1
|
Ararat-Sarria M, Curtidor H, Patarroyo MA. Characterisation of the erythrocyte invasion phenotype of FCB-2: A South American P. falciparum reference strain. Acta Trop 2024; 260:107379. [PMID: 39245156 DOI: 10.1016/j.actatropica.2024.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
The extent of parasite adaptive capability involved in erythrocyte invasion represents a significant challenge for the development of a Plasmodium falciparum vaccine. The parasite's geographical and populational origin may influence such adaptive behaviour; in vitro culture-adapted parasite strains are typically used for such studies. Previous studies have reported invasion phenotypes in strains from Africa and Asia and, to a lesser extent, from Latin America. This study was aimed at expanding the pool of characterised parasite strains from Latin America by describing the invasion phenotype of the P. falciparum Colombia Bogotá 2 (FCB2) strain. The FCB2 genome was sequenced and erythrocyte invasion ligand sequences were analysed and compared to other previously reported ones. RT-PCR was used for assessing Pfeba family erythrocyte invasion ligands and reticulocyte binding homologue (Pfrh) gene transcription. A flow cytometry-based erythrocyte invasion assay (using enzymatically-treated erythrocytes) was used for determining the FCB2 strain's invasion phenotype. The P. falciparum FCB2 genome sequence was analysed, bearing in mind that prolonged in vitro parasite culture may affect its genome sequence and, in some cases, lead to the deletion of certain genes; it was demonstrated that all erythrocyte invasion ligand gene sequences studied here were preserved. Comparative analysis showed that the target genome sequences were conserved whereas transcriptional analysis highlighted Pfebas and Pfrhs gene expression. Erythrocyte invasion analysis demonstrated that the FCB2 strain has a sialic acid-resistant invasion phenotype.
Collapse
Affiliation(s)
- Monica Ararat-Sarria
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C. 111321, Colombia; PhD programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá D.C. 111221, Colombia; Health Sciences Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá D.C. 111166, Colombia.
| | - Hernando Curtidor
- The Vice-rector's Office for Research, Universidad ECCI, Bogotá D.C. 111311, Colombia.
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C. 111321, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá D.C. 111321, Colombia.
| |
Collapse
|
2
|
Tonelli RR, Colli W, Alves MJM. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro. Front Immunol 2013; 3:419. [PMID: 23316203 PMCID: PMC3540409 DOI: 10.3389/fimmu.2012.00419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/20/2012] [Indexed: 11/13/2022] Open
Abstract
Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, and Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques. The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development, and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen–host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment), were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite–host interaction. In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic organisms will be discussed. Using these techniques, recent results on the interaction of Trypanosoma cruzi with the host will be highlighted focusing on members of the 85 kDa protein family, a subset of the gp85/TS superfamily.
Collapse
Affiliation(s)
- R R Tonelli
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo São Paulo, Brazil
| | | | | |
Collapse
|
3
|
Identification of a specific region of Plasmodium falciparum EBL-1 that binds to host receptor glycophorin B and inhibits merozoite invasion in human red blood cells. Mol Biochem Parasitol 2012; 183:23-31. [PMID: 22273481 DOI: 10.1016/j.molbiopara.2012.01.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/05/2012] [Accepted: 01/09/2012] [Indexed: 11/22/2022]
Abstract
The malaria parasite Plasmodium falciparum invades human erythrocytes through multiple pathways utilizing several ligand-receptor interactions. These interactions are broadly classified in two groups according to their dependency on sialic acid residues. Here, we focus on the sialic acid-dependent pathway by using purified glycophorins and red blood cells (RBCs) to screen a cDNA phage display library derived from P. falciparum FCR3 strain, a sialic acid-dependent strain. This screen identified several parasite proteins including the erythrocyte-binding ligand-1, EBL-1. The phage cDNA insert encoded the 69-amino acid peptide, termed F2i, which is located within the F2 region of the DBL domain, designated here as D2, of EBL-1. Recombinant D2 and F2i polypeptides bound to purified glycophorins and RBCs, and the F2i peptide was found to interfere with binding of D2 domain to its receptor. Both D2 and F2i polypeptides bound to trypsin-treated but not neuraminidase or chymotrypsin-treated erythrocytes, consistent with known glycophorin B resistance to trypsin, and neither the D2 nor F2i polypeptide bound to glycophorin B-deficient erythrocytes. Importantly, purified D2 and F2i polypeptides partially inhibited merozoite reinvasion in human erythrocytes. Our results show that the host erythrocyte receptor glycophorin B directly interacts with the DBL domain of parasite EBL-1, and the core binding site is contained within the 69 amino acid F2i region (residues 601-669) of the DBL domain. Together, these findings suggest that a recombinant F2i peptide with stabilized structure could provide a protective function at blood stage infection and represents a valuable addition to a multi-subunit vaccine against malaria.
Collapse
|
4
|
Antibodies to reticulocyte binding protein-like homologue 4 inhibit invasion of Plasmodium falciparum into human erythrocytes. Infect Immun 2009; 77:2427-35. [PMID: 19307208 DOI: 10.1128/iai.00048-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Plasmodium falciparum invasion into human erythrocytes relies on the interaction between multiple parasite ligands and their respective erythrocyte receptors. The sialic acid-independent invasion pathway is dependent on the expression of P. falciparum reticulocyte binding protein-like homologue 4 (PfRh4), as disruption of the gene abolishes the ability of parasites to switch to this pathway. We show that PfRh4 is present as an invasion ligand in culture supernatants as a 160-kDa proteolytic fragment. We confirm that PfRh4 binds to the surfaces of erythrocytes through recognition of an erythrocyte receptor that is neuraminidase resistant but trypsin and chymotrypsin sensitive. Serum antibodies from malaria-exposed individuals show reactivity against the binding domain of PfRh4. Purified immunoglobulin G raised in rabbits against the binding domain of PfRh4 blocked the binding of native PfRh4 to the surfaces of erythrocytes and inhibited erythrocyte invasion of parasites using sialic acid-independent invasion pathways and grown in neuraminidase-treated erythrocytes. Our results suggest PfRh4 is a potential vaccine candidate.
