1
|
Saha A, Pushpa, Moitra S, Basak D, Brahma S, Mondal D, Molla SH, Samadder A, Nandi S. Targeting Cysteine Proteases and their Inhibitors to Combat Trypanosomiasis. Curr Med Chem 2024; 31:2135-2169. [PMID: 37340748 DOI: 10.2174/0929867330666230619160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Trypanosomiasis, caused by protozoan parasites of the Trypanosoma genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of Trypanosoma parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs. INTRODUCTION This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets. We discuss the biological significance of cysteine proteases in Trypanosoma parasites and their involvement in essential processes, such as host immune evasion, cell invasion, and nutrient acquisition. METHODS A comprehensive literature search was conducted to identify relevant studies and research articles on the role of cysteine proteases and their inhibitors in trypanosomiasis. The selected studies were critically analyzed to extract key findings and provide a comprehensive overview of the topic. RESULTS Cysteine proteases, such as cruzipain, TbCatB and TbCatL, have been identified as promising therapeutic targets due to their essential roles in Trypanosoma pathogenesis. Several small molecule inhibitors and peptidomimetics have been developed to target these proteases and have shown promising activity in preclinical studies. CONCLUSION Targeting cysteine proteases and their inhibitors holds great potential for the development of novel antiparasitic drugs against trypanosomiasis. The identification of potent and selective cysteine protease inhibitors could significantly contribute to the combat against trypanosomiasis and improve the prospects for the treatment of this neglected tropical disease.
Collapse
Affiliation(s)
- Aloke Saha
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Pushpa
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Susmita Moitra
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Deblina Basak
- Endocrinology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sayandeep Brahma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Dipu Mondal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sabir Hossen Molla
- Parasitology Laboratory, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Veer Madho Singh Bhandari Uttarakhand Technical University), Kashipur, 244713, India
| |
Collapse
|
2
|
Santos VC, Leite PG, Santos LH, Pascutti PG, Kolb P, Machado FS, Ferreira RS. Structure-based discovery of novel cruzain inhibitors with distinct trypanocidal activity profiles. Eur J Med Chem 2023; 257:115498. [PMID: 37290182 DOI: 10.1016/j.ejmech.2023.115498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
Over 110 years after the first formal description of Chagas disease, the trypanocidal drugs thus far available have limited efficacy and several side effects. This encourages the search for novel treatments that inhibit T. cruzi targets. One of the most studied anti-T. cruzi targets is the cysteine protease cruzain; it is associated with metacyclogenesis, replication, and invasion of the host cells. We used computational techniques to identify novel molecular scaffolds that act as cruzain inhibitors. First, with a docking-based virtual screening, we identified compound 8, a competitive cruzain inhibitor with a Ki of 4.6 μM. Then, aided by molecular dynamics simulations, cheminformatics, and docking, we identified the analog compound 22 with a Ki of 27 μM. Surprisingly, despite sharing the same isoquinoline scaffold, compound 8 presented higher trypanocidal activity against the epimastigote forms, while compound 22, against the trypomastigotes and amastigotes. Taken together, compounds 8 and 22 represent a promising scaffold for further development of trypanocidal compounds as drug candidates for treating Chagas disease.
Collapse
Affiliation(s)
- Viviane Corrêa Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Paulo Gaio Leite
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Lucianna Helene Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, CEP 21944-970, Brazil
| | - Peter Kolb
- Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Fabiana Simão Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafaela Salgado Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
3
|
First Molecular Identification of Trypanosomes and Absence of Babesia sp. DNA in Faeces of Non-Human Primates in the Ecuadorian Amazon. Pathogens 2022; 11:pathogens11121490. [PMID: 36558823 PMCID: PMC9785249 DOI: 10.3390/pathogens11121490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Trypanosomes are a group of pathogens distributed in the continents of Africa, America, Asia and Europe, and they affect all vertebrates including the neotropical primate group. Information about the trypanosome's diversity, phylogeny, ecology and pathology in non-human primates (NHPs) from the neotropical region is scarce. The objective of the study was to identify Trypanosoma and Babesia molecularly in NHPs under the phylogenetic species concept. We extracted DNA from a total of 76 faecal samples collected between 2019 and 2021, from a total of 11 non-human primate species of which 46 are from captive NHPs and 30 are free-living NHPs in the Western Amazon region of Ecuador. We did not detect DNA of Babesia sp. by polymerase chain reaction test in any of the faecal samples. However, the nested-PCR-based method revealed Trypanosoma parasites by ITS gene amplification in two faecal samples; one for the species Leontocebus lagonotus (from the captive population) and a second one for Cebus albifrons (from the free-ranging population). Maximum parsimony and likelihood methods with the Kimura2+G+I model inferred the evolutionary history of the two records, which showed an evolutionary relationship with the genus Trypanosoma. Two sequences are monophyletic with Trypanosoma. However, the number of sequences available in GenBank for their species identification is limited. The two samples present different molecular identifications and evolutionary origins in the tree topology. We are most likely referring to two different species, and two different localities of infection. We suggest that health management protocols should be implemented to prevent the transmission of blood-borne pathogens such as Trypanosoma sp. among captive populations. In addition, these protocols also protect the personnel of wildlife rehabilitation centers working in close proximity to NHPs and vice versa.
Collapse
|
4
|
Santos VC, Oliveira AER, Campos ACB, Reis-Cunha JL, Bartholomeu DC, Teixeira SMR, Lima APCA, Ferreira RS. The gene repertoire of the main cysteine protease of Trypanosoma cruzi, cruzipain, reveals four sub-types with distinct active sites. Sci Rep 2021; 11:18231. [PMID: 34521898 PMCID: PMC8440672 DOI: 10.1038/s41598-021-97490-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cruzipains are the main papain-like cysteine proteases of Trypanosoma cruzi, the protozoan parasite that causes Chagas disease. Encoded by a multigenic family, previous studies have estimated the presence of dozens of copies spread over multiple chromosomes in different parasite strains. Here, we describe the complete gene repertoire of cruzipain in three parasite strains, their genomic organization, and expression pattern throughout the parasite life cycle. Furthermore, we have analyzed primary sequence variations among distinct family members as well as structural differences between the main groups of cruzipains. Based on phylogenetic inferences and residue positions crucial for enzyme function and specificity, we propose the classification of cruzipains into two families (I and II), whose genes are distributed in two or three separate clusters in the parasite genome, according with the strain. Family I comprises nearly identical copies to the previously characterized cruzipain 1/cruzain, whereas Family II encompasses three structurally distinct sub-types, named cruzipain 2, cruzipain 3, and cruzipain 4. RNA-seq data derived from the CL Brener strain indicates that Family I genes are mainly expressed by epimastigotes, whereas trypomastigotes mainly express Family II genes. Significant differences in the active sites among the enzyme sub-types were also identified, which may play a role in their substrate selectivity and impact their inhibition by small molecules.
Collapse
Affiliation(s)
- Viviane Corrêa Santos
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Antonio Edson Rocha Oliveira
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil ,grid.11899.380000 0004 1937 0722Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Augusto César Broilo Campos
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - João Luís Reis-Cunha
- grid.8430.f0000 0001 2181 4888Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil ,grid.8430.f0000 0001 2181 4888Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | | | - Santuza Maria Ribeiro Teixeira
- grid.8430.f0000 0001 2181 4888Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Ana Paula C. A. Lima
- grid.8536.80000 0001 2294 473XInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Barbosa da Silva E, Rocha DA, Fortes IS, Yang W, Monti L, Siqueira-Neto JL, Caffrey CR, McKerrow J, Andrade SF, Ferreira RS. Structure-Based Optimization of Quinazolines as Cruzain and TbrCATL Inhibitors. J Med Chem 2021; 64:13054-13071. [PMID: 34461718 DOI: 10.1021/acs.jmedchem.1c01151] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cysteine proteases, cruzain and TbrCATL (rhodesain), are therapeutic targets for Chagas disease and Human African Trypanosomiasis, respectively. Among the known inhibitors for these proteases, we have described N4-benzyl-N2-phenylquinazoline-2,4-diamine (compound 7 in the original publication, 1a in this study), as a competitive cruzain inhibitor (Ki = 1.4 μM). Here, we describe the synthesis and biological evaluation of 22 analogs of 1a, containing modifications in the quinazoline core, and in the substituents in positions 2 and 4 of this ring. The analogs demonstrate low micromolar inhibition of the target proteases and cidal activity against Trypanosoma cruzi with up to two log selectivity indices in counterscreens with myoblasts. Fourteen compounds were active against Trypanosoma brucei at low to mid micromolar concentrations. During the optimization of 1a, structure-based design and prediction of physicochemical properties were employed to maintain potency against the enzymes while removing colloidal aggregator characteristics observed for some molecules in this series.
Collapse
Affiliation(s)
- Elany Barbosa da Silva
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil.,Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Débora A Rocha
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Wenqian Yang
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Ludovica Monti
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Jair L Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - James McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0657, United States
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil.,Graduate Program in Agricultural and Environmental Microbiology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90040-060, Brazil
| | - Rafaela S Ferreira
- Biochemistry and Immunology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31270-901, Brazil
| |
Collapse
|
6
|
Nakamura Y, Hayashida K, Delesalle V, Qiu Y, Omori R, Simuunza M, Sugimoto C, Namangala B, Yamagishi J. Genetic Diversity of African Trypanosomes in Tsetse Flies and Cattle From the Kafue Ecosystem. Front Vet Sci 2021; 8:599815. [PMID: 33585616 PMCID: PMC7873289 DOI: 10.3389/fvets.2021.599815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
We clarified the genetic diversity of Trypanosoma spp. within the Kafue ecosystem, using PCR targeting the internal transcribed spacer 1 and the cathepsin L-like cysteine protease (CatL) sequences. The overall prevalence of Trypanosoma spp. in cattle and tsetse flies was 12.65 and 26.85%, respectively. Cattle positive for Trypanosoma vivax had a significantly lower packed cell volume, suggesting that T. vivax is the dominant Trypanosoma spp. causing anemia in this area. Among the 12 operational taxonomic units (OTUs) of T. vivax CatL sequences detected, one was from a known T. vivax lineage, two OTUs were from known T. vivax-like lineages, and nine OTUs were considered novel T. vivax-like lineages. These findings support previous reports that indicated the extensive diversity of T. vivax-like lineages. The findings also indicate that combining CatL PCR with next generation sequencing is useful in assessing Trypanosoma spp. diversity, especially for T. vivax and T. vivax-like lineages. In addition, the 5.42% prevalence of Trypanosoma brucei rhodesiense found in cattle raises concern in the community and requires careful monitoring of human African trypanosomiasis.
