1
|
Mintz Hemed N, Leal-Ortiz S, Zhao ET, Melosh NA. On-Demand, Reversible, Ultrasensitive Polymer Membrane Based on Molecular Imprinting Polymer. ACS NANO 2023; 17:5632-5643. [PMID: 36913954 PMCID: PMC10062346 DOI: 10.1021/acsnano.2c11618] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The development of in vivo, longitudinal, real-time monitoring devices is an essential step toward continuous, precision health monitoring. Molecularly imprinted polymers (MIPs) are popular sensor capture agents that are more robust than antibodies and have been used for sensors, drug delivery, affinity separations, assays, and solid-phase extraction. However, MIP sensors are typically limited to one-time use due to their high binding affinity (>107 M-1) and slow-release kinetics (<10-4 μM/sec). To overcome this challenge, current research has focused on stimuli-responsive MIPs (SR-MIPs), which undergo a conformational change induced by external stimuli to reverse molecular binding, requiring additional chemicals or outside stimuli. Here, we demonstrate fully reversible MIP sensors based on electrostatic repulsion. Once the target analyte is bound within a thin film MIP on an electrode, a small electrical potential successfully releases the bound molecules, enabling repeated, accurate measurements. We demonstrate an electrostatically refreshed dopamine sensor with a 760 pM limit of detection, linear response profile, and accuracy even after 30 sensing-release cycles. These sensors could repeatedly detect <1 nM dopamine released from PC-12 cells in vitro, demonstrating they can longitudinally measure low concentrations in complex biological environments without clogging. Our work provides a simple and effective strategy for enhancing the use of MIPs-based biosensors for all charged molecules in continuous, real-time health monitoring and other sensing applications.
Collapse
Affiliation(s)
- Nofar Mintz Hemed
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Sergio Leal-Ortiz
- Department
of Psychiatry and Behavioral Sciences, Stanford
University, Stanford, California 94304, United States
| | - Eric T. Zhao
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Nicholas A. Melosh
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Wang Y, Gu C, Ewing AG. Single-Vesicle Electrochemistry Following Repetitive Stimulation Reveals a Mechanism for Plasticity Changes with Iron Deficiency. Angew Chem Int Ed Engl 2022; 61:e202200716. [PMID: 35267233 PMCID: PMC9315038 DOI: 10.1002/anie.202200716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 12/25/2022]
Abstract
Deficiency of iron, the most abundant transition metal in the brain and important for neuronal activity, is known to affect synaptic plasticity, causing learning and memory deficits. How iron deficiency impacts plasticity by altering neurotransmission at the cellular level is not fully understood. We used electrochemical methods to study the effect of iron deficiency on plasticity with repetitive stimulation. We show that during iron deficiency, repetitive stimulation causes significant decrease in exocytotic release without changing vesicular content. This results in a lower fraction of release, opposite to the control group, upon repetitive stimulation. These changes were partially reversible by iron repletion. This finding suggests that iron deficiency has a negative effect on plasticity by decreasing the fraction of vesicular release in response to repetitive stimulation. This provides a putative mechanism for how iron deficiency modulates plasticity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Forensic MedicineSchool of Basic Medicine and Biological SciencesAffiliated Guangji HospitalSoochow University215123SuzhouChina
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivagen 1041296GothenburgSweden
| | - Chaoyi Gu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivagen 1041296GothenburgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivagen 1041296GothenburgSweden
| |
Collapse
|
3
|
Ewing AG, Wang Y, Gu C. Single‐Vesicle Electrochemistry Following Repetitive Stimulation Reveals a Mechanism for Plasticity Changes with Iron Deficiency. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Andrew G. Ewing
- University of Gothenburg: Goteborgs Universitet Chemistry and Molecular Biology Kemivägen 10 41296 Gothenburg SWEDEN
| | - Ying Wang
- University of Gothenburg: Goteborgs Universitet Chemistry and Molecular Biology SWEDEN
| | - Chaoyi Gu
- University of Gothenburg: Goteborgs Universitet Chemistry and Molecular Biology SWEDEN
| |
Collapse
|
4
|
Fucoxanthin alleviates methamphetamine-induced neurotoxicity possibly via the inhibition of interaction between Keap1 and Nrf2. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
5
|
