1
|
Kostović I, Džaja D, Raguž M, Kopić J, Blažević A, Krsnik Ž. Transient compartmentalization and accelerated volume growth coincide with the expected development of cortical afferents in the human neostriatum. Cereb Cortex 2022; 33:434-457. [PMID: 35244150 DOI: 10.1093/cercor/bhac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 01/17/2023] Open
Abstract
The neostriatum plays a central role in cortico-subcortical circuitry underlying goal-directed behavior. The adult mammalian neostriatum shows chemical and cytoarchitectonic compartmentalization in line with the connectivity. However, it is poorly understood how and when fetal compartmentalization (AChE-rich islands, nonreactive matrix) switches to adult (AChE-poor striosomes, reactive matrix) and how this relates to the ingrowth of corticostriatal afferents. Here, we analyze neostriatal compartments on postmortem human brains from 9 postconceptional week (PCW) to 18 postnatal months (PM), using Nissl staining, histochemical techniques (AChE, PAS-Alcian), immunohistochemistry, stereology, and comparing data with volume-growth of in vivo and in vitro MRI. We find that compartmentalization (C) follows a two-compartment (2-C) pattern around 10PCW and is transformed into a midgestational labyrinth-like 3-C pattern (patches, AChE-nonreactive perimeters, matrix), peaking between 22 and 28PCW during accelerated volume-growth. Finally, compartmentalization resolves perinatally, by the decrease in transient "AChE-clumping," disappearance of AChE-nonreactive, ECM-rich perimeters, and an increase in matrix reactivity. The initial "mature" pattern appears around 9 PM. Therefore, transient, a 3-C pattern and accelerated neostriatal growth coincide with the expected timing of the nonhomogeneous distribution of corticostriatal afferents. The decrease in growth-related AChE activity and transfiguration of corticostriatal terminals are putative mechanisms underlying fetal compartments reorganization. Our findings serve as normative for studying neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Džaja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Anatomy and Clinical Anatomy, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Marina Raguž
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia.,Department of Neurosurgery, University Hospital Dubrava, 10000 Zagreb, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Andrea Blažević
- Department of Anatomy and Clinical Anatomy, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Forebrain Cholinergic Signaling: Wired and Phasic, Not Tonic, and Causing Behavior. J Neurosci 2020; 40:712-719. [PMID: 31969489 DOI: 10.1523/jneurosci.1305-19.2019] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Conceptualizations of cholinergic signaling as primarily spatially diffuse and slow-acting are based largely on measures of extracellular brain ACh levels that require several minutes to generate a single data point. In addition, most such studies inhibited the highly potent catalytic enzyme for ACh, AChE, to facilitate measurement of ACh. Absent such inhibition, AChE limits the presence of ambient ACh and thus renders it unlikely that ACh influences target regions via slow changes in extracellular ACh concentrations. We describe an alternative view by which forebrain signaling in cortex driving cognition is largely phasic (milliseconds to perhaps seconds), and unlikely to be volume-transmitted. This alternative is supported by new evidence from real-time amperometric recordings of cholinergic signaling indicating a specific function of rapid, phasic, transient cholinergic signaling in attentional contexts. Previous neurochemical evidence may be reinterpreted in terms of integrated phasic cholinergic activity that mediates specific behavioral and cognitive operations; this reinterpretation fits well with recent computational models. Optogenetic studies support a causal relationship between cholinergic transients and behavior. This occurs in part via transient-evoked muscarinic receptor-mediated high-frequency oscillations in cortical regions. Such oscillations outlast cholinergic transients and thus link transient ACh signaling with more sustained postsynaptic activity patterns to support relatively persistent attentional biases. Reconceptualizing cholinergic function as spatially specific, phasic, and modulating specific cognitive operations is theoretically powerful and may lead to pharmacologic treatments more effective than those based on traditional views.Dual Perspectives Companion Paper: Diverse Spatiotemporal Scales of Cholinergic Signaling in the Neocortex, by Anita A. Disney and Michael J. Higley.
Collapse
|
3
|
Nagumo M, Ninomiya M, Oshima N, Itoh T, Tanaka K, Nishina A, Koketsu M. Comparative analysis of stilbene and benzofuran neolignan derivatives as acetylcholinesterase inhibitors with neuroprotective and anti-inflammatory activities. Bioorg Med Chem Lett 2019; 29:2475-2479. [DOI: 10.1016/j.bmcl.2019.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022]
|
4
|
Kozlova DI, Kochkina EG, Dubrovskaya NM, Zhuravin IA, Nalivaeva NN. Effect of Prenatal Hypoxia on Cholinesterase Activity in Blood Serum of Rats. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Brai E, Simon F, Cogoni A, Greenfield SA. Modulatory Effects of a Novel Cyclized Peptide in Reducing the Expression of Markers Linked to Alzheimer's Disease. Front Neurosci 2018; 12:362. [PMID: 29950969 PMCID: PMC6008575 DOI: 10.3389/fnins.2018.00362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
Despite many studies attempt to identify the primary mechanisms underlying neurodegeneration in Alzheimer's disease (AD), the key events still remain elusive. We have previously shown that a peptide cleaved from the acetylcholinesterase (AChE) C-terminus (T14) can play a pivotal role as a signaling molecule in neurodegeneration, via its interaction with the α7 nicotinic acetylcholine receptor. The main goal of this study is to determine whether a cyclized variant (NBP14) of the toxic AChE-derived peptide can antagonize the effects of its linear counterpart, T14, in modulating well-known markers linked to neurodegeneration. We investigate this hypothesis applying NBP14 on ex-vivo rat brain slices containing the basal forebrain. Western blot analysis revealed an inhibitory action of NBP14 on naturally occurring T14 peptide, as well as on endogenous amyloid beta, whereas the expression of the nicotinic receptor and phosphorylated Tau was relatively unaffected. These results further confirm the neurotoxic properties of the AChE-peptide and show for the first time in an ex-vivo preparation the possible neuroprotective activity of NBP14, over a protracted period of hours, indicating that T14 pathway may offer a new prospect for therapeutic intervention in AD pathobiology.
Collapse
Affiliation(s)
- Emanuele Brai
- Culham Science Centre, Neuro-Bio Ltd., Oxfordshire, United Kingdom
| | - Florian Simon
- Culham Science Centre, Neuro-Bio Ltd., Oxfordshire, United Kingdom.,Department of Biotechnology, University of Nîmes, Nîmes, France
| | - Antonella Cogoni
- Culham Science Centre, Neuro-Bio Ltd., Oxfordshire, United Kingdom
| | | |
Collapse
|
6
|
Oxidative stress and mRNA expression of acetylcholinesterase in the leukocytes of ischemic patients. Biomed Pharmacother 2017; 87:561-567. [DOI: 10.1016/j.biopha.2017.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/16/2016] [Accepted: 01/01/2017] [Indexed: 12/31/2022] Open
|
7
|
Effect of dietary supplementation of Padauk (Pterocarpus soyauxii) leaf on high fat diet/streptozotocin induced diabetes in rats' brain and platelets. Biomed Pharmacother 2016; 84:1194-1201. [PMID: 27788477 DOI: 10.1016/j.biopha.2016.10.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND This study investigated the effects of Padauk leaf on brain malondialdehyde (MDA) content, acetylcholinesterase (AChE) activities, ectonucleotidases and adenosine deaminase (ADA) activities in the platelet of high fat diet and streptozotocin (STZ)-induced diabetic rats. METHODS The animals were divided into six groups (n=7): normal control rats; diabetic rats+high fat diet (HFD); diabetic rats+HFD+Metformin; diabetic rats+HFD+acarbose; diabetic rats+HFD+10% Padauk leaf; normal rats+basal diet+10% Padauk leaf. After 30days of experiment comprising of acclimatization, dietary manipulation, pre-treatment with STZ and supplementation with Padauk leaf, the animals were sacrificed and the rats' brain and blood were collected for subsequent analysis. RESULTS The results demonstrated that the elevated MDA content and AChE activity in the diabetic rats were significantly reduced when compared with the control rats. Furthermore, the increased NTPDases, 5'-nucleotidase and ADA activities in the diabetic rats were significantly reduced when compared with the control rats. CONCLUSION This study demonstrated that Padauk leaf exhibited modulatory effects on purinergic and cholinergic enzymes involved in the prevention of platelet abnormality and consequent vascular complications in diabetic state.