Collapse
Affiliation(s)
- Yukiko Nakamura
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kyoko Hayashida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Victoire Delesalle
- Melindika, Non-governmental Organization of International Solidarity, Itezhi-Tezhi, Zambia
| | - Yongjin Qiu
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryosuke Omori
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Boniface Namangala
- Department of Para-Clinical Studies, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Update on relevant trypanosome peptidases: Validated targets and future challenges. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140577. [PMID: 33271348 DOI: 10.1016/j.bbapap.2020.140577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, and Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, the agents of Sleeping sickness (Human African Trypanosomiasis, HAT), as well as Trypanosoma brucei brucei, the agent of the cattle disease nagana, contain cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes are the cysteine proteases from the Clan CA, the Cathepsin L-like cruzipain and rhodesain, and the Cathepsin B-like enzymes, which have essential roles in the parasites and thus are potential targets for chemotherapy. In addition, several other proteases, present in one or both parasites, have been characterized, and some of them are also promising candidates for the developing of new drugs. Recently, new inhibitors, with good selectivity for the parasite proteasomes, have been described and are very promising as lead compounds for the development of new therapies for these neglected diseases. This article is part of a Special Issue entitled: "Play and interplay of proteases in health and disease".
Collapse
|
8
|
de Albuquerque S, Cianni L, de Vita D, Duque C, Gomes ASM, Gomes P, Laughton C, Leitão A, Montanari CA, Montanari R, Ribeiro JFR, da Silva JS, Teixeira C. Molecular design aided by random forests and synthesis of potent trypanocidal agents as cruzain inhibitors for Chagas disease treatment. Chem Biol Drug Des 2020; 96:948-960. [PMID: 33058457 DOI: 10.1111/cbdd.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 11/30/2022]
Abstract
Cruzain is an established target for the identification of novel trypanocidal agents, but how good are in vitro/in vivo correlations? This work describes the development of a random forests model for the prediction of the bioavailability of cruzain inhibitors that are Trypanosoma cruzi killers. Some common properties that characterize drug-likeness are poorly represented in many established cruzain inhibitors. This correlates with the evidence that many high-affinity cruzain inhibitors are not trypanocidal agents against T. cruzi. On the other hand, T. cruzi killers that present typical drug-like characteristics are likely to show better trypanocidal action than those without such features. The random forests model was not outperformed by other machine learning methods (such as artificial neural networks and support vector machines), and it was validated with the synthesis of two new trypanocidal agents. Specifically, we report a new lead compound, Neq0565, which was tested on T. cruzi Tulahuen (β-galactosidase) with a pEC50 of 4.9. It is inactive in the host cell line showing a selectivity index (SI = EC50 cyto /EC50 T. cruzi ) higher than 50.
Collapse
Affiliation(s)
- Sérgio de Albuquerque
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Lorenzo Cianni
- Grupo de Química Medicinal, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos/SP, Brazil
| | - Daniela de Vita
- Grupo de Química Medicinal, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos/SP, Brazil
| | - Carla Duque
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana S M Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Charles Laughton
- School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | - Andrei Leitão
- Grupo de Química Medicinal, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos/SP, Brazil
| | - Carlos A Montanari
- Grupo de Química Medicinal, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos/SP, Brazil
| | - Raphael Montanari
- Centro de Robótica de São Carlos, EESC-ICMC, Universidade de São Paulo, São Paulo, Brazil
| | - Jean F R Ribeiro
- Grupo de Química Medicinal, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos/SP, Brazil
| | - João Santana da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
9
|
Jaimes-Dueñez J, Cantillo-Barraza O, Triana-Chávez O, Mejia-Jaramillo AM. Molecular surveillance reveals bats from eastern Colombia infected with Trypanosoma theileri and Trypanosoma wauwau-like parasites. Prev Vet Med 2020; 184:105159. [PMID: 33038611 DOI: 10.1016/j.prevetmed.2020.105159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 08/22/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
Several species of trypanosomes can infect bats (Chiroptera), but current information about bat trypanosomes in Colombia is scarce. The objectives of this study were to estimate the infection rate and to characterize the trypanosome species infecting bats from three rural regions near the municipality of Cumaribo in Vichada, Colombia. Blood samples were collected from 39 bats. DNA was extracted from the blood samples and analyzed using nuclear genetic markers (SSU rDNA, ITS rDNA, and cathepsin genes) to discriminate among trypanosome species. Trypanosomes were detected in 66.7 % (26/39) of blood samples using PCR; 61.5 % (24/39) of infections were identified as Trypanosoma theileri and 5.1 % (2/39) as T. wauwau-like parasites. The phylogeographic analysis revealed that our T. theileri sequences were associated with the TthIIB genotype from cattle in Brazil and Venezuela. The T. wauwau-like parasites represent a new genotype of the species and were found in Molossus molossus and Platyrrhinus helleri bats. These data represent the first evidence of this trypanosome in both Colombia, and in these species of bats. Bat infections with T. theileri suggest an important role of these hosts in maintaining this genotype, probably acquired by ingesting insect vectors. The T. wauwau-like genotype in new mammalian host species supports the 'bat seeding' hypothesis of the T. cruzi clade. The epidemiological and evolutionary implications of these findings are discussed.
Collapse
Affiliation(s)
- Jeiczon Jaimes-Dueñez
- Grupo BCEI, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Grupo GRICA, Universidad Cooperativa de Colombia UCC, Calle 30 No. 33-51, Bucaramanga, Colombia.
| | | | - Omar Triana-Chávez
- Grupo BCEI, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | | |
Collapse
|
10
|
Jaimes-Dueñez J, Triana-Chávez O, Mejía-Jaramillo AM. Spatial-temporal and phylogeographic characterization of Trypanosoma spp. in cattle (Bos taurus) and buffaloes (Bubalus bubalis) reveals transmission dynamics of these parasites in Colombia. Vet Parasitol 2017; 249:30-42. [PMID: 29279084 DOI: 10.1016/j.vetpar.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/28/2022]
Abstract
Animal Trypanosomiasis (AT) is one of the most important problems in the Colombian livestock industry reducing its production around 30%. Caribbean and Orinoquia regions play a significant role in the development of this industry, having about 6.9 million cattle and 113,000 buffaloes. Considering the paucity in studies to understand the epidemiological features and control of AT in Colombia, the present study reports the seasonal transmission patterns and phylogeographic traits of the causal agents of AT in cattle and buffaloes from these regions. Between 2014 and 2016, a three-point longitudinal survey was designed to evaluate the mentioned characteristics. Molecular analysis in cattle showed an AT prevalence of 39.2% (T. theileri 38.6%, T. evansi 6.7% and T. vivax 0.2%), with higher values during wet and late wet seasons, while in buffaloes the prevalence was 28.2% (T. theileri 28.2% and T. evansi 1.3%), with higher values during the dry season. Additionally, variables such as tabanid abundance, vector control, breeding system, age and anemia signs were significantly associated with AT prevalence (P<0.05). Only T. theileri infection was higher in cattle with anemia signs than those with normal packed cell volume. Finally, phylogeographic analysis revealed that Colombian T. theileri isolates were associated to specific host genotypes IA and IIB, described worldwide; T. vivax isolates were related to the genotype from West Africa; while T. evansi isolates are related to the South American genotypes and to new genotypes. This is the first longitudinal survey that evaluates through molecular methods, the infection of Trypanosoma spp. in two important livestock regions from Colombia, showing that the clinical effects and prevalence of these trypanosomes in cattle and buffaloes are modulated by seasonal variations, host factors, and parasite traits. The results suggest that these factors have to be taken into account to successfully control AT in these regions.
Collapse
Affiliation(s)
| | - Omar Triana-Chávez
- Grupo BCEI, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | | |
Collapse
|
11
|
Ferrão PM, d'Avila-Levy CM, Araujo-Jorge TC, Degrave WM, Gonçalves ADS, Garzoni LR, Lima AP, Feige JJ, Bailly S, Mendonça-Lima L, Waghabi MC. Cruzipain Activates Latent TGF-β from Host Cells during T. cruzi Invasion. PLoS One 2015; 10:e0124832. [PMID: 25938232 PMCID: PMC4418758 DOI: 10.1371/journal.pone.0124832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/17/2015] [Indexed: 11/28/2022] Open
Abstract
Several studies indicate that the activity of cruzipain, the main lysosomal cysteine peptidase of Trypanosoma cruzi, contributes to parasite infectivity. In addition, the parasitic invasion process of mammalian host cells is described to be dependent on the activation of the host TGF-β signaling pathway by T. cruzi. Here, we tested the hypothesis that cruzipain could be an important activator of latent TGF-β and thereby trigger TGF-β-mediated events crucial for the development of Chagas disease. We found that live epimastigotes of T. cruzi, parasite lysates and purified cruzipain were able to activate latent TGF-β in vitro. This activation could be inhibited by the cysteine peptidase inhibitor Z-Phe-Ala-FMK. Moreover, transfected parasites overexpressing chagasin, a potent endogenous cruzipain inhibitor, prevented latent TGF-β activation. We also observed that T. cruzi invasion, as well as parasite intracellular growth, were inhibited by the administration of Z-Phe-Ala-FMK or anti-TGF-β neutralizing antibody to Vero cell cultures. We further demonstrated that addition of purified cruzipain enhanced the invasive activity of trypomastigotes and that this effect could be completely inhibited by addition of a neutralizing anti-TGF-β antibody. Taken together, these results demonstrate that the activities of cruzipain and TGF-β in the process of cell invasion are functionally linked. Our data suggest that cruzipain inhibition is an interesting chemotherapeutic approach for Chagas disease not only because of its trypanocidal activity, but also due to the inhibitory effect on TGF-β activation.
