1
|
Aono S, Nakajima H. Transcriptional Regulation of Gene Expression by Metalloproteins. PROGRESS IN REACTION KINETICS AND MECHANISM 2019. [DOI: 10.3184/007967400103165128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FNR and SoxR are transcriptional regulators containing an iron–sulfur cluster. The iron–sulfur cluster in FNR acts as an oxygen sensor by reacting with oxygen. The structural change of the iron–sulfur cluster takes place when FNR senses oxygen, which regulates the transcriptional regulator activity of FNR through the change of the quaternary structure. SoxR contains the [2Fe–2S] cluster that regulates the transcriptional activator activity of SoxR. Only the oxidized SoxR containing the [2Fe–2S]2+ cluster is active as the transcriptional activator. CooA is a transcriptional activator containing a protoheme that acts as a CO sensor. CO is a physiological effector of CooA and regulates the transcriptional activator activity of CooA. In this review, the biochemical and biophysical properties of FNR, SoxR, and CooA are described.
Collapse
Affiliation(s)
- Shigetoshi Aono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| | - Hiroshi Nakajima
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, Japan
| |
Collapse
|
2
|
Smith AT, Pazicni S, Marvin KA, Stevens DJ, Paulsen KM, Burstyn JN. Functional divergence of heme-thiolate proteins: a classification based on spectroscopic attributes. Chem Rev 2015; 115:2532-58. [PMID: 25763468 DOI: 10.1021/cr500056m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron T Smith
- †Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, United States
| | - Samuel Pazicni
- ‡Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Katherine A Marvin
- §Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Daniel J Stevens
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Katherine M Paulsen
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Judith N Burstyn
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Complexes of ferriheme nitrophorin 4 with low-molecular weight thiol(ate)s occurring in blood plasma. J Inorg Biochem 2013; 122:38-48. [DOI: 10.1016/j.jinorgbio.2013.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/17/2022]
|
4
|
Barr I, Smith AT, Senturia R, Chen Y, Scheidemantle BD, Burstyn JN, Guo F. DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein. J Biol Chem 2011; 286:16716-25. [PMID: 21454614 DOI: 10.1074/jbc.m110.180844] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
All known heme-thiolate proteins ligate the heme iron using one cysteine side chain. We previously found that DiGeorge Critical Region 8 (DGCR8), an essential microRNA processing factor, associates with heme of unknown redox state when overexpressed in Escherichia coli. On the basis of the similarity of the 450-nm Soret absorption peak of the DGCR8-heme complex to that of cytochrome P450 containing ferrous heme with CO bound, we identified cysteine 352 as a probable axial ligand in DGCR8. Here we further characterize the DGCR8-heme interaction using biochemical and spectroscopic methods. The DGCR8-heme complex is highly stable, with a half-life exceeding 4 days. Mutation of the conserved proline 351 to an alanine increases the rate of heme dissociation and allows the DGCR8-heme complex to be reconstituted biochemically. Surprisingly, DGCR8 binds ferric heme without CO to generate a hyperporphyrin spectrum. The electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectra of the DGCR8-heme complex suggest a ferric heme bearing two cysteine ligands. This model was further confirmed using selenomethionine-substituted DGCR8 and mercury titration. DGCR8 is the first example of a heme-binding protein with two endogenous cysteine side chains serving as axial ligands. We further show that native DGCR8 binds heme when expressed in eukaryotic cells. This study provides a chemical basis for understanding the function of the DGCR8-heme interaction in microRNA maturation.