Cheon SM, Jang I, Lee MH, Kim DK, Jeon H, Cha DS. Sorbus alnifolia protects dopaminergic neurodegeneration in Caenorhabditis elegans. PHARMACEUTICAL BIOLOGY 2017; 55:481-486. [PMID: 27937005 PMCID: PMC5490792 DOI: 10.1080/13880209.2016.1251468] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/19/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT The twigs of Sorbus alnifolia (Sieb. et Zucc.) K. Koch (Rosaceae) have been used to treat neurological disorders as a traditional medicine in Korea. However, there are limited data describing the efficacy of S. alnifolia in Parkinson's disease (PD). OBJECTIVE This study was conducted to identify the protective effects of the methanol extracts of S. alnifolia (MESA) on the dopaminergic (DA) neurodegeneration in Caenorhabditis elegans. MATERIALS AND METHODS To test the neuroprotective action of MESA, viability assay was performed after 48 h exposure to 1-methyl-4-phenylpyridine (MMP+) in PC12 cells and C. elegans (400 μM and 2 mM of MMP+, respectively). Fluorescence intensity was quantified using transgenic mutants such as BZ555 (Pdat-1::GFP) and and UA57 (Pdat-1::GFP and Pdat-1::CAT-2) to determine MESA's effects on DA neurodegeneration in C. elegans. Aggregation of α-synuclein was observed using NL5901 strain (unc-54p::α-synuclein::YFP). MESA's protective effects on the DA neuronal functions were examined by food-sensing assay. Lifespan assay was conducted to test the effects of MESA on the longevity. RESULTS MESA restored MPP+-induced loss of viability in both PC12 cells and C. elegans (85.8% and 54.9%, respectively). In C. elegans, MESA provided protection against chemically and genetically-induced DA neurodegeneration, respectively. Moreover, food-sensing functions were increased 58.4% by MESA in the DA neuron degraded worms. MESA also prolonged the average lifespan by 25.6%. However, MESA failed to alter α-synuclein aggregation. DISCUSSION AND CONCLUSIONS These results revealed that MESA protects DA neurodegeneration and recovers diminished DA neuronal functions, thereby can be a valuable candidate for the treatment of PD.
Collapse
Affiliation(s)
- Se-Myeong Cheon
- College of Pharmacy, Woosuk University, Jeonbuk, Republic of Korea
| | - Insoo Jang
- Department of Korean Internal Medicine, Woosuk University, Jeonbuk, Republic of Korea
| | - Myon-Hee Lee
- Department of Medicine, Brody School of Medicine at East, Carolina University, Greenville, NC, USA
| | - Dae Keun Kim
- College of Pharmacy, Woosuk University, Jeonbuk, Republic of Korea
| | - Hoon Jeon
- College of Pharmacy, Woosuk University, Jeonbuk, Republic of Korea
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Jeonbuk, Republic of Korea
| |
Collapse
|
6
|
Kayano T, Kitamura N, Miyazaki S, Ichiyanagi T, Shimomura N, Shibuya I, Aimi T. Gymnopilins, a product of a hallucinogenic mushroom, inhibit the nicotinic acetylcholine receptor. Toxicon 2014; 81:23-31. [DOI: 10.1016/j.toxicon.2014.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/21/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
7
|
Chen T, Zhu J, Zhang C, Huo K, Fei Z, Jiang XF. Protective effects of SKF-96365, a non-specific inhibitor of SOCE, against MPP+-induced cytotoxicity in PC12 cells: potential role of Homer1. PLoS One 2013; 8:e55601. [PMID: 23383239 PMCID: PMC3561331 DOI: 10.1371/journal.pone.0055601] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/27/2012] [Indexed: 11/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by loss of dopominergic (DA) neurons in substantia nigra pars compacta (SNpc), and can be experimentally mimicked by the neurotoxin MPP+ in vitro models. In this study, we investigated the potential protective effect of SKF-96365, a non-specific inhibitor of SOCE (store-operated calcium entry), on MPP+ induced cytotoxicity in PC12 cells. We found that pretreatment with SKF-96365 (10 µM and 50 µM) 30 min before injury significantly increased cell viability, decreased LDH release, prevented nuclear damage, and inhibited apoptotic cell death in MPP+ stressed PC12 cells. The results of calcium image using the ratiometric calcium indicator Fura-2-AM also showed that SKF-96365 reduced the intracellular calcium overload induced by MPP+ in PC12 cells. In addition, SKF-96365 decreased the expression of Homer1, a more recently discovered postsynaptic scaffolding protein with calcium modulating function, following MPP+ administration in PC12 cells, while had no statistically significant effects on endoplasmic reticulum (ER) calcium concentration. Furthermore, overexpression of Homer1 by using recombinant lentivirus partly reversed protective effects of SKF-96365 against MPP+ injury. The ER Ca2+ release was further amplified and ER calcium recovery was delayed by Homer1 upregulation in PC12 cells following MPP+ insult. Taken together, these data suggest that SKF-96365 protects PC12 cells against MPP+ induced cytotoxicity, and this protection may be at least in part on the inhibition of intracellular calcium overload and suppression of Homer1-mediated ER Ca2+ release.