Collapse
Affiliation(s)
- Patrícia Mello Ferrão
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Claudia Masini d'Avila-Levy
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Tania Cremonini Araujo-Jorge
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Wim Maurits Degrave
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Antônio da Silva Gonçalves
- Laboratório de Biotecnologia e Fisiologia de Infecções Virais, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Luciana Ribeiro Garzoni
- Laboratório de Investigação Cardiovascular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Programa Integrado de doença de Chagas, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Paula Lima
- Laboratório de Bioquímica e Biologia Molecular de Peptidases, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - Jean Jacques Feige
- INSERM, Unité 1036, Grenoble, F-38054, France
- Université Grenoble-Alpes—Grenoble, F-38041, France
- CEA, DSV,iRTSV, Laboratory of Biology of Cancer and Infection, Grenoble, F-38054, France
| | - Sabine Bailly
- INSERM, Unité 1036, Grenoble, F-38054, France
- Université Grenoble-Alpes—Grenoble, F-38041, France
- CEA, DSV,iRTSV, Laboratory of Biology of Cancer and Infection, Grenoble, F-38054, France
| | - Leila Mendonça-Lima
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Programa Integrado de doença de Chagas, Fiocruz, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
12
|
Rodrigues AC, Ortiz PA, Costa-Martins AG, Neves L, Garcia HA, Alves JM, Camargo EP, Alfieri SC, Gibson W, Teixeira MM. Congopain genes diverged to become specific to Savannah, Forest and Kilifi subgroups of Trypanosoma congolense, and are valuable for diagnosis, genotyping and phylogenetic inferences. INFECTION GENETICS AND EVOLUTION 2014; 23:20-31. [DOI: 10.1016/j.meegid.2014.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
|
13
|
Uehara LA, Moreira OC, Oliveira AC, Azambuja P, Lima APCA, Britto C, dos Santos ALS, Branquinha MH, d'Avila-Levy CM. Cruzipain promotes Trypanosoma cruzi adhesion to Rhodnius prolixus midgut. PLoS Negl Trop Dis 2012; 6:e1958. [PMID: 23272264 PMCID: PMC3521651 DOI: 10.1371/journal.pntd.0001958] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is the etiological agent of Chagas' disease. Cysteine peptidases are relevant to several aspects of the T. cruzi life cycle and are implicated in parasite-mammalian host relationships. However, little is known about the factors that contribute to the parasite-insect host interaction. METHODOLOGY/PRINCIPAL FINDINGS Here, we have investigated whether cruzipain could be involved in the interaction of T. cruzi with the invertebrate host. We analyzed the effect of treatment of T. cruzi epimastigotes with anti-cruzipain antibodies or with a panel of cysteine peptidase inhibitors (cystatin, antipain, E-64, leupeptin, iodocetamide or CA-074-OMe) on parasite adhesion to Rhodnius prolixus posterior midgut ex vivo. All treatments, with the exception of CA074-OMe, significantly decreased parasite adhesion to R. prolixus midgut. Cystatin presented a dose-dependent reduction on the adhesion. Comparison of the adhesion rate among several T. cruzi isolates revealed that the G isolate, which naturally possesses low levels of active cruzipain, adhered to a lesser extent in comparison to Dm28c, Y and CL Brener isolates. Transgenic epimastigotes overexpressing an endogenous cruzipain inhibitor (pCHAG), chagasin, and that have reduced levels of active cruzipain adhered to the insect gut 73% less than the wild-type parasites. The adhesion of pCHAG parasites was partially restored by the addition of exogenous cruzipain. In vivo colonization experiments revealed low levels of pCHAG parasites in comparison to wild-type. Parasites isolated after passage in the insect presented a drastic enhancement in the expression of surface cruzipain. CONCLUSIONS/SIGNIFICANCE These data highlight, for the first time, that cruzipain contributes to the interaction of T. cruzi with the insect host.
Collapse
Affiliation(s)
- Lívia Almeida Uehara
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Otacílio C. Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Oliveira
- Laboratório de Imunologia Molecular, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Paula Cabral Araujo Lima
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - André Luis Souza dos Santos
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Helena Branquinha
- Laboratório de Bioquímica de Proteases, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Masini d'Avila-Levy
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
14
|
Repertoire, genealogy and genomic organization of cruzipain and homologous genes in Trypanosoma cruzi, T. cruzi-like and other trypanosome species. PLoS One 2012; 7:e38385. [PMID: 22685565 PMCID: PMC3369871 DOI: 10.1371/journal.pone.0038385] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/04/2012] [Indexed: 12/29/2022] Open
Abstract
Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches.
Collapse
|
15
|
Ramírez G, Valck C, Aguilar L, Kemmerling U, López-Muñoz R, Cabrera G, Morello A, Ferreira J, Maya JD, Galanti N, Ferreira A. Roles of Trypanosoma cruzi calreticulin in parasite-host interactions and in tumor growth. Mol Immunol 2012; 52:133-40. [PMID: 22673211 DOI: 10.1016/j.molimm.2012.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/05/2012] [Accepted: 05/07/2012] [Indexed: 12/14/2022]
Abstract
In Latin America, there are about 10-12 million people infected with Trypanosoma cruzi, the agent of Chagas' disease, one of the most important neglected tropical parasitism. Identification of molecular targets, specific for the aggressor or host cells or both, may be useful in the development of pharmacological and/or immunological therapeutic tools. Classic efforts in Chagas' disease explore those strategies. Although the immune system frequently controls parasite aggressions, sterile immunity is seldom achieved and chronic interactions are thus established. However, laboratory-modified immunologic probes aimed at selected parasite targets, may be more effective than their unmodified counterparts. Calreticulin (CRT) from vertebrates is a calcium binding protein, present mainly in the endoplasmic reticulum (ER), where it directs the conformation of proteins and controls calcium levels. We have isolated, gene-cloned, expressed and characterized T. cruzi calreticulin (TcCRT). Upon infection, the parasite can translocate this molecule from the ER to the surface, where it inhibits both the classical and lectin complement pathways. Moreover, by virtue of its capacity to bind and inactivate first complement component C1, it promotes parasite infectivity. These two related properties reside in the central domain of this molecule. A different domain, amino terminal, binds to endothelial cells, thus inhibiting their angiogenic capacity. Since tumor growth depends, to a large extent on angiogenesis, their growth is also inhibited.
Collapse
Affiliation(s)
- Galia Ramírez
- Department of Preventive Animal Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Assis DM, Gontijo VS, de Oliveira Pereira I, Santos JAN, Camps I, Nagem TJ, Ellena J, Izidoro MA, dos Santos Tersariol IL, de Barros NMT, Doriguetto AC, dos Santos MH, Juliano MA. Inhibition of cysteine proteases by a natural biflavone: behavioral evaluation of fukugetin as papain and cruzain inhibitor. J Enzyme Inhib Med Chem 2012; 28:661-70. [DOI: 10.3109/14756366.2012.668539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Diego Magno Assis
- Department of Biophysics, Federal University of São Paulo,
São Paulo, SP, Brazil
| | | | | | | | - Ihosvany Camps
- Institute of Exact Science, Federal University of Alfenas,
Alfenas, MG, Brazil
| | - Tanus Jorge Nagem
- ICEB-LAPRONA, Federal University of Ouro Preto,
Ouro Preto, MG, Brazil
| | - Javier Ellena
- Department of Physics and Informatics, Institute of Physics, University of São Paulo,
São Carlos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Caffrey CR, Lima AP, Steverding D. Cysteine peptidases of kinetoplastid parasites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:84-99. [PMID: 21660660 DOI: 10.1007/978-1-4419-8414-2_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We review Clan CA Family C1 peptidases of kinetoplastid parasites (Trypanosoma and Leishmania) with respect to biochemical and genetic diversity, genomic organization and stage-specificity and control of expression. We discuss their contributions to parasite metabolism, virulence and pathogenesis and modulation of the host's immune response. Their applications as vaccine candidates and diagnostic markers as well as their chemical and genetic validation as drug targets are also summarized.
Collapse
Affiliation(s)
- Conor R Caffrey
- Sandler Center for Drug Discovery, California Institute for Quantitative Biosciences, Byers Hall, University of California San Francisco, San Francisco, USA.
| | | | | |
Collapse
|
18
|
Castro HC, Abreu PA, Geraldo RB, Martins RCA, dos Santos R, Loureiro NIV, Cabral LM, Rodrigues CR. Looking at the proteases from a simple perspective. J Mol Recognit 2011; 24:165-81. [PMID: 21360607 DOI: 10.1002/jmr.1091] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteases have received enormous interest from the research and medical communities because of their significant roles in several human diseases. Some examples include the involvement of thrombin in thrombosis, HIV-1 protease in Acquired Immune Deficiency Syndrome, cruzain in Trypanosoma cruzi infection, and membrane-type 1 matrix metalloproteinase in tumor invasion and metastasis. Many efforts has been undertaken to design effective inhibitors featuring potent inhibitory activity, specificity, and metabolic stability to those proteases involved in such pathologies. Protease inhibitors usually target the active site, but some of them act by other inhibitory mechanisms. The understanding of the structure-function relationships of proteases and inhibitors has an impact on new inhibitor drugs designing. In this paper, the structures of four proteases (thrombin, HIV-protease, cruzain, and a matrix metalloproteinase) are briefly reviewed, and used as examples of the importance of proteases for the development of new treatment strategies, leading to a longer and healthier life.