Collapse
Affiliation(s)
- Ian Barr
- Department of Biological Chemistry, David Geffen School of Medicine, Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH–cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of the A264M, A264Q and A264C variants were determined in both the intact flavocytochromes and haem domains of P450 BM3. Crystal structures of the mutant haem domains demonstrate axial ligation of P450 haem iron by methionine and glutamine ligands trans to the cysteine thiolate, creating novel haem iron ligand sets in the A264M/Q variants. In contrast, the crystal structure of the A264C variant reveals no direct interaction between the introduced cysteine side chain and the haem, although EPR data indicate Cys264 interactions with haem iron in solution. The A264M haem potential is elevated by comparison with wild-type haem domain, and substrate binding to the A264Q haem domain results in a ∼360 mV increase in potential. All mutant haem domains occupy the conformation adopted by the substrate-bound form of wild-type BM3, despite the absence of added substrate. The A264M mutant (which has higher dodecanoate affinity than wild-type BM3) co-purifies with a structurally resolved lipid. These data demonstrate that a single mutation at Ala264 is enough to perturb the conformational equilibrium between substrate-free and substrate-bound P450 BM3, and provide firm structural and spectroscopic data for novel haem iron ligand sets unprecedented in Nature.
Collapse
|
6
|
Tzialla A, Kalogeris E, Gournis D, Sanakis Y, Stamatis H. Enhanced catalytic performance and stability of chloroperoxidase from Caldariomyces fumago in surfactant free ternary water–organic solvent systems. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.molcatb.2007.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Girvan HM, Seward HE, Toogood HS, Cheesman MR, Leys D, Munro AW. Structural and Spectroscopic Characterization of P450 BM3 Mutants with Unprecedented P450 Heme Iron Ligand Sets. J Biol Chem 2007; 282:564-72. [PMID: 17077084 DOI: 10.1074/jbc.m607949200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two novel P450 heme iron ligand sets were generated by directed mutagenesis of the flavocytochrome P450 BM3 heme domain. The A264H and A264K variants produce Cys-Fe-His and Cys-Fe-Lys axial ligand sets, which were validated structurally and characterized by spectroscopic analysis. EPR and magnetic circular dichroism (MCD) provided fingerprints defining these P450 ligand sets. Near IR MCD spectra identified ferric low spin charge-transfer bands diagnostic of the novel ligands. For the A264K mutant, this is the first report of a Cys-Fe-Lys near-IR MCD band. Crystal structure determination showed that substrate-free A264H and A264K proteins crystallize in distinct conformations, as observed previously in substrate-free and fatty acid-bound wild-type P450 forms, respectively. This, in turn, likely reflects the positioning of the I alpha helix section of the protein that is required for optimal configuration of the ligands to the heme iron. One of the monomers in the asymmetric unit of the A264H crystals was in a novel conformation with a more open substrate access route to the active site. The same species was isolated for the wildtype heme domain and represents a novel conformational state of BM3 (termed SF2). The "locking" of these distinct conformations is evident from the fact that the endogenous ligands cannot be displaced by substrate or exogenous ligands. The consequent reduction of heme domain conformational heterogeneity will be important in attempts to determine atomic structure of the full-length, multidomain flavocytochrome, and thus to understand in atomic detail interactions between its heme and reductase domains.
Collapse
Affiliation(s)
- Hazel M Girvan
- School of Chemical Engineering and Analytical Science, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, UK
| | | | | | | | | | | |
Collapse
|
8
|
Murugan R, Mazumdar S. Structure and redox properties of the haem centre in the C357M mutant of cytochrome P450cam. Chembiochem 2005; 6:1204-11. [PMID: 15912551 DOI: 10.1002/cbic.200400399] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The effects of site-specific mutation of the axial cysteine (C357M) to a methionine residue in cytochrome P450cam on the enzyme's coordination geometry and redox potential have been investigated. The absorption spectra of the haem centre in the C357M mutant of the enzyme showed close similarity to those of cytochrome c both in the oxidised and reduced forms. A well-defined absorption peak at 695 nm, similar to that seen in the case of cytochrome c and characteristic of methionine ligation to the ferric haem, was observed. The results indicated that the haem of C357M cytochrome P450cam is possibly axially coordinated to a methionine and a histidine, analogously to cytochrome c. The circular dichroism spectra in the visible and the far-UV regions suggested that the tertiary structure of the haem cavity in the C357M mutant cytochrome P450cam was distinctly different from that in the wild-type enzyme or in cytochrome c, although the secondary structure of the mutant remained identical to that of the wild-type cytochrome P450cam. Comparison of the natures of the CD spectra in the 400 nm and 695 nm regions of the C357M mutant of cytochrome P450cam with those of horse cytochrome c suggested (R) chirality at the sulfur atom of the iron-bound methionine residue in the mutant. The redox potential of the haem centre, estimated by redox titration of the C357M mutant, was found to be +260 mV, which is much higher than that in the wild-type enzyme and similar to the redox potential of cytochrome c. This supported the concept that axial ligation of the haem plays the major role in tuning the redox potential of the haem centre in haem proteins.