Collapse
|
5
|
Pasvol G, Jungery M. Glycophorins and red cell invasion by Plasmodium falciparum. CIBA FOUNDATION SYMPOSIUM 2008; 94:174-95. [PMID: 6341001 DOI: 10.1002/9780470715444.ch11] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The major red cell sialoglycoproteins, the glycophorins, play a central role in the invasion of human red cells by Plasmodium falciparum. En(a-) cells deficient in glycophorin A (alpha) and S-s-U- cells deficient in glycophorin B (delta) are relatively resistant to invasion, while trypsin treatment of S-s-U- cells, which removes most of the remaining sialoglycoprotein, renders these cells almost totally resistant to invasion. Parasites inside these glycophorin-deficient cells develop normally. Invasion of erythroid precursors in vitro by merozoites of P. falciparum parallels the appearance of glycophorins on the surface of these nucleated cells, even though parasites fail to develop inside them. However, another type of cell from an erythroleukaemic line (K562) which expresses glycophorins on its surface is resistant to invasion. Furthermore, the observed increased invasion of young cells as opposed to an older cell population is not related quantitatively to the presence of glycophorins on the cell surface. Thus, although the role of glycophorins is both specific and important in the invasion of cells by P. falciparum, it is clearly only part of a complex process.
Collapse
|
6
|
Sherman IW. References. ADVANCES IN PARASITOLOGY 2008. [DOI: 10.1016/s0065-308x(08)00430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Triglia T, Duraisingh MT, Good RT, Cowman AF. Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. Mol Microbiol 2005; 55:162-74. [PMID: 15612925 DOI: 10.1111/j.1365-2958.2004.04388.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand-receptor interactions. Some strains of P. falciparum are sensitive to neuraminidase treatment of the host erythrocyte and these parasites have been termed sialic acid-dependent as they utilize receptors containing sialic acid. In contrast, other strains can efficiently invade neuraminidase-treated erythrocytes and hence are sialic acid-independent. The molecular interactions that allow P. falciparum to differentially utilize receptors for merozoite invasion are not understood. The P. falciparum reticulocyte-binding protein homologue (PfRh or PfRBL) family have been implicated in the invasion process but their exact role is unknown. PfRh1, a member of this protein family, appears to be expressed in all parasite lines analysed but there are marked differences in the level of expression between different strains. We have used targeted gene disruption of the PfRh1 gene in P. falciparum to show that the encoded protein is required for sialic acid-dependent invasion of human erythrocytes. The DeltaPfRh1 parasites are able to invade normally; however, they utilize a pattern of ligand-receptor interactions that are more neuraminidase-resistant. Current data suggest a strategy based on the differential function of specific PfRh proteins has evolved to allow P. falciparum parasites to utilize alternative receptors on the erythrocyte surface for evasion of receptor polymorphisms and the host immune system.
Collapse
Affiliation(s)
- Tony Triglia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | | | | |
Collapse
|
8
|
Duraisingh MT, Triglia T, Ralph SA, Rayner JC, Barnwell JW, McFadden GI, Cowman AF. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J 2003; 22:1047-57. [PMID: 12606570 PMCID: PMC150330 DOI: 10.1093/emboj/cdg096] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The members of the phylum Apicomplexa parasitize a wide range of eukaryotic host cells. Plasmodium falciparum, responsible for the most virulent form of malaria, invades human erythrocytes using several specific and high affinity ligand-receptor interactions that define invasion pathways. We find that members of the P. falciparum reticulocyte-binding homolog protein family, PfRh2a and PfRh2b, are expressed variantly in different lines. Targeted gene disruption shows that PfRh2b mediates a novel invasion pathway and that it functions independently of other related proteins. Phenotypic variation of the PfRh protein family allows P. falciparum to exploit different patterns of receptors on the erythrocyte surface and thereby respond to polymorphisms in erythrocyte receptors and to evade the host immune system.
Collapse
Affiliation(s)
| | | | - Stuart A. Ralph
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Plant Cell Biology Research Centre, School of Botany, University of Melbourne 3010, Australia and Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Chamblee, GA 30341, USA Corresponding author e-mail:
M.T.Duraisingh and T.Triglia contributed equally to this work
| | - Julian C. Rayner
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Plant Cell Biology Research Centre, School of Botany, University of Melbourne 3010, Australia and Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Chamblee, GA 30341, USA Corresponding author e-mail:
M.T.Duraisingh and T.Triglia contributed equally to this work
| | - John W. Barnwell
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Plant Cell Biology Research Centre, School of Botany, University of Melbourne 3010, Australia and Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Chamblee, GA 30341, USA Corresponding author e-mail:
M.T.Duraisingh and T.Triglia contributed equally to this work
| | - Geoffrey I. McFadden
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Plant Cell Biology Research Centre, School of Botany, University of Melbourne 3010, Australia and Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Chamblee, GA 30341, USA Corresponding author e-mail:
M.T.Duraisingh and T.Triglia contributed equally to this work
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Plant Cell Biology Research Centre, School of Botany, University of Melbourne 3010, Australia and Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Chamblee, GA 30341, USA Corresponding author e-mail:
M.T.Duraisingh and T.Triglia contributed equally to this work
| |
Collapse
|
9
|
Rayner JC, Vargas-Serrato E, Huber CS, Galinski MR, Barnwell JW. A Plasmodium falciparum homologue of Plasmodium vivax reticulocyte binding protein (PvRBP1) defines a trypsin-resistant erythrocyte invasion pathway. J Exp Med 2001; 194:1571-81. [PMID: 11733572 PMCID: PMC2193530 DOI: 10.1084/jem.194.11.1571] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2001] [Revised: 09/18/2001] [Accepted: 10/03/2001] [Indexed: 12/17/2022] Open
Abstract
Invasion of erythrocytes by Plasmodium merozoites is an intricate process involving multiple receptor-ligand interactions. The glycophorins and an unknown trypsin sensitive factor are all erythrocyte receptors used during invasion by the major human pathogen Plasmodium falciparum. However, only one erythrocyte receptor, Glycophorin A, has a well-established cognate parasite ligand, the merozoite protein erythrocyte binding antigen-175 (EBA-175). The involvement of several other parasite proteins during invasion have been proposed, but no direct evidence links them with a specific invasion pathway. Here we report the identification and characterization of P. falciparum normocyte binding protein 1 (PfNBP1), an ortholog of Plasmodium vivax reticulocyte binding protein-1. PfNBP1 binds to a sialic acid dependent trypsin-resistant receptor on the erythrocyte surface that appears to be distinct from known invasion receptors. Antibodies against PfNBP1 can inhibit invasion of trypsinized erythrocytes and two P. falciparum strains that express truncated PfNBP1 are unable to invade trypsinized erythrocytes. One of these strain, 7G8, also does not invade Glycophorin B-negative erythrocytes. PfNBP1 therefore defines a novel trypsin-resistant invasion pathway and adds a level of complexity to current models for P. falciparum erythrocyte invasion.