Collapse
|
8
|
Noremberg S, Bohrer D, Schetinger MRC, Bairros AV, Gutierres J, Gonçalves JF, Veiga M, Santos FW. Silicon Reverses Lipid Peroxidation but not Acetylcholinesterase Activity Induced by Long-Term Exposure to Low Aluminum Levels in Rat Brain Regions. Biol Trace Elem Res 2016; 169:77-85. [PMID: 26050237 DOI: 10.1007/s12011-015-0392-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/28/2015] [Indexed: 11/25/2022]
Abstract
Aluminum (Al) is the most widely distributed metal in the environment and is extensively used in daily life leading to easy exposure to human beings. Besides not having a recognized physiological role, Al may produce adverse effects through the interaction with the cholinergic system contributing to oxidative stress. The present study evaluated, in similar conditions of parenteral nutrition, whether the reaction of silicon (SiO2) with Al(3+) to form hydroxyaluminosilicates (HAS) reduces its bioavailability and toxicity through intraperitoneal administrations of 0.5 mg Al/kg/day and/or 2 mg Si/kg/day in Wistar rats. Al and Si concentrations were determined in rat brain tissue and serum. Acetylcholinesterase (AChE) activity and lipid peroxidation (LPO) were analyzed in the cerebellum, cortex, hippocampus, striatum, hypothalamus, and blood. An increase in the Al concentration was verified in the Al + Si group in the brain. All the groups demonstrated enhanced Si compared to the control animals. Al(3+) increased LPO measured by thiobarbituric acid reactive substances (TBARS) in cerebellum and hippocampus, whereas SiO2 reduced it when compared with the control group. An increase of AChE activity was observed in the Al-treated group in the cerebellum whereas a decrease of this enzyme activity was observed in the cortex and hippocampus in the Al and Al + Si groups. Al and Si concentrations increased in rat serum; however, no effect was observed in blood TBARS levels and AChE activity. SiO2 showed a protective effect in the hippocampus and cerebellum against cellular damage caused by Al(3+)-induced lipid peroxidation. Thus, SiO2 may be considered an important protector in LPO induced by Al(3+).
Collapse
Affiliation(s)
- Simone Noremberg
- Campus Itaqui, Universidade Federal do Pampa (UNIPAMPA), Itaqui, RS, CEP 97650000, Brazil.
| | - Denise Bohrer
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Maria R C Schetinger
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - André V Bairros
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Jessié Gutierres
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Jamile F Gonçalves
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Marlei Veiga
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, CEP 97105-900, Brazil
| | - Francielli W Santos
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, CEP 97500-970, Brazil
| |
Collapse
|
9
|
John J, Nampoothiri M, Kumar N, Mudgal J, Nampurath GK, Chamallamudi MR. Sesamol, a lipid lowering agent, ameliorates aluminium chloride induced behavioral and biochemical alterations in rats. Pharmacogn Mag 2015; 11:327-36. [PMID: 25829772 PMCID: PMC4378131 DOI: 10.4103/0973-1296.153086] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/10/2014] [Accepted: 03/12/2015] [Indexed: 01/01/2023] Open
Abstract
Background: Sesame oil from the seeds of Sesamum indicum Linn. (Pedaliaceae) has been used traditionally in Indian medical practice of Ayurveda in the treatment of central nervous system disorders and insomnia. A few published reports favor the anti-dementia effect of sesamol (SML), an active constituent of sesame oil. Objective: Thus, the present study was aimed to explore the anti-dementia effect and possible mechanism (s) of SML in aluminium chloride (AlCl3)-induced cognitive dysfunction model in rodents with special emphasis on memory centers viz., hippocampus and frontal cortex. Methods: Male Wistar rats were exposed to AlCl3 (175 mg/kg p.o.) for 60 days. SML (10 and 20 mg/kg) and rivastigmine (1 mg/kg) were administered orally 45 min before administration of AlCl3 for 60 days. Spatial memory was assessed using Morris water maze test. After 60 days of treatment animals were sacrificed, hippocampus and frontal cortex were collected and analyzed for acetylcholinesterase (AChE) activity, tumor necrosis factor (TNF-α) level, antioxidant enzymes (Glutathione, catalase), lipid peroxidation, and nitrite level. The circulating triglycerides, total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels were also analyzed. Results: SML significantly prevented behavioral impairments in aluminium-exposed rats. Treatment with SML reversed the increased cholesterol, triglycerides and LDL while raised the HDL levels. SML significantly corrected the effect of AlCl3 on AChE activity. Further, SML reversed the elevated nitric oxide, TNF-α and reduced antioxidant enzymes in hippocampus and frontal cortex. Conclusion: The present study suggests the neuro-protection by SML against cognitive dysfunction induced by environmental toxin (AlCl3) in hippocampus and frontal cortex.
Collapse
Affiliation(s)
- Jessy John
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Nitesh Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Gopalan Kutty Nampurath
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Mallikarjuna Rao Chamallamudi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
10
|
Gallic Acid Modulates Cerebral Oxidative Stress Conditions and Activities of Enzyme-Dependent Signaling Systems in Streptozotocin-Treated Rats. Neurochem Res 2013; 38:761-71. [DOI: 10.1007/s11064-013-0975-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 01/17/2023]
|
11
|
Rezin GT, Scaini G, Ferreira GK, Cardoso MR, Gonçalves CL, Constantino LS, Deroza PF, Ghedim FV, Valvassori SS, Resende WR, Quevedo J, Zugno AI, Streck EL. Inhibition of acetylcholinesterase activity in brain and behavioral analysis in adult rats after chronic administration of fenproporex. Metab Brain Dis 2012; 27:453-8. [PMID: 22832793 DOI: 10.1007/s11011-012-9331-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/17/2012] [Indexed: 12/16/2022]
Abstract
Fenproporex is an amphetamine-based anorectic and it is rapidly converted in vivo into amphetamine. It elevates the levels of extracellular dopamine in the brain. Acetylcholinesterase is a regulatory enzyme which is involved in cholinergic synapses and may indirectly modulate the release of dopamine. Thus, we investigated whether the effects of chronic administration of fenproporex in adult rats alters acquisition and retention of avoidance memory and acetylcholinesterase activity. Adult male Wistar rats received repeated (14 days) intraperitoneal injection of vehicle or fenproporex (6.25, 12.5 or 25 mg/kg i.p.). For behavioral assessment, animals were submitted to inhibitory avoidance (IA) tasks and continuous multiple trials step-down inhibitory avoidance (CMIA). Acetylcholinesterase activity was measured in the prefrontal cortex, hippocampus, hypothalamus and striatum. The administration of fenproporex (6.25, 12.5 and 25 mg/kg) did not induce impairment in short and long-term IA or CMIA retention memory in rats. In addition, longer periods of exposure to fenproporex administration decreased acetylcholinesterase activity in prefrontal cortex and striatum of rats, but no alteration was verified in the hippocampus and hypothalamus. In conclusion, the present study showed that chronic fenproporex administration decreased acetylcholinesterase activity in the rat brain. However, longer periods of exposure to fenproporex did not produce impairment in short and long-term IA or CMIA retention memory in rats.