Collapse
Affiliation(s)
- Helena C Castro
- LABioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, 24001-970, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Alvarez VE, Niemirowicz GT, Cazzulo JJ. The peptidases of Trypanosoma cruzi: digestive enzymes, virulence factors, and mediators of autophagy and programmed cell death. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:195-206. [PMID: 21621652 DOI: 10.1016/j.bbapap.2011.05.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 02/06/2023]
Abstract
Trypanosoma cruzi, the agent of the American Trypanosomiasis, Chagas disease, contains cysteine, serine, threonine, aspartyl and metallo peptidases. The most abundant among these enzymes is cruzipain, a cysteine proteinase expressed as a mixture of isoforms, some of them membrane-bound. The enzyme is an immunodominant antigen in human chronic Chagas disease and seems to be important in the host/parasite relationship. Inhibitors of cruzipain kill the parasite and cure infected mice, thus validating the enzyme as a very promising target for the development of new drugs against the disease. In addition, a 30kDa cathepsin B-like enzyme, two metacaspases and two autophagins have been described. Serine peptidases described in the parasite include oligopeptidase B, a member of the prolyl oligopeptidase family involved in Ca(2+)-signaling during mammalian cell invasion; a prolyl endopeptidase (Tc80), against which inhibitors are being developed, and a lysosomal serine carboxypeptidase. Metallopeptidases homologous to the gp63 of Leishmania spp. are present, as well as two metallocarboxypeptidases belonging to the M32 family, previously found only in prokaryotes. The proteasome has properties similar to those of other eukaryotes, and its inhibition by lactacystin blocks some differentiation steps in the life cycle of the parasite. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
Collapse
Affiliation(s)
- Vanina E Alvarez
- Instituto de Investigaciones Biotecnológicas (IIB-INTECH, Universidad Nacional de San Martín-CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
20
|
Sajid M, Robertson SA, Brinen LS, McKerrow JH. Cruzain : the path from target validation to the clinic. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 712:100-15. [PMID: 21660661 DOI: 10.1007/978-1-4419-8414-2_7] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cruzain is the major papain-like cysteine protease of Trypanosoma cruzi, the etiological agent causing Chagas' disease in humans in South America. Cruzain is indispensable for the survival and propagation of this protozoan parasite and therefore, it has attracted considerable interest as a potential drug target. This chapter charts the path from the initial identification of this proteases activity and its validation as a bone fide drug target to the arduous task of the discovery of an inhibitor targeting this protease and finally the path towards the clinic.
Collapse
Affiliation(s)
- Mohammed Sajid
- Afd. Parasitologie, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | |
Collapse
|
21
|
Ortiz P, Maia da Silva F, Cortez A, Lima L, Campaner M, Pral E, Alfieri S, Teixeira M. Genes of cathepsin L-like proteases in Trypanosoma rangeli isolates: markers for diagnosis, genotyping and phylogenetic relationships. Acta Trop 2009; 112:249-59. [PMID: 19683503 DOI: 10.1016/j.actatropica.2009.07.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
We have sequenced genes encoding cathepsin L-like (CatL-like) cysteine proteases from isolates of Trypanosoma rangeli from humans, wild mammals and Rhodnius species of Central and South America. Phylogenetic trees of sequences encoding mature CatL-like enzymes of T. rangeli and homologous genes from other trypanosomes, Leishmania spp. and bodonids positioned sequences of T. rangeli (rangelipain) closest to T. cruzi (cruzipain). Phylogenetic tree of kinetoplastids based on sequences of CatL-like was totally congruent with those derived from SSU rRNA and gGAPDH genes. Analysis of sequences from the CatL-like catalytic domains of 17 isolates representative of the overall phylogenetic diversity and geographical range of T. rangeli supported all the lineages (A-D) previously defined using ribosomal and spliced leader genes. Comparison of the proteolytic activities of T. rangeli isolates revealed heterogeneous banding profiles of cysteine proteases in gelatin gels, with differences even among isolates of the same lineage. CatL-like sequences proved to be excellent targets for diagnosis and genotyping of T. rangeli by PCR. Data from CatL-like encoding genes agreed with results from previous studies of kDNA markers, and ribosomal and spliced leader genes, thereby corroborating clonal evolution, independent transmission cycles and the divergence of T. rangeli lineages associated with sympatric species of Rhodnius.
Collapse
|
22
|
Abstract
The protozoan parasitesTrypanosoma bruceiandTrypanosoma cruziare the causative agents of African trypanosomiasis and Chagas disease, respectively. These are debilitating infections that exert a considerable health burden on some of the poorest people on the planet. Treatment of trypanosome infections is dependent on a small number of drugs that have limited efficacy and can cause severe side effects. Here, we review the properties of these drugs and describe new findings on their modes of action and the mechanisms by which resistance can arise. We further outline how a greater understanding of parasite biology is being exploited in the search for novel chemotherapeutic agents. This effort is being facilitated by new research networks that involve academic and biotechnology/pharmaceutical organisations, supported by public–private partnerships, and are bringing a new dynamism and purpose to the search for trypanocidal agents.
Collapse
|
23
|
Kinetoplastid papain-like cysteine peptidases. Mol Biochem Parasitol 2009; 167:12-9. [DOI: 10.1016/j.molbiopara.2009.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/21/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
|
24
|
Cathepsin L-like genes of Trypanosoma vivax from Africa and South America--characterization, relationships and diagnostic implications. Mol Cell Probes 2008; 23:44-51. [PMID: 19063960 DOI: 10.1016/j.mcp.2008.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/16/2008] [Accepted: 11/16/2008] [Indexed: 11/22/2022]
Abstract
We characterized sequences from genes encoding cathepsin L-like (CatL-like) cysteine proteases from African and South American isolates of Trypanosoma vivax and T. vivax-like organisms, and evaluated their suitability as genetic markers for population structure analysis and diagnosis. Phylogenetic analysis of sequences corresponding to CatL-like catalytic domains revealed substantial polymorphism, and clades of sequences (TviCatL1-9) were separated by large genetic distances. TviCatL1-4 sequences were from cattle isolates from West Africa (Nigeria and Burkina Faso) and South America (Brazil and Venezuela), which belonged to the same T. vivax genotype. T. vivax-like genotypes from East Africa showed divergent sequences, including TviCatL5-7 for isolates from Mozambique and TviCatL8-9 for an isolate from Kenya. Phylogenetic analysis of CatL-like gene data supported the relationships among trypanosome species reflected in the phylogenies based on the analysis of small subunit (SSU) of ribosomal RNA gene sequence data. The discovery of different CatL-like sequences for each genotype, defined previously by ribosomal DNA data, indicate that these sequences provide useful targets for epidemiological and population genetic studies. Regions in CatL-like sequences shared by all T. vivax genotypes but not by other trypanosomes allowed the establishment of a specific and sensitive diagnostic PCR for epidemiological studies in South America and Africa.
Collapse
|
25
|
Scharfstein J, Lima APCA. Roles of naturally occurring protease inhibitors in the modulation of host cell signaling and cellular invasion by Trypanosoma cruzi. Subcell Biochem 2008; 47:140-154. [PMID: 18512348 DOI: 10.1007/978-0-387-78267-6_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Trypanosoma cruzi trypomastigotes rely on the structural diversity of the cruzipain family of cysteine proteases to infect and multiply in nonprofessional phagocytic cells. Herein, we will review studies demonstrating that the interplay of cruzipain with peptidase inhibitors modulate infection outcome in a variety of experimental settings. Studies with a panel of T. cruzi strains showed that parasite ability to invade human smooth muscle cells is influenced by the balance between cruzipain and chagasin, a tight binding endogenous inhibitor of papain-like cysteine proteases. Analysis of T. cruzi interaction with endothelial cells and cardiomyocytes indicated that parasite-induced activation of bradykinin receptors drive host cell invasion by [Ca2+]I-dependent pathways. Clues about the mechanisms underlying kinin generation in vivo by trypomastigotes came from analysis of the dynamics of edematogenic inflammation. Owing to plasma extravasation, the blood-borne kininogens accumulate in peripheral sites of infection. Upon diffusion in peripheral tissues, kininogens (i.e., type III cystatins) bind to heparan sulphate chains, thus constraining interactions of the cystatin-like inhibitory domains with cruzipain. The cell bound kininogens are then turned into facile substrates for cruzipain, which liberates kinins in peripheral tissues. Subjected to tight-regulation by kinin-degrading metallopeptidases, such as angiotensin converting enzyme, the short-lived kinin peptides play a dual role in the host-parasite balance. Rather than unilaterally stimulating pathogen infectivity via bradykinin receptors, the released kinins potently induce dendritic cell maturation, thus stimulating type 1 immune responses. In conclusion, the studies reviewed herein illustrate how regulation of parasite proteases may affect host-parasite equilibrium in the course of IT cruzi infection.
