1
|
Parsons PG. Can skin cancer in humans be prevented by alleviation of oxidative stress? Redox Rep 2016; 3:77-83. [DOI: 10.1080/13510002.1997.11747094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
2
|
Carilho Torrao RBD, Dias IH, Bennett SJ, Dunston CR, Griffiths HR. Healthy ageing and depletion of intracellular glutathione influences T cell membrane thioredoxin-1 levels and cytokine secretion. Chem Cent J 2013; 7:150. [PMID: 24007191 PMCID: PMC3766689 DOI: 10.1186/1752-153x-7-150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 08/14/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND During ageing an altered redox balance has been observed in both intracellular and extracellular compartments, primarily due to glutathione depletion and metabolic stress. Maintaining redox homeostasis is important for controlling proliferation and apoptosis in response to specific stimuli for a variety of cells. For T cells, the ability to generate specific response to antigen is dependent on the oxidation state of cell surface and cytoplasmic protein-thiols. Intracellular thiols are maintained in their reduced state by a network of redox regulating peptides, proteins and enzymes such as glutathione, thioredoxins and thioredoxin reductase. Here we have investigated whether any relationship exists between age and secreted or cell surface thioredoxin-1, intracellular glutathione concentration and T cell surface thioredoxin 1 (Trx-1) and how this is related to interleukin (IL)-2 production. RESULTS Healthy older adults have reduced lymphocyte surface expression and lower circulating plasma Trx-1 concentrations. Using buthionine sulfoximine to deplete intracellular glutathione in Jurkat T cells we show that cell surface Trx-1 is lowered, secretion of Trx-1 is decreased and the response to the lectin phytohaemagglutinin measured as IL-2 production is also affected. These effects are recapitulated by another glutathione depleting agent, diethylmaleate. CONCLUSION Together these data suggest that a relationship exists between the intracellular redox compartment and Trx-1 proteins. Loss of lymphocyte surface Trx-1 may be a useful biomarker of healthy ageing.
Collapse
|
3
|
Structure and properties of iron nitrosyl complexes with functionalized sulfur-containing ligands. Russ Chem Bull 2012. [DOI: 10.1007/s11172-011-0192-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Kamiński MM, Röth D, Sass S, Sauer SW, Krammer PH, Gülow K. Manganese superoxide dismutase: a regulator of T cell activation-induced oxidative signaling and cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1041-52. [PMID: 22429591 DOI: 10.1016/j.bbamcr.2012.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/20/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
Mitochondrial reactive oxygen species (ROS) are indispensible for T cell activation-induced expression of interleukin 2 (IL-2) and CD95 ligand (CD95L, FasL/Apo-1L) genes, and in turn, for CD95L-mediated activation-induced cell death (AICD). Here, we show that manganese superoxide dismutase (MnSOD/SOD2), a major mitochondrial antioxidative enzyme, constitutes an important control switch in the process of activation-induced oxidative signal generation in T cells. Analysis of the kinetics of T cell receptor (TCR)-triggered ROS production revealed a temporal association between higher MnSOD abundance/activity and a shut-down phase of oxidative signal generation. Transient or inducible MnSOD overexpression abrogated T cell activation-triggered mitochondrial ROS production as well as NF-κB- and AP-1-mediated transcription. Consequently, lowered expression of IL-2 and CD95L genes resulted in decreased IL-2 secretion and CD95L-dependent AICD. Moreover, upregulation of the mitochondrial MnSOD level is dependent on oxidation-sensitive transcription and not on the increase of mitochondrial mass. Thus, MnSOD-mediated negative feedback regulation of activation-induced mitochondrial ROS generation exemplifies a process of retrograde mitochondria-to-nucleus communication. Our finding underlines the critical role for MnSOD and mitochondria in the regulation of human T cell activation.
Collapse
Affiliation(s)
- Marcin Mikołaj Kamiński
- Division of Immunogenetics (D030), Tumor Immunology Program, German Cancer Research Center (DFKZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Beneficial effects of treatment with transglutaminase inhibitor cystamine on the severity of inflammation in a rat model of inflammatory bowel disease. J Transl Med 2011; 91:452-61. [PMID: 21042292 DOI: 10.1038/labinvest.2010.186] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Inflammatory bowel disease (IBD) represents a socially and clinically relevant disorder, characterized by intestinal chronic inflammation. Cystamine (CysN) is a multipotent molecule with healthy effects and, moreover, it is an inhibitor of transglutaminases (TGs), including the TG type 2 (TG2), an enzyme with pleiotropic functions, involved in different pathways of inflammation and central in the pathogenesis of some human disorders as the IBD. Our aim was to evaluate the effect of CysN in an IBD rat model. A total of 30 rats were divided into 4 groups: controls without treatment (CTR; n=7); receiving the 2,4,6-trinitrobenzene sulfonic acid enema (TNBS group; n=8); treated with TNBS enema plus oral CysN (TNBS-CysN group; n=8); treated with CysN (CysN group; n=7). After killing, bowel inflammation was evaluated applying specific scores. TG activity, TG2 and isopeptide bond immunohistochemical expression, and tumor necrosis factor-α (TNF-α) were evaluated in the colonic tissue, such as interleukin-6 (IL-6) serological levels (ELISA). TG2 was also evaluated on the luminal side of the colon by immunoautoradiography. Colonic samples from IBD patients were compared with animal results. TNBS-CysN group developed a less severe colitis compared with the TNBS group (macroscopic score 0.43±0.78 vs 3.28±0.95, microscopic score 6.62±12.01 vs 19.25±6.04, P<0.05, respectively) associated with a decrease of TG activity, TG2 and isopeptide bond immunohistochemical expression, TNF-α and IL-6 levels. No statistically significant differences were found between CysN and CTR groups. The colonic immunolocalization of TG2 was comparable in humans affected by IBD and TNBS-administered animals. This is the first demonstration that treatment with a CysN has an anti-inflammatory effect, reducing severity of colitis in a rat model. CysN could be tested as a possible treatment or co-treatment in IBD therapeutic trials.
Collapse
|
6
|
Kaminski MM, Sauer SW, Klemke CD, Süss D, Okun JG, Krammer PH, Gülow K. Mitochondrial reactive oxygen species control T cell activation by regulating IL-2 and IL-4 expression: mechanism of ciprofloxacin-mediated immunosuppression. THE JOURNAL OF IMMUNOLOGY 2010; 184:4827-41. [PMID: 20335530 DOI: 10.4049/jimmunol.0901662] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This article shows that T cell activation-induced expression of the cytokines IL-2 and -4 is determined by an oxidative signal originating from mitochondrial respiratory complex I. We also report that ciprofloxacin, a fluoroquinolone antibiotic, exerts immunosuppressive effects on human T cells suppressing this novel mechanism. Sustained treatment of preactivated primary human T cells with ciprofloxacin results in a dose-dependent inhibition of TCR-induced generation of reactive oxygen species (ROS) and IL-2 and -4 expression. This is accompanied by the loss of mitochondrial DNA and a resulting decrease in activity of the complex I. Consequently, using a complex I inhibitor or small interfering RNA-mediated downregulation of the complex I chaperone NDUFAF1, we demonstrate that TCR-triggered ROS generation by complex I is indispensable for activation-induced IL-2 and -4 expression and secretion in resting and preactivated human T cells. This oxidative signal (H(2)O(2)) synergizes with Ca(2+) influx for IL-2/IL-4 expression and facilitates induction of the transcription factors NF-kappaB and AP-1. Moreover, using T cells isolated from patients with atopic dermatitis, we show that inhibition of complex I-mediated ROS generation blocks disease-associated spontaneous hyperexpression and TCR-induced expression of IL-4. Prolonged ciprofloxacin treatment of T cells from patients with atopic dermatitis also blocks activation-induced expression and secretion of IL-4. Thus, our work shows that the activation phenotype of T cells is controlled by a mitochondrial complex I-originated oxidative signal.