Collapse
Affiliation(s)
- Gislaine T Rezin
- Laboratório de Bioenergética, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Martins DB, Mazzanti CM, Costa MM, França R, Pagnoncelli M, Maciel RM, Schmatz R, Oliveira L, Morsch V, Facco G, Visentini D, Mann T, Mazzanti A, Lopes STA. Complete blood count and acetylcholinesterase activity of lymphocytes of demyelinated and ovariectomized rats treated with resveratrol. Immunopharmacol Immunotoxicol 2012; 34:983-90. [DOI: 10.3109/08923973.2012.682581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Nalivaeva NN, Makova NZ, Kochkina EG, John D, Arutyunov VA, Kozina LS, Arutjunyan AV, Zhuravin IA. Effects of geroprotective peptides on the activity of cholinesterases and formation of the soluble form of the amyloid precursor protein in human neuroblastoma SH-SY5Y cells. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411030044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Gacar N, Mutlu O, Utkan T, Komsuoglu Celikyurt I, Gocmez SS, Ulak G. Beneficial effects of resveratrol on scopolamine but not mecamylamine induced memory impairment in the passive avoidance and Morris water maze tests in rats. Pharmacol Biochem Behav 2011; 99:316-23. [PMID: 21624386 DOI: 10.1016/j.pbb.2011.05.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/08/2011] [Accepted: 05/14/2011] [Indexed: 01/05/2023]
Abstract
Resveratrol (3,5,4-trihydroxy-trans-stilbene), which is found in grapes and red wine has been shown to protect neuronal cells with its antioxidant activity, improve memory function in dementia and reverse acetylcholine esterase (AChE) activity. The aim of this study was to investigate the effect of resveratrol on emotional and spatial memory in naive rats, as well as on scopolamine- and mecamylamine-induced memory impairment in the passive avoidance and Morris water maze (MWM) tests. Resveratrol (12.5, 25 and 50 mg/kg), scopolamine (0.6 mg/kg) and mecamylamine (10mg/kg) were administered to male Wistar rats. In the passive avoidance test, there was no significant difference in the first day latency between all groups, whereas scopolamine and mecamylamine significantly shortened the second day latency compared to the control group. Resveratrol reversed the effect of scopolamine at all doses used, but it had no effect on mecamylamine-induced memory impairment in the passive avoidance test. Both scopolamine and mecamylamine significantly decreased the time spent in the escape platform quadrant during the probe trial of the MWM test compared to the control group. Resveratrol reversed the effect of scopolamine at all doses, but did not change the effect of mecamylamine in the MWM test. There were no significant differences in the locomotor activities of any of the groups. In conclusion, we suggested that resveratrol had improving effects on learning and memory by acting on muscarinic cholinergic receptors and at least in part, may reverse AChE activity.
Collapse
Affiliation(s)
- Nejat Gacar
- Pharmacology Department, Kocaeli University Medical Faculty, 41380-Kocaeli, Turkey.
| | | | | | | | | | | |
Collapse
|
15
|
Hicks D, John D, Makova NZ, Henderson Z, Nalivaeva NN, Turner AJ. Membrane targeting, shedding and protein interactions of brain acetylcholinesterase. J Neurochem 2011; 116:742-6. [PMID: 21214569 DOI: 10.1111/j.1471-4159.2010.07032.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The early stages of Alzheimer's disease are characterized by cholinergic deficits and the preservation of cholinergic function through the use of acetylcholinesterase inhibitors is the basis for current treatments of the disease. Understanding the causes for the loss of basal forebrain cholinergic neurons in neurodegeneration is therefore a key to developing new therapeutics. In this study, we review novel aspects of cholinesterase membrane localization in brain and propose mechanisms for its lipid domain targeting, secretion and protein-protein interactions. In erythrocytes, acetylcholinesterase (AChE) is localized to lipid rafts through a GPI anchor. However, the main splice form of AChE in brain lacks a transmembrane peptide anchor region and is bound to the 'proline-rich membrane anchor', PRiMA, in lipid rafts. Furthermore, AChE is secreted ('shed') from membranes and this shedding is stimulated by cholinergic agonists. Immunocytochemical studies on rat brain have shown that membrane-associated PRiMA immunofluorescence is located selectively at cholinergic neurons of the basal forebrain and striatum. A strong association of AChE with the membrane via PRiMA seems therefore to be a specific requirement of forebrain cholinergic neurons. α7 nicotinic acetylcholine receptors are also associated with lipid rafts where they undergo rapid internalisation on stimulation. We are currently probing the mechanism(s) of AChE shedding, and whether this process and its apparent association with α7 nicotinic acetylcholine receptors and metabolism of the Alzheimer's amyloid precursor protein is determined by its association with lipid raft domains either in normal or pathological situations.
Collapse
Affiliation(s)
- David Hicks
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
16
|
Devitsina GV, Ruzhinskaya NN, Gdovskii PA. Effect of chronic anosmia on morphofunctional parameters of the gustatory system primary centers of the carp Cyprinus carpio. J EVOL BIOCHEM PHYS+ 2010. [DOI: 10.1134/s0022093010040083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Maldonado PA, Corrêa M, da Rosa CS, Becker L, Bagatini M, Gonçalves JF, Jaques JDS, Schetinger MR, Morsch VM. Ectonucleotidase and acetylcholinesterase activities in synaptosomes from the cerebral cortex of streptozotocin-induced diabetic rats and treated with resveratrol. Brain Res Bull 2009; 80:371-6. [PMID: 19723569 DOI: 10.1016/j.brainresbull.2009.08.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/10/2009] [Accepted: 08/25/2009] [Indexed: 12/25/2022]
Abstract
The aim of the present study was to investigate the effects of resveratrol (RV), an important neuroprotective compound on NTPDase, 5'-nucleotidase and acetylcholinesterase (AChE) activities in cerebral cortex synaptosomes of streptozotocin (STZ)-induced diabetic rats. The animals were divided into six groups (n=8): control/saline; control/RV 10mg/kg; control/RV 20mg/kg; diabetic/saline; diabetic/RV 10mg/kg; diabetic/RV 20mg/kg. After 30 days of treatment with resveratrol the animals were sacrificed and the cerebral cortex was removed for synaptosomes preparation and enzymatic assays. The results demonstrated that NTPDase and 5'-nucleotidase activities were significantly increased in the diabetic/saline group (p<0.05) compared to control/saline group. Treatment with resveratrol significantly increased NTPDase, 5'-nucleotidase activities in the diabetic/RV10 and diabetic/RV20 groups (p<0.05) compared to diabetic/saline group. When resveratrol was administered per se there was also an increase in the activities of these enzymes in the control/RV10 and control/RV20 groups (p<0.05) compared to control/saline group. AChE activity was significantly increased in the diabetic/saline group (p<0.05) compared to control/saline group. The treatment with resveratrol prevented this increase in the diabetic/RV10 and diabetic/RV20 groups. In conclusion, this study demonstrated that the resveratrol interfere with the purinergic and cholinergic neurotransmission by altering NTPDase, 5'-nucleotidase and AChE activities in cerebral cortex synaptosomes of diabetic rats. In this context, we can suggest that resveratrol should be considered potential therapeutics and scientific tools to be investigated in brain disorders associated with the diabetes.
Collapse
Affiliation(s)
- Roberta Schmatz
- Programa de Pós Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat Rev Neurosci 2009; 10:383-90. [PMID: 19377503 DOI: 10.1038/nrn2635] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Traditional descriptions of the cortical cholinergic input system focused on the diffuse organization of cholinergic projections and the hypothesis that slowly changing levels of extracellular acetylcholine (ACh) mediate different arousal states. The ability of ACh to reach the extrasynaptic space (volume neurotransmission), as opposed to remaining confined to the synaptic cleft (wired neurotransmission), has been considered an integral component of this conceptualization. Recent studies demonstrated that phasic release of ACh, at the scale of seconds, mediates precisely defined cognitive operations. This characteristic of cholinergic neurotransmission is proposed to be of primary importance for understanding cholinergic function and developing treatments for cognitive disorders that result from abnormal cholinergic neurotransmission.