Collapse
Affiliation(s)
- J C Rayner
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Chamblee, GA 30341, USA
| | | | | | | | | |
Collapse
|
10
|
Dolan SA, Proctor JL, Alling DW, Okubo Y, Wellems TE, Miller LH. Glycophorin B as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Mol Biochem Parasitol 1994; 64:55-63. [PMID: 8078523 DOI: 10.1016/0166-6851(94)90134-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Invasion of erythrocytes by malaria parasites involves multiple receptor-ligand interactions. To elucidate these pathways, we made use of four parasite clones with differing specificities for invasion, erythrocytes that are mutant for either glycophorin A or B, and enzyme modification of the erythrocyte surface with neuraminidase and trypsin. Neuraminidase alone abolishes invasion of two parasite clones (Dd2, FCR3/A2); these invade after trypsin treatment alone. A third clone (7G8) is unable to invade trypsin-treated erythrocytes. The fourth clone (HB3) can invade after either neuraminidase or trypsin treatment. The receptor for invasion of trypsin-treated erythrocytes was explored in two ways: treatment of trypsin-treated normal cells with neuraminidase, and trypsin treatment of glycophorin B-deficient cells. Both treatments eliminated invasion by all clones, indicating that the trypsin-independent pathway uses sialic acid and glycophorin B. To identify parasite proteins involved in the different pathways, erythrocyte binding assays were performed with soluble parasite proteins from each clone. Based on binding assays using erythrocytes that lack glycophorin A, the parasite protein known as EBA-175 appears to bind predominantly to glycophorin A. In contrast, the glycophorin B pathway does not appear to involve EBA-175, as binding of EBA-175 was similarly reduced to trypsin-treated normal and trypsin-treated glycophorin B-deficient erythrocytes. Thus, the glycophorin B-dependent, sialic acid-dependent invasion of trypsin-treated normal erythrocytes uses a different parasite ligand, indicating two or more sialic-dependent pathways for invasion. Clone 7G8, which cannot invade trypsin-treated erythrocytes, may be missing the ligand for invasion via glycophorin B.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S A Dolan
- Laboratory of Malaria Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
11
|
Orlandi PA, Klotz FW, Haynes JD. A malaria invasion receptor, the 175-kilodalton erythrocyte binding antigen of Plasmodium falciparum recognizes the terminal Neu5Ac(alpha 2-3)Gal- sequences of glycophorin A. J Biophys Biochem Cytol 1992; 116:901-9. [PMID: 1310320 PMCID: PMC2289329 DOI: 10.1083/jcb.116.4.901] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plasmodium falciparum malaria parasites invade human erythrocytes by means of a parasite receptor for erythrocytes, the 175-kD erythrocyte binding antigen (EBA-175). Similar to invasion efficiency, binding requires N-acetylneuraminic acid (Neu5Ac) on human erythrocytes, specifically the glycophorins. EBA-175 bound to erythrocytes with receptor-like specificity and was saturable. The specificity of EBA-175 binding was studied to determine if its binding is influenced either by simple electrostatic interaction with the negatively charged Neu5Ac (on the erythrocyte surface); or if Neu5Ac indirectly affected the conformation of an unknown ligand, or if Neu5Ac itself in specific linkage and carbohydrate composition was the primary ligand for EBA-175 as demonstrated for hemagglutinins of influenza viruses. Most Neu5Ac on human erythrocytes is linked to galactose by alpha 2-3 and alpha 2-6 linkages on glycophorin A. Soluble Neu5Ac by itself in solution did not competitively inhibit the binding of EBA-175 to erythrocytes, suggesting that linkage to an underlying sugar is required for binding in contrast to charge alone. Binding was competitively inhibited only by Neu5Ac(alpha 2-3)Gal-containing oligosaccharides. Similar oligosaccharides containing Neu5Ac(alpha 2-6)Gal-linkages had only slight inhibitory effects. Binding inhibition assays with modified sialic acids and other saccharides confirmed that oligosaccharide composition and linkage were primary factors for efficient binding. EBA-175 bound tightly enough to glycophorin A that the complex could be precipitated with an anti-glycophorin A monoclonal antibody. Selective cleavage of O-linked tetrasaccharides clustered at the NH2 terminus of glycophorin A markedly reduced binding in inhibition studies. We conclude that the Neu5Ac(a2,3)-Gal- determinant on O-linked tetrasaccharides of glycophorin A appear to be the preferential erythrocyte ligand for EBA-175.
