.
Collapse
|
9
|
Abstract
AbstractThe transition from research to patient following advances in transplantation research is likely to be disappointing unless it includes a better understanding of critically relevant characteristics of the neurological disorder and improvements in the animal models, particularly the behavioral features. The appropriateness of the model has less to do with the species than with how the species is used.
Collapse
|
10
|
Cao H, Zhang GR, Wang X, Kong L, Geller AI. Enhanced nigrostriatal neuron-specific, long-term expression by using neural-specific promoters in combination with targeted gene transfer by modified helper virus-free HSV-1 vector particles. BMC Neurosci 2008; 9:37. [PMID: 18402684 PMCID: PMC2330056 DOI: 10.1186/1471-2202-9-37] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/10/2008] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Direct gene transfer into neurons has potential for developing gene therapy treatments for specific neurological conditions, and for elucidating neuronal physiology. Due to the complex cellular composition of specific brain areas, neuronal type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. One approach is to target gene transfer to a specific type of neuron. We developed modified Herpes Simplex Virus (HSV-1) particles that contain chimeric glycoprotein C (gC) - glial cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) proteins. HSV-1 vector particles containing either gC - GDNF or gC - BDNF target gene transfer to nigrostriatal neurons, which contain specific receptors for GDNF or BDNF. A second approach to achieve neuronal type-specific expression is to use a cell type-specific promoter, and we have used the tyrosine hydroxylase (TH) promoter to restrict expression to catecholaminergic neurons or a modified neurofilament heavy gene promoter to restrict expression to neurons, and both of these promoters support long-term expression from HSV-1 vectors. To both improve nigrostriatal-neuron specific expression, and to establish that targeted gene transfer can be followed by long-term expression, we performed targeted gene transfer with vectors that support long-term, neuronal-specific expression. RESULTS Helper virus-free HSV-1 vector packaging was performed using either gC - GDNF or gC - BDNF and vectors that contain either the TH promoter or the modified neurofilament heavy gene promoter. Vector stocks were injected into the midbrain proximal to the substantia nigra, and the rats were sacrificed at either 4 days or 1 month after gene transfer. Immunofluorescent costaining was performed to detect both recombinant gene products and nigrostriatal neurons. The combination of targeted gene transfer with neuronal-specific promoters improved nigrostriatal neuron-specific expression (83 to 93%) compared to either approach alone, and supported long-term (1 month) expression at levels similar to those observed using untargeted gene transfer. CONCLUSION Targeted gene transfer can be used in combination with neuronal-specific promoters to achieve a high level of nigrostriatal neuron-specific expression. Targeted gene transfer can be followed by long-term expression. Nigrostriatal neuron-specific expression may be useful for specific gene therapy approaches to Parkinson's disease or for genetic analyses of nigrostriatal neuron physiology.
Collapse
Affiliation(s)
- Haiyan Cao
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Guo-rong Zhang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Xiaodan Wang
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Lingxin Kong
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| | - Alfred I Geller
- Department of Neurology, West Roxbury VA Hospital/Harvard Medical School, W. Roxbury, MA 02132, USA
| |
Collapse
|
11
|
Golembewski EK, Wales SQ, Aurelian L, Yarowsky PJ. The HSV-2 protein ICP10PK prevents neuronal apoptosis and loss of function in an in vivo model of neurodegeneration associated with glutamate excitotoxicity. Exp Neurol 2006; 203:381-93. [PMID: 17046754 PMCID: PMC1994904 DOI: 10.1016/j.expneurol.2006.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/16/2006] [Accepted: 08/22/2006] [Indexed: 12/13/2022]
Abstract
Excessive glutamate receptor activation results in neuronal death, a process known as excitotoxicity. Intrastriatal injection of N-methyl-d-aspartate (NMDA) is a model of excitotoxicity. We used this model to examine whether excitotoxic injury is inhibited by the anti-apoptotic herpes simplex virus type 2 (HSV-2) protein, ICP10PK, delivered by the replication incompetent HSV-2 vector, DeltaRR. Intrastriatal DeltaRR administration (2500 plaque forming units) was nontoxic and did not induce microglial activation 5 days after injection. Intrastriatal injection of DeltaRR with NMDA or 4 h after NMDA injection showed increased neuronal survival and decreased mitochondrial damage compared to injection of NMDA alone. Neuroprotection was due to the inhibition of NMDA-induced apoptosis through ERK activation. DeltaRR-treated mice did not develop NMDA-associated behavioral deficits. The data suggest that DeltaRR is a promising platform for treatment of acute neuronal injury.
Collapse
Affiliation(s)
- Erin K Golembewski
- Department of Pharmacology and Experimental Therapeutics, University of Maryland, Baltimore, MD 20742, USA
| | | | | | | |
Collapse
|
12
|
Wang X, Kong L, Zhang GR, Sun M, Geller AI. Targeted gene transfer to nigrostriatal neurons in the rat brain by helper virus-free HSV-1 vector particles that contain either a chimeric HSV-1 glycoprotein C-GDNF or a gC-BDNF protein. ACTA ACUST UNITED AC 2005; 139:88-102. [PMID: 15993510 PMCID: PMC2581866 DOI: 10.1016/j.molbrainres.2005.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/10/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Direct gene transfer into neurons has potential for both studying neuronal physiology and for developing gene therapy treatments for specific neurological conditions. Due to the heterogeneous cellular composition of the brain, cell-type-specific recombinant gene expression is required for many potential applications of neuronal gene transfer. The two prevalent approaches for achieving cell-type-specific expression are to use a cell-type-specific promoter to control recombinant gene expression or to modify a virus vector particle to target gene transfer to a specific cell type. Targeted gene transfer to multiple peripheral cell types has been described, but targeted gene transfer to a specific type of neuron in the brain has yet to be reported. Targeted gene transfer approaches with Herpes Simplex Virus (HSV-1) vectors have focused on modifying glycoprotein C (gC) to remove the heparin binding domain and add a binding activity for a specific protein on the cell surface. This study was designed to develop HSV-1 vectors that target gene transfer to cells that contain receptors for either glial-cell-line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF), such as nigrostriatal neurons. We isolated chimeric gC-GDNF or chimeric gC-BDNF constructs, and the resulting proteins were incorporated into HSV-1 virus particles. We performed helper virus-free HSV-1 vector packaging in the presence of each chimeric protein. The resulting vector stocks supported 2.2- to 5.0-fold targeted gene transfer to nigrostriatal neurons in the rat brain, compared to vector particles that contained wild-type (wt) gC. Gene transfer to nigrostriatal neurons by vector particles that contained chimeric gC-BDNF was reduced by preincubation with an anti-BDNF antibody. Targeted gene transfer to neurons that contain specific neurotrophic factor receptors may benefit specific physiological and gene therapy studies.