Collapse
|
19
|
Schmatz R, Mazzanti CM, Spanevello R, Stefanello N, Gutierres J, Corrêa M, da Rosa MM, Rubin MA, Chitolina Schetinger MR, Morsch VM. Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. Eur J Pharmacol 2009; 610:42-8. [PMID: 19303406 DOI: 10.1016/j.ejphar.2009.03.032] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 03/02/2009] [Accepted: 03/10/2009] [Indexed: 12/19/2022]
Abstract
The objective of the present study was to investigate the effect of the administration of resveratrol (RV) on memory and on acetylcholinesterase (AChE) activity in the cerebral cortex, hippocampus, striatum, hypothalamus, cerebellum and blood in streptozotocin-induced diabetic rats. The animals were divided into six groups (n=6-13): Control/saline; Control/RV 10 mg/kg; Control/RV 20 mg/kg; Diabetic/saline; Diabetic/RV 10 mg/kg; Diabetic/RV 20 mg/kg. One day after 30 days of treatment with resveratrol the animals were submitted to behavioral tests and then submitted to euthanasia and the brain structures and blood were collected. The results showed a decrease in step-down latency in diabetic/saline group. Resveratrol (10 and 20 mg/kg) prevented the impairment of memory induced by diabetes. In the open field test, no significant differences were observed between the groups. In relation to AChE activity, a significant increase in diabetic/saline group (P<0.05) was observed in all brain structures compared to control/saline group. However, AChE activity decreased significantly in control/RV10 and control/RV20 (P<0.05) groups in cerebral cortex, hippocampus and striatum, while no significant differences were observed in diabetic/RV10 and diabetic/RV20 groups in all brain structures compared to control/saline group. Blood AChE activity increased significantly in diabetic/saline group (P<0.05) decreased in control/RV10, control/RV20 and diabetic/RV20 groups (P<0.05) compared to control/saline group. In conclusion, the present findings showed that treatment with resveratrol prevents the increase in AChE activity and consequently memory impairment in diabetic rats, demonstrating that this compound can modulate cholinergic neurotransmission and consequently improve cognition.
Collapse
Affiliation(s)
- Roberta Schmatz
- Programa de Pós Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Battisti V, Schetinger MRC, Maders LDK, Santos KF, Bagatini MD, Correa MC, Spanevello RM, do Carmo Araújo M, Morsch VM. Changes in acetylcholinesterase (AchE) activity in lymphocytes and whole blood in acute lymphoblastic leukemia patients. Clin Chim Acta 2009; 402:114-8. [PMID: 19185568 DOI: 10.1016/j.cca.2008.12.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 12/04/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) is a type of cancer that affects lymphocytes and it is the most common form of cancer in children. Acetylcholinesterase (AChE) is well known as having non-cholinergic functions and has been detected in the blood and plasma of humans including in lymphocytes. Thus, we investigated whole blood and lymphocyte AChE activity in patients with ALL. METHODS This study was performed on 72 children with ALL divided into 4 groups: newly diagnosed, remission induction, remission maintenance and out-of-treatment and one control group of 50 healthy subjects. We determined AChE activity in whole blood and lymphocytes of these patients. RESULTS Results demonstrated that whole blood AChE activity was enhanced in the newly diagnosed group and reduced in the remission induction and remission maintenance groups in relation to the control group. For lymphocyte AChE activity we found an increase in the newly diagnosed group and a decrease in the remission induction group in relation to the control. CONCLUSIONS These results suggest that AChE activity was altered in ALL patients. This fact may be related with the essential role played by AChE in the development of hematological disease and its contribution to the regulation of immune function.
Collapse
Affiliation(s)
- Vanessa Battisti
- Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Universitário, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Corrêa MDC, Maldonado P, da Rosa CS, Lunkes G, Lunkes DS, Kaizer RR, Ahmed M, Morsch VM, Pereira ME, Schetinger MR. Oxidative stress and erythrocyte acetylcholinesterase (AChE) in hypertensive and ischemic patients of both acute and chronic stages. Biomed Pharmacother 2007; 62:317-24. [PMID: 18031975 DOI: 10.1016/j.biopha.2007.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 10/03/2007] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and disability particularly in the elderly. Hypertension is the most important risk factor in strokes, representing roughly 70% of all cases. Oxidative stress is believed to be one of the mechanisms taking part in neuronal damage in stroke. It is well documented that cholinergic system plays a key role in normal brain functions and in memory disturbances of several pathological processes, such as in cerebral blood flow regulation. This study investigated the oxidative status and acetylcholinesterase (AChE) activity in whole blood in patients diagnosed with acute and chronic stages of ischemia, as well as with hypertension. Malondialdehyde (MDA) levels and protein carbonylation content showed increased levels both in the acute ischemic groups and in the hypertensive group, when compared to the control. Catalase activity and reduced glutathione (GSH) levels in the acute group were also higher than in the hypertensive, chronic ischemic and control groups (p<0.05). The activity of AChE in acute ischemic patients was significantly higher than that presented by the control, hypertensive and chronic ischemic patients (p<0.05). The hypertensive group presented AChE activity significantly lower than control and chronic groups. In spite of having a defined location the ischemic event results in a systemic disorder that induces changes, which can be detected by measuring the peripheral markers of oxidative stress and AChE activity in erythrocytes.
Collapse
Affiliation(s)
- Maísa de Carvalho Corrêa
- Departamento de Química, Programa de Pós-Graduação em Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Campus Camobi, 97105-900 Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mazzanti CM, Spanevello R, Ahmed M, Schmatz R, Mazzanti A, Salbego FZ, Graça DL, Sallis ESV, Morsch VM, Schetinger MRC. Cyclosporine A inhibits acetylcholinesterase activity in rats experimentally demyelinated with ethidium bromide. Int J Dev Neurosci 2007; 25:259-64. [PMID: 17467222 DOI: 10.1016/j.ijdevneu.2007.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022] Open
Abstract
Cyclosporine A is the major immunosuppressive agent used for organ transplantation and for the treatment of a variety of autoimmune disorders such as multiple sclerosis. In this work, we investigated the effect of the cyclosporine A on the acetylcholinesterase activity in the cerebral cortex, striatum, hippocampus, hypothalamus, cerebellum and pons of the rats experimentally demyelinated by ethidium bromide. Rats were divided into four groups: I control (injected with saline), II (treated with cyclosporine A), III (injected with 0.1% ethidium bromide) and IV (injected with 0.1% the ethidium bromide and treated with cyclosporine A). The results showed a significant inhibition (p<0.05) of acetylcholinesterase activity in the groups II, III and IV in all brain structures analyzed. In the striatum, hippocampus, hypothalamus and pons the inhibition was greater (p<0.005) when ethidium bromide was associated with cyclosporine A. In conclusion, the present investigation demonstrated that cyclosporine A is an inhibitor of acetylcholinesterase activity and this effect is increased after an event of toxic demyelination of the central nervous system.
Collapse
Affiliation(s)
- Cinthia M Mazzanti
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcellos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Shen ZX. Brain cholinesterases: III. Future perspectives of AD research and clinical practice. Med Hypotheses 2005; 63:298-307. [PMID: 15236794 DOI: 10.1016/j.mehy.2004.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 03/01/2004] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is initially and primarily associated with the degeneration and alteration in the metabolism of cholinesterases (ChEs). The use of ChEs inhibitors to treat Alzheimer's condition, on the basis of the cholinergic hypothesis of the disease, is, therefore, without grounds. Most disturbing is the fact that the currently available anti-ChEs are designed to inhibit normal ChEs in the brain and throughout the body, but not the abnormal ones. Based on the acetylcholinesterase (AChE) deficiency theory, treatment should be designed to protect the cranial ChEs system from alteration and/or to help that system fight against degeneration through restoring its homeostatic action for brain structure and function instead. The overlap in the clinical, biochemical, molecular-cellular, and pathological alterations seen in patients with AD and individuals with many other brain disorders, which has bewildered many investigators, may now be explained by the shared underlying mismetabolism of brain ChEs. The abnormal metabolism of ChEs existing in asymptomatic subjects may indicate that the system is "at risk" and deserves serious attention. Future perspectives of ChEs research in vivo and in vitro in connection with AD and clinical diagnosis, prevention and treatment are proposed. Several potentially useful therapeutic and preventive means and pharmacological agents in this regard are identified and discussed, such as physical and intellectual stimulation, and a class of drugs including vitamin E, R-(-)-deprenyl (deprenyl, selegiline), acetyl L-carnitine, cytidine diphosphocholine (CDP-choline), centrophenoxine, L-phenylalanine, naloxone, galactose, and lithium, that have been proven to be able to stimulate AChE activity. Their working mechanisms may be through directly changing the configuration of AChE molecules and/or correcting micro- and overall environmental biological conditions for ChEs.