Collapse
Affiliation(s)
- Marcin M Kaminski
- Division of Immunogenetics, Tumor Immunology Program, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Kumar A, Hoffman TA, Dericco J, Naqvi A, Jain MK, Irani K. Transcriptional repression of Kruppel like factor-2 by the adaptor protein p66shc. FASEB J 2009; 23:4344-52. [PMID: 19696221 DOI: 10.1096/fj.09-138743] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The adaptor protein p66shc promotes cellular oxidative stress and apoptosis. Here, we demonstrate a novel mechanistic relationship between p66shc and the kruppel like factor-2 (KLF2) transcription factor and show that this relationship has biological relevance to p66shc-regulated cellular oxidant level, as well as KLF2-induced target gene expression. Genetic knockout of p66shc in mouse embryonic fibroblasts (MEFs) stimulates activity of the core KLF2 promoter and increases KLF2 mRNA and protein expression. Similarly, shRNA-induced knockdown of p66shc increases KLF2-promoter activity in HeLa cells. The increase in KLF2-promoter activity in p66shc-knockout MEFs is dependent on a myocyte enhancing factor-2A (MEF2A)-binding sequence in the core KLF2 promoter. Short-hairpin RNA-induced knockdown of p66shc in endothelial cells also stimulates KLF2 mRNA and protein expression, as well as expression of the endothelial KLF2 target gene thrombomodulin. MEF2A protein and mRNA are more abundant in p66shc-knockout MEFs, resulting in greater occupancy of the KLF2 promoter by MEF2A. In endothelial cells, the increase in KLF2 and thrombomodulin protein by shRNA-induced decrease in p66shc expression is partly abrogated by knockdown of MEF2A. Finally, knockdown of KLF2 abolishes the decrease in the cellular reactive oxygen species hydrogen peroxide observed with knockdown of p66shc, and KLF2 overexpression suppresses cellular hydrogen peroxide levels, independent of p66shc expression. These findings illustrate a novel mechanism by which p66shc promotes cellular oxidative stress, through suppression of MEF2A expression and consequent repression of KLF2 transcription.
Collapse
Affiliation(s)
- Ajay Kumar
- Cardiovascular Institute, University of Pittsburgh Medical Center, 623S Scaife Hall, 200 Lothrop St., Pittsburgh, PA 15213, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Jeitner TM, Muma NA, Battaile KP, Cooper AJ. Transglutaminase activation in neurodegenerative diseases. FUTURE NEUROLOGY 2009; 4:449-467. [PMID: 20161049 DOI: 10.2217/fnl.09.17] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The following review examines the role of calcium in promoting the in vitro and in vivo activation of transglutaminases in neurodegenerative disorders. Diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease exhibit increased transglutaminase activity and rises in intracellular calcium concentrations, which may be related. The aberrant activation of transglutaminase by calcium is thought to give rise to a variety of pathological moieties in these diseases, and the inhibition has been shown to have therapeutic benefit in animal and cellular models of neurodegeneration. Given the potential clinical relevance of transglutaminase inhibitors, we have also reviewed the recent development of such compounds.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Applied Bench Core, Winthrop University Hospital, 222 Station Plaza North, Suite 502, Mineola, NY 11501, USA Tel.: +1 516 663 3455
| | | | | | | |
Collapse
|
9
|
Jeitner TM, Pinto JT, Krasnikov BF, Horswill M, Cooper AJL. Transglutaminases and neurodegeneration. J Neurochem 2009; 109 Suppl 1:160-6. [PMID: 19393023 DOI: 10.1111/j.1471-4159.2009.05843.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transglutaminases (TGs) are Ca2+-dependent enzymes that catalyze a variety of modifications of glutaminyl (Q) residues. In the brain, these modifications include the covalent attachment of a number of amine-bearing compounds, including lysyl (K) residues and polyamines, which serve to either regulate enzyme activity or attach the TG substrates to biological matrices. Aberrant TG activity is thought to contribute to Alzheimer disease, Parkinson disease, Huntington disease, and supranuclear palsy. Strategies designed to interfere with TG activity have some benefit in animal models of Huntington and Parkinson diseases. The following review summarizes the involvement of TGs in neurodegenerative diseases and discusses the possible use of selective inhibitors as therapeutic agents in these diseases.
Collapse
|
10
|
Michalek RD, Nelson KJ, Holbrook BC, Yi JS, Stridiron D, Daniel LW, Fetrow JS, King SB, Poole LB, Grayson JM. The requirement of reversible cysteine sulfenic acid formation for T cell activation and function. THE JOURNAL OF IMMUNOLOGY 2007; 179:6456-67. [PMID: 17982034 DOI: 10.4049/jimmunol.179.10.6456] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Reactive oxygen intermediates (ROI) generated in response to receptor stimulation play an important role in mediating cellular responses. We have examined the importance of reversible cysteine sulfenic acid formation in naive CD8(+) T cell activation and proliferation. We observed that, within minutes of T cell activation, naive CD8(+) T cells increased ROI levels in a manner dependent upon Ag concentration. Increased ROI resulted in elevated levels of cysteine sulfenic acid in the total proteome. Analysis of specific proteins revealed that the protein tyrosine phosphatases SHP-1 and SHP-2, as well as actin, underwent increased sulfenic acid modification following stimulation. To examine the contribution of reversible cysteine sulfenic acid formation to T cell activation, increasing concentrations of 5,5-dimethyl-1,3-cyclohexanedione (dimedone), which covalently binds to cysteine sulfenic acid, were added to cultures. Subsequent experiments demonstrated that the reversible formation of cysteine sulfenic acid was critical for ERK1/2 phosphorylation, calcium flux, cell growth, and proliferation of naive CD8(+) and CD4(+) T cells. We also found that TNF-alpha production by effector and memory CD8(+) T cells was more sensitive to the inhibition of reversible cysteine sulfenic acid formation than IFN-gamma. Together, these results demonstrate that reversible cysteine sulfenic acid formation is an important regulatory mechanism by which CD8(+) T cells are able to modulate signaling, proliferation, and function.
Collapse
Affiliation(s)
- Ryan D Michalek
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ruiz-Ramos R, Cebrian ME, Garrido E. Benzoquinone activates the ERK/MAPK signaling pathway via ROS production in HL-60 cells. Toxicology 2005; 209:279-87. [PMID: 15795063 DOI: 10.1016/j.tox.2004.12.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Revised: 12/22/2004] [Accepted: 12/30/2004] [Indexed: 10/25/2022]
Abstract
Benzene (BZ) is a class I carcinogen and its oxidation to reactive intermediates is a prerequisite of hematoxicity and myelotoxicity. The generated metabolites include hydroquinone, which is further oxidized to the highly reactive 1,4-benzoquinone (BQ) in bone marrow. Therefore, we explored the mechanisms underlying BQ-induced HL-60 cell proliferation by studying the role of BQ-induced reactive oxygen species (ROS) in the activation of the ERK-MAPK signaling pathway. BQ treatment (0.01-30 microM) showed that doses below 10 microM did not significantly reduce viability. ROS production after 3 microM BQ treatment increased threefold; however, catalase addition reduced ROS generation to basal levels. FACS analysis showed that BQ induced a fivefold increase in the proportion of cells in S-phase. We also observed a high proportion of Bromodeoxyuridine (BrdU) stained cells, indicating a higher DNA synthesis rate. BQ also produced rapid and prolonged phosphorylation of ERK1/2 proteins. Simultaneous treatment with catalase or PD98059, a potent MEK protein inhibitor, reduced cell recruitment into the S-phase and also abolished the ERK1/2 protein phosphorylation induced by BQ, suggesting that MEK/ERK is an important pathway involved in BQ-induced ROS mediated proliferation. The prolonged activation of ERK1/2 contributes to explain the increased S-phase cell recruitment and to understand the leukemogenic processes associated with exposure to benzene metabolites. Thus, the possible mechanism by which BQ induce HL-60 cells to enter the cell cycle and proliferate is linked to ROS production and its growth promoting effects by specific activation of regulating genes known to be activated by redox mechanisms.