Collapse
Affiliation(s)
| | | | | | | | - Alfred I. Geller
- * Corresponding author. Fax: +1 617 363 5563. E-mail address: alfred (A.I. Geller)
| |
Collapse
|
13
|
Overexpression of 5-HT1B receptor in dorsal raphe nucleus using Herpes Simplex Virus gene transfer increases anxiety behavior after inescapable stress. J Neurosci 2002. [PMID: 12040062 DOI: 10.1523/jneurosci.22-11-04550.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
5-HT(1B) autoreceptors have been implicated in animal models of stress and are regulated selectively by serotonin-selective reuptake inhibitors such as fluoxetine. These terminal autoreceptors regulate serotonin release from dorsal raphe nucleus (DRN) projections throughout rat forebrain. However, it has not been previously possible to manipulate 5-HT(1B) autoreceptor activity selectively without also changing 5-HT(1B) activity in other neurons mediating different behavioral responses. Therefore, we have developed a viral-mediated gene transfer strategy to express hemagglutinin-tagged 5-HT(1B) and manipulate these autoreceptors in DRN. Green fluorescent protein (GFP) was coexpressed from a separate transcriptional unit on the same amplicon to assist in monitoring infection and expression. We confirmed the expression and biological activity of both transgenic proteins in vitro. When injected directly into DRN using stereotaxic procedure, HA-5-HT(1B) receptors were expressed in serotonergic neurons and translocated to the forebrain. The effect of DRN expression of HA-5-HT(1B) on stress-induced behaviors was compared with control rats that received GFP-only amplicons. There was no change in immobility in the forced swim test. However, HA-5-HT(1B) expression significantly reduced entrances into the central region of an open-field arena after water-restraint stress without altering overall locomotor activity, but not in the absence of stress exposure. HA-5-HT(1B) expression also reduced entries into the open arms of the elevated plus maze after water restraint. Because these tests are sensitive to increases in anxiety-like behavior, our results suggest that overactivity of 5-HT(1B) autoreceptors in DRN neurons may be an important mediator of pathological responses to stressful events.
Collapse
|
14
|
Agudo M, Trejo JL, Lim F, Avila J, Torres-Alemán I, Diaz-Nido J, Wandosell F. Highly efficient and specific gene transfer to Purkinje cells in vivo using a herpes simplex virus I amplicon. Hum Gene Ther 2002; 13:665-74. [PMID: 11916489 DOI: 10.1089/10430340252837251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
The transduction of cerebellar neurons in vivo with herpes simplex virus 1 (HSV-1) amplicon carrying the lacZ gene has been investigated after injection of the vector in the cerebellar cortex, ventricles, and inferior olive of adult rats. Injection into the cerebellar cortex resulted in transduction of Purkinje cells near the needle tract and injection into the ventricles yielded no transduced neurons. In contrast, high transduction efficiency was achieved by vector injection into the inferior olive, resulting in one of three positive Purkinje cells all over the ipsilateral and contralateral cerebellar hemispheres. Because neurons in the deep cerebellar nuclei are also transduced, we suggest that the vector is delivered from the inferior olive to the cerebellar nuclei and then to Purkinje cells by retrograde axonal transport. Expression of the lacZ gene within Purkinje cells was surprisingly persistent and was maintained at the same level for at least 40 days. Importantly, no signs of either toxicity or inflammation were observed in the cerebellum after vector injection, except for the borders of the needle tract where some reactive astrocytes were detected. Indeed, motor coordination of treated animals was entirely normal, as assessed by the rota-rod test. These results demonstrate that HSV-1 amplicon vectors can effect safe and stable transgene expression in Purkinje cells in vivo, raising the possibility of using these vectors for long-term gene therapy of human cerebellar disorders.
Collapse
Affiliation(s)
- Marta Agudo
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Janson CG, McPhee SW, Leone P, Freese A, During MJ. Viral-based gene transfer to the mammalian CNS for functional genomic studies. Trends Neurosci 2001; 24:706-12. [PMID: 11718875 DOI: 10.1016/s0166-2236(00)01954-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A fundamental problem in neuroscience has been the creation of suitable in vivo model systems to study basic neurological phenomena and pathology of the central nervous system (CNS). Somatic cell genetic engineering with viral vectors provides a versatile tool to model normal brain physiology and a variety of neurological diseases.
Collapse
Affiliation(s)
- C G Janson
- CNG Gene Therapy Center, Jefferson Medical College, 1025 Walnut Street, Suite 511, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
16
|
Yenari MA, Dumas TC, Sapolsky RM, Steinberg GK. Gene therapy for treatment of cerebral ischemia using defective herpes simplex viral vectors. Neurol Res 2001; 23:543-52. [PMID: 11474812 DOI: 10.1179/016164101101198802] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Significant advances have been made over the past few years concerning the cellular and molecular events underlying neuron death. Recently, it is becoming increasingly clear that some of the genes induced during cerebral ischemia may actually serve to rescue the cell from death. However, the injured cell may not be capable of expressing protein at levels high enough to be protective. One of the most exciting arenas of such interventions is the use of viral vectors to deliver potentially neuroprotective genes at high levels. Neurotrophic herpes simplex viral strains are an obvious choice for gene therapy to the brain, and we have utilized bipromoter vectors that are capable of transferring various genes to neurons. Using this system in experimental models of stroke, cardiac arrest and excitotoxicity, we have found that it is possible to enhance neuron survival against such cerebral insults by over-expressing genes that target various facets of injury. These include energy restoration by the glucose transporter (GLUT-1), buffering calcium excess by calbindin, preventing protein malfolding or aggregation by stress proteins and inhibiting apoptotic death by BCL-2. We show that in some cases, gene therapy is also effective after the onset of injury, and also address whether successful gene therapy necessarily spares function. Although gene therapy is limited to the few hundred cells the vector is capable of transfecting, we consider the possibility of such gene therapy becoming relevant to clinical neurology in the future.