Collapse
Affiliation(s)
- Z-X Shen
- 2436 Rhode Island Ave. N. #3, Golden Valley, MN 55427-5011, USA.
| |
Collapse
|
25
|
Cousin X, Strähle U, Chatonnet A. Are there non-catalytic functions of acetylcholinesterases? Lessons from mutant animal models. Bioessays 2005; 27:189-200. [PMID: 15666354 DOI: 10.1002/bies.20153] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetylcholinesterase (AChE) hydrolyses acetylcholine (ACh) ensuring the fast clearance of released neurotransmitter at cholinergic synapses. Many studies led to the hypothesis that AChE and the closely related enzyme butyrylcholinesterase (BChE) may play other, non-hydrolytic roles during development. In this review, we compare data from in vivo studies performed on invertebrate and vertebrate genetic models. The loss of function of ache in these systems is responsible for the appearance of several phenotypes. In all aspects so far studied, the phenotypes can be explained by an excess of the undegraded substrate, ACh, leading to misfunction and pathological alterations. Thus, the lack of AChE catalytic activity in the mutants appears to be solely responsible for the observed phenotypes. None of them appears to require the postulated adhesive or other non-hydrolytic functions of AChE.
Collapse
Affiliation(s)
- Xavier Cousin
- UMR Différenciation Cellulaire et Croissance, INRA, Montpellier, France
| | | | | |
Collapse
|
26
|
Soreq H, Yirmiya R, Cohen O, Glick D. Acetylcholinesterase as a window onto stress responses. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
27
|
Zbarsky V, Thomas J, Greenfield S. Bioactivity of a peptide derived from acetylcholinesterase: involvement of an ivermectin-sensitive site on the alpha 7 nicotinic receptor. Neurobiol Dis 2004; 16:283-9. [PMID: 15207285 DOI: 10.1016/j.nbd.2004.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 02/10/2004] [Accepted: 02/20/2004] [Indexed: 11/19/2022] Open
Abstract
A peptide fragment of 14 amino acids, derived from the C-terminus of acetylcholinesterase (AChE), might underlie the now well-established noncholinergic effects of the enzyme. This peptide is bioactive in a variety of systems including acute (brain slices) and chronic (organotypic culture) preparations of hippocampus, a pivotal area in Alzheimer's disease (AD); invariably, the action of the peptide is mediated specifically via an as yet unknown receptor. In this study, the allosteric alpha 7 agent, ivermectin (IVM), had a modest inhibitory effect, whilst that of the peptide was significantly more marked. However, ivermectin rendered ineffective the toxicity of high doses of the peptide, that is, when the two were co-applied, only the smaller effects of ivermectin were seen. Ivermectin, therefore, is presumably acting at a site that is identical to, or at least strongly interactive with, the normal binding site for AChE-peptide. This observation could have important implications for eventual therapeutic targeting of the action of AChE-peptide, in neurodegeneration.
Collapse
Affiliation(s)
- Virginia Zbarsky
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK
| | | | | |
Collapse
|
28
|
Shen ZX. Brain cholinesterases: II. The molecular and cellular basis of Alzheimer's disease. Med Hypotheses 2004; 63:308-21. [PMID: 15236795 DOI: 10.1016/j.mehy.2004.02.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 02/23/2004] [Indexed: 01/15/2023]
Abstract
Currently available evidence demonstrates that cholinesterases (ChEs), owing to their powerful enzymatic and non-catalytic actions, unusually strong electrostatics, and exceptionally ubiquitous presence and redundancy in their capacity as the connector, the organizer and the safeguard of the brain, play fundamental role(s) in the well-being of cells, tissues, animal and human lives, while they present themselves adequately in quality and quantity. The widespread intracellular and extracellular membrane networks of ChEs in the brain are also subject to various insults, such as aging, gene anomalies, environmental hazards, head trauma, excessive oxidative stress, imbalances and/or deficits of organic constituents. The loss and the alteration of ChEs on the outer surface membranous network may initiate the formation of extracellular senile plaques and induce an outside-in cascade of Alzheimer's disease (AD). The alteration in ChEs on the intracellular compartments membranous network may give rise to the development of intracellular neurofibrillary tangles and induce an inside-out cascade of AD. The abnormal patterns of glycosylation and configuration changes in ChEs may be reflecting their impaired metabolism at the molecular and cellular level and causing the enzymatic and pharmacodynamical modifications and neurotoxicity detected in brain tissue and/or CSF of patients with AD and in specimens in laboratory experiments. The inflammatory reactions mainly arising from ChEs-containing neuroglial cells may facilitate the pathophysiologic process of AD. It is proposed that brain ChEs may serve as a central point rallying various hypotheses regarding the etio-pathogenesis of AD.
Collapse
Affiliation(s)
- Z X Shen
- 2436 Rhode Island Avenue #3, Golden valley, MN 55427-5011, USA.
| |
Collapse
|
29
|
Barry MA, Haglund S, Savoy LD. Association of extracellular acetylcholinesterase with gustatory nerve terminal fibers in the nucleus of the solitary tract. Brain Res 2001; 921:12-20. [PMID: 11720707 DOI: 10.1016/s0006-8993(01)03066-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholinesterase (AChE) staining is associated with terminal fields of the glossopharyngeal and chorda tympani nerves in the nucleus of the solitary tract (NST). To address AChE function at these sites, the location of the staining was examined at the fine structural level in combination with the labeling of chorda tympani nerve fibers with biotinylated dextran in golden Syrian hamsters. AChE staining was located in the endoplasmic reticulum of geniculate ganglion neuronal somata, and extracellularly, surrounding labeled chorda tympani terminal fibers and boutons in the NST. Neuronal profiles adjacent to these labeled fibers were stained less intensely, whereas most non-adjacent profiles were unstained. The location of staining is consistent with the secretion of AChE into the extracellular space by primary afferent chorda tympani fibers. AChE staining was reduced in the dextran-labeled chorda tympani fibers and terminals as well as adjacent non-labeled profiles 2 weeks following nerve transection and dextran application. The distribution of staining outside synapses and the loss of staining following denervation is suggestive of a non-cholinergic role for AChE in the intact gustatory system.
Collapse
Affiliation(s)
- M A Barry
- Department of BioStructure and Function, University of Connecticut Health Center, Farmington, CT 06030-3705, USA.
| | | | | |
Collapse
|
30
|
Abstract
The discovery of the first neurotransmitter--acetylcholine--was soon followed by the discovery of its hydrolysing enzyme, acetylcholinesterase. The role of acetylcholinesterase in terminating acetylcholine-mediated neurotransmission made it the focus of intense research for much of the past century. But the complexity of acetylcholinesterase gene regulation and recent evidence for some of the long-suspected 'non-classical' actions of this enzyme have more recently driven a profound revolution in acetylcholinesterase research. Although our understanding of the additional roles of acetylcholinesterase is incomplete, the time is ripe to summarize the evidence on a remarkable diversity of acetylcholinesterase functions.
Collapse
|
31
|
Doody RS. Clinical profile of donepezil in the treatment of Alzheimer's disease. Gerontology 2000; 45 Suppl 1:23-32. [PMID: 9876215 DOI: 10.1159/000052761] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Although the underlying pathogenesis of Alzheimer's disease (AD) is not fully understood, one of its key features is the widespread loss of central cholinergic innervation, known to be fundamental for cognitive processes. This finding led to the hypothesis that pharmacological enhancement of acetylcholine (ACh) neurotransmission may alleviate the symptoms of AD. Currently, cholinergic therapy, particularly cholinesterase (ChE) inhibition, represents the most realistic approach to the symptomatic treatment of AD. Donepezil HCl, for example, is a piperidine-based, reversible acetylcholinesterase (AChE) inhibitor, chemically distinct from other ChE inhibitors and rationally designed for the symptomatic treatment of AD. It is highly selective for centrally acting AChE, with little or no affinity for butyrylcholinesterase, present predominantly in the periphery. Phase I and II clinical trials demonstrated donepezil's favourable pharmacokinetic, pharmacodynamic and safety profile with no requirement for dose modification in the elderly or in patients with renal or hepatic impairment. Furthermore, its long half-life supports a simple and convenient once-daily dosing regimen. Subsequent to encouraging phase II clinical trial results, two pivotal, randomized, double-blind phase III trials (of 15 and 30 weeks' duration) demonstrated highly significant improvements in cognition and global function in mild to moderately severe AD patients treated with either 5 or 10 mg/day donepezil compared with placebo. Adverse events in the phase II and III trials, primarily cholinergic in nature, were transient and generally mild in severity and resolved during continued donepezil administration. Thus, the donepezil clinical trials programme has shown that this drug is a clinically effective and well-tolerated, once-daily treatment for the symptoms of mild to moderately severe AD.