Collapse
Affiliation(s)
- Rajamanickam Murugan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | |
Collapse
|
9
|
Girvan HM, Marshall KR, Lawson RJ, Leys D, Joyce MG, Clarkson J, Smith WE, Cheesman MR, Munro AW. Flavocytochrome P450 BM3 Mutant A264E Undergoes Substrate-dependent Formation of a Novel Heme Iron Ligand Set. J Biol Chem 2004; 279:23274-86. [PMID: 15020591 DOI: 10.1074/jbc.m401716200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A conserved glutamate covalently attaches the heme to the protein backbone of eukaryotic CYP4 P450 enzymes. In the related Bacillus megaterium P450 BM3, the corresponding residue is Ala264. The A264E mutant was generated and characterized by kinetic and spectroscopic methods. A264E has an altered absorption spectrum compared with the wild-type enzyme (Soret maximum at approximately 420.5 nm). Fatty acid substrates produced an inhibitor-like spectral change, with the Soret band shifting to 426 nm. Optical titrations with long-chain fatty acids indicated higher affinity for A264E over the wild-type enzyme. The heme iron midpoint reduction potential in substrate-free A264E is more positive than that in wild-type P450 BM3 and was not changed upon substrate binding. EPR, resonance Raman, and magnetic CD spectroscopies indicated that A264E remains in the low-spin state upon substrate binding, unlike wild-type P450 BM3. EPR spectroscopy showed two major species in substrate-free A264E. The first has normal Cys-aqua iron ligation. The second resembles formate-ligated P450cam. Saturation with fatty acid increased the population of the latter species, suggesting that substrate forces on the glutamate to promote a Cys-Glu ligand set, present in lower amounts in the substrate-free enzyme. A novel charge-transfer transition in the near-infrared magnetic CD spectrum provides a spectroscopic signature characteristic of the new A264E heme iron ligation state. A264E retains oxygenase activity, despite glutamate coordination of the iron, indicating that structural rearrangements occur following heme iron reduction to allow dioxygen binding. Glutamate coordination of the heme iron is confirmed by structural studies of the A264E mutant (Joyce, M. G., Girvan, H. M., Munro, A. W., and Leys, D. (2004) J. Biol. Chem. 279, 23287-23293).
Collapse
Affiliation(s)
- Hazel M Girvan
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Psylinakis E, Davoras EM, Ioannidis N, Trikeriotis M, Petrouleas V, Ghanotakis DF. Isolation and spectroscopic characterization of a recombinant bell pepper hydroperoxide lyase. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1533:119-27. [PMID: 11566449 DOI: 10.1016/s1388-1981(01)00150-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fatty acid hydroperoxide (HPO) lyase is a component of the oxylipin pathway and holds a central role in elicited plant defense. HPO lyase from bell pepper has been identified as a heme protein which shares 40% homology with allene oxide synthase, a cytochrome P450 (CYP74A). HPO lyase of immature bell pepper fruits was expressed in Escherichia coli and the enzyme was purified and characterized by spectroscopic techniques. The electronic structure and ligand coordination properties of the heme were investigated by using a series of exogenous ligands. The various complexes were characterized by using UV-visible absorption and electron paramagnetic resonance spectroscopy. The spectroscopic data demonstrated that the isolated recombinant HPO lyase has a pentacoordinate, high-spin heme with thiolate ligation. Addition of the neutral ligand imidazole or the anionic ligand cyanide results in the formation of hexacoordinate adducts that retain thiolate ligation. The striking similarities between both the ferric and ferrous HPO lyase-NO complexes with the analogous P450 complexes, suggest that the active sites of HPO lyase and P450 share common structural features.