Collapse
Affiliation(s)
- Ruben Ruiz-Ramos
- Sección de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN, 07360 México D.F., Mexico
| | | | | |
Collapse
|
12
|
Jeitner TM, Delikatny EJ, Ahlqvist J, Capper H, Cooper AJ. Mechanism for the inhibition of transglutaminase 2 by cystamine. Biochem Pharmacol 2005; 69:961-70. [DOI: 10.1016/j.bcp.2004.12.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Accepted: 12/14/2004] [Indexed: 11/17/2022]
|
13
|
Haddad H, Windgassen D, Ramsborg CG, Paredes CJ, Papoutsakis ET. Molecular understanding of oxygen-tension and patient-variability effects on ex vivo expanded T cells. Biotechnol Bioeng 2005; 87:437-50. [PMID: 15286980 DOI: 10.1002/bit.20166] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Immunotherapy with ex vivo cultured T cells depends on a large supply of biologically active cells. Understanding the effects of culture parameters is essential for improving the proliferation and efficacy of the expanded cells. Low oxygen tension (5% pO(2)) was previously reported to improve T-cell expansion and alter cellular phenotypic characteristics compared to T cells cultured at 20% pO(2). Here we report the use of DNA-array based transcriptional analysis coupled with protein-level analysis to provide molecular insights into pO(2) and patient-variability effects on expanded primary human T cells. Analysis of seven blood samples showed that reduced pO(2) results in higher expression of genes important in lymphocyte biology, immune function, and cell-cycle progression. 20% pO(2) resulted in higher expression of genes involved in stress response, cell death, and cellular repair. Expression of granzyme A (gzmA) was found to be significantly regulated by oxygen tension with cells at 5% pO(2) having greater gzmA expression than at 20% pO(2). Protein-level analysis of gzmA was consistent with transcriptional analysis. Granzyme K (gzmK) was coexpressed with gzmA, whereas Granzyme B (gzmB) expression was found to precede the expression of both gzmA and gzmK in 15-day cultures. Temporal gene expression patterns for seven blood samples demonstrate that most genes are expressed by all patient samples in similar temporal patterns. However, several patient-specific gene clusters were identified, and one cluster was found to correlate well with cell proliferation and may potentially be used to predict patient-specific T-cell expansion.
Collapse
Affiliation(s)
- Hadar Haddad
- Department of Chemical and Biological Engineering, Northwestern University, 2145 N. Sheridan Road, Room E136, Evanston, IL 60208, USA
| | | | | | | | | |
Collapse
|
14
|
Hardy K, Hunt NH. Effects of a redox-active agent on lymphocyte activation and early gene expression patterns. Free Radic Biol Med 2004; 37:1550-63. [PMID: 15477007 DOI: 10.1016/j.freeradbiomed.2004.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2003] [Revised: 07/08/2004] [Accepted: 07/15/2004] [Indexed: 11/19/2022]
Abstract
Antioxidants can inhibit the proliferation of T lymphocytes induced by mitogens. This has been postulated to be due to their scavenging of reactive oxygen species which may act as second messengers in the antigen-induced signaling cascade leading to cell proliferation. When added concurrently with various mitogens, the thiol pyrrolidine dithiocarbamate (PDTC) inhibited the subsequent proliferation of lymphocytes. The extracellular copper chelator bathocuproine disulfonic acid (BCPS) increased the amount of PDTC needed for inhibition. We sought to determine the mechanism by which the two different treatments, PDTC (0.4 microM, copper-dependent) and PDTC (20 microM with BCPS, redox-sensitive) affected proliferation. We found that both inhibited the increase in expression of many of the genes, including IL-2 and MKP-2, that were induced early after stimulation of lymphocytes with phorbol myristate acetate and ionomycin. The inhibition of MKP-2 may have contributed to the enhancement observed by the thiol of mitogen-induced ERK phosphorylation. Of the two redox-sensitive, IL-2 regulating transcription factors, NF-kappaB and AP-1, the mitogen-induced activity of the former was inhibited by PDTC. Treatment of unstimulated cells with PDTC induced the expression of many genes, most notably several metallothioneins and heat shock proteins, and this may provide an alternative explanation for the inhibition of cellular proliferation.
Collapse
Affiliation(s)
- Kristine Hardy
- Department of Pathology, University of Sydney, New South Wales, 2006, Australia
| | | |
Collapse
|
15
|
Williams MS, Kwon J. T cell receptor stimulation, reactive oxygen species, and cell signaling. Free Radic Biol Med 2004; 37:1144-51. [PMID: 15451054 DOI: 10.1016/j.freeradbiomed.2004.05.029] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 05/28/2004] [Indexed: 10/26/2022]
Abstract
In the immune system, much of the focus on reactive oxygen species (ROS) has been regarding their role in antimicrobial defense as part of the innate immune system. In addition to this role, it is now becoming clear that ROS are used by cells of the adaptive immune system as regulators of signal transduction by cell surface receptors. The activation of T lymphocytes through their specific antigen receptor [T cell receptor (TCR)] is vital in regulating the immune response. Much experimental evidence has suggested that activation of T cells is redox dependent and recent studies have shown that engagement of the TCR induces rapid production of ROS. This review examines the evidence for TCR-stimulated generation of ROS and discusses the role(s) of receptor-stimulated ROS production in T cell signal transduction and gene expression.
Collapse
Affiliation(s)
- Mark S Williams
- Immunology Department, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, MD, USA.
| | | |
Collapse
|
16
|
Remans PHJ, Gringhuis SI, van Laar JM, Sanders ME, Papendrecht-van der Voort EAM, Zwartkruis FJT, Levarht EWN, Rosas M, Coffer PJ, Breedveld FC, Bos JL, Tak PP, Verweij CL, Reedquist KA. Rap1 signaling is required for suppression of Ras-generated reactive oxygen species and protection against oxidative stress in T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2004; 173:920-31. [PMID: 15240679 DOI: 10.4049/jimmunol.173.2.920] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transient production of reactive oxygen species (ROS) plays an important role in optimizing transcriptional and proliferative responses to TCR signaling in T lymphocytes. Conversely, chronic oxidative stress leads to decreased proliferative responses and enhanced transcription of inflammatory gene products, and is thought to underlie the altered pathogenic behavior of T lymphocytes in some human diseases, such as rheumatoid arthritis (RA). Although the signaling mechanisms regulating ROS production in T lymphocytes has not been identified, activation of the small GTPase Ras has been shown to couple agonist stimulation to ROS production in other cell types. We find that Ras signaling via Ral stimulates ROS production in human T lymphocytes, and is required for TCR and phorbol ester-induced ROS production. The related small GTPase Rap1 suppresses agonist, Ras and Ral-dependent ROS production through a PI3K-dependent pathway, identifying a novel mechanism by which Rap1 can distally antagonize Ras signaling pathways. In synovial fluid T lymphocytes from RA patients we observed a high rate of endogenous ROS production, correlating with constitutive Ras activation and inhibition of Rap1 activation. Introduction of dominant-negative Ras into synovial fluid T cells restored redox balance, providing evidence that deregulated Ras and Rap1 signaling underlies oxidative stress and consequent altered T cell function observed in RA.