Collapse
Affiliation(s)
- P A Orlandi
- Department of Immunology, Walter Reed Army Institute of Research, Washington, D.C. 20307-5100
| | | | | |
Collapse
|
12
|
Townson H, Chaithong U. Mosquito host influences on development of filariae. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 1991; 85:149-63. [PMID: 1888212 DOI: 10.1080/00034983.1991.11812541] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A brief review is presented of the literature relating to factors which limit the capacity of filariae to develop in mosquitoes, with particular emphasis on immune mechanisms. Most insects respond to bacterial infection by the production of potent antibacterial proteins, but little is known of this aspect of the immune response in mosquitoes or of the possible influence of immune proteins on the fate of filarial infections in mosquitoes. A summary account is given of recent experiments with the mosquito Aedes aegypti which involve passive transfer of immune haemolymph together with its in vitro assay and SDS-PAGE examination for induced proteins. These experiments demonstrate the production, in response to inoculation with Brugia pahangi, Escherichia coli, and various components of microbial cell walls, of haemolymph factors which are protective against filarial infection. It remains to be seen whether mosquitoes can produce a specific protective response to infection with eukaryotic organisms such as filaria that is distinctive from that mobilized against bacteria.
Collapse
Affiliation(s)
- H Townson
- Department of Medical Entomology, Liverpool School of Tropical Medicine, U.K
| | | |
Collapse
|
13
|
Use of fluorescein-labelled lectin binding of salivary glands to distinguish between Anopheles stephensi and An. albimanus species and strains. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0020-1790(91)90118-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
|
15
|
Lyon JA, Thomas AW, Hall T, Chulay JD. Specificities of antibodies that inhibit merozoite dispersal from malaria-infected erythrocytes. Mol Biochem Parasitol 1989; 36:77-85. [PMID: 2509909 DOI: 10.1016/0166-6851(89)90203-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
When malaria schizont-infected erythrocytes are cultured with immune serum, antibodies prevent dispersal of merozoites, resulting in the formation of immune clusters of merozoites (ICM) and inhibition of parasite growth. Antigens recognized by these antibodies were identified by probing two dimensional immunoblots of Plasmodium falciparum antigens with antibodies dissociated from immune complexes present at the surface of merozoites in ICM. Total immune serum recognized 88 of the 135 protein spots detected by colloidal gold staining, but antibodies dissociated from immune complexes recognized only 15 protein spots attributable to no more than eight distinct antigens. Antigens recognized by antibodies that inhibit merozoite dispersal include the precursor to the major merozoite surface antigens (gp195), a 126-kDa serine-repeat antigen (SERA), the 130-kDa protein that appears to bind to glycophorin (GBP130), and the approx. 45-kDa merozoite surface antigen. One other antigen (230/215-kDa doublet) was identified by using antibodies affinity purified from recombinant expression proteins. The identities of the other three antigens (150 kDa, 127 kDa and less than 30 kDa) were not determined. This approach provides a strategy for identifying epitopes accessible at the merozoite surface which may be important components of a multivalent vaccine against blood stages of P. falciparum.
Collapse
Affiliation(s)
- J A Lyon
- Department of Immunology, Walter Reed Army Institute of Research, Washington, DC 20307-5100
| | | | | | | |
Collapse
|
16
|
Rudin W, Hecker H. Lectin-binding sites in the midgut of the mosquitoes Anopheles stephensi Liston and Aedes aegypti L. (Diptera: Culicidae). Parasitol Res 1989; 75:268-79. [PMID: 2649879 DOI: 10.1007/bf00931811] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The presence and distribution of binding sites for eight different lectins, Con A, DBA, HPL, LFA, RCA I, SBA, UEA I, and WGA, were compared in the midguts of Plasmodium gallinaceum-infected Aedes aegypti and Plasmodium berghei-infected Anopheles stephensi. Lectins with high specificity for N-acetyl-D-glucosamine (GlcNAc) exhibited high binding preference for the peritrophic membrane and microvillar glycocalyx of Ae. aegypti; the same structures were preferentially labeled by N-Acetyl-D-galactosamine (GalNAc)-specific lectins in An. stephensi. No differences could be observed in the lectin-binding patterns of the intercellular spaces or cellular organelles and structures. The Plasmodium ookinete surface did not react with any of the lectins tested. It appears that sugars are involved in vector recognition by the parasite and that the peritrophic membrane and/or glycocalyx may be crucial structures for the penetration of the gut epithelium by the ookinete.
Collapse
Affiliation(s)
- W Rudin
- Schweizerisches Tropeninstitut, Basel, Switzerland
| | | |
Collapse
|
17
|
Mitchell GH, Bannister LH. Malaria parasite invasion: interactions with the red cell membrane. Crit Rev Oncol Hematol 1988; 8:225-310. [PMID: 3064934 DOI: 10.1016/s1040-8428(88)80011-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The capacity to invade red cells is central to the biology of malaria parasites; both asexual multiplication and reinfection of the definitive mosquito host depend upon intraerythrocytic stages. The invasion process is complex. The briefly free merozoite specifically recognizes and adheres to ligands on the red cell surface, then alters the red cell membrane to produce an invagination into which it moves, and so becomes enclosed in a membrane-bound parasitophorous vacuole. Here we assess new evidence that bears on our understanding of this process. This has come from sources including biochemical and ultrastructural studies of the specialized surface and organelles of merozoites, from in vitro invasion studies using naturally refractory or artificially modified red cells, and from structural, chemical, and immunological analyses of the newly parasitized cell.