Collapse
Affiliation(s)
- Tao Chen
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Neurosurgery, The 123th Hospital of PLA, Bengbu, Anhui, China
| | - Jie Zhu
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chi Zhang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kai Huo
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (ZF); (XFJ)
| | - Xiao-fan Jiang
- Department of Neurosurgery, Xijing Institute of Clinical Neuroscience, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- * E-mail: (ZF); (XFJ)
| |
Collapse
|
8
|
Guan Q, Noblitt SD, Henry CS. Electrophoretic separations in poly(dimethylsiloxane) microchips using mixtures of ionic, nonionic and zwitterionic surfactants. Electrophoresis 2012; 33:2875-83. [PMID: 23019105 PMCID: PMC3804416 DOI: 10.1002/elps.201200255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The use of surfactant mixtures to affect both EOF and separation selectivity in electrophoresis with PDMS substrates is reported, and capacitively coupled contactless conductivity detection is introduced for EOF measurement on PDMS microchips. First, the EOF was measured for two nonionic surfactants (Tween 20 and Triton X-100), mixed ionic/nonionic surfactant systems (SDS/Tween 20 and SDS/Triton X-100), and finally for the first time, mixed zwitterionic/nonionic surfactant systems (TDAPS/Tween 20 and TDAPS/Triton X-100). EOF for the nonionic surfactants decreased with increasing surfactant concentration. The addition of SDS or TDAPS to a nonionic surfactant increased EOF. After establishing the EOF behavior, the separation of model catecholamines was explored to show the impact on separations. Similar analyte resolution with greater peak heights was achieved with mixed surfactant systems containing Tween 20 and TDAPS relative to the single surfactant system. Finally, the detection of catecholamine release from PC12 cells by stimulation with 80 mM K(+) was performed to demonstrate the usefulness of mixed surfactant systems to provide resolution of biological compounds in complex samples.
Collapse
Affiliation(s)
- Qian Guan
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | |
Collapse
|
9
|
Scotter EL, Goodfellow CE, Graham ES, Dragunow M, Glass M. Neuroprotective potential of CB1 receptor agonists in an in vitro model of Huntington's disease. Br J Pharmacol 2010; 160:747-61. [PMID: 20590577 DOI: 10.1111/j.1476-5381.2010.00773.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The therapeutic potential of cannabinoids in Huntington's disease (HD) has been investigated by several groups with complex and sometimes contrasting results. We sought to examine key points of intersection between cannabinoid receptor 1 (CB(1)) signalling, survival and the formation of mutant huntingtin aggregates in HD. EXPERIMENTAL APPROACH Using a simplified pheochromocytoma (PC12) cell model of HD expressing exon 1 of wild-type or mutant huntingtin, we assayed cell death and aggregate formation using high-throughput cytotoxicity and image-based assays respectively. KEY RESULTS CB(1) activation by HU210 conferred a small but significant level of protection against mutant huntingtin-induced cell death. Pertussis toxin uncoupled HU210 from the inhibition of cAMP, preventing rescue of cell death. Phosphorylation of extracellular signal-regulated kinase (ERK) was also critical to CB(1)-mediated rescue. Conversely, treatments that elevated cAMP exacerbated mutant huntingtin-induced cell death. Despite opposing effects on HD cell survival, both HU210 and compounds that elevated cAMP increased the formation of mutant huntingtin aggregates. The increase in aggregation by HU210 was insensitive to Pertussis toxin and UO126, suggesting a G-protein alpha subtype s (G(s))-linked mechanism. CONCLUSIONS AND IMPLICATIONS We suggest that the CB(1) receptor, through G-protein alpha subtype i/o (G(i/o))-linked, ERK-dependent signal transduction, is a therapeutic target in HD. However the protective potential of CB(1) may be limited by promiscuous coupling to G(s), the stimulation of cAMP formation and increased aggregate formation. This may underpin the poor therapeutic efficacy of cannabinoids in more complex model systems and suggest that therapies that are selective for the G(i/o), ERK pathway may be of most benefit in HD.