Collapse
Affiliation(s)
- R S Doody
- Baylor College of Medicine, Department of Neurology and Alzheimer's Disease Research Center, Houston, Tex. 77030-3498, USA
| |
Collapse
|
32
|
Leitinger G, Simmons PJ. Cytochemical evidence that acetylcholine is a neurotransmitter of neurons that make excitatory and inhibitory outputs in the locust ocellar visual system. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000117)416:3<345::aid-cne6>3.0.co;2-t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Deurveilher S, Hars B, Hennevin E. Chronic, low-level exposure to the cholinesterase inhibitor DFP. II. Time course of behavioral state changes in rats. Pharmacol Biochem Behav 1999; 64:105-14. [PMID: 10495004 DOI: 10.1016/s0091-3057(99)00068-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Rats were repeatedly administered with low doses of diisopropylfluorophosphate (DFP; 0.2 mg/kg/day, SC), an irreversible cholinesterase (ChE) inhibitor. Control rats received a daily injection of oil vehicle or of saline. Recordings of the sleep-wake states were obtained in the 6 h following 1, 3, 6, 9, 13, 17, and 21 injections, as well as 2, 4, and 19 days after 9-day treatment. DFP administration increased waking at the expense of slow-wave sleep (SWS), but not of paradoxical sleep (PS); as a result, the PS/SWS ratio was strongly enhanced. These changes developed across days, were maximal after six to nine injections, and were then maintained at that level until cessation of treatment. This time course of behavioral state alterations paralleled the time course of ChE inhibition in the mesopontine cholinergic nuclei and the pontine reticular formation described in the companion article. In contrast, after DFP withdrawal, behavioral states returned to control values more rapidly (in 2-4 days) than did ChE activity. These results are discussed regarding the promoting role of cholinergic neurotransmission in brain-activated states.
Collapse
Affiliation(s)
- S Deurveilher
- Laboratoire de Neurobiologie de l'Apprentissage et de la Mémoire, URA CNRS 1491, Université Paris-Sud, Orsay, France
| | | | | |
Collapse
|
34
|
|
35
|
Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H. Structural roles of acetylcholinesterase variants in biology and pathology. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:672-86. [PMID: 10491113 DOI: 10.1046/j.1432-1327.1999.00693.x] [Citation(s) in RCA: 248] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Apart from its catalytic function in hydrolyzing acetylcholine, acetylcholinesterase (AChE) affects cell proliferation, differentiation and responses to various insults, including stress. These responses are at least in part specific to the three C-terminal variants of AChE which are produced by alternative splicing of the single ACHE gene. 'Synaptic' AChE-S constitutes the principal multimeric enzyme in brain and muscle; soluble, monomeric 'readthrough' AChE-R appears in embryonic and tumor cells and is induced under psychological, chemical and physical stress; and glypiated dimers of erythrocytic AChE-E associate with red blood cell membranes. We postulate that the homology of AChE to the cell adhesion proteins, gliotactin, glutactin and the neurexins, which have more established functions in nervous system development, is the basis of its morphogenic functions. Competition between AChE variants and their homologs on interactions with the corresponding protein partners would inevitably modify cellular signaling. This can explain why AChE-S exerts process extension from cultured amphibian, avian and mammalian glia and neurons in a manner that is C-terminus-dependent, refractory to several active site inhibitors and, in certain cases, redundant to the function of AChE-like proteins. Structural functions of AChE variants can explain their proliferative and developmental roles in blood, bone, retinal and neuronal cells. Moreover, the association of AChE excess with amyloid plaques in the degenerating human brain and with progressive cognitive and neuromotor deficiencies observed in AChE-transgenic animal models most likely reflects the combined contributions of catalytic and structural roles.
Collapse
Affiliation(s)
- D Grisaru
- Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University, Jerusalem, 91904 Israel
| | | | | | | | | |
Collapse
|
36
|
Cheon EW, Saito T. Choline acetyltransferase and acetylcholinesterase in the normal, developing and regenerating newt retinas. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 116:97-109. [PMID: 10446351 DOI: 10.1016/s0165-3806(99)00080-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The presence of the choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) was demonstrated in the adult newt retina using immunocytochemical and histochemical techniques. Within the inner plexiform layer (IPL), two ChAT-positive bands were detected at relative depths of 0-15% and 45-60% of the total thickness (100%) of the IPL. AChE-positive band occupied approximately 0-60% of the IPL width with an intensive AChE-positive band at a depth of 20-40% within the IPL. Localizations of maximum ChAT and AChE activity were not exactly the same in the IPL of the mature retina. To elucidate whether retinal regeneration follows the same sequence of cellular differentiation steps that occur in retinal development, we examined the time course of appearance of the cholinergic neurons and AChE activity in both developing and regenerating retinas. The ChAT-positive cells were first detected in the retina just before or at the beginning of the morphological development of the IPL in both developing and regenerating retinas. AChE activity first became detectable in somata located at the most proximal layer of the retina before the ChAT-positive cells could be detected and well before the IPL developed in both developing and regenerating retinas. During subsequent development and regeneration, the outer plexiform layer, the IPL, and somata close to either side of the IPL became AChE-positive. The fact that the time course of the appearance of ChAT and AChE molecules during regeneration was similar to that observed during development suggests that common mechanisms may control both the development and the regeneration of the newt retina.
Collapse
Affiliation(s)
- E W Cheon
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | |
Collapse
|
37
|
Abstract
Alzheimer's disease (AD) is associated with a deficiency of acetylcholine (ACh) in the forebrain that correlates with brain pathology and cognitive dysfunction. The most promising approach to enhancing central ACh neurotransmission has been the utilization of agents that inhibit cholinesterases which block its catabolism. Initially, the success of this strategy was limited by subtherapeutic levels of acetylcholinesterase (AChE) inhibition, tolerability problems and toxicity of the first agents. Donepezil HCI represents a new chemical class of AChE inhibitors, the piperidines. In clinical trials, donepezil has been shown to improve significantly cognition and global function in patients with mild to moderately severe AD, and has demonstrated an excellent tolerability and safety profile. These benefits, as well as a simple, once-daily dosing regimen, make donepezil a viable therapeutic option for AD patients.
Collapse
Affiliation(s)
- R S Doody
- Baylor College of Medicine, Department of Neurology and Alzheimer's Disease Research Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Acetylcholinesterase gene expression in axotomized rat facial motoneurons is differentially regulated by neurotrophins: correlation with trkB and trkC mRNA levels and isoforms. J Neurosci 1998. [PMID: 9822749 DOI: 10.1523/jneurosci.18-23-09936.1998] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We examined the potential influences of muscle-derived neurotrophins on the acetylcholinesterase (AChE) gene expression of adult rat motoneurons. Seven days after facial nerve transection, both AChE mRNA and enzyme activity levels were markedly reduced in untreated and vehicle-treated facial motoneurons, suggesting positive regulation of motoneuron AChE expression by muscle-derived factors. Because skeletal muscle is a source of neurotrophin-3 (NT-3), NT-4/5, and BDNF, these neurotrophins were individually infused onto the proximal nerve stump for 7 d, beginning at the time of axotomy. The trkB ligands NT-4/5 and BDNF prevented the downregulation of AChE mRNA and enzymatic activity, as determined by in situ hybridization, biochemical assay, and histochemical visualization of enzyme activity. In contrast, NT-3 had limited effects, and NGF was without effect. Because motoneurons normally express both trkB and trkC receptors and the trkC ligand NT-3 is the most abundant muscle-derived neurotrophin, we investigated possible reasons for the limited effects of NT-3. In situ hybridization and reverse transcription-PCR both revealed a downregulation of trkC mRNA in axotomized motoneurons, which contrasted the upregulation of trkB expression. Furthermore, isoforms of trkC were detected carrying insertions within their kinase domains, known to limit certain trkC-mediated signal transduction pathways. Because the changes in trkB and trkC mRNA levels were not significantly altered by neurotrophin infusions, it is unlikely they were induced by loss of muscle-derived neurotrophins. These results demonstrate that NT-4/5 and BDNF stimulate AChE gene expression in motoneurons and support the concept that muscle-derived trkB ligands modulate the cholinergic phenotype of their innervating motoneurons.