Collapse
Affiliation(s)
- Julio Scharfstein
- Lnstituto de Biofisica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil.
| | | |
Collapse
|
26
|
Análisis de polimorfismos en los genes tripanotión reductasa y cruzipaína en cepas colombianas de Trypanosoma cruzi. BIOMEDICA 2007. [DOI: 10.7705/biomedica.v27i1.248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Santos CC, Sant'anna C, Terres A, Cunha-e-Silva NL, Scharfstein J, de A Lima APC. Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mammalian cells. J Cell Sci 2005; 118:901-15. [PMID: 15713748 DOI: 10.1242/jcs.01677] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chagasin is a Trypanosoma cruzi protein that was recently characterized as a tight-binding inhibitor of papain-like cysteine proteases (CPs). Considering that parasite virulence and morphogenesis depend on the endogenous activity of lysosomal CPs of the cruzipain family, we sought to determine whether chagasin and cruzipain interact in the living cell. Ultrastructural studies showed that chagasin and cruzipain both localize to the Golgi complex and reservosomes (lysosome-like organelles), whereas free chagasin was found in small intracellular vesicles, suggesting that chagasin trafficking pathways might intersect with those of cruzipain. Taking advantage of the fact that sodium dodecyl sulphate and beta-mercaptoethanol prevent binding between the isolated proteins but do not dismantle preformed cruzipain-chagasin complexes, we obtained direct evidence that chagasin-cruzipain complexes are indeed formed in epimastigotes. Chagasin transfectants (fourfold increase in CP inhibitory activity) displayed low rates of differentiation (metacyclogenesis) and exhibited increased resistance to a synthetic CP inhibitor. These phenotypic changes were accompanied by a drastic reduction of soluble cruzipain activity and by upregulated secretion of cruzipain-chagasin molecular complexes. Analysis of six T. cruzi strains revealed that expression levels of cruzipain and chagasin are variable, but the molar ratios are fairly stable ( approximately 50:1) in most strains, with the exception of the G strain (5:1), which is poorly infective. On the same vein, we found that trypomastigotes overexpressing chagasin are less infective than wild-type parasites in vitro. The deficiency of chagasin overexpressers is caused by lower activity of membrane-associated CPs, because membranes recovered from wild-type trypomastigotes restored infectivity and this effect was nullified by the CP inhibitor E-64. In summary, our studies suggest that chagasin regulates the endogenous activity of CP, thus indirectly modulating proteolytic functions that are essential for parasite differentiation and invasion of mammalian cells.
Collapse
Affiliation(s)
- Camila C Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, C.C.S., Ilha do Fundão, Rio de Janeiro, 21949-900 RJ, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Aparicio IM, Scharfstein J, Lima APCA. A new cruzipain-mediated pathway of human cell invasion by Trypanosoma cruzi requires trypomastigote membranes. Infect Immun 2004; 72:5892-902. [PMID: 15385491 PMCID: PMC517595 DOI: 10.1128/iai.72.10.5892-5902.2004] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular protozoan Trypanosoma cruzi causes Chagas' disease, a chronic illness associated with cardiomyopathy and digestive disorders. This pathogen invades mammalian cells by signaling them through multiple transduction pathways. We previously showed that cruzipain, the main cysteine protease of T. cruzi, promotes host cell invasion by activating kinin receptors. Here, we report a cruzipain-mediated invasion route that is not blocked by kinin receptor antagonists. By testing different strains of T. cruzi, we observed a correlation between the level of cruzipain secreted by trypomastigotes and the capacity of the pathogen to invade host cells. Consistent with a role for cruzipain, the cysteine protease inhibitor N-methylpiperazine-urea-Phe-homophenylalanine-vinylsulfone-benzene impaired the invasion of human smooth muscle cells by strains Dm28c and X10/6 but not by the G isolate. Cruzipain-rich supernatants of Dm28c trypomastigotes enhanced the infectivity of isolate G parasites twofold, an effect which was abolished by the cysteine protease inhibitor l-trans-epoxysuccinyl-leucylamido-(4-guanidino)butane and by thapsigargin, a drug that induces depletion of the intracellular Ca(2+) stores. The enhancement due to Dm28 supernatants was abolished upon cruzipain immunodepletion, and the activity was restored by purified cruzipain. In contrast, supernatants from isolate G trypomastigotes (with low levels of cruzipain) or supernatants from Dm28c epimastigotes or purified cruzipain alone did not enhance parasite invasion, indicating that the protease is required but not sufficient to engage this invasion pathway. We provide evidence that activation of this pathway requires cruzipain-mediated processing of a trypomastigote molecule associated with parasite-shed membranes. Our results couple cruzipain to host cell invasion through a kinin-independent route and further suggest that high-level cruzipain expression may contribute to parasite infectivity.
Collapse
Affiliation(s)
- Isabela M Aparicio
- Instituto de Biofísica Carlos Chagas Filho, Bloco G, CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
29
|
Duschak VG, Barboza M, Couto AS. Trypanosoma cruzi: partial characterization of minor cruzipain isoforms non-adsorbed to Concanavalin A–Sepharose. Exp Parasitol 2003; 104:122-30. [PMID: 14552859 DOI: 10.1016/j.exppara.2003.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present paper reports the partial characterization of a subset of atypical cruzipain molecules which do not bind to Concanavalin A-Sepharose column. They are present in different strains of epimastigote forms of Trypanosoma cruzi and represent a 2-4% of total cruzipain. They were purified by affinity chromatography on Cystatin-Sepharose, recognized by the polyclonal anti-cruzipain serum, and their activity in gelatin-containing gels was completely abolished by E-64, TLCK, leupeptin, and aprotinin but not by PMSF, pepstatin A, EDTA or 1,10-phenantroline. These cysteine proteinases, as well as cruzipain showed to be endoproteinases able to hydrolize azocasein, hemoglobin, and bovine serum albumin at acidic pHs. However, evidences are presented indicating that this subset of cruzipain isoforms were also able to use the same blocked chromogenic peptidyl substrates than cruzipain at similar optimal alkaline pH values although with a different order of preference. Moreover, they showed a different oligosaccharide pattern after enzymatic treatment by high pH anion exchange chromatography, suggesting that this structural difference may account for the atypical behaviour in the lectin column.
Collapse
Affiliation(s)
- Vilma G Duschak
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, Av. Gral Paz y Albarellos, Parque Tecnológico Miguelete, INTI-Edificio 24, (1650) San Martín, Prov. Buenos Aires, Argentina.
| | | | | |
Collapse
|
30
|
Lecaille F, Kaleta J, Brömme D. Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design. Chem Rev 2002; 102:4459-88. [PMID: 12475197 DOI: 10.1021/cr0101656] [Citation(s) in RCA: 395] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabien Lecaille
- Mount Sinai School of Medicine, Department of Human Genetics, Fifth Avenue at 100th Street, New York, New York 10029, USA
| | | | | |
Collapse
|
31
|
Schnapp AR, Eickhoff CS, Scharfstein J, Hoft DF. Induction of B- and T-cell responses to cruzipain in the murine model of Trypanosoma cruzi infection. Microbes Infect 2002; 4:805-13. [PMID: 12270727 DOI: 10.1016/s1286-4579(02)01600-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas' disease, is an important cause of heart disease in Latin America. The parasite is transmitted mucosally, with both intra- and extracellular life stages in the human host. Cruzipain, the major cysteinyl proteinase of T. cruzi, has been shown to be antigenic in both humans and mice during infection with the parasite. We extend these observations, showing here that multiple murine immune subsets of potential importance for vaccine-induced protection can be induced by cruzipain. Cruzipain-specific serum IgG responses were induced during chronic infection with T. cruzi. In addition, T. cruzi mucosal infection stimulated the development of cruzipain-specific secretory IgA detectable in fecal extracts from infected mice. Cruzipain-specific type 1 cytokine responses characterized by the production of IFN-gamma but not IL-4 were also detectable during murine infection. Furthermore, immunization of mice with a DNA vaccine encoding cruzipain was shown to stimulate cytotoxic T lymphocyte (CTL) responses capable of recognizing and lysing T. cruzi-infected cells. The induction of serum antibody, mucosal IgA, Th1 cytokine and CTL responses by cruzipain in mice supports the use of this parasite protein for further efforts in T. cruzi vaccine development.
Collapse
Affiliation(s)
- Anita R Schnapp
- Division of Infectious Diseases and Immunology, Department of Internal Medicine, St. Louis University Health Sciences Center, 3635 Vista Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
32
|
Schnapp AR, Eickhoff CS, Sizemore D, Curtiss R, Hoft DF. Cruzipain induces both mucosal and systemic protection against Trypanosoma cruzi in mice. Infect Immun 2002; 70:5065-74. [PMID: 12183554 PMCID: PMC128245 DOI: 10.1128/iai.70.9.5065-5074.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Revised: 04/05/2002] [Accepted: 06/04/2002] [Indexed: 11/20/2022] Open
Abstract
Cruzipain, the major cysteinyl proteinase of Trypanosoma cruzi, is expressed by all developmental forms and strains of the parasite and stimulates potent humoral and cellular immune responses during infection in both humans and mice. This information suggested that cruzipain could be used to develop an effective T. cruzi vaccine. To study whether cruzipain-specific T cells could inhibit T. cruzi intracellular replication, we generated cruzipain-reactive CD4(+) Th1 cell lines. These T cells produced large amounts of gamma interferon when cocultured with infected macrophages, resulting in NO production and decreased intracellular parasite replication. To study the protective effects in vivo of cruzipain-specific Th1 responses against systemic T. cruzi challenges, we immunized mice with recombinant cruzipain plus interleukin 12 (IL-12) and a neutralizing anti-IL-4 MAb. These immunized mice developed potent cruzipain-specific memory Th1 cell responses and were significantly protected against normally lethal systemic T. cruzi challenges. Although cruzipain-specific Th1 responses were associated with T. cruzi protective immunity in vitro and in vivo, adoptive transfer of cruzipain-specific Th1 cells alone did not protect BALB/c histocompatible mice, indicating that additional immune mechanisms are important for cruzipain-specific immunity. To study whether cruzipain could induce mucosal immune responses relevant for vaccine development, we prepared recombinant attenuated Salmonella enterica serovar Typhimurium vaccines expressing cruzipain. BALB/c mice immunized with salmonella expressing cruzipain were significantly protected against T. cruzi mucosal infection. Overall, these data indicate that cruzipain is an important T. cruzi vaccine candidate and that protective T. cruzi vaccines will need to induce more than CD4(+) Th1 cells alone.