Collapse
Affiliation(s)
- E L Scotter
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Grafton, Auckland, New Zealand
| | | | | | | | | |
Collapse
|
10
|
Russo GL, De Nisco E, Fiore G, Di Donato P, d'Ischia M, Palumbo A. Toxicity of melanin-free ink of Sepia officinalis to transformed cell lines: identification of the active factor as tyrosinase. Biochem Biophys Res Commun 2003; 308:293-9. [PMID: 12901867 DOI: 10.1016/s0006-291x(03)01379-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The melanin-free ink of the cephalopod Sepia officinalis is shown to contain a heat labile proteinaceous component toxic to a variety of cell lines, including PC12 cells. Gel filtration chromatography indicated that the toxic component was concentrated in those fractions eluted at a molecular weight higher than 100 kDa and exhibiting the highest tyrosinase activity. SDS-PAGE analysis of the active fractions displayed a single major band migrating at an approximate molecular weight of 100 kDa, identical with that of the single tyrosinase band in the melanin-free ink. These data unambiguously demonstrated the identity of the toxic component with tyrosinase. Treatment of purified Sepia as well as of mushroom tyrosinase with an immobilized version of proteinase K resulted in a parallel loss of tyrosinase activity and cytotoxicity. Sepia apotyrosinase was ineffective in inducing cytotoxicity in PC12 cells. Purified Sepia tyrosinase was found to induce a significant increase in caspase 3 activity in PC12 cells, leading eventually to an irreversible apoptotic process. Overall, these results disclose a hitherto unrecognized property of tyrosinase that may lead to a reappraisal of its biological significance beyond that of a mere pigment producing enzyme.
Collapse
Affiliation(s)
- Gian Luigi Russo
- Institute of Food Science, National Research Council, Avellino, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Oliveira MT, Rego AC, Morgadinho MT, Macedo TRA, Oliveira CR. Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells. Ann N Y Acad Sci 2002; 965:487-96. [PMID: 12105124 DOI: 10.1111/j.1749-6632.2002.tb04190.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cell death and reactive oxygen species production have been suggested to be involved in neurodegeneration induced by the drugs of abuse. In this study we analyze the toxicity of the following drugs of abuse: heroin, morphine, d-amphetamine, and cocaine in undifferentiated PC12 cells, used as dopaminergic neuronal models. Our data show that opioid drugs (heroin and morphine) are more toxic than stimulant drugs (d-amphetamine and cocaine). Toxic effects induced by heroin are associated with a decrease in intracellular dopamine, an increase in DOPAC levels, and the formation of ROS, whereas toxic effects induced by amphetamine are associated with a decrease in intracellular dopamine and in ATP/ADP levels. In contrast with cocaine, both amphetamine and heroin induced features of apoptosis. The data suggest that the death of cultured PC12 cells induced by the drugs of abuse is correlated with a decrease in intracellular dopamine levels, which can be associated with an increased dopamine turnover and oxidative cell injury.
Collapse
Affiliation(s)
- M T Oliveira
- Institute of Biochemistry, Faculty of Medicine and Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal.