Collapse
Affiliation(s)
- M A Yenari
- Department of Neurology, Stanford Stroke Center, Stanford, CA, USA.
| | | | | | | |
Collapse
|
17
|
Yenari MA, Dumas TC, Sapolsky RM, Steinberg GK. Gene therapy for treatment of cerebral ischemia using defective herpes simplex viral vectors. Ann N Y Acad Sci 2001; 939:340-57. [PMID: 11462790 DOI: 10.1111/j.1749-6632.2001.tb03643.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Significant advances have been made over the past few years concerning the cellular and molecular events underlying neuron death. Recently, it is becoming increasingly clear that some of genes induced during cerebral ischemia may actually serve to rescue the cell from death. However, the injured cell may not be capable of expressing protein at high enough levels to be protective. One of the most exciting arenas of such interventions is the use of viral vectors to deliver potentially neuroprotective genes at high levels. Neurotropic herpes simplex viral (HSV) strains are an obvious choice for gene therapy to the brain, and we have used bipromoter vectors that are capable of transferring various genes to neurons. Using this system in experimental models of stroke, cardiac arrest, and excitotoxicity, we have found that it is possible to enhance neuron survival against such cerebral insults by overexpressing genes that target various facets of injury. These include energy restoration by the glucose transporter (GLUT-1), buffering calcium excess by calbindin, preventing protein malfolding or aggregation by stress proteins and inhibiting apoptotic death by BCL-2. We show that in some cases, gene therapy is also effective after the onset of injury, and also address whether successful gene therapy necessarily spares function. Although gene therapy is limited to the few hundred cells the vector is capable of transfecting, we consider the possibility of such gene therapy becoming relevant to clinical neurology in the future.
Collapse
Affiliation(s)
- M A Yenari
- Department of Neurosurgery, Stanford Stroke Center, Stanford University Medical Center, Stanford, California, USA.
| | | | | | | |
Collapse
|
18
|
Anderson KD, Sengupta J, Morin M, Neve RL, Valenzuela CF, Perrone-Bizzozero NI. Overexpression of HuD accelerates neurite outgrowth and increases GAP-43 mRNA expression in cortical neurons and retinoic acid-induced embryonic stem cells in vitro. Exp Neurol 2001; 168:250-8. [PMID: 11259113 DOI: 10.1006/exnr.2000.7599] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The neuron-specific RNA-binding protein HuD binds to a U-rich regulatory element of the 3' untranslated region (3' UTR) of the GAP-43 mRNA and stabilizes the mRNA. We have previously shown that overexpression of HuD in PC12 cells increases GAP-43 protein expression and induces the spontaneous formation of multiple neurites (K. D. Anderson et al. 2000. J. Neurochem. 75: 1103-1114). In this study, we examined the effects of HuD overexpression on the initial stages of neurite outgrowth and on GAP-43 gene expression using two in vitro systems: E19 rat cortical neurons and retinoic acid (RA)-induced embryonic stem (ES) cells. Normal neurite outgrowth of cortical neurons in vitro occurs over a 3-day period with a concomitant increase in GAP-43 and HuD expression. Cortical cells were infected with a replication-deficient HSV-1 vector containing the HuD cDNA in the sense orientation (HSV-HuD). Overexpression of HuD accelerated the formation of neurites. Immunocytochemical analysis showed that excess HuD resulted in a threefold increase in the number of GAP-43-positive cells undergoing morphological differentiation after 24 h of treatment. Using in situ hybridization, we found that the increased HuD expression resulted in a twofold increase in the levels of GAP-43 mRNA. Similarly, overexpression of HuD in RA-induced embryonic stem cells was found to increase the number of GAP-43-positive cells undergoing process outgrowth. In conclusion, our results demonstrate that HuD functions in the initiation of neurite outgrowth in a manner due, at least in part, to its regulation of GAP-43 expression.
Collapse
Affiliation(s)
- K D Anderson
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | |
Collapse
|
19
|
Geller AI. Genetic analysis of the role of protein kinase C signaling pathways in behaviors by direct gene transfer with HSV-1 vectors. Rev Neurosci 1999; 10:1-13. [PMID: 10356988 DOI: 10.1515/revneuro.1999.10.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A genetic intervention strategy is described to elucidate the specific biochemical pathways in identified types of neurons that underlie behavioral adaptations. This strategy contains three parts: A Herpes simplex virus (HSV-1) vector is used to obtain localized gene transfer, a cell type-specific promoter is used to target expression to a particular type of neuron, and a constitutively active signal transduction enzyme is expressed to alter neuronal physiology. To enable this approach, a constitutively active protein kinase C (PKC) was developed which causes a long-lasting, activation-dependent increase in neurotransmitter release from cultured sympathetic neurons. This genetic intervention strategy was tested using the nigrostriatal system: Microinjection of HSV-1 vectors that contain the tyrosine hydroxylase promoter targeted expression to dopaminergic nigrostriatal neurons. Expression of the constitutively active PKC in a small percentage of nigrostriatal neurons (approximately 0.1-2%) produced a long-term (> or = 1 month) change in apomorphine-induced rotational behavior, the amount of rotational behavior correlated with the number of affected nigrostriatal neurons, and D2-like dopamine receptor levels were elevated in the striatal regions innervated by the affected nigrostriatal neurons. The strengths and limitations of this genetic intervention strategy are discussed.
Collapse
Affiliation(s)
- A I Geller
- Division of Endocrinology, Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
20
|
Abstract
Perhaps one of the most exciting developments in brain research of the past decade is the advent of genetic intervention in human neurologic disease. Although there are a variety of gene transfer approaches, none of which has been perfected, gene therapy is now science fact and no longer science fiction. As technology progresses, some vectors will prove more effective for certain disease categories than others; it is too early to predict definitively which vector would be most effective for therapy in Parkinson's disease and other movement disorders. Nonetheless, it is likely that within the next year or two a gene therapy trial will be instituted in human patients with Parkinson's disease. The potential for an impact on the symptoms and progression of this disease is significant. Clinicians may be on the threshold of a new era of intervention for Parkinson's disease and other neurologic diseases, based on bypassing traditional but less selective drug-extracellular receptor interactions and instead focusing on genetic modulation of specific intracellular processes. The continuing development of small incremental changes of new dopamine agonists and pharmacologic agents will likely pale in comparison to the specificity of intracellular genetic manipulation.