Collapse
Affiliation(s)
- G H Mitchell
- Department of Immunology, Medical School, Guy's Hospital, London, United Kingdom
| | | |
Collapse
|
18
|
Abstract
The invasion of human red blood cells (RBC) by plosmodiol merozoites is a key event during malaria infection, and the inhibition o f invasion is regarded as a crucial goal of malaria vaccine development. For Plasmodium falciparum it has been suggested that the red cell sialoglycoproteins, glycophorins A, B and C, are receptors for invasion and that O-linked or N-linked carbohydrate structures may be involved as receptor sites(1-3). However, recent evidence suggests that the role o f these sialoglycoproteins and carbohydrates may have been overestimated. In this article, Peter Hermentin discusses the contradictory findings and presents a revised model for the invasion process.
Collapse
Affiliation(s)
- P Hermentin
- Behringwerke AG, P.O. Box 1140, D-3550 Marburg/Lahn, FR Germany
| |
Collapse
|
19
|
Hermentin P, Neunziger G, Enders B, Dahr W. Toxic effect of isolated glycophorin A on the in vitro growth of Plasmodium falciparum. BLUT 1987; 54:115-22. [PMID: 3545325 DOI: 10.1007/bf00321041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have examined the inhibitory potencies of glycophorin A, a mixture of glycophorins B and C, chymotryptic fragments of GpA, desialylated GpA, alkaliborohydride treated GpA, and the O-linked tetrasaccharide isolated from GpA on the invasion of human red blood cells by synchronous Plasmodium falciparum (strain FCB). 50% inhibition of invasion, as measured by 3H-hypoxanthine incorporation into parasites, was achieved at 14 and 155 microM for GpA and GpA-CH1, respectively. We have noticed, however, that isolated GpA exhibits a toxic effect on the intraerythrocytic growth of the parasite whereas the chymotryptic fragment (amino acid residues 1-64 of GpA) does not. Thus the inhibitory potency of isolated GpA during erythrocyte invasion by the merozoite should be regarded as the result of both an inhibitory and a toxic effect. The inhibitory effect should be attributed to the carbohydrate-rich outer portion of GpA carrying clusters of neuraminic acid. The toxic effect should be attributed to the hydrophobic region of GpA which might be capable of inserting into the membrane of free merozoites and/or erythrocytes. Our data suggest that results previously obtained with glycoprotein inhibitors carrying hydrophobic portions may have to be questioned.
Collapse
|
20
|
Shyamala V. An improved method of assaying for human erythrocyte invasion by Plasmodium falciparum. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 1985; 79:333-5. [PMID: 3896172 DOI: 10.1080/00034983.1985.11811927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
Ouaissi MA, Dutoit E, Vernes A, Guerret-Stocker S, Capron A. In vitro inhibition of Plasmodium falciparum merozoite invasion by human plasma fibronectin. Parasitology 1985; 90 ( Pt 2):227-36. [PMID: 3889777 DOI: 10.1017/s0031182000050939] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human fibronectin isolated from citrated blood was tested for its ability to bind to Plasmodium falciparum by an indirect immunofluorescent assay using rabbit antiserum to human fibronectin. A positive reaction was observed on merozoites inside schizont-infected erythrocytes. The binding was not observed on non-parasitized red blood cells. The effect of human fibronectin on P. falciparum growth was further studied using an in vitro inhibition assay; 50% inhibition of parasite multiplication was obtained with approximately 100 micrograms/ml of human fibronectin. Slight inhibition was observed below 10 micrograms/ml. The significance of this finding is discussed.
Collapse
|
22
|
Hermentin P, David PH, Miller LH, Perkins ME, Pasvol G, Dahr W. Wright (a + b-) human erythrocytes and Plasmodium falciparum malaria. BLUT 1985; 50:75-80. [PMID: 3918597 DOI: 10.1007/bf00321169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We find Wr(a + b-) erythrocytes of donor M. Fr., which appear to carry a rare glycophorin A variant, to be fully susceptible to invasion by nine isolates of Plasmodium falciparum. Thus we fail to confirm the previous publication on the refractoriness of these erythrocytes. In addition the serum of donor M. Fr., which is known to contain anti-Wrb directed against an epitope located on glycophorin A in close proximity to the erythrocyte membrane, was not found to inhibit P. falciparum invasion of blood group O Rh- red blood cells. Despite this, different lines of evidence still indicate that glycophorin A is one of the receptors for erythrocyte invasion by P. falciparum. The Wrb epitope, however, does not appear to represent a distinct receptor site, which is in contrast to previous suggestions.
Collapse
|
23
|
Gupta SK, Schulman S, Vanderberg JP. Stage-dependent toxicity of N-acetyl-glucosamine to Plasmodium falciparum. THE JOURNAL OF PROTOZOOLOGY 1985; 32:91-5. [PMID: 3886901 DOI: 10.1111/j.1550-7408.1985.tb03020.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effects of N-acetyl-glucosamine on growth of synchronized cultures of Plasmodium falciparum were assessed by morphological observations and by measurement of parasite incorporation of 3H-hypoxanthine. Inhibition of 3H-hypoxanthine incorporation was more marked during the later stages of the erythrocytic cycle. At concentrations of the sugar below 20 mM, however, the deleterious effects were mainly a result of failure of released merozoites to invade erythrocytes, rather than a failure of schizonts to mature or release merozoites. These results are compatible with the hypothesis that a lectin-like substance on the merozoite interacts with a surface glycoprotein on the red cell and that sugar residues on this glycoprotein may be involved in this recognition.
Collapse
|
24
|
Okoye VC, Bennett V. Plasmodium falciparum malaria: band 3 as a possible receptor during invasion of human erythrocytes. Science 1985; 227:169-71. [PMID: 3880920 DOI: 10.1126/science.3880920] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human erythrocyte band 3, a major membrane-spanning protein, was purified and incorporated into liposomes. These liposomes, at nanomolar concentrations of protein, inhibited invasion of human erythrocytes in vitro by the malaria parasite Plasmodium falciparum. Liposomes containing human band 3 were ten times more effective in inhibiting invasion than those with pig band 3 and six times more effective than liposomes containing human erythrocyte glycophorin. Liposomes alone or liposomes containing erythrocyte glycolipids did not inhibit invasion. These results suggest that band 3 participates in the invasion process in a step involving a specific, high-affinity interaction between band 3 and some component of the parasite.