| | | | | | | | | |
Collapse
|
12
|
Taylor SC, Green KN, Smith IF, Peers C. Prion protein fragment 106-126 potentiates catecholamine secretion from PC-12 cells. Am J Physiol Cell Physiol 2001; 281:C1850-7. [PMID: 11698243 DOI: 10.1152/ajpcell.2001.281.6.c1850] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The toxic actions of scrapie prion protein (PrP(sc)) are poorly understood. We investigated the ability of the toxic PrP(sc) fragment 106-126 to interfere with evoked catecholamine secretion from PC-12 cells. Prion protein fragment 106-126 (PrP106-126) caused a time- and concentration-dependent augmentation of exocytosis due to the emergence of a Ca(2+) influx pathway resistant to Cd(2+) but sensitive to other inorganic cations. In control cells, secretion was dependent on Ca(2+) influx through L- and N-type Ca(2+) channels, but after exposure to PrP106-126, secretion was unaffected by N-type channel blockade. Instead, selective L-type channel blockade was as effective as Cd(2+) in suppressing secretion. Patch-clamp recordings revealed no change in total Ca(2+) current density in PrP106-126-treated cells or in the contribution to total current of L-type channels, but a small Cd(2+)-resistant current was found only in PrP106-126-treated cells. Thus PrP106-126 augments secretion by inducing a Cd(2+)-resistant Ca(2+) influx pathway and alters coupling of native Ca(2+) channels to exocytosis. These effects are likely contributory factors in the toxic cellular actions of PrP(sc).
Collapse
Affiliation(s)
- S C Taylor
- Institute for Cardiovascular Research, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
13
|
Taylor SC, Peers C. Three distinct Ca(2+) influx pathways couple acetylcholine receptor activation to catecholamine secretion from PC12 cells. J Neurochem 2000; 75:1583-9. [PMID: 10987839 DOI: 10.1046/j.1471-4159.2000.0751583.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amperometry and microfluorimetry were employed to investigate the Ca(2+)-dependence of catecholamine release induced from PC12 cells by cholinergic agonists. Nicotine-evoked exocytosis was entirely dependent on extracellular Ca(2+) but was only partly blocked by Cd(2+), a nonselective blocker of voltage-gated Ca(2+) channels. Secretion and rises of [Ca(2+)](i) observed in response to nicotine could be almost completely blocked by methyllycaconitine and alpha-bungarotoxin, indicating that such release was mediated by receptors composed of alpha7 nicotinic acetylcholine receptor subunits. Secretion and [Ca(2+)](i) rises could also be fully blocked by co-application of Cd(2+) and Zn(2+). Release evoked by muscarine was also fully dependent on extracellular Ca(2+). Muscarinic receptor activation stimulated release of Ca(2+) from a caffeine-sensitive intracellular store, and release from this store induced capacitative Ca(2+) entry that could be blocked by La(3+) and Zn(2+). This Ca(2+) entry pathway mediated all secretion evoked by muscarine. Thus, activation of acetylcholine receptors stimulated rises of [Ca(2+)](i) and exocytosis via Ca(2+) influx through voltage-gated Ca(2+) channels, alpha7 subunit-containing nicotinic acetylcholine receptors, and channels underlying capacitative Ca(2+) entry.
Collapse
Affiliation(s)
- S C Taylor
- Institute for Cardiovascular Research, University of Leeds, Leeds, England
| | | |
Collapse
|
14
|
Taylor SC, Green KN, Carpenter E, Peers C. Protein Kinase C Evokes Quantal Catecholamine Release from PC12 Cells via Activation of L-type Ca2+ Channels. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61444-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Taylor SC, Shaw SM, Peers C. Mitochondrial inhibitors evoke catecholamine release from pheochromocytoma cells. Biochem Biophys Res Commun 2000; 273:17-21. [PMID: 10873556 DOI: 10.1006/bbrc.2000.2894] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quantal catecholamine secretion evoked from individual pheochromocytoma (PC12) cells by exposure to mitochondrial inhibitors and uncouplers was monitored in real time using amperometry. Cyanide (0.05-5 mM) caused a concentration-dependent increase in the frequency of amperometric events. This secretory response was abolished by removal of extracellular Ca(2+) and by the application of Cd(2+) (200 microM), a nonselective blocker of voltage-gated Ca(2+) channels. Secretion was also inhibited by ca. 75% following pretreatment of cells with omega-conotoxin GVIA to inhibit N-type Ca(2+) channels selectively. Secretion was also detected when cells were exposed to rotenone (10 microM), dinitrophenol (250 microM) and p-trifluoromethoxyphenyl hydrazone (1 microM) and, as for cyanide, these secretory responses were abolished by removal of extracellular Ca(2+) or application of 200 microM Cd(2+). These results indicate that, like hypoxia, mitochondrial inhibitors and uncouplers evoke catecholamine secretion from PC12 cells which is wholly dependent on Ca(2+) influx through voltage-gated Ca(2+) channels.