Collapse
|
39
|
Rodríguez-Ithurralde D, Maruri A, Rodríguez X. Motor neurone acetylcholinesterase release precedes neurotoxicity caused by systemic administration of excitatory amino acids and strychnine. J Neurol Sci 1998; 160 Suppl 1:S80-6. [PMID: 9851655 DOI: 10.1016/s0022-510x(98)00204-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have proposed that neuronal overactivation by either stimulation of excitatory receptors or hypofunction of inhibitory circuits is a cause of excessive acetylcholinesterase (AChE) release, which, in turn, can contribute to ALS/MND pathogenesis. We investigated histochemical and histopathological changes in cell populations of the mouse spinal ventral horn upon in vivo stimulation of glutamate receptors with L-aspartate (ASP, 10-50 mg/kg, intraperitoneal: i.p.), or blockade of glycine receptors with strychnine (STRY, 2 mg/kg, i.p.). ASP in P4-P13 (postnatal age in days) but not in older mice, and STRY irrespective of age, provoked rapid, striking depletions of motor neurone AChE, and appearance of AChE activity in astrocytes. This was followed by recovery of the enzyme in most motor neurones, astrocyte activation and statistically significant changes in: brain macrophage infiltration, loss of interneurones and motor neurones and neuronophagic images including rosettes of glial cells surrounding a central 'ghost-like' motor neurone. Although AChE release preceded the neuropathology found, it is not known if its uptake is a cause of glial activation. However, it has been shown that the enzyme potentiates non-N-metyl-D-aspartate receptors identical to those that mediate astrocyte activation. AChE activity produces protons and choline, possible microglial activators. These are putative routes towards long-lasting neuropathology.
Collapse
Affiliation(s)
- D Rodríguez-Ithurralde
- Division of Neuromyology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | | | | |
Collapse
|
40
|
Lakshmana MK, Rao BS, Dhingra NK, Ravikumar R, Meti BL, Raju TR. Chronic (-) deprenyl administration increases dendritic arborization in CA3 neurons of hippocampus and AChE activity in specific regions of the primate brain. Brain Res 1998; 796:38-44. [PMID: 9689452 DOI: 10.1016/s0006-8993(98)00312-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism by which (-) deprenyl enhances cognitive function in Alzheimer's disease (AD) is not yet understood. (-) Deprenyl (0.2 mg/kg/day) was administered intramuscularly to adult male monkeys (n = 6) for 25 days. Control monkeys (n = 6) received physiological saline by the same route. The activity of acetylcholinesterase (AChE) in different brain regions and the dendritic arborization in CA3 pyramidal neurons of hippocampus were analysed. (-) Deprenyl-treated monkeys showed a significant increase in the AChE activity by 43% (p < 0.001) in the frontal cortex, by 39% (p < 0.025) in the motor cortex, by 66% (p < 0.001) in the hippocampus and by 26% (p < 0.05) in the striatum compared to controls. The branching points and the intersections of both apical and basal dendrites of CA3 hippocampal pyramidal neurons were also significantly increased in (-) deprenyl-treated monkeys. Enhanced AChE activity may increase dendritic arborization in the hippocampus and it may also play a role in improving cognitive functions observed in AD, following (-) deprenyl treatment.
Collapse
Affiliation(s)
- M K Lakshmana
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | | | | | | | | |
Collapse
|
41
|
Benzi G, Moretti A. Is there a rationale for the use of acetylcholinesterase inhibitors in the therapy of Alzheimer's disease? Eur J Pharmacol 1998; 346:1-13. [PMID: 9617746 DOI: 10.1016/s0014-2999(98)00093-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the 1980s, the cholinergic hypothesis of the pathogenesis of Alzheimer's disease has proven to be a strong stimulus to pharmacological strategies aimed at correcting the cognitive deficit by manipulating cholinergic neurotransmission. Among these strategies, the one based on acetylcholinesterase inhibition is currently the most extensively developed for the therapy of Alzheimer's disease. The inhibitors' mechanisms of action are complex, including changes in the release of acetylcholine, and modulation of acetylcholine receptors. Various clinical trials of various inhibitors have shown that, on the whole, their effects were modest and, in the case of some drugs, were associated with frequent adverse reactions. Among the conceivable reasons for the limited efficacy of these drugs, those related to the pharmacological target deserve particular attention. This review, therefore, focuses on the complex nature of the acetylcholine system, the alterations of acetylcholinesterase and muscarinic receptor signal transduction in Alzheimer's disease, and the involvement of other neurotransmitters.
Collapse
Affiliation(s)
- G Benzi
- Institute of Pharmacology, Faculty of Sciences, University of Pavia, Italy
| | | |
Collapse
|
42
|
Bataillé S, Portalier P, Coulon P, Ternaux JP. Influence of acetylcholinesterase on embryonic spinal rat motoneurones growth in culture: a quantitative morphometric study. Eur J Neurosci 1998; 10:560-72. [PMID: 9749719 DOI: 10.1046/j.1460-9568.1998.00065.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rat spinal motoneurones sampled at day embryonic 15 were purified using a Nycodenz gradient and cultured in defined medium, during 7 days, on glass coverslips coated with poly-L-lysine and laminine. Purified acetylcholinesterase (AChE), ecothiopate, BW 284C51 and fasciculin II, inhibitors of either the catalytic or peripheral site of AChE, were added to the defined medium. Morphological changes of spinal motoneurones were measured using a statistical quantitative morphometric method, allowing the determination of various parameters such as the number of neurites and bifurcations, the length of neurites, the surface and spreading index. Presence of AChE in the medium (4 units/mL) increases the surface and the total length of neurites and axons without any change in the spreading index. When spinal motoneurones were cultured on AChE coated substrate, neurones rapidly migrate and form clusters. Addition of ecothiopate (10(-6) M) in the medium, which selectively blocks the catalytic site of AChE, leads to a slight increase in the number of primary neurite and a decrease of the spreading index during the three first days in culture. BW 284C51 (10(-5) M) which blocks the catalytic site but also affect the peripheral one, significantly reduces the number of primary neurites and increases the number of bifurcations. Fasciculin II, a potent blocker (10(-9)M) of the AChE peripheral site induces a decrease of both primary neurites and bifurcations with a significant increase of the length and growth velocity of the axon, giving a drastic enhancement of the spreading index. These phenomena are discussed in terms of catalytic and non-catalytic function of AChE, including the involvement of the enzyme in adhesive processes, occurring during growth and differentiation of spinal motoneurones.
Collapse
Affiliation(s)
- S Bataillé
- Unité de Neurocybernétique Cellulaire, UPR 9041 CNRS, Marseille, France
| | | | | | | |
Collapse
|
43
|
Rodríguez-Ithurralde D, Olivera S, Vincent O, Maruri A. In vivo and in vitro studies of glycine- and glutamate-evoked acetylcholinesterase release from spinal motor neurones: implications for amyotrophic lateral sclerosis/motor neurone disease pathogenesis. J Neurol Sci 1997; 152 Suppl 1:S54-61. [PMID: 9419055 DOI: 10.1016/s0022-510x(97)00245-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To investigate the spinal cellular structures and molecular mechanisms involved in acetylcholinesterase (AChE) release evoked by both glycine (GLY) and glutamate (GLU)--responses that might play a role in chronic neurotoxicity--we analysed AChE histochemistry and histology upon systemic administration of aspartate (ASP), and conducted in vitro experiments in synaptosomes and slices prepared from mouse spinal ventral horns. Upon superfusion and incubation exposure of these preparations to GLY- and GLU-receptor agonists, we assayed both tissue content and release of AChE, butyrylcholinesterase and lactic dehydrogenase. Histochemical reduction of motor neurone (MN) AChE, calcium dependency, decreases in intracellular AChE and the ratio amongst molecular forms released, suggest that both synaptosomal GLY-evoked AChE release (GLY-EAR) and GLU-receptor-elicited AChE release (GEAR) have release sites located at MN presynaptic terminals. These responses exhibited remarkable postnatal regulation. GEAR seems to be mediated through alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate receptors after the fourth postnatal week and through both NMDA and non-NMDA receptors at earlier stages. Sustained rises of extracellular AChE might link acute excitotoxic injury with several long-lasting pathways leading to chronic neurotoxicity, since AChE molecular properties include: (1) the ability to block cholinergic mechanisms that protect MN against overactivity; (2) activation of ATP-dependent potassium channels; (3) promotion of neurite and axon outgrowth; and possibly (4) stimulation of brain macrophage migration and activation.