Collapse
Affiliation(s)
- E Psylinakis
- Department of Chemistry, University of Crete, Heraklion, Crete, Greece
| | | | | | | | | | | |
Collapse
|
11
|
Aono S, Nakajima H. Structure and function of CooA, a novel transcriptional regulator containing a b-type heme as a CO sensor. Coord Chem Rev 1999. [DOI: 10.1016/s0010-8545(99)00070-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Hsu PY, Tsai AL, Kulmacz RJ, Wang LH. Expression, purification, and spectroscopic characterization of human thromboxane synthase. J Biol Chem 1999; 274:762-9. [PMID: 9873013 DOI: 10.1074/jbc.274.2.762] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thromboxane A2 (TXA2) is a potent inducer of vasoconstriction and platelet aggregation. Large scale expression of TXA2 synthase (TXAS) is very useful for studies of the reaction mechanism, structural/functional relationships, and drug interactions. We report here a heterologous system for overexpression of human TXAS. The TXAS cDNA was modified by replacing the sequence encoding the first 28 amino acid residues with a CYP17 amino-terminal sequence and by adding a polyhistidine tag sequence prior to the stop codon; the cDNA was inserted into the pCW vector and co-expressed with chaperonins groES and groEL in Escherichia coli. The resulting recombinant protein was purified to electrophoretic homogeneity by affinity, ion exchange, and hydrophobic chromatography. UV-visible absorbance (UV-Vis), magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) spectra indicate that TXAS has a typical low spin cytochrome P450 heme with an oxygen-based distal ligand. The UV-Vis and EPR spectra of recombinant TXAS were essentially identical to those of TXAS isolated from human platelets, except that a more homogenous EPR spectrum was observed for the recombinant TXAS. The recombinant protein had a heme:protein molar ratio of 0.7:1 and a specific activity of 12 micromol of TXA2/min/mg of protein at 23 degreesC. Furthermore, it catalyzed formation of TXA2, 12-hydroxy-5,8,10-heptadecatrienoic acid, and malondialdehyde in a molar ratio of 0.94:1.0:0.93. Spectral binding titrations showed that bulky heme ligands such as clotrimazole bound strongly to TXAS (Kd approximately 0.5 microM), indicating ample space at the distal face of the heme iron. Analysis of MCD and EPR spectra showed that TXAS was a typical low spin hemoprotein with a proximal thiolate ligand and had a very hydrophobic distal ligand binding domain.
Collapse
Affiliation(s)
- P Y Hsu
- Division of Hematology, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
13
|
Pilard MA, Guillemot M, Toupet L, Jordanov J, Simonneaux G. Effect of Phosphorus Axial π-Acceptors in Iron(III) Porphyrinates: Characterization of Low-Spin Complexes [(PPh(OMe)2)2Fe(T(p-Me)PP)]CF3SO3 and [(PPh(OEt)2)2Fe(T(p-Me)PP)]CF3SO3. Inorg Chem 1997. [DOI: 10.1021/ic9704849] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marie-Agnès Pilard
- Laboratoire de Chimie Organométallique et Biologique, URA CNRS 415, Université de Rennes 1, 35042 Rennes Cedex, France, Groupe de Physique Cristalline, UA CNRS 040804, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, and Service de Chimie Inorganique et Biologique, CENG, 38054 Grenoble Cedex, France
| | - Maud Guillemot
- Laboratoire de Chimie Organométallique et Biologique, URA CNRS 415, Université de Rennes 1, 35042 Rennes Cedex, France, Groupe de Physique Cristalline, UA CNRS 040804, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, and Service de Chimie Inorganique et Biologique, CENG, 38054 Grenoble Cedex, France
| | - Loïc Toupet