Collapse
Affiliation(s)
- Philip H J Remans
- Division of Clinical Immunology and Rheumatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hildeman DA. Regulation of T-cell apoptosis by reactive oxygen species. Free Radic Biol Med 2004; 36:1496-504. [PMID: 15182852 DOI: 10.1016/j.freeradbiomed.2004.03.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 03/24/2004] [Accepted: 03/25/2004] [Indexed: 11/25/2022]
Abstract
To ensure that a constant number of T cells are preserved in the peripheral lymphoid organs, the production and proliferation of T cells must be balanced out by their death. Newly generated T cells exit the thymus and are maintained as resting T cells. Transient disruption of homeostasis occurs when naïve T cells undergo antigen-induced expansion, a process involving intracellular signaling events that lead to T cell proliferation, acquisition of effector functions, and, ultimately, either apoptosis or differentiation into long-lived memory cells. The last decision point (death vs. differentiation) is a crucial one: it resets lymphoid homeostasis, promotes protective immunity, and limits autoimmunity. Despite its importance, relatively little is known about the molecular mechanisms involved in this cell fate decision. Although multiple mechanisms are likely involved, recent data suggest an underlying regulatory role for reactive oxygen species in controlling the susceptibility of T cells to apoptosis. This review focuses on recent advances in our understanding of how reactive oxygen species modulate T-cell apoptosis.
Collapse
Affiliation(s)
- David A Hildeman
- Division of Immunobiology, Children's Hospital Medical Center Cincinnati, OH 45229, USA.
| |
Collapse
|
18
|
Martínez-Salgado C, Eleno N, Tavares P, Rodríguez-Barbero A, García-Criado J, Bolaños JP, López-Novoa JM. Involvement of reactive oxygen species on gentamicin-induced mesangial cell activation. Kidney Int 2002; 62:1682-92. [PMID: 12371968 DOI: 10.1046/j.1523-1755.2002.00635.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) have been shown to be involved in the reduction of glomerular filtration rate observed after gentamicin (Genta) treatment in vivo, a phenomenon directly related with mesangial cell (MC) contraction. Our previous study reported that Genta induces concentration-dependent MC contraction and proliferation in vitro. METHODS To study the possible mediation of ROS in the effect of Genta, ROS production was measured in primary cultures of rat MC stimulated with Genta (10-5 mol/L). In addition, the MC response to Genta in the presence of the ROS scavengers superoxide dismutase (SOD) and catalase (CAT) was studied. MC activation and O2- production were studied in the presence of an inhibitor of the NADP(H) oxidase, diphenylene iodinium (DPI), and in the presence of L-NAME, an inhibitor of nitric oxide synthases (NOS). Finally, the effects of Genta on SOD activity and mRNA expression were examined. RESULTS Genta (10-5 mol/L) induced an increase in O2- production and SOD activity that was neither accompanied by an elevation in cytosolic Cu/Zn-SOD mRNA expression nor by H2O2 accumulation. Genta induced MC contraction and proliferation that were inhibited by SOD plus CAT. Both the extracellular and intracellular ROS donor systems, xantine+xantine oxidase (X+XO) and dimethoxinaphtoquinone (DMNQ), respectively, also stimulated MC contraction and proliferation. Genta-induced MC activation and O2- production were inhibited by DPI. Genta-induced O2- production was inhibited by L-NAME. Furthermore, Genta did not induce detectable changes in membrane fluidity and lipid peroxidation. CONCLUSIONS These results strongly suggest that an oxidative-mediated pathway exists in Genta-induced MC activation. A portion of the production of O2- may be due to NADP(H) oxidase and NOS activation. The amount of ROS produced, rather than having a toxic effect, might play a role as a mediator of Genta-induced MC activation
Collapse
Affiliation(s)
- Carlos Martínez-Salgado
- Departamento de Fisiología y Farmacología and Instituto Reina Sofía de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
19
|
El Batanouny M, Korraa S, Fekry O. Mitogenic potential inducible by He:Ne laser in human lymphocytes in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2002; 68:1-7. [PMID: 12208030 DOI: 10.1016/s1011-1344(02)00319-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The objective of the study was to investigate the mitogenic and genotoxic effects of He:Ne laser irradiation (632.8 nm) on human peripheral lymphocytes in vitro. We used the cytokinesis-block micronucleus assay, which incorporates cytochalasin B to inhibit cytokinesis while karyokinesis proceeds normally leading to the appearance of proliferating lymphocytes as binucleated cells. Also micronuclei will appear in cases of genotoxicologically-affected cells. Buffy coat leukocytes were exposed to 10 mW He:Ne laser at energy densities of 1, 2, 3 and 5 J/cm(2). Cells were then cultured in media 199 without any supplementation for 24, 48, 72 and 96 h adding cytochalasin B 24 h before harvesting of cells. Our results showed that laser-induced lymphocytes proliferate throughout the four consecutive days post-laser irradiation. The difference in the frequency of micronuclei between pre- and post-laser irradiation indicates that a He:Ne laser at such energy densities 1, 2, 3 and 5 J/cm(2) does not induce micronucleus formation. These results shed some light on the mechanism encountered by lymphocytes in the process of He:Ne laser-induced biostimulation.
Collapse
Affiliation(s)
- Mohamed El Batanouny
- Department of Surgery, Faculty of Medicine, National Institute for Laser Enhanced Sciences, Cairo University, Egypt.
| | | | | |
Collapse
|
20
|
Pack RA, Hardy K, Madigan MC, Hunt NH. Differential effects of the antioxidant alpha-lipoic acid on the proliferation of mitogen-stimulated peripheral blood lymphocytes and leukaemic T cells. Mol Immunol 2002; 38:733-45. [PMID: 11841833 DOI: 10.1016/s0161-5890(01)00110-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of the antioxidant alpha-lipoic acid (LA) on the proliferation of mitogen-stimulated human peripheral blood lymphocytes (HPBL) were investigated in comparison to its effects on the proliferation of two leukaemic T cell lines, Jurkat and CCRF-CEM. At low mM concentrations, LA inhibited in a dose-dependent manner DNA synthesis of HPBL stimulated with either phorbol myristate acetate (PMA) in combination with ionomycin (IoM), or phytohaemagglutinin (PHA). At similar concentrations, LA inhibited the proliferation of Jurkat and CCRF-CEM cells. However, LA was preferentially cytotoxic to the leukaemic cell lines. The selective toxicity of LA to Jurkat cells was shown by electron microscopy (EM) to be due to the induction of apoptosis. Furthermore, LA had different effects on the secretion of interleukin-2 (IL-2) and steady-state levels of IL-2 mRNA in mitogen-stimulated HPBL depending on the mitogens used. LA dramatically increased the induction of IL-2 mRNA and IL-2 protein secretion in PMA/IoM-stimulated HPBL, whereas it inhibited these in HPBL stimulated with PHA. The differential effects of LA on normal and leukaemic T lymphocytes may indicate a new route towards development of therapeutic agents.