Collapse
Affiliation(s)
- Anita R Schnapp
- Department of Internal Medicine, St. Louis University Health Sciences Center, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
33
|
De Souza W. From the cell biology to the development of new chemotherapeutic approaches against trypanosomatids: dreams and reality. KINETOPLASTID BIOLOGY AND DISEASE 2002; 1:3. [PMID: 12234386 PMCID: PMC119324 DOI: 10.1186/1475-9292-1-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Accepted: 05/31/2002] [Indexed: 01/16/2023]
Abstract
Members of the Trypanosomatidae family comprise a large number of species that are causative agents of important diseases such as sleeping sickness, Chagas' disease and Leishmaniasis. These organisms are also of biological interest since they are able to change the morphology according to the environment where they live, through a process of reversible cell transformation, and possess structures and organelles that are not found in mammalian cells. This review analyses the process of transformation, which takes place during the life cycle of Trypanosoma cruzi in the vertebrate and invertebrate hosts. Special attention is given to the interaction of the parasite with vertebrate cells. In addition, the present knowledge of structures and organelles such as the nucleus, the plasma membrane, the sub-pellicular microtubules, the flagellum, the kinetoplast-mitochondrion complex, the peroxisome (glycosome), the acidocalcisome and the structures and organelles involved in the endocytic pathway, is reviewed from a cell biology perspective. The possible use of available data for the development of new anti parasite drugs is also discussed.
Collapse
Affiliation(s)
- Wanderley De Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCSBloco G, 21941900, Rio de JaneiroRJ, Brasil.
| |
Collapse
|
34
|
Lalmanach G, Boulangé A, Serveau C, Lecaille F, Scharfstein J, Gauthier F, Authié E. Congopain from Trypanosoma congolense: drug target and vaccine candidate. Biol Chem 2002; 383:739-49. [PMID: 12108538 DOI: 10.1515/bc.2002.077] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Trypanosomes are the etiological agents of human sleeping sickness and livestock trypanosomosis (nagana), which are major diseases in Africa. Their cysteine proteases (CPs), which are members of the papain family, are expressed during the infective stages of the parasites' life cycle. They are suspected to act as pathogenic factors in the mammalian host, where they also trigger prominent immune responses. Trypanosoma congolense, a major pathogenic species in livestock, possesses at least two families of closely related CPs, named CP1 and CP2. Congopain, a CP2-type of enzyme, shares structural and functional resemblances with cruzipain from T. cruzi and with mammalian cathepsin L. Like CPs from other Trypanosomatids, congopain might be an attractive target for trypanocidal drugs. Here we summarise the current knowledge in the two main areas of research on congopain: first, the biochemical properties of congopain were characterised and its substrate specificity was determined, as a first step towards drug design; second, the possibility was being explored that inhibition of congopain by host-specific antibodies may mitigate the pathology associated with trypanosome infection.
Collapse
Affiliation(s)
- Gilles Lalmanach
- Laboratoire d'Enzymologie et Chimie des Protéines, INSERM EMI-U 00.10, Université François Rabelais, Faculté de Médecine, Tours, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Monteiro AC, Abrahamson M, Lima AP, Vannier-Santos MA, Scharfstein J. Identification, characterization and localization of chagasin, a tight-binding cysteine protease inhibitor inTrypanosoma cruzi. J Cell Sci 2001; 114:3933-42. [PMID: 11719560 DOI: 10.1242/jcs.114.21.3933] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysosomal cysteine proteases from mammalian cells and plants are regulated by endogenous tight-binding inhibitors from the cystatin superfamily. The presence of cystatin-like inhibitors in lower eukaryotes such as protozoan parasites has not yet been demonstrated, although these cells express large quantities of cysteine proteases and may also count on endogenous inhibitors to regulate cellular proteolysis. Trypanosoma cruzi, the causative agent of Chagas’ heart disease, is a relevant model to explore this possibility because these intracellular parasites rely on their major lysosomal cysteine protease (cruzipain) to invade and multiply in mammalian host cells. Here we report the isolation, biochemical characterization, developmental stage distribution and subcellular localization of chagasin, an endogenous cysteine protease inhibitor in T. cruzi. We used high temperature induced denaturation to isolate a heat-stable cruzipain-binding protein (apparent molecular mass, 12 kDa) from epimastigote lysates. This protein was subsequently characterized as a tight-binding and reversible inhibitor of papain-like cysteine proteases. Immunoblotting indicated that the expression of chagasin is developmentally regulated and inversely correlated with that of cruzipain. Gold-labeled antibodies localized chagasin to the flagellar pocket and cytoplasmic vesicles of trypomastigotes and to the cell surface of amastigotes. Binding assays performed by probing living parasites with fluorescein (FITC)-cruzipain or FITC-chagasin revealed the presence of both inhibitor and protease at the cell surface of amastigotes. The intersection of chagasin and cruzipain trafficking pathways may represent a checkpoint for downstream regulation of proteolysis in trypanosomatid protozoa.
Collapse
Affiliation(s)
- A C Monteiro
- Instituto de Biofísica Carlos Chagas Filho, Bloco G, CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, CEP 21990-400, Brazil
| | | | | | | | | |
Collapse
|
36
|
Duschak VG, Ciaccio M, Nassert JR, Basombrio MA. Enzymatic activity, protein expression, and gene sequence of cruzipain in virulent and attenuated Trypanosoma cruzi strains. J Parasitol 2001; 87:1016-22. [PMID: 11695358 DOI: 10.1645/0022-3395(2001)087[1016:eapeag]2.0.co;2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Protein expression, characterized in Western blots and gelatinolytic activity, of cruzipain (Cr), the major Trypanosoma cruzi cysteine proteinase, was compared among 3 attenuated T. cruzi strains (TUL 0, TCC, and Y null) and their virulent counterparts (TUL 2, Tulahuen, and Y). All attenuated strains displayed a weaker gelatinolytic activity as compared with their virulent counterparts. The electrophoretic mobility and immunological reactivity revealed quantitative and qualitative differences, with the attenuated parasites showing bands of less density in all strains and lower mobility in 2 of them, as compared with the virulent strains. Sequence analysis of 1 Cr gene in the Tulahuen and TCC strains indicated 37/1404 base pair substitutions, corresponding to 20 amino acid changes in the attenuated strain. A similar comparative analysis of 1 Cr gene between Y and Y null strains showed 13/1404 base pair substitutions, corresponding to 8 amino acid changes in the attenuated strain. Although enough variability exists in the Cr gene to allow for less- or nonfunctional isoforms of the protein, further clones should be analyzed to establish whether attenuation is regularly associated with specific sequence changes of this enzyme.
Collapse
Affiliation(s)
- V G Duschak
- Instituto de Investigaciones Biotecnológicas, Universidad de San Martin, INTI, Provincia de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
37
|
Lecaille F, Authié E, Moreau T, Serveau C, Gauthier F, Lalmanach G. Subsite specificity of trypanosomal cathepsin L-like cysteine proteases. Probing the S2 pocket with phenylalanine-derived amino acids. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2733-41. [PMID: 11322895 DOI: 10.1046/j.1432-1327.2001.02172.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The S2 subsite of mammalian cysteine proteinases of the papain family is essential for specificity. Among natural amino acids, all these enzymes prefer bulky hydrophobic residues such as phenylalanine at P2. This holds true for their trypanosomal counterparts: cruzain from Trypanosoma cruzi and congopain from T. congolense. A detailed analysis of the S2 specificity of parasitic proteases was performed to gain information that might be of interest for the design of more selective pseudopeptidyl inhibitors. Nonproteogenic phenylalanyl analogs (Xaa) have been introduced into position P2 of fluorogenic substrates dansyl-Xaa-Arg-Ala-Pro-Trp, and their kinetic constants (Km, kcat/Km) have been determined with congopain and cruzain, and related host cathepsins B and L. Trypanosomal cysteine proteases are poorly stereoselective towards D/L-Phe, the inversion of chirality modifying the efficiency of the reaction but not the Km. Congopain binds cyclohexylalanine better than aromatic Phe derivatives. Another characteristic feature of congopain compared to cruzain and cathepsins B and L was that it could accomodate a phenylglycyl residue (kcat/Km = 1300 mM-1.s-1), while lengthening of the side chain by a methylene group only slightly impaired the specificity constant towards trypanosomal cysteine proteases. Mono- and di-halogenation or nitration of Phe did not affect Km for cathepsin L-like enzymes, but the presence of constrained Phe derivatives prevented a correct fitting into the S2 subsite. A model of congopain has been built to study the fit of Phe analogs within the S2 pocket. Phe analogs adopted a positioning within the S2 pocket similar to that of the Tyr of the cruzain/Z-Tyr-Ala-fluoromethylketone complex. However, cyclohexylalanine has an energetically favorable chair-like conformation and can penetrate deeper into the subsite. Fitting of modeled Phe analogs were in good agreement with kinetic parameters. Furthermore, a linear relationship could be established with logP, supporting the suggestion that fitting into the S2 pocket of trypanosomal cysteine proteases depends on the hydrophobicity of Phe analogs.
Collapse
Affiliation(s)
- F Lecaille
- Laboratory of Enzymology and Protein Chemistry, INSERM EMI-U 00-10, University François Rabelais, Faculty of Medicine, Tours, France
| | | | | | | | | | | |
Collapse
|
38
|
Lima AP, dos Reis FC, Serveau C, Lalmanach G, Juliano L, Ménard R, Vernet T, Thomas DY, Storer AC, Scharfstein J. Cysteine protease isoforms from Trypanosoma cruzi, cruzipain 2 and cruzain, present different substrate preference and susceptibility to inhibitors. Mol Biochem Parasitol 2001; 114:41-52. [PMID: 11356512 DOI: 10.1016/s0166-6851(01)00236-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cysteine-proteinases from parasitic protozoa have been recently characterized as factors of virulence and pathogenicity in several human and veterinary diseases. In Chagas' disease, the chronic infection caused by Trypanosoma cruzi, structure-functional studies on cysteine proteases were thus far limited to the parasite's major isoform, a cathepsin L-like lysosomal protease designated as cruzipain, cruzain or GP57/51. Encoded by a large gene family, cruzipain is efficiently targeted by synthetic inhibitors, which prevent parasite intracellular growth and differentiation. We have previously demonstrated that the multicopy cruzipain gene family includes polymorphic sequences, which could encode functionally different isoforms. We report here a comparative kinetic study between cruzain, the archetype of the cruzipain family, and an isoform, termed cruzipain 2, which is expressed preferentially by the mammalian stages of T. cruzi. Heterologous expression of the catalytic domain of cruzipain 2 in Saccharomyces cerevisae yielded an enzyme that differs markedly from cruzain with respect to pH stability, substrate specificity and sensitivity to inhibition by natural and synthetic inhibitors of cysteine proteases. We suggest that the structural-functional diversification imparted by genetic polymorphism of cruzipain genes may have contributed to T. cruzi adaptation to vertebrate hosts.