- Laboratoire de Chimie Organométallique et Biologique, URA CNRS 415, Université de Rennes 1, 35042 Rennes Cedex, France, Groupe de Physique Cristalline, UA CNRS 040804, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, and Service de Chimie Inorganique et Biologique, CENG, 38054 Grenoble Cedex, France
| | - J. Jordanov
- Laboratoire de Chimie Organométallique et Biologique, URA CNRS 415, Université de Rennes 1, 35042 Rennes Cedex, France, Groupe de Physique Cristalline, UA CNRS 040804, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, and Service de Chimie Inorganique et Biologique, CENG, 38054 Grenoble Cedex, France
| | - Gérard Simonneaux
- Laboratoire de Chimie Organométallique et Biologique, URA CNRS 415, Université de Rennes 1, 35042 Rennes Cedex, France, Groupe de Physique Cristalline, UA CNRS 040804, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France, and Service de Chimie Inorganique et Biologique, CENG, 38054 Grenoble Cedex, France
| |
Collapse
|
14
|
|
15
|
Tsai AL, Berka V, Chen PF, Palmer G. Characterization of endothelial nitric-oxide synthase and its reaction with ligand by electron paramagnetic resonance spectroscopy. J Biol Chem 1996; 271:32563-71. [PMID: 8955082 DOI: 10.1074/jbc.271.51.32563] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Electron paramagnetic resonance was used to characterize the heme structure of resting endothelial nitric-oxide synthase (eNOS), eNOS devoid of its myristoylation site (G2A mutant), and their heme complexes formed with 16 different ligands. Resting eNOS and the G2A mutant have a mixture of low spin and high spin P450-heme with widely different relaxation behavior and a stable flavin semiquinone radical identified by EPR as a neutral radical. This flavin radical showed efficient electron spin relaxation as a consequence of dipolar interaction with the heme center; P1/2 is independent of Ca2+-calmodulin and tetrahydrobiopterin. Seven of the 16 ligands led to the formation of low spin heme complexes. In order of increasing rhombicity they are pyrimidine, pyridine, thiazole, L-lysine, cyanide, imidazole, and 4-methylimidazole. These seven low spin eNOS complexes fell in a region between the P and O zones on the "truth diagram" originally derived by Blumberg and Peisach (Blumberg, W. E., and Peisach, J. (1971) in Probes and Structure and Function of Macromolecules and Membranes (Chance, B., Yonetani, T., and Mildvan, A. S., eds) Vol. 2, pp. 215-229, Academic Press, New York) and had significant overlap with complexes of chloroperoxidase. A re-definition of the P and O zones is proposed. As eNOS and chloroperoxidase lie closer than do eNOS and P450cam on the truth diagram, it implies that the distal heme environment in eNOS resembles chloroperoxidase more than P450cam. In contrast, 4-ethylpyridine, 4-methylpyrimidine, acetylguanidine, ethylguanidine, 2-aminothiazole, 2amino-4,5-dimethylthiazole, L-histidine, and 7-nitroindazole resulted in high spin heme complexes of eNOS, similar to that observed with L-arginine. This contrasting EPR behavior caused by families of ligands such as imidazole/L-histidine or thiazole/2-aminothiazole confirms the conclusion derived from parallel optical and kinetic studies. The ligands resulting in the low spin complexes bind directly to the heme iron, while their cognate ligands induce the formation of high spin complexes by indirectly perturbing the heme structure and excluding the original axial heme ligand in the resting eNOS (V. Berka, P.-F. Chen, and A. -L. Tsai (1997) J. Biol. Chem. 272, in press). The difference in EPR spectra of these high spin eNOS complexes, although subtle, are different for different homologs.