Collapse
Affiliation(s)
- A Freese
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
21
|
Modulation of rat rotational behavior by direct gene transfer of constitutively active protein kinase C into nigrostriatal neurons. J Neurosci 1998. [PMID: 9592092 DOI: 10.1523/jneurosci.18-11-04119.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The modulation of motor behavior by protein kinase C (PKC) signaling pathways in nigrostriatal neurons was examined by using a genetic intervention approach. Herpes simplex virus type 1 (HSV-1) vectors that encode a catalytic domain of rat PKCbetaII (PkcDelta) were developed. PkcDelta exhibited a constitutively active protein kinase activity with a substrate specificity similar to that of rat brain PKC. As demonstrated in cultured sympathetic neurons, PkcDelta caused a long-lasting, activation-dependent increase in neurotransmitter release. In the rat brain, microinjection of HSV-1 vectors that contain the tyrosine hydroxylase promoter targeted expression to dopaminergic nigrostriatal neurons. Expression of pkcDelta in a small percentage of nigrostriatal neurons (approximately 0.1-2%) was sufficient to produce a long-term (>/=1 month) change in apomorphine-induced rotational behavior. Nigrostriatal neurons were the only catecholaminergic neurons that contained PkcDelta, and the amount of rotational behavior was correlated with the number of affected nigrostriatal neurons. The change in apomorphine-induced rotational behavior was blocked by a dopamine receptor antagonist (fluphenazine). D2-like dopamine receptor density was increased in those regions of the striatum innervated by the affected nigrostriatal neurons. Therefore, this strategy enabled the demonstration that a PKC pathway or PKC pathways in nigrostriatal neurons modulate apomorphine-induced rotational behavior, and altered dopaminergic transmission from nigrostriatal neurons appears to be the affected neuronal physiology responsible for the change in rotational behavior.
Collapse
|
22
|
Goya RG, Rowe J, Sosa YE, Tomasec P, Lowenstein PR, Castro MG. Use of recombinant herpes simplex virus type 1 vectors for gene transfer into tumour and normal anterior pituitary cells. Mol Cell Endocrinol 1998; 139:199-207. [PMID: 9705088 DOI: 10.1016/s0303-7207(98)00059-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this paper we demonstrate the use of recombinant viral vectors derived from herpes simplex virus type 1 (HSV1) to transfer reporter genes in vitro into rat anterior pituitary cells grown in primary cultures and the anterior pituitary tumour cell lines GH3 and AtT20. The three vectors used were, tsK/beta-galactosidase (beta-gal), tsK/CRH and tsK/TIMP, the corresponding transgene products respectively being E. coli beta-gal, pre-procorticotropin releasing hormone (ppCRH), and the chimeric protein TIMP/Thy1 (tissue inhibitor of metalloproteinases (TIMP)/linked to the carboxy terminus of Thy1 which confers the addition of a glycolipid glycosyl-phosphatidylinositol anchor in the ER). Double labelling immunofluorescence experiments to detect reporter proteins and transduced cell types indicated that the three vectors could transfer and express the reporter genes in normal and tumour anterior pituitary cells. Virus infection of pituitary cells was characterised, and it was shown that infection with tsK/beta-gal at multiplicities of infection (MOI)=10, 100% of tumour and non-endocrine anterior pituitary cells expressed beta-gal, whereas 75% endocrine anterior pituitary cells expressed the transgene. Long-term expression studies after infection with tsK/beta-gal indicated that anterior pituitary cells in primary cultures expressed the transgene for significant longer periods than tumour anterior pituitary cells. Growth arrest by serum starvation markedly decreased the frequency of transgene expression in anterior pituitary cells following infection with tsK/beta-gal. Transgenic products expressed from tsK were targeted to their correct intracellular domain in both anterior pituitary cells in primary cultures and in pituitary tumour cell lines. We conclude that transgenes can be delivered into anterior pituitary cells in primary culture and pituitary tumour cell lines using tsK derived HSV1 vectors. The prospect of employing viral vectors to transfer genes into endocrine cells opens up the potential exploration of various molecular aspects of pituitary cell function both in vitro and in vivo, as well as the use of gene transfer into the pituitary for potentially therapeutic applications, such as the treatment of pituitary tumours.
Collapse
Affiliation(s)
- R G Goya
- Department of Medicine, University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
23
|
Identification of a somatodendritic targeting signal in the cytoplasmic domain of the transferrin receptor. J Neurosci 1997. [PMID: 9236215 DOI: 10.1523/jneurosci.17-16-06038.1997] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons are highly polarized cells that must sort proteins synthesized in the cell body for transport into the axon or the dendrites. Given the amount of time and energy needed to deliver proteins to the distal processes, neurons must have high fidelity mechanisms that ensure proper polarized protein trafficking. Although a variety of proteins are localized either to the somatodendritic domain or to the axon (), the question of whether there are signal-dependent mechanisms that sort proteins to distinct neuronal domains is only beginning to be addressed. To determine sequence requirements for the polarized sorting of transmembrane proteins into dendrites, we expressed mutant transferrin receptors in cultured rat hippocampal neurons, using a defective herpes virus vector. Wild-type human transferrin receptor colocalized with the endogenous protein in dendritic endosomes and was strictly excluded from axons, despite overexpression. Polarized targeting was abolished by deletion of cytoplasmic amino acids 7-10, 11-14, or 19-28, but not 29-42 or 43-58. These deletions also increased the appearance of transferrin receptor on the plasma membrane, implying that endocytosis and dendritic targeting are mediated by overlapping signals and similar molecular mechanisms. In addition, we have characterized a specialized para-Golgi endosome poised to play a critical role in the polarized recycling of transmembrane proteins.