Collapse
Affiliation(s)
- Robert A Pack
- Department of Pathology, University of Sydney, NSW 2006, Sydney, Australia
| | | | | | | |
Collapse
|
21
|
Nicholl DS, Daniels HM, Ira Thabrew M, Grayer RJ, Simmonds MS, Hughes RD. In vitro studies on the immunomodulatory effects of extracts of Osbeckia aspera. JOURNAL OF ETHNOPHARMACOLOGY 2001; 78:39-44. [PMID: 11585686 DOI: 10.1016/s0378-8741(01)00319-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Ayruvedic medical practitioners in Sri Lanka use aqueous extracts of the mature leaves of Osbeckia aspera to treat liver disease. The extract has been shown to have hepatoprotective effects in vitro and in vivo, and to have inhibitory effects on the complement system and on in vitro phagocytosis by polymorphonuclear cells. The aim of this study was to investigate the effect of an aqueous extract of Osbeckia on lymphocyte proliferation stimulated by mitogens and antigen. In control peripheral blood mononuclear cells (PBMC), high concentrations of the Osbeckia extract were inhibitory to proliferation stimulated by phytohaemagglutinin (PHA) and tuberculin purified protein derivative (PPD). On stimulation by phorbol myristate acetate and ionomycin (PMA+I) the extract showed stimulation of proliferation at low concentrations (<10 microg/ml) with inhibition at higher concentrations. A similar inhibitory pattern on mitogen/antigen stimulation was seen with PBMC from patients with chronic hepatitis C virus (HCV) infection. These results suggest that the inhibitory agent(s) in the aqueous extract of Osbeckia may have an effect on antigen-presenting cell function. The combined hepatoprotective and immunosuppressive effects of the extract are more likely to be beneficial in acute hepatitis rather than chronic hepatitis viral infection.
Collapse
Affiliation(s)
- D S Nicholl
- Institute of Liver Studies, Guy's, King's and St. Thomas' School of Medicine, Bessemer Road, SE5 9PJ, London, UK
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Apoptosis is a cell suicide program characterized by distinct morphological (cell shrinkage, membrane blebbing, pyknosis, chromatin margination, denser cytoplasmic images) and biochemical (e.g., DNA fragmentation into distinct ladders; degradation of apoptotic markers such as PARP and nuclear lamins) features. It is involved in multiple physiological processes examplified by involution of mammary tissues, embryonic development, homeostatic maintenance of tissues and organs, and maturation of the immune system, as well as in many pathological conditions represented by neurologic degeneration (Alzeimer's disease), autoimmune and inflammatory diseases, etiology of atherosclerosis, AIDS, and oncogenesis and tumor progression. Numerous molecular entities have been shown to regulate the apoptotic process. This review provides a concise summary of the recent data on the role of oncogenes/tumor suppressor genes, cytokines and growth factors/growth factor receptors, intracellular signal transducers, cell cycle regulators, reactive oxygen species or other free radicals, extracellular matrix regulators/cell adhesion molecules, and specific endonucleases and cytoplasmic proteases (the ICE family proteins) in regulating cell survival and apoptosis. Elucidation of the molecular mechanisms regulating apoptosis bears tremendous impact on enhancing our understanding of many diseases inflicting the human beings and undoubtedly brings us hope for the cure of these diseases.
Collapse
Affiliation(s)
- Dean G Tang
- Wayne State University, Department of Radiation Oncology, Detroit, USA
| | | |
Collapse
|
23
|
Hardy K, Hunt NH. The effect of antioxidants on global and cytokine gene expression in T lymphocytes. Redox Rep 2000; 4:329-31. [PMID: 10772079 DOI: 10.1179/135100099101535061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- K Hardy
- Department of Pathology, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
24
|
Qiu L, Zhang M, Sturm RA, Gardiner B, Tonks I, Kay G, Parsons PG. Inhibition of melanin synthesis by cystamine in human melanoma cells. J Invest Dermatol 2000; 114:21-7. [PMID: 10620110 DOI: 10.1046/j.1523-1747.2000.00826.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In studies to determine whether pigmentation can be regulated physiologically by thiols, human melanoma cells (MM418c5) and melanocytes were found to become depigmented when cultured continuously in 50 microM cystamine. Cystamine was depleted from the culture medium and the treatment was nontoxic and reversible. Cysteamine, dithiothreitol, and phenylthiourea were less effective, and glutathione, cysteine, and cystine were inactive. Tyrosinase (dopa oxidase) activity was not greatly affected except for induction of a lag period. In contrast, tyrosinase activity in an amelanotic melanoma cell line (MM96L) was rapidly inhibited without consumption of cystamine/cysteamine, in association with the generation of free thiol in the culture medium, and could be enhanced by the cystine transport inhibitor, glutamate. Tyrosinase expressed by a recombinant vaccinia virus was inhibited by cystamine treatment of MM96L and HeLa cells. Cystamine treatment lowered the degree of cross-linking of the pigmentation antigen gp75/TRP-1 in MM418c5 cells. Tyrosinase protein and mRNA levels in MM418c5 cells were not affected by cystamine. The results show that cystamine at a concentration close to physiologic levels has multiple effects on the melanogenic pathway. In amelanotic cells, tyrosinase has a short half-life and is readily inhibited by cystamine/cysteamine whereas tyrosinase in the more mature melanosomes of the pigmented cell appears to be less accessible to proteolytic and thiol attack. Inhibition of melanin synthesis in the latter cell type may arise to a significant degree from reduction of cystamine to cysteamine, which sequesters quinones.
Collapse
Affiliation(s)
- L Qiu
- Queensland Cancer Fund Laboratories, Queensland Institute of Medical Research and University of Queensland Joint Experimental Oncology Program, Herston, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- M F Lavin
- Queensland Institute of Medical Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999; 180:499-506. [PMID: 9988826 DOI: 10.1016/s0002-9378(99)70239-5] [Citation(s) in RCA: 1137] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The maternal syndrome of preeclampsia has previously been ascribed to generalized maternal endothelial cell dysfunction. In this review we suggest that the endothelial dysfunction is a part of a more generalized intravascular inflammatory reaction involving intravascular leukocytes as well as the clotting and complement systems. We provide evidence from our recent work and that of others that not only supports this proposal but indicates that such an inflammatory response is already well developed in normal pregnancy and that the differences between normal pregnancy and preeclampsia are less striking than those between the normal pregnant and nonpregnant states. From this we argue that preeclampsia arises when a universal maternal intravascular inflammatory response to pregnancy decompensates in particular cases, which may occur because either the stimulus or the maternal response is too strong. We conclude that there is no specific cause for the disorder, which can be better considered as the extreme end of the range of maternal adaptation to pregnancy. We propose that poor placentation is not the cause of preeclampsia but is a powerful predisposing factor. We predict that a single preeclampsia gene will not be found, nor will either a single specific predictive test or single preventive effective measure be devised. Aspects of the hypothesis are testable, and future work should allow its confirmation or refutation.
Collapse
Affiliation(s)
- C W Redman
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, United Kingdom
| | | | | |
Collapse
|
27
|
Moldovan L, Irani K, Moldovan NI, Finkel T, Goldschmidt-Clermont PJ. The actin cytoskeleton reorganization induced by Rac1 requires the production of superoxide. Antioxid Redox Signal 1999; 1:29-43. [PMID: 11225730 DOI: 10.1089/ars.1999.1.1-29] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The small GTPase rac1 controls actin redistribution to membrane ruffles in fibroblasts and other cell types, as well as the activation of the NADPH oxidase in phagocytes. We explored the possibility that these two processes could be related. We used a replication-deficient adenoviral vector to overexpress the constitutively active form of rac1, racV12, in human and mouse aortic endothelial cells. We show here that, in addition to membrane ruffle formation, racV12 induced an increase in the total amount of F-actin within endothelial cells. Concurrently, racV12-overexpressing cells produced significantly higher amounts of free radicals, as detected by the fluorescent probe 5-(and-6)-chloromethyl-2',7'-dichloro-dihydrofluorescein diacetate, than cells infected with a control virus encoding the bacterial beta-galactosidase (Ad-betaGal). To assess the specific role of superoxide in racV12-induced actin reorganization, we co-expressed the human enzyme Cu,Zn-superoxide dismutase (SOD), by means of another adenoviral vector construct. Overexpressed SOD reduced the concentration of superoxide detected in Ad-racV12-transfected cells and reversed the effects of Ad-racV12 on the content of filamentous actin. MnTMPyP, an SOD mimetic, as well as the antioxidant N-acetyl cysteine, had similar effects, in that they reduced not only the free radicals production, but also ruffle formation and the concentration of F-actin within racV12-overexpressing endothelial cells. Our data support the hypothesis that superoxide is one of the important mediators acting downstream of rac1 on the pathway of actin cytoskeleton remodeling in endothelial cells.