Collapse
|
25
|
|
26
|
Jungery M. Studies on the biochemical basis of the interaction of the merozoites of Plasmodium falciparum and the human red cell. Trans R Soc Trop Med Hyg 1985; 79:591-7. [PMID: 3913066 DOI: 10.1016/0035-9203(85)90164-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The red cell membrane appears to possess receptors for malarial parasites which are species specific. Plasmodium falciparum invades red cells that have the surface sialoglycoproteins, glycophorins A, B and C. Several regions of these molecules are critical to parasite binding. Invasion of red cells by merozoites can be blocked by both antibodies directed to specific sites on glycophorin and tryptic fragments of these molecules. The parasites appear to bind to the red cells in a lectin-like fashion, since three monosaccharides, namely N-acetyl-glucosamine (Glu NAc), N-acetyl-galactosamine (Gal NAc) and N-acetyl-neuraminic acid (Neu NAc), can specifically block parasite invasion in vitro. Neoglycoproteins made by coupling these sugars to BSA are particularly effective. Possible mechanisms of parasite attachment to and invasion of red cells are discussed.
Collapse
|
27
|
Newbold CI. Parasite antigens in protection, diagnosis and escape: Plasmodium. Curr Top Microbiol Immunol 1985; 120:69-104. [PMID: 3905279 DOI: 10.1007/978-3-662-09197-5_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Vanderberg JP, Gupta SK, Schulman S, Oppenheim JD, Furthmayr H. Role of the carbohydrate domains of glycophorins as erythrocyte receptors for invasion by Plasmodium falciparum merozoites. Infect Immun 1985; 47:201-10. [PMID: 3880722 PMCID: PMC261497 DOI: 10.1128/iai.47.1.201-210.1985] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Solubilized preparations of purified glycophorins and specific domains of these molecules were assessed for their effects as inhibitors of Plasmodium falciparum invasion of human erythrocytes in vitro. The ability of newly invaded merozoites to continue developing and incorporating [3H]hypoxanthine during a 24-h period after their invasion was used as an assay for merozoite invasion. Glycophorins A, B, and C were found to be equally effective as inhibitors. Previous studies had shown N-acetylglucosamine, a sugar component of glycophorins A and C but not B, to be an effective inhibitor. Accordingly, molecular domains common to all of the glycophorins were further assessed. Sialic acid was shown to act almost as effectively as N-acetylglucosamine, presumably because of the structural similarities between these sugars. The inhibitory ability of sialic acid is considerably enhanced when presented to the parasite in a clustered form, as in an oligosaccharide. The acetyl group of these sugars does not appear to play an essential role in this inhibition. How the P. falciparum merozoite recognizes and interacts with the sugar domains of the glycophorin molecule remains to be determined.
Collapse
|
29
|
Breuer WV. How the malaria parasite invades its host cell, the erythrocyte. INTERNATIONAL REVIEW OF CYTOLOGY 1985; 96:191-238. [PMID: 3908363 DOI: 10.1016/s0074-7696(08)60598-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Hermentin P, Paulsen H, Kolar C, Enders B. Plasmodium falciparum: carbohydrates as receptor sites of invasion. Exp Parasitol 1984; 58:290-306. [PMID: 6389168 DOI: 10.1016/0014-4894(84)90046-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Monosaccharides, disaccharides, and trisaccharides were tested as inhibitors of the in vitro growth of Plasmodium falciparum (strain FCB). While certain monosaccharides (N-acetyl-D-glucosamine, D-mannose, and 3-O-methyl-D-glucose) proved to exhibit a toxic or reversibly retarding effect on the intraerythrocytic development of the parasite, the corresponding alpha- or beta-methylglycosides did not. Several methylglycosides, synthetic di- and tri-saccharides, and artificial blood group antigens were further tested for inhibitory effects on invasion of host red blood cells in vitro. The synthetic disaccharides beta DGlcNAc(1----4) alpha DManOMe and beta DGlcNAc(1----4) DGlcNAc (chitobiose) were good inhibitors of invasion at 10 mM concentration, whereas beta DGal(1----4)beta DGlcNAcOMe was negligibly inhibitory. The inhibition rate of N-acetyl-D-glucosamine, beta-glycosidically linked to bovine serum albumin (BSA) by an alipathic spacer, -(CH2)8CO-, was not enhanced, compared to the corresponding hapten, beta DGlcNAcO(CH2)8COOCH3. The inhibition rates of blood group A- and B-trisaccharide haptens, which were inhibitors of invasion, were also not significantly enhanced when coupled to BSA by way of the corresponding amide spacer, -(CH2)2NHCO(CH2)7CO-. A remarkable enhancement of the inhibition rate was, however, observed when beta DGal(1----3) alpha DGalNAcO(CH2)2NHCO(CH2)7COOCH3 (T-hapten) was coupled to BSA. A clear-cut decrease in the inhibition rates of different beta-glycosides of N-acetyl-D-glucosamine, beta DGlcNAcOR, was observed, depending on the nature of the aglycon R(p-nitrophenyl greater than -(CH2)8COOCH3 greater than -(CH2)2NHCO(CH2)2COOCH3 greater than -CH3). Also, p-nitrophenyl-alpha-D-glucopyranoside was a much better inhibitor of invasion than the corresponding methyl glycoside, alpha DGlcOMe, which was not inhibitory. The properties of the aglycon spacer, used for the covalent attachment of the carbohydrate to the carrier protein, may thus be crucial for the outcome of the inhibition rate.