Collapse
|
24
|
Freese A, Kaplitt MG, O'Connor WM, Abbey M, Langer D, Leone P, O'Connor MJ, During MJ. Direct gene transfer into human epileptogenic hippocampal tissue with an adeno-associated virus vector: implications for a gene therapy approach to epilepsy. Epilepsia 1997; 38:759-66. [PMID: 9579902 DOI: 10.1111/j.1528-1157.1997.tb01462.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE Virus vectors capable of transferring genetic information into human cells provide hope for improved therapy in several neurological diseases, including epilepsy. We evaluated the ability of an adeno-associated virus (AAV) vector to transfer and cause expression of a lacZ marker gene in brain slices obtained from patients undergoing temporal lobectomy for control of medically intractable seizures. METHODS Human brain slices were injected with an AAV vector (AAVlacZ) encoding Escherichia coli beta-galactosidase and incubated for as long as 24 h. The presence of lacZ mRNA. beta-galactosidase protein and enzymatic activity were assayed by reverse transcriptase polymerase chain reaction (rtPCR), immunocytochemistry, and the X-Gal technique, respectively. RESULTS AAVlacZ directed the expression in human epileptogenic brain of E. coli beta-galactosidase that had functional activity. Expression was observed in < or =5 h and was sustained for as long as the slices were viable. Morphological analysis indicated that neurons were preferentially transfected, and there was no evidence of cytotoxicity. CONCLUSIONS Our results confirm the feasibility of using AAV vectors to transfer genes into the human CNS and in particular, into neurons. Replacement of the lacZ gene with a functional gene modulating hippocampal neuronal physiology, might allow a localized genetic intervention for focal seizures based on the stereotaxic or endovascular delivery of such a vector system into the appropriate brain region.
Collapse
Affiliation(s)
- A Freese
- Division of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104-6380, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Geller AI, Yu L, Wang Y, Fraefel C. Helper virus-free herpes simplex virus-1 plasmid vectors for gene therapy of Parkinson's disease and other neurological disorders. Exp Neurol 1997; 144:98-102. [PMID: 9126158 DOI: 10.1006/exnr.1996.6394] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vectors based on herpes simplex virus type 1 (HSV-1) have potential for gene therapy of neurological disorders. HSV-1 plasmid vectors (amplicons) contain only approximately 1% of the 150-kb HSV-1 genome and have been packaged into virus particles by using a helper virus. We have demonstrated that HSV-1 plasmid vectors which express tyrosine hydroxylase can cause long-term biochemical and behavioral recovery in the 6-hydroxydopamine rat model of Parkinson's disease. Furthermore, we and others have used HSV-1 plasmid vectors which express a wide range of genes that affect neuronal physiology. Because of the pathogenicity of the HSV-1 helper virus, however, the use of this vector system has been limited to studies in animal models or primary cultures of neural cells. Thus, to increase the safety of HSV-1 plasmid vectors, we recently developed a helper virus-free packaging system that may facilitate studies on neuronal physiology and potential therapeutic applications.
Collapse
Affiliation(s)
- A I Geller
- Division of Endocrinology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
26
|
Fink DJ, Poliani PL, Oligino T, Krisky DM, Goins WF, Glorioso JC. Development of an HSV-based vector for the treatment of Parkinson's disease. Exp Neurol 1997; 144:103-21. [PMID: 9126159 DOI: 10.1006/exnr.1996.6395] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The restricted pattern of neurodegeneration seen in Parkinson's disease, and the identification of trophic factors that prevent toxin-induced degeneration of dopaminergic neurons, has spurred research into potential gene therapy for this disease. Herpes simplex virus (HSV-1) is a neurotrophic virus which naturally establishes latency in neurons. HSV-based vectors have been demonstrated to transfer and transiently express transgenes in neurons in brain in vivo. Recent experiment have shown that deletion of multiple immediate-early HSV genes reduces the potential cytotoxicity of these vectors, and in addition results in altered patterns of transgene expression that may allow for long-term expression required for human gene therapy applications.
Collapse
Affiliation(s)
- D J Fink
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | | | | | | | |
Collapse
|
27
|
Biewenga JE, Destrée OH, Schrama LH. Plasmid-mediated gene transfer in neurons using the biolistics technique. J Neurosci Methods 1997; 71:67-75. [PMID: 9125376 DOI: 10.1016/s0165-0270(96)00127-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biolistics has been developed as a system for gene delivery into plant cells, but has recently been introduced for transfection into mammalian tissue, including few attempts in neural cells. Basically, in this system the plasmid DNA of interest is coated onto small particles, that are accelerated by a particular driving force. The combination of several so-called 'ballistic' parameters and tissue parameters determine the transfection efficiency. The main advantage of the system is that it is, unlike other available transfection methods, a mechanical way to cross the plasma membrane and therefore less dependent on target cell characteristics. In terms of transfection efficiency, biolistics seems favorable above conventional techniques, like calcium phosphate precipitation and lipofection. Compared to viral techniques biolistics may be less efficient, but is quicker and easier to handle and seems to produce fewer complications for in vivo gene delivery. Therefore, although the technique is only in a developmental stage, preliminary results seem promising, and optimalization of the method may prove useful in scientific research and/or clinical use.
Collapse
Affiliation(s)
- J E Biewenga
- Department of Physiological Chemistry, Stratenum, Utrecht, Netherlands
| | | | | |
Collapse
|
28
|
Hermens WT, Giger RJ, Holtmaat AJ, Dijkhuizen PA, Houweling DA, Verhaagen J. Transient gene transfer to neurons and glia: analysis of adenoviral vector performance in the CNS and PNS. J Neurosci Methods 1997; 71:85-98. [PMID: 9125378 DOI: 10.1016/s0165-0270(96)00129-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper a detailed protocol is presented for neuroscientists planning to start work on first generation recombinant adenoviral vectors as gene transfer agents for the nervous system. The performance of a prototype adenoviral vector encoding the bacterial lacZ gene as a reporter was studied, following direct injection in several regions of the central and peripheral nervous system. The distribution of the cells expressing the transgene appears to be determined by natural anatomical boundaries and possibly by the degree of myelinization of a particular brain region. In highly myelinated areas with a compact cellular structure (e.g. the cortex and olfactory bulb) the spread of the viral vector is limited to the region close to the injection needle, while in areas with a laminar structure (e.g. the hippocampus and the eye) more widespread transgene expression is observed. Retrograde transport of the viral vector may serve as an attractive alternative route of transgene delivery. A time course of expression of beta-galactosidase in neural cells in the facial nucleus revealed high expression during the first week after AdLacZ injection. However, a significant decline in transgene expression during the second and third week was observed. This may be caused by an immune response against the transduced cells or by silencing of the cytomegalovirus promoter used to drive transgene expression. Taken together, the data underscore that for each application of adenoviral vectors as gene transfer agents in the nervous system it is important to examine vector spread in and infectability of the neural structure that is subject to genetic modification.