Collapse
Affiliation(s)
- L Moldovan
- Heart and Lung Institute, Department of Internal Medicine, The Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
28
|
Navarro-Antolín J, Hernández-Perera O, López-Ongil S, Rodríguez-Puyol M, Rodríguez-Puyol D, Lamas S. CsA and FK506 up-regulate eNOS expression: role of reactive oxygen species and AP-1. KIDNEY INTERNATIONAL. SUPPLEMENT 1998; 68:S20-4. [PMID: 9839278 DOI: 10.1046/j.1523-1755.1998.06807.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cyclosporine A (CsA) and FK506 increase endothelial nitric oxide synthase (eNOS) mRNA expression in cultured bovine aortic endothelial cells (BAEC). CsA appears to increase eNOS mRNA levels mainly by increasing the rate of transcription, although a small contribution of mRNA stabilization could not be ruled out. CsA and FK506 induced an increase of ROS synthesis with the fluorescent probe used, DHR123. The ROS generating system glucose oxidase (GO) increased the expression of eNOS mRNA in BAEC. This upregulation of eNOS mRNA by CsA or GO was abrogated by catalase. As AP-1 is a redox-sensitive transcription factor and the bovine eNOS promoter has an AP-1 consensus sequence, a role of this factor in the up-regulation of eNOS mRNA was studied. Electrophoretic mobility shift assays were consistent with an increase in AP-1 DNA-binding activity in BAEC treated with CsA or glucose oxidase. The potential participation of ROS and the transcription factor AP-1 in the regulation of eNOS gene expression is suggested.
Collapse
Affiliation(s)
- J Navarro-Antolín
- Centro de Investigaciones Biológicas, Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Sacks GP, Studena K, Sargent K, Redman CW. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 1998; 179:80-6. [PMID: 9704769 DOI: 10.1016/s0002-9378(98)70254-6] [Citation(s) in RCA: 630] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Our aim was to seek evidence for circulating leukocyte activation in preeclampsia. STUDY DESIGN Whole blood flow cytometric techniques were used to analyze surface markers of activation (CD11b, CD14, CD23, CD49d, CD62L, CD64, CD66b, HLA-DR) and intracellular reactive oxygen species. Samples were taken from 21 women with preeclampsia, 21 matched normal pregnant women, 21 healthy nonpregnant controls, and 6 nonpregnant patients with septicemia. Ten preeclamptic cases were followed up 6 weeks post partum. RESULTS The leukocytes of healthy pregnant women differed substantially and significantly from those of nonpregnant women (increased CD11b, CD14, and CD64 and increased intracellular reactive oxygen species). In preeclampsia there was, in addition to these changes, reduced expression of L-selectin and further increases in intracellular reactive oxygen species. The changes found in normal pregnancy and preeclampsia were similar, but not identical, to those found in sepsis. CONCLUSIONS Normal third-trimester pregnancy is characterized by remarkable activation of peripheral blood leukocytes, which is further increased in preeclampsia.
Collapse
Affiliation(s)
- G P Sacks
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, United Kingdom
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- I Rahman
- Department of Medicine, University of Edinburgh, Royal Infirmary, UK
| | | |
Collapse
|
31
|
López-Ongil S, Hernández-Perera O, Navarro-Antolín J, Pérez de Lema G, Rodríguez-Puyol M, Lamas S, Rodríguez-Puyol D. Role of reactive oxygen species in the signalling cascade of cyclosporine A-mediated up-regulation of eNOS in vascular endothelial cells. Br J Pharmacol 1998; 124:447-54. [PMID: 9647467 PMCID: PMC1565404 DOI: 10.1038/sj.bjp.0701847] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1. Cyclosporine A (CsA) increases eNOS mRNA expression in bovine cultured aortic endothelial cells (BAEC). As some effects of CsA may be mediated by reactive oxygen species (ROS), present experiments were devoted to test the hypothesis that the CsA-induced eNOS up-regulation could be dependent on an increased synthesis of ROS. 2. CsA induced a dose-dependent increase of ROS synthesis, with the two fluorescent probes used, DHR123 (CsA 1 microM: 305+/-7% over control) and H2DCFDA (CsA 1 microM: 178+/-6% over control). 3. Two ROS generating systems, xanthine plus xanthine oxidase (XXO) and glucose oxidase (GO), increased the expression of eNOS mRNA in BAEC, an effect which was maximal after 8 h of incubation (XXO: 168+/-21% of control values. GO: 208+/-18% of control values). The ROS-dependent increased eNOS mRNA expression was followed by an increase in eNOS activity. 4. The effect of CsA on eNOS mRNA expression was abrogated by catalase, and superoxide dismutase (SOD). In contrast, the antioxidant PDTC augmented eNOS mRNA expression, both in basal conditions and in the presence of CsA. 5. The potential participation of the transcription factor AP-1 was explored. Electrophoretic mobility shift assays were consistent with an increase in AP-1 DNA-binding activity in BAEC treated with CsA or glucose oxidase. 6. The present results support a role for ROS, particularly superoxide anion and hydrogen peroxide, as mediators of the CsA-induced eNOS mRNA up-regulation. Furthermore, they situate ROS as potential regulators of gene expression in endothelial cells, both in physiological and pathophysiological situations.
Collapse
Affiliation(s)
- S López-Ongil
- Department of Physiology, Alcalá de Henares University, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Jeitner TM, Delikatny EJ, Bartier WA, Capper HR, Hunt NH. Inhibition of drug-naive and -resistant leukemia cell proliferation by low molecular weight thiols. Biochem Pharmacol 1998; 55:793-802. [PMID: 9586951 DOI: 10.1016/s0006-2952(97)00575-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of these studies was to investigate the ability of cysteamine and its congeners to arrest the proliferation of leukemic cells and to determine the physico-chemical properties responsible for this ability. Fifteen low molecular weight thiol-bearing compounds were shown to arrest the proliferation of CCRF-CEM cells and a methotrexate-resistant subline, with IC50 values between 10(-5) and 10(-4) M. Cysteamine arrested proliferation by slowing the passage of cells through S phase. These cells subsequently resumed cycling, although a proportion went on to die by apoptosis. The antiproliferative action of cysteamine was shown to depend, in part, on H2O2 production. This ability to generate peroxide is shared by many thiol compounds, and molecular modeling indicated that thiol groups were required for the antiproliferative actions of the congeners of cysteamine. Molecular modeling also revealed that the most efficacious antiproliferative agents were those that had their amino acid and thiol moieties separated by an intramolecular distance of 3.17 to 5.9 A, as exemplified by WR 1065 and the aminothiophenols. These findings indicate that thiol-bearing compounds may have some efficacy in the treatment of drug-naive and -resistant leukemia cells.
Collapse
Affiliation(s)
- T M Jeitner
- Department of Pathology, University of Sydney, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
33
|
Hardy K, Chaudhri G. Activation and signal transduction via mitogen-activated protein (MAP) kinases in T lymphocytes. Immunol Cell Biol 1997; 75:528-45. [PMID: 9492189 DOI: 10.1038/icb.1997.84] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The various mitogen-activated protein (MAP) kinases have central roles in the signalling pathways of T lymphocytes. Their activation is uniquely dependent on dual phosphorylation of a serine/threonine and a tyrosine residue and is regulated by several levels of kinases in parallel cascades. In addition, both the MAP kinases and their upstream, activating kinases are regulated by several phosphatases. Although each of the MAP kinases have many cytoplasmic substrates, their ability to translocate to the nucleus means that they can transmit signals from the cytoplasm directly to transcription factors, which are sometimes nuclear bound. The MAP kinase cascades are activated in T lymphocytes by a variety of different external stimuli. They play an important role in transducing both the signal from T cell receptor and costimulatory molecules, on the T cell surface, and are able to regulate several of the transcription factors controlling the expression of critical genes, including that for IL-2. This review examines how the activation of several MAP kinases is regulated, their role in signal transduction initiated by a variety of stimuli, and how this may lead to different cellular responses.