Collapse
|
31
|
Pasvol G. Receptors on red cells for Plasmodium falciparum and their interaction with merozoites. Philos Trans R Soc Lond B Biol Sci 1984; 307:189-200. [PMID: 6151683 DOI: 10.1098/rstb.1984.0119] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The red cell sialoglycoproteins (glycophorins, alpha (A), delta (B) and beta and gamma (C] play a crucial role in the invasion of human red cells by merozoites of Plasmodium falciparum. Red cells deficient in any of the glycophorins, including beta (also known as glycoconnectin), resist infection by this parasite to varying degrees. These cells and other naturally occurring well-characterized glycophorin variants provide extremely powerful tools to dissect the role of these molecules in invasion. The binding of merozoites to human red cells appears analogous to the binding of wheatgerm agglutinin to sialoglycoconjugates. In both systems O- and N-linked oligosaccharides may be involved. Membrane lipid has not been implicated as a receptor for merozoites, but may instead non-specifically modify binding, as may electrostatic and hydrophobic interactions. The results of data using monoclonal antibodies and lectins, although possibly helpful in identifying specific determinants, must be interpreted with caution. Overall the data suggest that the red cell receptors for all strains of P. falciparum tested to date are located on the glycophorins. Accordingly these putative receptors have been used to affinity-purify complementary parasite components which may yet prove to be of protective immunological significance in a vaccine.
Collapse
|
32
|
Perkins ME. Surface proteins of Plasmodium falciparum merozoites binding to the erythrocyte receptor, glycophorin. J Exp Med 1984; 160:788-98. [PMID: 6206188 PMCID: PMC2187389 DOI: 10.1084/jem.160.3.788] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Invasion of erythrocytes by the malarial parasite is a receptor-mediated process. P. falciparum merozoites recognize and bind to erythrocyte surface sialoglycoproteins, glycophorins A and B, and the glycophorins bind to saturable sites on the merozoite surface. The purpose of the present work was to identify a receptor or ligand molecule on the merozoite surface that mediates binding to the erythrocyte. A fraction containing the sialoglycoproteins was coupled to an acrylamide matrix and incubated with metabolically labeled merozoites. A merozoite protein of 155 kD that labeled prominently with [3H]glycine bound to glycophorin. A minor protein of 130 kD also bound. Both proteins are rich in proline and glycine, poor in methionine, and may be related. The proteins are also stable to heating to 100 degrees C for 10 min. Immunoelectron microscopy demonstrated that the 155 kD and 130 kD proteins are located on the merozoite surface coat. The antibodies significantly inhibited merozoite invasion into erythrocytes and also binding of the proteins to the glycophorin-matrix. The specific binding of the 155-kD and 130-kD proteins to the erythrocyte receptor and the demonstration that they are located on the merozoite surface suggest they could be receptor proteins that mediate binding of the merozoite to the erythrocyte surface.
Collapse
|
33
|
Cartron JP, Tounkara A, Prou O, Luilier M, Soulier JP. Wrb antigen not required for invasion of human erythrocytes by Plasmodium falciparum. Lancet 1984; 2:466-7. [PMID: 6147534 DOI: 10.1016/s0140-6736(84)92943-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Perlmann H, Berzins K, Wahlgren M, Carlsson J, Björkman A, Patarroyo ME, Perlmann P. Antibodies in malarial sera to parasite antigens in the membrane of erythrocytes infected with early asexual stages of Plasmodium falciparum. J Exp Med 1984; 159:1686-704. [PMID: 6374012 PMCID: PMC2187329 DOI: 10.1084/jem.159.6.1686] [Citation(s) in RCA: 223] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Monolayers of human erythrocytes (E) infected with Plasmodium falciparum were briefly fixed with 1% glutaraldehyde and air dried. They were then exposed to sera from patients with P. falciparum malaria or from donors immune to this parasite and tested in an indirect immunofluorescence assay (IFA). Parasites in infected E were made visible by counterstaining with ethidium bromide. Immunofluorescence (IF) was restricted to the surface of infected E. No antibody binding was detected unless the E were dried, suggesting that the relevant antigens were not available on the outer layers of the E surface. Staining over large parts of the E surface was seen already when the merozoite penetrated noninfected cells and was strong in E containing early stages of the parasite (rings, trophozoites). It was weak or absent from E containing schizonts. Antibodies in sera from different parts of Africa, Colombia, or Sweden reacted similarly with E infected with a Tanzanian P. falciparum strain kept in culture for many years and with parasitized E freshly drawn from African, Swedish, or Colombian patients. All sera from residents of a holoendemic area (Liberia) were IFA positive. In contrast, some sera from Colombian or Swedish patients with primary infection gave negative results. The results of the IFA and of an enzyme-linked immunosorbent assay in which fixed and dried E were the targets were well-correlated, suggesting that the same antibodies were detected by these assays. The antigens involved in the IFA were susceptible to pronase but not to trypsin or neuraminidase. E surface IF was inhibited by lysates of infected E, merozoite extracts, or soluble antigens present in P. falciparum culture supernatants but not by lysates of normal E or ghost extracts. The inhibitory antigens were heat stable (100 degrees C, 5 min). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting of either antigen-enriched preparations from culture supernatants or merozoite extracts showed that antibodies eluted from monolayers of infected E reacted consistently with a predominant polypeptide of Mr 155,000 and two to four minor polypeptides of lower molecular weights. Metabolic labeling of the parasites with 75Se-methionine indicated that these antigens were parasite derived. We conclude that the antigens involved in these reactions are released from bursting schizonts or merozoites and are deposited in the E membrane in the course of invasion.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
35
|
Friedman MJ, Blankenberg T, Sensabaugh G, Tenforde TS. Recognition and invasion of human erythrocytes by malarial parasites: contribution of sialoglycoproteins to attachment and host specificity. J Biophys Biochem Cytol 1984; 98:1672-7. [PMID: 6373782 PMCID: PMC2113184 DOI: 10.1083/jcb.98.5.1672] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The receptivity of human erythrocytes to invasion by Plasmodium falciparum merozoites can be decreased by neuraminidase or trypsin treatment, an observation that supports a role for the erythrocyte sialoglycoproteins (glycophorins) in invasion. We have found that alpha 1-acid glycoprotein (AGP), added to in vitro cultures, can restore invasion of enzyme-treated human erythrocytes. AGP is structurally different from the glycophorins although it does carry 12% sialic acid. Its ability to restore receptivity to desialylated cells is dependent on its sialic acid complement, its concentration, and its binding to the erythrocyte surface. We present evidence that AGP forms a bridge between the merozoite and the enzyme-treated erythrocyte that allows the stronger and more complex interactions of invasion to proceed. We suggest that the glycophorins play the same role on the surface of the intact erythrocyte.