Collapse
Affiliation(s)
- W T Hermens
- Graduate School Neurosciences, Netherlands Institute for Brain Research, Amsterdam
| | | | | | | | | | | |
Collapse
|
29
|
Cook DG, Turner RS, Kolson DL, Lee VM, Doms RW. Vaccinia virus serves as an efficient vector for expressing heterologous proteins in human NTera 2 neurons. J Comp Neurol 1996; 374:481-92. [PMID: 8910730 DOI: 10.1002/(sici)1096-9861(19961028)374:4<481::aid-cne1>3.0.co;2-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The human teratocarcinoma cell line NTera 2 (NT2) can be induced to differentiate into post-mitotic neurons possessing well-defined axonal and dendritic morphology. Highly enriched neurons (NT2-N cells) can be prepared in large numbers, thus combining many of the advantages of both primary and continuous cell culture systems. Unfortunately, it has proven difficult to express foreign genes in NT2-N cells. We examined whether vaccinia virus (VV) can express heterologous proteins in NT2-N cells and characterized the response of NT2-N cells to VV infection. NT2-N cells were infected with VV vectors expressing the envelope glycoprotein (gp160) from the human immunodeficiency type 1 virus (HIV 1). These vectors were chosen because VV-directed synthesis and post-translational processing of gp160 have been well characterized in many cell types. Approximately 85% of the neurons expressed gp160 which underwent native post-translational cleavage. The rate of gp160 synthesis was maximal at 5-48 hours postinfection, but was detectable for as long as 4 days. Surprisingly, NT2-N cells showed no VV-induced alterations in morphology, downregulation of host protein synthesis, or cytotoxicity, as measured by lactate dehydrogenase release. These results indicate that VV can serve as an efficient vector for introducing foreign genes in NT2-N cells without the cytotoxic effects often associated with VV infection. These properties, in conjunction with the advantages provided by NT2-N cells, provide new options for analyzing the cellular and molecular functions of human neurons.
Collapse
Affiliation(s)
- D G Cook
- Department of Pathology, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
30
|
Jin BK, Belloni M, Conti B, Federoff HJ, Starr R, Son JH, Baker H, Joh TH. Prolonged in vivo gene expression driven by a tyrosine hydroxylase promoter in a defective herpes simplex virus amplicon vector. Hum Gene Ther 1996; 7:2015-24. [PMID: 8930662 DOI: 10.1089/hum.1996.7.16-2015] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A 9.0-kb fragment of the tyrosine hydroxylase (TH) promoter, previously shown to direct tissue-specific expression in transgenic mice, was fused to an Escherichia coli LacZ reporter gene in a defective herpes simplex virus type-1 (HSV-1) amplicon vector (THlac). The HSV immediate early (IE) 4/5 promoter (HSVlac) was used as a control. LacZ gene expression was visualized by X-Gal histochemical and TH immunocytochemical analysis. Two days and 10 weeks after THlac injection into rat caudate nucleus (CN), X-Gal-stained cells were observed in the substantia nigra (SN) and locus ceruleus (LC) ipsilateral to the injection site. These blue cells were TH-positive neurons as evidenced by double labeling with immunocytochemistry. Moreover, the number of X-Gal+, TH+ (double-positive) neurons in the SN increased at 10 weeks as compared to that seen 2 days after THlac injection. In marked contrast, few double-positive nigral neurons were observed either 2 days or 10 weeks after direct injection of THlac into SN. However, neither nigral nor striatal injection of HSVlac resulted in prolonged gene expression. These results suggest that a neuronal, but not a viral, promoter in an HSV vector can produce cell-type-specific, prolonged, and stable gene expression following retrograde transport. In addition, THlac produced infrequent gene expression in TH-negative cells (CN and dorsal to SN) after THlac injection into CN and SN, respectively. Overall, these results suggest that in some in vivo contexts cell-type-preferred expression can be achieved by a cellular promoter in an amplicon vector. Moreover, they underscore the need for the careful and systematic study of neuronal promoters in HSV vectors.
Collapse
Affiliation(s)
- B K Jin
- Laboratory of Molecular Neurobiology, Cornell University Medical College, Burke Research Medical Institute, White Plains, NY 10605, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Freese A, Stern M, Kaplitt MG, O'Connor WM, Abbey MV, O'Connor MJ, During MJ. Prospects for gene therapy in Parkinson's disease. Mov Disord 1996; 11:469-88. [PMID: 8866488 DOI: 10.1002/mds.870110502] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Numerous advances in in vivo and ex vivo gene-therapy approaches to Parkinson's disease offer promise for direct clinical trials in patients in the next several years. These systems are predicated on introducing gene that encode enzymes responsible for dopamine biosynthesis or neurotrophic factors that may delay nigrostriatal degeneration or facilitate regeneration. We review the current status of experimental approaches to gene therapy for Parkinson's disease. Comparative advantages and disadvantages of each system are enumerated, and preclinical trials of some of the systems are evaluated. Although the specific in vivo or ex vivo methods used for gene transfer into the brain are likely to be supplanted by newer technology over the next decade, the principles and approaches developed in current studies likely will remain the same.
Collapse
Affiliation(s)
- A Freese
- Division of Neurosurgery, University of Pennsylvania Medical Center, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Thorsell A, Blomqvist AG, Heilig M. Cationic lipid-mediated delivery and expression of prepro-neuropeptide Y cDNA after intraventricular administration in rat: feasibility and limitations. REGULATORY PEPTIDES 1996; 61:205-11. [PMID: 8701037 DOI: 10.1016/0167-0115(95)00161-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The utility of in vivo lipofection for delivery and expression of a neuropeptide gene in the adult rat brain was explored. Prepro-neuropeptide Y (NPY) cDNA was cloned into the episomal eucaryotic expression vector pCEP4. This construct was complexed to lipofectamine or lipofectin. Complexed DNA was injected into the lateral ventricles of adult rats. Brains were removed for analysis following various time intervals. Polymerase chain reaction (PCR) reactions were designed for specific detection of endogenous and vector derived NPY sequence, respectively. PCR of DNA preparations from 5 major brain regions (frontal and parietal cortex, striatum, hypothalamus, brain stem) demonstrated presence of vector DNA up to 1 month (longest interval studied) in all brain regions. Reverse-transcription (RT-) PCR of DNase treated RNA-preparations from brain tissue demonstrated presence of both vector-derived and endogenous NPY mRNA in treated animals, while only endogenous mRNA was detected in controls. In situ hybridization histochemistry indicated scattered patches of vector uptake into tissue in the vicinity of the CSF compartment, but not into deeper located structures. Weight gain was not affected, indicating that the expression levels achieved may not be sufficient to play a functional role, and/or may need to be targeted to specific brain areas. These findings suggest a potential for cationic lipid mediated gene transfer in the brain as an experimental tool and as a possible future therapeutic principle, but also indicate the need for optimization of delivery strategies in order to achieve functionally relevant expression levels.