Collapse
Affiliation(s)
- K Hardy
- Department of Pathology, University of Sydney, New South Wales, Australia
| | | |
Collapse
|
34
|
Potter AJ, Grossmann A, Rabinovitch PS, Eaton DL, Kavanagh TJ. The effect of in vitro phorone exposure on glutathione content and T cell antigen receptor (CD3)-stimulated calcium mobilization in murine splenic T lymphocytes. Toxicol In Vitro 1997; 11:355-63. [PMID: 20654322 DOI: 10.1016/s0887-2333(97)82756-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/1997] [Indexed: 11/25/2022]
Abstract
An increase in cytosolic free calcium ([Ca(2+)](i)) is one of the earliest events to occur in T lymphocytes following stimulation of the transmembrane T cell receptor/CD3 complex (TCR/CD3). This [Ca(2+)](i) mobilization has been found to be sensitive to intracellular thiol redox status, which in turn is modulated by cellular glutathione (GSH) content. We have previously reported that GSH depletion, by treatment with either the alpha, beta-carbonyl diethyl maleate or the aromatic halo-compound 1-chloro-2,4-dinitrobenzene, correlates with decreased [Ca(2+)](i) mobilization in anti-CD3 monoclonal antibody (mAb)-stimulated human peripheral blood lymphocytes (HPBL). This prompted us to determine whether this correlation between GSH content and TCR/CD3 signal transduction capability was also present in murine lymphocytes, since the mouse model is often used as a surrogate for the human immune system. The results presented here demonstrate that in vitro treatment with the alpha, beta-carbonyl phorone dose-dependently depletes intracellular GSH in murine splenic T lymphocytes. Both CD4(+) and CD8(+) T lymphocytes depleted of GSH by greater than 40% were found to have a decreased [Ca(2+)](i) mobilization following anti-CD3 mAb stimulation. Similar to what has been described for HPBL, these results indicate that the cellular GSH status influences the initial response of murine T lymphocytes to TCR/CD3 stimulation.
Collapse
Affiliation(s)
- A J Potter
- Department of Environmental Health, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
35
|
Brand K. Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield. J Bioenerg Biomembr 1997; 29:355-64. [PMID: 9387096 DOI: 10.1023/a:1022498714522] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Primary cultures of mitogen-activated rat thymocytes were used to study energy metabolism, gene expression of glycolytic enzymes, and production of reactive oxygen species during cell cycle progression. During transition from the resting to the proliferating state a 7- to 10-fold increase of glycolytic enzyme induction occurs which enables the cells to meet the enhanced energy demand by increased aerobic glycolysis. Cellular redox changes have been found to regulate gene expression of glycolytic enzymes by reversible oxidative inactivation of Sp1-binding to the cognate DNA-binding sites in the promoter region. In contrast to nonproliferating cells, production of phorbol 12-myristate 13-acetate (PMA)-primed reactive oxygen species (ROS) in proliferating rat thymocytes and HL-60 cells is nearly abolished. Pyruvate, a product of aerobic glycolysis, is an effective scavenger of ROS, which could be shown to be generated mainly at the site of complex III of the mitochondrial respiratory chain. Aerobic glycolysis by proliferating cells is discussed as a means to minimize oxidative stress during the phases of the cell cycle when maximally enhanced biosynthesis and cell division do occur.
Collapse
Affiliation(s)
- K Brand
- Institute of Biochemistry, Medical Faculty, University of Erlangen-Nuremberg, Germany
| |
Collapse
|
36
|
Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 1997; 324 ( Pt 1):1-18. [PMID: 9164834 PMCID: PMC1218394 DOI: 10.1042/bj3240001] [Citation(s) in RCA: 1133] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several categories of reactive species, and a range of stable products whose chemistry is currently being elucidated. Among the reactive products, protein hydroperoxides can generate further radical fluxes on reaction with transition-metal ions; protein-bound reductants (notably dopa) can reduce transition-metal ions and thereby facilitate their reaction with hydroperoxides; and aldehydes may participate in Schiff-base formation and other reactions. Cells can detoxify some of the reactive species, e.g. by reducing protein hydroperoxides to unreactive hydroxides. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. Thus cells can generally remove oxidized proteins by proteolysis. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, this may contribute to the observed accumulation and damaging actions of oxidized proteins during aging and in pathologies such as diabetes, atherosclerosis and neurodegenerative diseases. Protein oxidation may also sometimes play controlling roles in cellular remodelling and cell growth. Proteins are also key targets in defensive cytolysis and in inflammatory self-damage. The possibility of selective protection against protein oxidation (antioxidation) is raised.
Collapse
Affiliation(s)
- R T Dean
- Cell Biology Unit, The Heart Research Institute, 145-147 Missenden Road, Camperdown, Sydney, NSW 2050, Australia
| | | | | | | |
Collapse
|
37
|
Sanbongi C, Suzuki N, Sakane T. Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro. Cell Immunol 1997; 177:129-36. [PMID: 9178639 DOI: 10.1006/cimm.1997.1109] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We studied the effects of antioxidants from chocolate, cacao liquor polyphenol (CLP), on human immune functions in vitro. CLP is an enriched polyphenol fraction purified from cacao liquor that is a major component of chocolate. It has been shown that polyphenols have antioxidant activity, and reactive oxygen species (ROS) are involved in immune responses. CLP inhibited both hydrogen peroxide and superoxide anion, typical ROS, production by phorbol myristate acetate-activated granulocytes. CLP also inhibited menadione-induced production of both hydrogen peroxide and superoxide anion in normal human peripheral blood lymphocytes (PBL). CLP treatment of normal PBL in vitro inhibited mitogen-induced proliferation of T cells and polyclonal Ig production by B cells in a dose-dependent manner. CLP treatment inhibited both IL-2 mRNA expression of and IL-2 secretion by T cells. These results suggest that antioxidant CLP has immunoregulatory effects.
Collapse
Affiliation(s)
- C Sanbongi
- Department of Immunology, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | | |
Collapse
|
38
|
Cui XL, Douglas JG. Arachidonic acid activates c-jun N-terminal kinase through NADPH oxidase in rabbit proximal tubular epithelial cells. Proc Natl Acad Sci U S A 1997; 94:3771-6. [PMID: 9108053 PMCID: PMC20516 DOI: 10.1073/pnas.94.8.3771] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1996] [Accepted: 02/10/1997] [Indexed: 02/04/2023] Open
Abstract
In kidney epithelial cells, arachidonic acid and other fatty acids are important signal transduction molecules for G protein-coupled receptors. We now demonstrate that arachidonic acid induced a time- and dose-dependent activation of JNK, a member of the mitogen-activated protein kinase family, as assessed by phosphorylation of the transcription factor ATF-2. Increments in JNK activity were detectable at 5 microM arachidonic acid and plateaued at 30 microM. Activation was specific to arachidonic acid and linoleic acid, since other fatty acids of the n - 3 and n - 6 series and/or various degrees of saturation were without effect. Specific inhibitors of cyclooxygenase-, lipoxygenase-, and cytochrome P450-dependent metabolism did not affect arachidonic acid-induced JNK activity. We further demonstrated that the free radical scavenger N-acetylcysteine blocked arachidonic acid-induced JNK activation, while H(2)O(2), a reactive oxidative molecule, activated JNK in a dose-dependent manner, providing additional support for a redox mechanism. Moreover, arachidonic acid activated NADPH oxidase (EC 1.6.-.-, EC 1.6.99.-) in a dose-dependent manner, and the potency of superoxide generation paralleled that of JNK activation by other fatty acids. We conclude that in kidney epithelial cells arachidonic acid activates JNK by means of NADPH oxidase and superoxide generation, independent of eicosanoid biosynthesis.