Collapse
Affiliation(s)
- A P Lima
- Laboratory of Molecular Immunology, Instituto de Biofísica Carlos Chagas Filho, Bloco G, CCS, UFRJ, Ilha do Fundão, RJ, CEP 21-944-900, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rafati S, Salmanian AH, Hashemi K, Schaff C, Belli S, Fasel N. Identification of Leishmania major cysteine proteinases as targets of the immune response in humans. Mol Biochem Parasitol 2001; 113:35-43. [PMID: 11254952 DOI: 10.1016/s0166-6851(00)00377-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, we report the identification of two parasite polypeptides recognized by human sera of patients infected with Leishmania major. Isolation and sequencing of the two genes encoding these polypeptides revealed that one of the genes is similar to the L. major cathepsin L-like gene family CPB, whereas the other gene codes for the L. major homologue of the cysteine proteinase a (CPA) of L. mexicana. By restriction enzyme digestion of genomic DNA, we show that the CPB gene is present in multiple copies in contrast to the cysteine proteinase CPA gene which could be unique. Specific antibodies directed against the mature regions of both types expressed in Escherichia coli were used to analyze the expression of these polypeptides in different stages of the parasite's life cycle. Polypeptides of 27 and 40 kDa in size, corresponding to CPA and CPB respectively, were detected at higher level in amastigotes than in stationary phase promastigotes. Purified recombinant CPs were also used to examine the presence of specific antibodies in sera from either recovered or active cases of cutaneous leishmaniasis patients. Unlike sera from healthy uninfected controls, all the sera reacted with recombinant CPA and CPB. This finding indicates that individuals having recovered from cutaneous leishmaniasis or with clinically apparent disease have humoral responses to cysteine proteinases demonstrating the importance of these proteinases as targets of the immune response and also their potential use for serodiagnosis.
Collapse
Affiliation(s)
- S Rafati
- Department of Immunology, Pasteur Institute of Iran, P.O. Box 11365-6699, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
40
|
Scharfstein J, Schmitz V, Morandi V, Capella MM, Lima AP, Morrot A, Juliano L, Müller-Esterl W. Host cell invasion by Trypanosoma cruzi is potentiated by activation of bradykinin B(2) receptors. J Exp Med 2000; 192:1289-300. [PMID: 11067878 PMCID: PMC2193362 DOI: 10.1084/jem.192.9.1289] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The parasitic protozoan Trypanosoma cruzi employs multiple molecular strategies to invade a broad range of nonphagocytic cells. Here we demonstrate that the invasion of human primary umbilical vein endothelial cells (HUVECs) or Chinese hamster ovary (CHO) cells overexpressing the B(2) type of bradykinin receptor (CHO-B(2)R) by tissue culture trypomastigotes is subtly modulated by the combined activities of kininogens, kininogenases, and kinin-degrading peptidases. The presence of captopril, an inhibitor of bradykinin degradation by kininase II, drastically potentiated parasitic invasion of HUVECs and CHO-B(2)R, but not of mock-transfected CHO cells, whereas the B(2)R antagonist HOE 140 or monoclonal antibody MBK3 to bradykinin blocked these effects. Invasion competence correlated with the parasites' ability to liberate the short-lived kinins from cell-bound kininogen and to elicit vigorous intracellular free calcium ([Ca(2+)](i)) transients through B(2)R. Invasion was impaired by membrane-permeable cysteine proteinase inhibitors such as Z-(SBz)Cys-Phe-CHN(2) but not by the hydrophilic inhibitor 1-trans-epoxysuccinyl-l-leucyl-amido-(4-guanidino) butane or cystatin C, suggesting that kinin release is confined to secluded spaces formed by juxtaposition of host cell and parasite plasma membranes. Analysis of trypomastigote transfectants expressing various cysteine proteinase isoforms showed that invasion competence is linked to the kinin releasing activity of cruzipain, herein proposed as a factor of virulence in Chagas' disease.
Collapse
Affiliation(s)
- J Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CEP 21990-400 Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Scharfstein J, Morrot A. A role for extracellular amastigotes in the immunopathology of Chagas disease. Mem Inst Oswaldo Cruz 2000; 94 Suppl 1:51-63. [PMID: 10677691 DOI: 10.1590/s0074-02761999000700005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In spite of the growing knowledge obtained about immune control of Trypanosoma cruzi infection, the mechanisms responsible for the variable clinico-pathological expression of Chagas disease remain unknown. In a twist from previous concepts, recent studies indicated that tissue parasitism is a pre-requisite for the development of chronic myocarditis. This fundamental concept, together with the realization that T. cruzi organisms consist of genetically heterogeneous clones, offers a new framework for studies of molecular pathogenesis. In the present article, we will discuss in general terms the possible implications of genetic variability of T. cruzi antigens and proteases to immunopathology. Peptide epitopes from a highly polymorphic subfamily of trans-sialidase (TS) antigens were recently identified as targets of killer T cell (CTL) responses, both in mice and humans. While some class I MHC restricted CTL recognize epitopes derived from amastigote-specific TS-related antigens (TSRA), others are targeted to peptide epitopes originating from trypomastigote-specific TSRA. A mechanistic hypothesis is proposed to explain how the functional activity and specificity of class I MHC restricted killer T cells may control the extent to which tissue are exposed to prematurely released amastigotes. Chronic immunopathology may be exacerbated due the progressive accumulation of amastigote-derived antigens and pro-inflammatory molecules (eg. GPI-mucins and kinin-releasing proteases) in dead macrophage bodies.
Collapse
Affiliation(s)
- J Scharfstein
- Laboratório de Imunologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
| | | |
Collapse
|
42
|
Yong V, Schmitz V, Vannier-Santos MA, de Lima AP, Lalmanach G, Juliano L, Gauthier F, Scharfstein J. Altered expression of cruzipain and a cathepsin B-like target in a Trypanosoma cruzi cell line displaying resistance to synthetic inhibitors of cysteine-proteinases. Mol Biochem Parasitol 2000; 109:47-59. [PMID: 10924756 DOI: 10.1016/s0166-6851(00)00237-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The therapeutic potential of synthetic inhibitors to the major cysteine-proteinase from Trypanosoma cruzi (cruzain or cruzipain) was recently demonstrated in animal models of Chagas' disease. A possible limitation of this strategy would be the emergence of parasite populations developing resistance to cysteine-proteinase inhibitors. Here, we describe the properties of a phenotypically stable T. cruzi cell line (R-Dm28) that displays increased resistance to Z-(SBz)Cys-Phe-CHN2, an irreversible cysteine-proteinase inhibitor which preferentially inactivates cathepsin L-like enzymes. Isolated from axenic cultures of the parental cells (IC50 1.5 microM), R-Dm28 epimastigotes exhibited 13-fold (IC50) 20 microM) higher resistance to this inhibitor and did not display cross-resistance to unrelated trypanocidal drugs, such as benznidazol and nifurtimox. Western blotting (with mAb), affinity labeling (with biotin-LVG-CHN2) and FACS analysis of R-Dm28 log-phase epimastigotes revealed that the cruzipain target was expressed at lower levels, as compared with Dm28c. Interestingly, this deficit was paralleled by increased expression of an unrelated Mr 30 000 cysteine-proteinase whose activity was somewhat refractory to inhibition by Z-(SBz)Cys-Phe-CHN,. N-terminal sequencing of the affinity-purified biotin-LVG-proteinase complex allowed its identification as a cathepsin B-like enzyme. Increased antigenic deposits of this proteinase were found in the grossly enlarged and electron dense reservosomes from R-Dm28 epimastigotes. Our data suggest that R-Dm28 resistance to toxic effects induced by the synthetic inhibitor may result from decreased availability of the most sensitive cysteine-proteinase target, cruzipain. The deficit in metabolic functions otherwise mediated by this cathepsin L-like proteinase is likely compensated by increased expression/accumulation of a cathepsin B-like target.
Collapse
Affiliation(s)
- V Yong
- Departamento de Bioquímica Médica, ICB, CCS, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Fundão, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Serveau C, Lalmanach G, Hirata I, Scharfstein J, Juliano MA, Gauthier F. Discrimination of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, and mammalian cathepsins B and L, by a pH-inducible fluorogenic substrate of trypanosomal cysteine proteinases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:275-80. [PMID: 9914503 DOI: 10.1046/j.1432-1327.1999.00032.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The substrate specificity of cruzipain, the major cysteine proteinase of Trypanosoma cruzi, was investigated using a series of dansyl-peptides based on the putative autoproteolytic sequence of the proteinase (VVG-GP) located at the hinge region between the catalytic domain and the C-terminal extension. Replacing Val with Pro at P2 in this sequence greatly improved the rate of cleavage by cruzipain. Tyr and Val residues are preferred at P3 by all cysteine proteinases whatever their origin, whereas only cruzipain and cathepsin L cleaved substrate with a His at that position. The combination of a Pro at P2 and His at P3 abolished cleavage by cathepsin L, so that only cruzipain was able to cleave the HPGGP peptide at the GG bond. A substrate with intramolecularly quenched fluorescence was raised on this sequence (Abz-HPGGPQ-EDDnp) which was also specifically cleaved by cruzipain (kcat/Km of 157 000 m-1. s-1) and by a homologous proteinase from Trypanosoma congolense. The pH activity profile of cruzipain on Abz-HPGGPQ-EDDnp showed a narrow peak with a maximum at pH 5.5 and no cleavage above pH 6.8, although trypanosomal cysteine proteinases remain active at basic pH. The lack of activity at neutral and basic pH was due to a decrease in kcat, while the Km remained essentially unchanged, demonstrating that the substrate still binds to the enzyme and therefore behaves as an inhibitor. Changing the substrate into an inhibitor depended on the deprotonation of the His residue in the substrate, as deduced from a comparison of the pH activity profile with that of a related, but uncharged, substrate. Abz-HPGGPQ-EDDnp also inhibited mammalian cathepsins B and L but was not cleaved by these proteinases at any pH. The importance of the His residue at P3 for cleavage by cruzipain was confirmed by substituting Lys for His at that position. The resulting peptide was not cleaved by cruzipain in spite of the presence of a positively charged group at P3, but still interacted with the enzyme. It was concluded that the presence of an imidazolium group at P3 was essential to endow the HPGGPQ sequence with the properties of a cruzipain substrate.