Collapse
Affiliation(s)
- S C Taylor
- Institute for Cardiovascular Research, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | |
Collapse
|
16
|
Jones DC, Gunasekar PG, Borowitz JL, Isom GE. Dopamine-induced apoptosis is mediated by oxidative stress and Is enhanced by cyanide in differentiated PC12 cells. J Neurochem 2000; 74:2296-304. [PMID: 10820189 DOI: 10.1046/j.1471-4159.2000.0742296.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dopamine (DA) oxidation and the generation of reactive oxygen species (ROS) may contribute to the degeneration of dopaminergic neurons underlying various neurological conditions. The present study demonstrates that DA-induced cytotoxicity in differentiated PC12 cells is mediated by ROS and mitochondrial inhibition. Because cyanide induces parkinson-like symptoms and is an inhibitor of the antioxidant system and mitochondrial function, cells were treated with KCN to study DA toxicity in an impaired neuronal system. Differentiated PC12 cells were exposed to DA, KCN, or a combination of the two for 12-36 h. Lactate dehydrogenase (LDH) assays indicated that both DA (100-500 microM) and KCN (100-500 microM) induced a concentration- and time-dependent cell death and that their combination produced an increase in cytotoxicity. Apoptotic death, measured by Hoechst dye and TUNEL (terminal deoxynucleotidyltransferase dUTP nick end-labeling) staining, was also concentration- and time-dependent for DA and KCN. DA plus KCN produced an increase in apoptosis, indicating that KCN, and thus an impaired system, enhances DA-induced apoptosis. To study the mechanism(s) of DA toxicity, cells were pretreated with a series of compounds and incubated with DA (300 microM) and/or KCN (100 microM) for 24 h. Nomifensine, a DA reuptake inhibitor, rescued nearly 60-70% of the cells from DA- and DA plus KCN-induced apoptosis, suggesting that DA toxicity is in part mediated intracellularly. Pretreatment with antioxidants attenuated DA- and KCN-induced apoptosis, indicating the involvement of oxidative species. Furthermore, buthionine sulfoximine, an inhibitor of glutathione synthesis, increased the apoptotic response, which was reversed when cells were pretreated with antioxidants. DA and DA plus KCN produced a significant increase in intracellular oxidant generation, supporting the involvement of oxidative stress in DA-induced apoptosis. The nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester and the peroxynitrite scavenger uric acid blocked apoptosis and oxidant production, indicating involvement of nitric oxide. These results suggest that DA neurotoxicity is enhanced under the conditions induced by cyanide and involves both ROS and nitric oxide-mediated oxidative stress as an initiator of apoptosis.
Collapse
Affiliation(s)
- D C Jones
- Neurotoxicology Laboratory, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907- 1333, USA
| | | | | | | |
Collapse
|
17
|
Taylor SC, Roberts ML, Peers C. Acid-evoked quantal catecholamine secretion from rat phaeochromocytoma cells and its interaction with hypoxia-evoked secretion. J Physiol 1999; 519 Pt 3:765-74. [PMID: 10457089 PMCID: PMC2269532 DOI: 10.1111/j.1469-7793.1999.0765n.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/1999] [Accepted: 07/02/1999] [Indexed: 11/30/2022] Open
Abstract
1. Amperometric recordings using polarized carbon fibre microelectrodes were used to detect exocytosis of catecholamines from rat phaeochromocytoma (PC12) cells in response to a reduction in pHo. 2. Exocytosis was detected at pHo levels of between 7.2 and 6.8. This was probably due to intracellular acidification, since acid-evoked secretion was enhanced by the Na+-H+ exchange blocker ethylisopropylamiloride (30 microM), and was mimicked by sodium propionate (10 mM), which causes selective intracellular acidosis. 3. Acid-evoked exocytosis was abolished by removal of Ca2+o or application of 200 microM Cd2+. It was unaffected by nifedipine, but significantly reduced by either omega-conotoxin GVIA (1 microM) or omega-agatoxin GIVA (200 nM). The two toxins applied together almost completely abolished (> 97 %) acid-evoked secretion. 4. Hypoxia-evoked catecholamine release was potentiated under acidic conditions and suppressed under alkaline conditions in a manner which indicated a greater than additive interaction of these two stimuli. 5. Our results indicate that, like carotid body arterial chemoreceptors, PC12 cells represent model chemoreceptor cells for both hypoxia and acidity and that the release of catecholamines in response to these physiological stimuli is dependent on Ca2+ influx through voltage-gated N- and P/Q-type Ca2+ channels.