Collapse
Affiliation(s)
- A Thorsell
- Magnus Huss Clinic, Karolinska Hospital, Stockholm, Sweden
| | | | | |
Collapse
|
33
|
Karpati G, Lochmüller H, Nalbantoglu J, Durham H. The principles of gene therapy for the nervous system. Trends Neurosci 1996; 19:49-54. [PMID: 8820867 DOI: 10.1016/0166-2236(96)89620-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research pertaining to gene transfer into cells of the nervous system is one of the fastest growing fields in neuroscience. An important application of gene transfer is gene therapy, which is based on introducing therapeutic genes into cells of the nervous system by ex vivo or in vivo techniques. With the eventual development of efficient and safe vectors, therapeutic genes, under the control of a suitable promoter, can be targeted to the appropriate neurons or glial cells. Gene therapy is not only applicable to the treatment of genetic diseases of the nervous system and the control of malignant neoplasia, but it also has therapeutic potential for acquired degenerative encephalopathies (Alzheimer's disease, Parkinson's disease), as well as for promoting neuronal survival and regeneration in various pathological states.
Collapse
Affiliation(s)
- G Karpati
- Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | |
Collapse
|
34
|
Oh YJ, Moffat M, Wong S, Ullrey D, Geller AI, O'Malley KL. A herpes simplex virus-1 vector containing the rat tyrosine hydroxylase promoter directs cell type-specific expression of beta-galactosidase in cultured rat peripheral neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 35:227-36. [PMID: 8717359 DOI: 10.1016/0169-328x(95)00221-d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A defective herpes simplex virus-1 (HSV-1) vector system was used to study cell type-specific expression of the tyrosine hydroxylase (TH) gene. HSV-1 particles containing 663 bp (pTHlac 663), 278 bp (pTHlac 278), or 181 bp (pTHlac 181) of the rat TH promoter driving E. coli LacZ were used to infect superior cervical ganglia (SCG: TH-expressing tissue) and dorsal root ganglia (DRG:non-TH-expressing tissue) cultures. One day after infection, expression of beta-galactosidase was visualized by X-gal cytochemistry. Following viral transduction with pTHlac 663 at a multiplicity of infection of 0.2, 14.4% of the SCG neurons were X-gal positive whereas only about 0.9% of DRG neurons were X-gal positive. Infection with either pTHlac278 or 181 resulted in 3-fold more X-gal-positive DRG neurons. These results suggest that (i) the defective HSV-1 vector system may be useful in defining regulatory promoter motifs; (ii) 663 bp of the rat TH promoter contains sufficient information for cell type-specific expression in peripheral nervous system neurons; and (iii) sequences between -278 and -663 contain an element(s) that represses gene expression in non-catecholamingeric neurons.
Collapse
Affiliation(s)
- Y J Oh
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
35
|
Ridet JL, Privat A. Gene therapy in the central nervous system: direct versus indirect gene delivery. J Neurosci Res 1995; 42:287-93. [PMID: 8583496 DOI: 10.1002/jnr.490420302] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Over the last decade, the combination of molecular biology and cell transplantation techniques has given rise to a powerful method for gene therapy. The implantation of genetically modified cultured cells has been extensively used in the central nervous system (CNS) in various experimental models of neurologic disorders. More recently, viral and chemical methods have been developed to further efforts to shuttle transgenes into the relatively inaccessible brain. Adenoviral and liposomal synthetic vectors carry transgenes into neural tissue in situ and are beginning to show promise as new methods for CNS therapy.
Collapse
Affiliation(s)
- J L Ridet
- INSERM U. 336, University Montpellier II, France
| | | |
Collapse
|
36
|
Lowenstein PR, Shering AF, Morrison E, Tomasec P, Bain D, Jacob TJ, Wu J, Prescott A, Castro MG. Synaptogenesis and distribution of presynaptic axonal varicosities in low density primary cultures of neocortex: an immunocytochemical study utilizing synaptic vesicle-specific antibodies, and an electrophysiological examination utilizing whole cell recording. JOURNAL OF NEUROCYTOLOGY 1995; 24:301-17. [PMID: 7643134 DOI: 10.1007/bf01186542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Low-density primary cultures of neocortical neurons were utilized to examine: (i) early interactions of growing neurites with morphological characteristics of axons with other neuronal elements, and (ii) the distribution of presynaptic axonal varicosities closely apposed to MAP-2 immunoreactive, putatively postsynaptic, dendrites. At the light microscopical level axonal varicosities, presumably presynaptic terminals, were identified using immunocytochemistry incorporating antibodies specific for the synaptic vesicle antigens synaptophysin and synapsin. The presence of synaptophysin- and synapsin-immunoreactive swellings along axonal processes was first detected at 5 days post-plating and was also apparent in axons growing in isolation. At 5-7 days in vitro, immunolabelled axonal varicosities in close apposition to putative postsynaptic dendrites (MAP-2 immunoreactive) dendrites were detected. Electrophysiologically active synaptic contacts can also readily be detected at this stage. After 3 weeks in vitro presynaptic contacts do appear to be distributed heterogeneously along postsynaptic dendrites of many neurons in culture. As the culture matures a higher number of presynaptic profiles can be seen along dendrites, with a centrifugal distribution, e.g. a higher density of presynaptic axonal terminals in close apposition to more distal regions of larger dendrites, putatively considered to be apical dendrites of pyramidal-like neurons. In our cultures, the overall increase in the density and the pattern of distribution of presynaptic axon terminals immunoreactive for synaptic vesicle antigens closely apposed to putative post-synaptic structures mimics the general postnatal increase of synaptic density in the neocortex in vivo. Thus, low density primary cultures of neocortical neurons offer a valuable system to explore and manipulate (i) the molecular and cellular basis of neocortical synaptogenesis, and (ii) the pharmacology of neocortical synaptic transmission.