Collapse
Affiliation(s)
- C Serveau
- Enzymology and Protein Chemistry Laboratory, University of François Rabelais, Tours, Cedex France
| | | | | | | | | | | |
Collapse
|
44
|
Nóbrega OT, Santos Silva MA, Teixeira AR, Santana JM. Cloning and sequencing of tccb, a gene encoding a Trypanosoma cruzi cathepsin B-like protease. Mol Biochem Parasitol 1998; 97:235-40. [PMID: 9879903 DOI: 10.1016/s0166-6851(98)00125-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- O T Nóbrega
- Faculdade de Ciências da Saúde, Departamento de Biologia Celular, Universidade de Brasília-DF, Brazil
| | | | | | | |
Collapse
|
45
|
Mottram JC, Brooks DR, Coombs GH. Roles of cysteine proteinases of trypanosomes and Leishmania in host-parasite interactions. Curr Opin Microbiol 1998; 1:455-60. [PMID: 10066510 DOI: 10.1016/s1369-5274(98)80065-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Trypanosomes and Leishmania contain an abundance of stage-regulated cysteine proteinases encoded by several gene families. Analysis of parasites rendered defective in cysteine proteinase function, either through genetic manipulation or through the use of specific inhibitors, has revealed roles for the enzymes in parasite virulence, in modulation of the host's immune response and in parasite differentiation.
Collapse
Affiliation(s)
- J C Mottram
- Wellcome Unit of Molecular Parasitology, University of Glasgow, The Anderson College, Glasgow G11 6NU, Scotland, UK.
| | | | | |
Collapse
|
46
|
Meldal M, Svendsen IB, Juliano L, Juliano MA, Nery ED, Scharfstein J. Inhibition of cruzipain visualized in a fluorescence quenched solid-phase inhibitor library assay. D-amino acid inhibitors for cruzipain, cathepsin B and cathepsin L. J Pept Sci 1998; 4:83-91. [PMID: 9620612 DOI: 10.1002/(sici)1099-1387(199804)4:2<83::aid-psc124>3.0.co;2-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A PEGA-resin was derivatized with a 3:1 mixture of hydroxymethyl benzoic acid and Fmoc-Lys(Boc)-OH and the fluorogenic substrate Ac-Y(NO2)KLRFSKQK(Abz)-PEGA was assembled on the lysine using the active ester approach. Following esterification of the hydroxymethyl benzoic acid with Fmoc-Val-OH a library XXX-k/r-XXXV containing approximately 200,000 beads was assembled by split synthesis. The resulting 'one bead, two peptides' library was subjected to extensive hydrolysis with cruzipain. One hundred darker beads were isolated and the 14 most persistently dark beads were collected and sequenced. The putative inhibitor peptides and several analogues were synthesized and found to be competitive microM to nM inhibitors of cruzipain in solution. The inhibitory activity was found to be unspecific to cruzipain when compared with cathepsins B and L and specific when compared with kallikrein. One of the inhibitors was docked into the active site of cathepsin B and was found most probably to bind to the enzyme cavity in an unusual manner, owing to the inserted D-amino acid residue.
Collapse
Affiliation(s)
- M Meldal
- Carlsberg Laboratory, Valby, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
47
|
Garcia MP, Nóbrega OT, Teixeira AR, Sousa MV, Santana JM. Characterisation of a Trypanosoma cruzi acidic 30 kDa cysteine protease. Mol Biochem Parasitol 1998; 91:263-72. [PMID: 9566519 DOI: 10.1016/s0166-6851(97)00205-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel proteolytic activity was identified in epimastigote, amastigote and trypomastigote forms of Trypanosoma cruzi using the fluorogenic substrate N-Succinyl-Leu-Leu-Val-Tyr-7-amido-4-methylcoumarin. Epimastigotes showed enzyme activity to be 2-fold higher than amastigotes and trypomastigotes. The protease that displays this activity was purified from epimastigote forms by a four step chromatographic procedure: Diethylaminoethyl-Sephacel, Phenyl-Sepharose, Phenyl-Superose, and Concanavalin A Sepharose columns. The purified enzyme is a glycoprotein that migrates as a 30 kDa protein in 12.5% SDS-polyacrylamide gel electrophoresis (PAGE), under reducing conditions. Its optimal enzymatic activity on both fluorogenic and protein substrates was found to occur at an acidic pH. The inhibition pattern of the purified 30 kDa protease showed that it belongs to the cysteine-protease class. In addition to the synthetic substrate, the purified protease hydrolysed bovine serum albumin (BSA) and human type I collagen. The N-terminal amino acid sequence of the protease shows similarity to the mammalian cathepsin B protease.
Collapse
Affiliation(s)
- M P Garcia
- Departamento de Biologia Celular, Universidade de Brasília, Brasília-DF, Brazil
| | | | | | | | | |
Collapse
|
48
|
Martínez J, Henriksson J, Ridåker M, Pettersson U, Cazzulo JJ. Polymorphisms of the genes encoding cruzipain, the major cysteine proteinase of Trypanosoma cruzi, in the region encoding the C-terminal domain. FEMS Microbiol Lett 1998; 159:35-9. [PMID: 9485592 DOI: 10.1111/j.1574-6968.1998.tb12838.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Forty-eight cDNA clones obtained from different developmental stages of Trypanosoma cruzi and all encoding the C-terminal domain of the major cysteine proteinase (cruzipain) have been sequenced. A number of polymorphisms were detected, seven of them resulting in amino acid replacements. The predicted pI values of the corresponding gene products varied between 7.05 and 8.12. These changes in amino acid sequence, together with previously reported variations in carbohydrate composition at the only N-glycosylation site in the C-terminal domain, may account for most of the heterogeneities found in the mature enzyme.
Collapse
Affiliation(s)
- J Martínez
- Instituto de Investigaciones Bioquímicas Luis F. Leloir, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
49
|
Santos MR, Cano MI, Schijman A, Lorenzi H, Vázquez M, Levin MJ, Ramirez JL, Brandão A, Degrave WM, da Silveira JF. The Trypanosoma cruzi genome project: nuclear karyotype and gene mapping of clone CL Brener. Mem Inst Oswaldo Cruz 1997; 92:821-8. [PMID: 9580491 DOI: 10.1590/s0074-02761997000600018] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
By using improved pulsed field gel electrophoresis conditions, the molecular karyotype of the reference clone CL Brener selected for Trypanosoma cruzi genome project was established. A total of 20 uniform chromosomal bands ranging in size from 0.45 to 3.5 Megabase pairs (Mbp) were resolved in a single run. The weighted sum of the chromosomal bands was approximately 87 Mbp. Chromoblots were hybridized with 39 different homologous probes, 13 of which identified single chromosomes. Several markers showed linkage and four different linkage groups were identified, each comprising two markers. Densitometric analysis suggests that most of the chromosomal bands contain two or more chromosomes representing either homologous chromosomes and/or heterologous chromosomes with similar sizes.
Collapse
Affiliation(s)
- M R Santos
- Universidade Federal de São Paulo (UNIFESP-EPM), Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Del Nery E, Juliano MA, Lima AP, Scharfstein J, Juliano L. Kininogenase activity by the major cysteinyl proteinase (cruzipain) from Trypanosoma cruzi. J Biol Chem 1997; 272:25713-8. [PMID: 9325296 DOI: 10.1074/jbc.272.41.25713] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The major isoform of Trypanosoma cruzi cysteinyl proteinase (cruzipain) has generated Lys-bradykinin (Lys-BK or kallidin), a proinflammatory peptide, by proteolysis of kininogen. The releasing of this peptide was demonstrated by mass spectrometry, radioimmunoassay, and ileum contractile responses. The kinin-releasing activity was immunoabsorbed selectively by monoclonal antibodies to the characteristic COOH-terminal domain of cruzipain. To determine the hydrolysis steps that account for the kininogenase activity of cruzipain, we synthesized a fluorogenic peptide (o-aminobenzoyl-Leu-Gly-Met-Ile-Ser-Leu-Met-Lys-Arg-Pro-Pro-Gly-Phe-S er-Pro-Phe-Arg389-Ser390-Ser-Arg-Ile-NH2) based on the sequence Leu373 to Ile393 of the human high molecular weight kininogen. The hydrolysis products from this peptide were isolated by high performance liquid chromatography, and Lys-BK was characterized as the major released kinin by mass spectrometry. Intramolecularly quenched fluorogenic peptides spanning the Met379-Lys380 and Arg389-Ser390 bradykinin-flanking sequences were then used to assess the substrate specificity requirements of the parasite-derived protease compared with two COOH-terminal truncated recombinant isoforms (cruzain and cruzipain 2). In contrast to the high catalytic efficiency of parasite-derived cruzipain, the recombinant proteinases cleaved the bradykinin-flanking sites at markedly different rates. In addition, we also demonstrated that cruzipain activates plasmatic prekallikrein, which would be a second and indirect way of the parasite protease to release bradykinin.
Collapse
Affiliation(s)
- E Del Nery
- Department of Biophysics, Universidade Federal de São Paulo, Escola Paulista de Medicina, Rua Três de Maio, 100, São Paulo, 04044-020, Brazil
| | | | | | | | | |
Collapse
|