Collapse
Affiliation(s)
- D Rodríguez-Ithurralde
- Laboratory of Molecular Neuroscience, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | | | | | | |
Collapse
|
44
|
Kennedy C, Todorov LD, Mihaylova-Todorova S, Sneddon P. Release of soluble nucleotidases: a novel mechanism for neurotransmitter inactivation? Trends Pharmacol Sci 1997; 18:263-6. [PMID: 9277128 DOI: 10.1016/s0165-6147(97)01088-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- C Kennedy
- Department of Physiology and Pharmacology, University of Strathclyds, Royal College, Glasgow, UK
| | | | | | | |
Collapse
|
45
|
|
46
|
Gómez-Ramos P, Morán MA. Ultrastructural localization of butyrylcholinesterase in senile plaques in the brains of aged and Alzheimer disease patients. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1997; 30:161-73. [PMID: 9165483 DOI: 10.1007/bf02815095] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Histochemical localization of butyrylcholinesterase has been carried out in primitive, perivascular, and classic plaques in the brains of both nondemented and Alzheimer disease (AD) patients. Butyrylcholinesterase histochemistry has been compared to amyloid beta-protein (A beta P) immunocytochemistry in adjacent sections. In small primitive plaques, most of the butyrylcholinesterase reaction product appears ultrastructurally located over plasma membranes of healthy-looking cell processes. In more extensive primitive plaques, butyrylcholinesterase reaction product also decorates amyloid filaments, which become identifiable as delicate wisps. In classic plaques, large aggregates of butyrylcholinesterase reaction product colocalize with bundles of amyloid filaments, as well as with the compact amyloid core. Thus, deposition of butyrylcholinesterase in senile plaques follows a close parellelism with the progressive aggregation of amyloid beta-protein, supporting the possibility that cholinesterases may play some role in the maturation of these structures.
Collapse
Affiliation(s)
- P Gómez-Ramos
- Department of Morphology, School of Medicine, Madrid, Spain
| | | |
Collapse
|
47
|
Chapter VIII Primate cingulate cortex chemoarchitecture and its disruption in Alzheimer's disease. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0924-8196(97)80010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Hawkins CA, Greenfield SA. Comparison of the behavioural effects of infusion of carbachol and acetylcholinesterase into the rat substantia nigra. Pharmacol Biochem Behav 1996; 55:67-80. [PMID: 8870040 DOI: 10.1016/0091-3057(96)00050-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has been postulated for many years that acetylcholinesterase (AChE) may play a nonclassical role in the substantia nigra, unrelated to its ability to hydrolyse acetylcholine. In this study the behavioural effects of unilateral infusion of AChE and a cholinergic agonist, carbachol, were compared. Carbachol induced ipsiversive circling over a very short time scale (minutes), whereas AChE induced contraversive circling, but over a longer time course-10 days. Both agents showed selectivity of response within the substantia nigra: acetylcholinesterase was only effective when infused into the most rostral region of the substantia nigra and its effects were limited to the pars compacta. In contrast, carbachol had effects in both the pars compacta and reticulata, with a graded sensitivity to carbachol in the rostral/caudal plane; infusions into rostral regions induced high rates of circling compared to more caudal areas, suggesting that the cholinergic input to the substantia nigra is not homogenous, but greater in rostral regions. This disparity between the effects of carbachol and AChE would, therefore, suggest that AChE is not exerting its long-term behavioural actions via a cholinergic mechanism, both in terms of time course of the response and the areas within the substantia nigra sensitive to these agents.
Collapse
Affiliation(s)
- C A Hawkins
- University Department of Pharmacology, Oxford, UK
| | | |
Collapse
|
49
|
Rodríguez-Ithurralde D, Olivera S, La Paz A, Vincent O, Rondeau A. Glycine effects on glutamate-receptor elicited acetylcholinesterase release from slices and synaptosomes of the spinal ventral horn. J Neurol Sci 1996; 139 Suppl:76-82. [PMID: 8899663 DOI: 10.1016/0022-510x(96)00095-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To study the mechanisms by which glutamate-elicited acetylcholinesterase release (GEAR) might play a part in the pathogenesis of excitotoxically triggered motor neurone disease, and to investigate the interaction of GEAR with spinal glycinergic mechanisms, we measured acetylcholinesterase (AChE) and cholinergic markers, after stimulating ventral horn slices and synaptosomes from the mouse spinal cord, with both glutamate- and glycine-receptor agonists. Glutamate (GLU), kainate and AMPA, as well as glycine (GLY) evoked dose-related, calcium-dependent liberation of soluble forms of AChE from both slices and synaptosomes. GLY-evoked AChE release showed remarkable age-related postnatal changes. In the immature slice of the ventral horn. GLY potentiated the GEAR response in the presence of strychnine, suggesting N-methyl-D-aspartate (NMDA) receptor involvement, and was also able to evoke a strychnine-sensitive AChE release in the absence of exogenous GLU. After the 28th postnatal day, nearly all the AChE secreted was released either after the activation of non-NMDA glutamate receptors or by strychnine-sensitive GLY-evoked AChE release mechanisms. Both GEAR and GLY-evoked AChE release might impair the negative feedback loop which modulates the overactivation of motor neurones, and cause prolonged extracellular rises of soluble AChE. These effects might augment the vulnerability of motor neurones to excitotoxic stress, promote fiber outgrowth, and eventually accelerate the metabolic exhaustion of lower motor neurones. It is possible that the mechanisms described are operative at the spinal cord of ALS/MND patients.
Collapse
Affiliation(s)
- D Rodríguez-Ithurralde
- Laboratory of Molecular Neuroscience, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|
50
|
Kasa P, Karcsu S, Kovacs I, Wolff JR. Cholinoceptive neurons without acetylcholinesterase activity and enzyme-positive neurons without cholinergic synaptic innervation are present in the main olfactory bulb of adult rat. Neuroscience 1996; 73:831-44. [PMID: 8809802 DOI: 10.1016/0306-4522(96)00064-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Light and electron microscopic histochemistry revealed acetylcholinesterase-positive and acetylcholinesterase-negative neurons in the main olfactory bulb of adult rat. Their distribution patterns on various neuron types have been analysed in detail. (1) No acetylcholinesterase staining could be demonstrated in the granule cells which receive a large number of the cholinergic synapses. (2) In contrast, enzyme activity was present in the soma and dendrites in most of the non-cholinergic and non-cholinoceptive relay cells (mitral cells and tufted cells) and in a subset of short-axon interneurons, where cholinergic synapses could not be detected. (3) Within the neuropil of glomeruli, two compartments were present, one of which was free of acetylcholinesterase-positive structures, while many enzyme-positive neuronal elements were seen in the other. (4) Characteristically, cholinergic and non-cholinergic neuronal structures showed triadic arrangements. (5) The axonal release of acetylcholinesterase from cholinergic axons is probable. It is suggested that, in the olfactory bulb, acetylcholinesterase is release by cholinergic afferent axons, and it is the cholinergic synapses that determine which postsynaptic neurons are cholinoceptive rather than the intraneuronal presence of acetylcholinesterase. In the main olfactory bulb, the acetylcholinesterase present in the relay cells therefore appears to have functions other than the hydrolysis of acetylcholine.
Collapse
Affiliation(s)
- P Kasa
- Department of Neurology and Psychiatry, Division of Alzheimer's Disease Research Laboratory, Hungary
| | | | | | | |
Collapse
|