Collapse
Affiliation(s)
- X L Cui
- Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, OH 44106-4982, USA
| | | |
Collapse
|
39
|
Furukawa K, Estus S, Fu W, Mark RJ, Mattson MP. Neuroprotective action of cycloheximide involves induction of bcl-2 and antioxidant pathways. J Biophys Biochem Cytol 1997; 136:1137-49. [PMID: 9060477 PMCID: PMC2132476 DOI: 10.1083/jcb.136.5.1137] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The ability of the protein synthesis inhibitor cycloheximide (CHX) to prevent neuronal death in different paradigms has been interpreted to indicate that the cell death process requires synthesis of "killer" proteins. On the other hand, data indicate that neurotrophic factors protect neurons in the same death paradigms by inducing expression of neuroprotective gene products. We now provide evidence that in embryonic rat hippocampal cell cultures, CHX protects neurons against oxidative insults by a mechanism involving induction of neuroprotective gene products including the antiapoptotic gene bcl-2 and antioxidant enzymes. Neuronal survival after exposure to glutamate, FeSO4, and amyloid beta-peptide was increased in cultures pretreated with CHX at concentrations of 50-500 nM; higher and lower concentrations were ineffective. Neuroprotective concentrations of CHX caused only a moderate (20-40%) reduction in overall protein synthesis, and induced an increase in c-fos, c-jun, and bcl-2 mRNAs and protein levels as determined by reverse transcription-PCR analysis and immunocytochemistry, respectively. At neuroprotective CHX concentrations, levels of c-fos heteronuclear RNA increased in parallel with c-fos mRNA, indicating that CHX acts by inducing transcription. Neuroprotective concentrations of CHX suppressed accumulation of H2O2 induced by FeSO4, suggesting activation of antioxidant pathways. Treatment of cultures with an antisense oligodeoxynucleotide directed against bcl-2 mRNA decreased Bcl-2 protein levels and significantly reduced the neuroprotective action of CHX, suggesting that induction of Bcl-2 expression was mechanistically involved in the neuroprotective actions of CHX. In addition, activity levels of the antioxidant enzymes Cu/Zn-superoxide dismutase, Mn-superoxide dismutase, and catalase were significantly increased in cultures exposed to neuroprotective levels of CHX. Our data suggest that low concentrations of CHX can promote neuron survival by inducing increased levels of gene products that function in antioxidant pathways, a neuroprotective mechanism similar to that used by neurotrophic factors.
Collapse
Affiliation(s)
- K Furukawa
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA
| | | | | | | | | |
Collapse
|
40
|
Goldstone SD, Hunt NH. Redox regulation of the mitogen-activated protein kinase pathway during lymphocyte activation. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1355:353-60. [PMID: 9061006 DOI: 10.1016/s0167-4889(96)00150-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously demonstrated an obligatory requirement for intracellular reactive oxygen species generation during T lymphocyte activation, and have proposed that intracellular reactive oxygen species may act as signalling agents in the regulation of certain cellular processes, for example, during cell cycle entry. To test this hypothesis, we have been interested to determine which, if any, cell cycle entry events are affected by oxidative signalling. In earlier studies, we have identified the transcription factors NF-kappa B and AP-1 as molecular targets for oxidative signalling processes during cell cycle entry, and have shown that oxidative signalling is involved in the regulation of early changes in gene expression during the G0 to G1 phase transition. To extend these initial observations, we have examined the effect of antioxidant treatment on the activity of the mitogen-activated protein kinases erk1 and erk2, as members of a signal transduction pathway known to directly regulate transcription factor function. Using as a probe cysteamine, an aminothiol compound with both antioxidant and antiproliferative activity, we have identified erk2, a key element of the MAP kinase pathway, as being responsive to oxidative signalling during lymphocyte activation. These observations provide further evidence to suggest a role for intracellular oxidant generation as a regulatory mechanism during cell cycle entry, and establish a link between oxidative signalling and other aspects of the intracellular signalling network that is activated in response to mitogenic stimulation.
Collapse
Affiliation(s)
- S D Goldstone
- Department of Pathology, University of Sydney, NSW, Australia
| | | |
Collapse
|
41
|
Goldstone SD, Milligan AD, Hunt NH. Oxidative signalling and gene expression during lymphocyte activation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1314:175-82. [PMID: 8972731 DOI: 10.1016/s0167-4889(96)00082-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We previously have demonstrated an obligatory requirement for intracellular reactive oxygen species (ROS) generation during T lymphocyte activation, and have proposed that ROS may act as signalling agents in the regulation of certain cellular processes, for example, during cell cycle entry. In order to test this hypothesis, we have been interested to determine which, if any, cell cycle entry events are affected by oxidative signalling. Given the requirement for both oxidative signalling and altered gene expression during the G0 to G1 phase transition, we have attempted to establish the extent to which oxidative signalling affects global gene expression patterns during cell cycle entry, and to isolate and characterize mRNAs whose expression patterns are responsive to oxidative signalling during this process. Using differential display in a phenotypic screening approach, we have identified 10 mRNA species whose expression patterns were altered in response to inhibition of oxidative signalling during cell cycle entry. The expression patterns of 4 of these 10 mRNAs were unaffected during cell cycle arrest caused by a different mechanism, cyclosporin A-induced interference with calcineurin-mediated signalling events, implying that the altered expression patterns seen were not simply a consequence of cell cycle arrest. This suggests that the expression of these 4 mRNAs is regulated by a mechanism both necessary for cell cycle entry and sensitive to oxidative signalling. RNAse protection assays confirmed that 2 of these 4 mRNAs were indeed responsive to redox regulation. These observations strongly suggest an involvement for oxidative signalling in the regulation of gene expression during the G0 to G1 phase transition, in peripheral blood mononuclear cells at least.
Collapse
Affiliation(s)
- S D Goldstone
- Department of Pathology, University of Sydney, Australia.
| | | | | |
Collapse
|
42
|
Jeitner TM, Renton FJ. Inhibition of the proliferation of human neural neoplastic cell lines by cysteamine. Cancer Lett 1996; 103:85-90. [PMID: 8616813 DOI: 10.1016/0304-3835(96)04200-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cysteamine (CySH), a thiol compound that crosses the blood-brain barrier, inhibited the proliferation of neural neoplastic cells in vitro. The IC50 of cysteamine with respect to inhibition after 72 h of drug exposure, was approximately 70 microM in the glioma cell line, 2607, and approximately 80 microM in the neuroblastoma cell line, DAOY. Interestingly, the inhibition of proliferation of 2607 cells produced by 72 h treatment with CySH could also be induced with exposure periods as short as 8 h. Another thiol bearing compound, penicillamine methyl ester, also arrested the proliferation of 2607 cells with IC50 approximately 160 microM. Cell cycle analysis revealed that CySH acted to lengthen the cell cycle period of 2607 cells by slowing the passage of cells through S phase and caused the cells to finally arrest in G2/M. In the other cell lines tested, CySH arrested cells in all phases of the cell cycle. These observations suggest that CySH and its congeners may have some utility in the treatment of neoplasia in vivo.
Collapse
Affiliation(s)
- T M Jeitner
- Department of Pathology, University of Sydney, New South Wales, Australia
| | | |
Collapse
|