Collapse
Affiliation(s)
- A L Tsai
- Division of Hematology, Department of Internal Medicine, University of Texas Medical School, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|
16
|
Debrunner PG, Dexter AF, Schulz CE, Xia YM, Hager LP. Mössbauer and electron paramagnetic resonance studies of chloroperoxidase following mechanism-based inactivation with allylbenzene. Proc Natl Acad Sci U S A 1996; 93:12791-8. [PMID: 8917498 PMCID: PMC23999 DOI: 10.1073/pnas.93.23.12791] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/1996] [Indexed: 02/03/2023] Open
Abstract
We have used Mössbauer and electron paramagnetic resonance (EPR) spectroscopy to study a heme-N-alkylated derivative of chloroperoxidase (CPO) prepared by mechanism-based inactivation with allylbenzene and hydrogen peroxide. The freshly prepared inactivated enzyme ("green CPO") displayed a nearly pure low-spin ferric EPR signal with g = 1.94, 2.15, 2.31. The Mössbauer spectrum of the same species recorded at 4.2 K showed magnetic hyperfine splittings, which could be simulated in terms of a spin Hamiltonian with a complete set of hyperfine parameters in the slow spin fluctuation limit. The EPR spectrum of green CPO was simulated using a three-term crystal field model including g-strain. The best-fit parameters implied a very strong octahedral field in which the three 2T2 levels of the (3d)5 configuration in green CPO were lowest in energy, followed by a quartet. In native CPO, the 6A1 states follow the 2T2 ground state doublet. The alkene-mediated inactivation of CPO is spontaneously reversible. Warming of a sample of green CPO to 22 degrees C for increasing times before freezing revealed slow conversion of the novel EPR species to two further spin S = 1/2 ferric species. One of these species displayed g = 1.82, 2.25, 2.60 indistinguishable from native CPO. By subtracting spectral components due to native and green CPO, a third species with g = 1.86, 2.24, 2.50 could be generated. The EPR spectrum of this "quasi-native CPO," which appears at intermediate times during the reactivation, was simulated using best-fit parameters similar to those used for native CPO.
Collapse
Affiliation(s)
- P G Debrunner
- Department of Physics, University of Illinois, Urbana 61801, USA
| | | | | | | | | |
Collapse
|
17
|
Sono M, Stuehr DJ, Ikeda-Saito M, Dawson JH. Identification of nitric oxide synthase as a thiolate-ligated heme protein using magnetic circular dichroism spectroscopy. Comparison with cytochrome P-450-CAM and chloroperoxidase. J Biol Chem 1995; 270:19943-8. [PMID: 7544348 DOI: 10.1074/jbc.270.34.19943] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide (NO) has recently been recognized as an important biomolecule playing diverse physiological roles. It is synthesized in several different tissues from L-Arg and O2, using NADPH as an electron donor, by a family of heme-containing catalytically self-sufficient monooxygenases known as nitric oxide synthases (NOS). Recently, the CO complex of reduced NOS has been shown to exhibit an absorption maximum near 450 nm, a characteristic spectral feature of cytochrome P-450 (P-450). Yet, the amino acid sequences of NOS and P-450 have no homology. To further probe the active site heme coordination structure and the heme environment of NOS, we have employed magnetic circular dichroism (MCD) and CD spectroscopy in the present study. MCD spectra of several derivatives of rat brain neuronal NOS strikingly resemble those of analogous derivatives of bacterial P-450-CAM and fungal chloroperoxidase, two known thiolate-ligated heme proteins. Given the proven fingerprinting capability of MCD spectroscopy, this provides convincing evidence for endogenous thiolate (cysteinate) ligation to the heme iron of NOS. Furthermore, the heme-related Soret CD bands of NOS (positive) and P-450s (negative), as represented by P-450-CAM, are almost mirror images, whereas chloroperoxidase exhibits totally different CD band shapes. This suggests that the active sites of NOS and P-450 may share some common structural features, but significant distinctions exist between their heme environments in certain aspects such as hydrophobicity or size.
Collapse
Affiliation(s)
- M Sono
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia 29208, USA
| | | | | | | |
Collapse
|
18
|
Yarmola EG, Sharonov YA. Low-temperature magnetic circular dichroism investigation of the active site of chloroperoxidase. FEBS Lett 1994; 355:279-81. [PMID: 7988689 DOI: 10.1016/0014-5793(94)01206-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Magnetic circular dichroism (MCD) spectra for near UV and visible spectral regions of chemically reduced chloroperoxidase from Caldariomyces fumago have been recorded at temperatures from near 293 to 2.15 K. The spectra of reduced chloroperoxidase at 4.2 K were compared with those of photolysis products of its carbon monoxide complexes. Obtained results give evidence for high rigidity of the active site in chloroperoxidase and strongly suggest that thiolate is a protein-derived ligand of the heme iron in the reduced enzyme. The unusual high-spin ferrohemoproteins temperature dependence of the Soret MCD closely resembles that of the substrate-bound cytochrome P-450cam.