Collapse
Affiliation(s)
- P R Lowenstein
- Laboratory of Molecular and Cellular Neurobiology, School of Molecular and Medical Biosciences, University of Wales College of Cardiff, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
The spinal cord as an alternative model for nerve tissue graft. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe spinal cord provides an alternative model for nerve tissue grafting experiments. Anatomo-functional correlations are easier to make here than in any other region of the CNS because of a direct implication of spinal cord neurons in sensorimotor activities. Lesions can be easily performed to isolate spinal cord neurons from descending inputs. The anatomy of descending monoaminergic systems is well defined and these systems offer a favourable paradigm for lesion-graft experiments.
Collapse
|
38
|
Multiple obstacles to gene therapy in the brain. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x0003747x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractNeuwelt et al. have proposed gene-transfer experiments utilizing an animal model that offers many important advantages for investigating the feasibility of gene therapy in the human brain. A variety of tissues concerning the viral vector and mode of delivery of the corrective genes need to be resolved, however, before such therapy is scientifically supportable.
Collapse
|
39
|
Principles of brain tissue engineering. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractIt is often presumed that effects of neural tissue transplants are due to release of neurotransmitter. In many cases, however, effects attributed to transplants may be related to phenomena such as trophic effects mediated by glial cells or even tissue reactions to injury. Any conclusion regarding causation of graft effects must be based on the control groups or other comparisons used. In human clinical studies, for example, comparing the same subject before and after transplantation allows for many interpretations of the causes of clinical changes.
Collapse
|
40
|
Lessons on transplant survival from a successful model system. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractStudies on the snailMelampusreveal that connectivity is crucial to the survival of transplanted ganglia. Transplanted CNS ganglia can innervate targets or induce supernumerary structures. Neuron survival is optimized by the neural incorporation that occurs when a transplanted ganglion is substituted for an excised ganglion. Better provision for the trophic requirements of neurons will improve the success of mammalian fetal transplants.
Collapse
|
41
|
Repairing the brain: Trophic factor or transplant? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThree experiments on neural grafting with adult rat hosts are described. Working memory impairments were produced by lesioning the hippocampus or severing its connections with the septum by ablating the fimbria-fornix. The results suggest that the survival and growth of a neural graft, whether an autograft or a xenograft, is not a necessary condition for functional recovery on a task tapping working memory.
Collapse
|
42
|
Will brain tissue grafts become an important therapy to restore visual function in cerebrally blind patients? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractGrafting embryonic brain tissue into the brain of patients with visual field loss due to cerebral lesions may become a method to restore visual function. This method is not without risk, however, and will only be considered in cases of complete blindness after bilateral occipital lesions, when other, risk-free neuropsychological methods fail.
Collapse
|
43
|
Difficulties inherent in the restoration of dynamically reactive brain systems. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
AbstractThe responses displayed by an injured or diseased nervous system are complex. Some of the responses may effect a functional reorganization of the affected neural circuitry. Strategies aimed at the restoration of function, whether or not these involve transplantation, need to recognize the innate reactive capacity of the nervous system to damage. More successful strategies will probably incorporate, rather than ignore, the adaptive responses of the compromised neural systems.
Collapse
|
44
|
Elegant studies of transplant-derived repair of cognitive performance. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCholinergic-rich grafts have been shown to be effective in restoring maze-learning deficits in rats with lesions of the forebrain cholinergic projection system. However, the relevance of those studies to developing novel therapies for Alzheimer's disease is questioned.
Collapse
|
45
|
Neural transplants are grey matters. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe lesion and transplantation data cited by Sinden et al., when considered in tandem, seem to harbor an internal inconsistency, raising questions of false localization of function. The extrapolation of such data to cognitive impairment and potential treatment strategies in Alzheimer's disease is problematic. Patients with focal basal forebrain lesions (e.g., anterior communicating artery aneurysm rupture) might be a more appropriate target population.
Collapse
|
46
|
Immunobiology of neural transplants and functional incorporation of grafted dopamine neurons. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIn contrast to the views put forth by Stein & Glasier, we support the use of inbred strains of rodents in studies of the immunobiology of neural transplants. Inbred strains demonstrate homology of the major histocompatibility complex (MHC). Virtually all experimental work in transplantation immunology is performed using inbred strains, yet very few published studies of immune rejection in intracerebral grafts have used inbred animals.
Collapse
|
47
|
Local and global gene therapy in the central nervous system. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractFor focal neurodegenerative diseases or brain tumors, localized delivery of protein or genetic vectors may be sufficient to alleviate symptoms, halt disease progression, or even cure the disease. One may circumvent the limitation imposed by the blood-brain barrier by transplantation of genetically altered cell grafts or focal inoculation of virus or protein. However, permanent gene replacement therapy for diseases affecting the entire brain will require global delivery of genetic vectors. The neurotoxicity of currently available viral vectors and the transient nature of transgene expression invivomust be overcome before their use in human gene therapy becomes clinically applicable.
Collapse
|
48
|
Neural grafting in human disease versus animal models: Cautionary notes. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractOver the past two decades, research on neural transplantation in animal models of neurodegeneration has provided provocative in sights into the therapeutic use of grafted tissue for various neurological diseases. Although great strides have been made and functional benefits gained in these animal models, much information is still needed with regard to transplantation in human patients. Several factors are unique to human disease, for example, age of the recipient, duration of disease, and drug interaction with grafted cells; these need to be explored before grafting can be considered a safe and effective therapeutic tool.
Collapse
|
49
|
Building a rational foundation for neural transplantation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe neural transplantation research described by Sinden and colleagues provides part of the rationale for the clinical application of neural transplantation. The authors are asked to clarify their view of the role of the cholinergic system in cognition, to address extrahippocampal damage caused by transient forebrain ischemia, and to consider the effects of delayed neural degeneration in their structure-function analysis.
Collapse
|
50
|
Intraretrosplenial grafts of cholinergic neurons and spatial memory function. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00037407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe transplantation of cholinergic neurons into the hippocampal formation has been well characterized. We describe our studies on the effects of cholinergic transplants in the retrosplenial cortex. These transplants were capable of ameliorating spatial navigation deficits in rats with septohippocampal lesions. In addition, we provide evidence for the modulation of transplanted neurons by the host brain.
Collapse
|