Collapse
|
36
|
Wright BM. New transducer for detecting fetal heart sounds. Lancet 1984; 1:907. [PMID: 6143209 DOI: 10.1016/s0140-6736(84)91365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
|
38
|
Newbold CI. Intraerythrocytic development and antigenicity of asexual malaria parasites. Mol Biochem Parasitol 1984; 11:1-22. [PMID: 6379445 DOI: 10.1016/0166-6851(84)90051-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
39
|
Abstract
Plasmodium falciparum merozoites recognize and attach to glycophorins, the surface sialoglycoproteins of human erythrocytes. The structural requirements for a merozoite binding site were studied with the use of two methods. In the first, certain glycophorins and their tryptic fragments were added directly to isolated merozoites prior to their addition to erythrocytes. Low concentrations (50 micrograms ml-1) of glycophorin A inhibited merozoite invasion. At higher concentrations a mixture of glycophorins A, B and C (GPS) (100 micrograms ml-1) and glycophorin B (200 micrograms ml-1) also inhibited invasion. GPS from Tn erythrocytes which lack both sialic acid and galactose residues was almost as effective as normal GPS in blocking invasion. None of the monosaccharides present on glycophorin, including N-acetylneuraminic acid, inhibited merozoite invasion. Erythrocytes treated with lectins were only partially resistant to invasion. These results indicated that the oligosaccharide side chains are not the major structural determinant of the merozoite binding site. Glycophorin A was cleaved by trypsin and the separated fragments added to merozoites. Only the external N-terminal tryptic fragment T1 and the trypsin resistant hydrophobic core, T6, showed some, but considerably less, inhibitory activity than the intact molecule. In the second approach, the binding of 125I-labeled GPS to isolated merozoites was determined. 125I-GPS binding was saturated at 0.23 micrograms for 10(9) merozoites and was competitively inhibited by unlabeled GPS but not by free sugars. Desialylated GPS bound almost to the same extent as the intact molecule.
Collapse
|
40
|
Breuer WV, Kahane I, Baruch D, Ginsburg H, Cabantchik ZI. Role of internal domains of glycophorin in Plasmodium falciparum invasion of human erythrocytes. Infect Immun 1983; 42:133-40. [PMID: 6194114 PMCID: PMC264534 DOI: 10.1128/iai.42.1.133-140.1983] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human erythrocyte glycophorin, a putative receptor to Plasmodium falciparum malaria parasites, was studied in terms of its structural domains involved in mediating invasion. These domains were isolated from purified glycophorin A and from supernatants and membranes obtained from protease-treated erythrocytes. They were tested for invasion blocking capacity by using an in vitro assay system. The role of carbohydrate-rich domains was assessed with the following compounds: (i) sialoglycopeptides released by proteases either from whole cells or isolated glycophorin A; (ii) the sialoglycoproteins fetuin and alpha 1 acid glycoprotein and the N-acetylglucosamine-rich ovomucoid; and (iii) the saccharides N-acetylneuraminlactose, N-acetylglucosamine, and free sialic acid. With the exception of N-acetylglucosamine, all of the compounds failed to block invasion. The role of carbohydrate-poor domains of glycophorin was assessed with peptides isolated from membranes of proteolyzed cells and with the hydrophobic fragment of glycophorin A. Glycophorin and the derived hydrophobic peptides formed high-molecular-weight aggregates in physiological solutions. They all inhibited invasion to a comparable extent. The inhibitory potency of glycophorin A increased by sixfold after reconstitution into egg lecithin vesicles. The observations reported here underscore the role played by the hydrophobic domain in the glycophorin-mediated blockage of invasion. They also suggest that in the interactions between P. falciparum merozoites and the erythrocyte membrane, the exposed glycosylated domains of glycophorins provide the initial but rather weak binding sites, whereas the internal domains of the molecules provide the more stable attachment sites for merozoites.
Collapse
|
41
|
Hadley T, Aikawa M, Miller LH. Plasmodium knowlesi: studies on invasion of rhesus erythrocytes by merozoites in the presence of protease inhibitors. Exp Parasitol 1983; 55:306-11. [PMID: 6852169 DOI: 10.1016/0014-4894(83)90027-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The effect of protease inhibitors on invasion of rhesus erythrocytes by Plasmodium knowlesi merozoites was evaluated. Chymostatin, N-alpha-p-tosyl-L-lysine chloromethyl ketone (TLCK), and L-1-tosylamide-2-phenylethylchloromethyl ketone (TPCK) inhibited invasion. Leupeptin, antipain, pepstatin, and phenylmethylsulfonyl fluoride (PMSF) had no effect. TLCK and TPCK inhibited attachment of merozoites to host erythrocytes. Chymostatin had no adverse effect on attachment, and in its presence junction formation between the merozoite and host erythrocyte occurred. Both chymostatin and leupeptin inhibited normal rupture of schizont-infected erythrocytes. It is suggested that proteolytic activity may be important both in the rupture of schizont-infected erythrocytes and in the invasion of erythrocytes by malaria parasites.
Collapse
|
42
|
|