Collapse
Affiliation(s)
- E G Yarmola
- Engelhardt Institute of Molecular Biology, Academy of Sciences of Russia, Moscow
| | | |
Collapse
|
19
|
Resonance Raman spectroscopy of the catalytic intermediates and derivatives of chloroperoxidase from Caldariomyces fumago. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36742-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
20
|
Alves OC, Wajnberg E. Heat denaturation of metHb and HbNO: e.p.r. evidence for the existence of a new hemichrome. Int J Biol Macromol 1993; 15:273-9. [PMID: 8251441 DOI: 10.1016/0141-8130(93)90026-i] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Electron paramagnetic resonance was used to follow the time dependence of heat denaturation of met- and nitrosyl-haemoglobin (metHb and HbNO) at 60 degrees C, 70 degrees C and 80 degrees C. The spectral changes of both complexes indicate that conformational changes in the protein manifest themselves in changes of the equilibrium of hemichromes in metHb and of six- and five-coordinated iron in HbNO. The formation of a hemichrome which has not been described before, with g = 2.45, 2.27 and 1.85, is observed. A His-Fe-Cys complex is proposed for its structure.
Collapse
Affiliation(s)
- O C Alves
- Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
| | | |
Collapse
|
21
|
Hu S, Kincaid J. Heme active-site structural characterization of chloroperoxidase by resonance Raman spectroscopy. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53237-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
McMillan K, Bredt DS, Hirsch DJ, Snyder SH, Clark JE, Masters BS. Cloned, expressed rat cerebellar nitric oxide synthase contains stoichiometric amounts of heme, which binds carbon monoxide. Proc Natl Acad Sci U S A 1992; 89:11141-5. [PMID: 1280819 PMCID: PMC50505 DOI: 10.1073/pnas.89.23.11141] [Citation(s) in RCA: 291] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The endogenous formation of nitric oxide (NO) has become an area of intense interest as evidence for its biological functions has been obtained in three distinct tissues: circulating macrophages, in which it exerts cytotoxic effects; blood vessels, in which it has been identified as endothelium-derived relaxing factor; and neuronal cells, in which it functions as a neurotransmitter. The formation of NO in brain extracts has been shown to be catalyzed by an enzyme, termed NO synthase, which generates the NO responsible for stimulation of cGMP formation, the highest levels of which occur in the cerebellum. NO synthase catalyzes the formation of citrulline from arginine with the coincident production of NO and has been shown to be a flavoprotein, containing 1 mol each of FAD and FMN, tetrahydrobiopterin, and iron. It is also reported to contain an alpha-helical, calmodulin-binding consensus sequence consistent with its stimulation by calmodulin in the presence of Ca2+. The formation of NO requires incorporation of one of the atoms of molecular oxygen into one of the guanidinium nitrogen atoms of arginine with the coincident formation of citrulline. This communication reports that rat cerebellar NO synthase, cloned and stably expressed in human kidney 293 cells, contains heme in amounts stoichiometric with the flavins FAD and FMN as evidenced by the appearance of a pyridine hemochrome and a reduced CO difference spectrum with an absorbance maximum at approximately 445 nm. The finding of a CO-binding heme moiety explains the presence of iron in the enzyme and suggests a role for prosthetic heme as an oxygenase reaction center. This report also presents evidence for incorporation of delta-[14C]aminolevulinate specifically into immunoprecipitable NO synthase in stably transfected human kidney 293 cells but not in nontransfected cells. Simultaneously, K. A. White and M. A. Marletta [(1992) Biochemistry 31, 6627-6631] have demonstrated a CO-binding heme prosthetic group in purified murine macrophage NO synthase and have suggested the identity of these reaction centers in both the constitutive (cerebellar) and inducible (macrophage) forms of NO synthase.
Collapse
Affiliation(s)
- K McMillan
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | | | | | | | | | |
Collapse
|