Collapse
Affiliation(s)
- S C Taylor
- Institute for Cardiovascular Research, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
18
|
Potentiation of quantal catecholamine secretion by glibenclamide: evidence for a novel role of sulphonylurea receptors in regulating the Ca(2+) sensitivity of exocytosis. J Neurosci 1999. [PMID: 10407015 DOI: 10.1523/jneurosci.19-14-05741.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrochemical detection of quantal catecholamine release from PC-12 cells revealed that glibenclamide, an inhibitor of ATP-sensitive K(+) channels, potentiated Ca(2+)-dependent exocytosis evoked by raised extracellular [K(+)] and by exposure of cells to caffeine. Glibenclamide was without effect on voltage-gated Ca(2+) currents, membrane potential, or rises of [Ca(2+)](i) evoked by either raised extracellular [K(+)] or caffeine. The dependence of K(+)-evoked secretion on extracellular Ca(2+) was shifted leftward in the presence of glibenclamide, with a small increase in the plateau level of release, suggesting that glibenclamide primarily increased the Ca(2+) sensitivity of the exocytotic apparatus. Enhancement of secretion by glibenclamide was reversed by pinacidil and cromakalim, indicating that the effects of glibenclamide were mediated via an action on a sulfonylurea receptor. These results demonstrate that sulfonylurea receptors can modulate Ca(2+)-dependent exocytosis via a mechanism downstream of Ca(2+) influx or mobilization.
Collapse
|
19
|
Taylor SC, Peers C. Store-operated Ca2+ influx and voltage-gated Ca2+ channels coupled to exocytosis in pheochromocytoma (PC12) cells. J Neurochem 1999; 73:874-80. [PMID: 10428087 DOI: 10.1046/j.1471-4159.1999.0730874.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microamperometry was used to monitor quantal catecholamine release from individual PC12 cells in response to raised extracellular K+ and caffeine. K+-evoked exocytosis was entirely dependent on Ca2+ influx through voltage-gated Ca2+ channels, and of the subtypes of such channels present in these cells, influx through N-type was primarily responsible for triggering exocytosis. L-type channels played a minor role in mediating K+-evoked secretion, whereas P/Q-type channels did not appear to be involved in secretion at all. Caffeine also evoked catecholamine release from PC12 cells, but only in the presence of extracellular Ca2+. Application of caffeine in Ca2+-free solutions evoked large, transient rises of [Ca2+]i, but did not trigger exocytosis. When Ca2+ was restored to the extracellular solution (in the absence of caffeine), store-operated Ca2+ influx was observed, which evoked exocytosis. The amount of secretion evoked by this influx pathway was far greater than release triggered by influx through L-type Ca2+ channels, but less than that caused by Ca2+ influx through N-type channels. Our results indicate that exocytosis may be regulated even in excitable cells by Ca2+ influx through pathways other than voltage-gated Ca2+ channels.
Collapse
Affiliation(s)
- S C Taylor
- Institute for Cardiovascular Research, University of Leeds, England, UK
| | | |
Collapse
|
20
|
Taylor SC, Peers C. Chronic hypoxia enhances the secretory response of rat phaeochromocytoma cells to acute hypoxia. J Physiol 1999; 514 ( Pt 2):483-91. [PMID: 9852329 PMCID: PMC2269085 DOI: 10.1111/j.1469-7793.1999.483ae.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
1. Amperometric recordings were made from individual phaeochromocytoma (PC12) cells using carbon fibre microelectrodes to investigate the effects of chronic hypoxia (10% O2) on the secretory responses evoked by acute hypoxia. 2. Exposure to chronic hypoxia for 21-26 h increased the frequency of exocytotic events evoked in response to acute hypoxia (PO2 ca 10-60 mmHg). 3. Chronic hypoxia increased the value of Q1/3, determined by the integration of amperometric events, indicating an increase in quantal size: this reflects either an increase in vesicular dimensions or vesicular catecholamine concentration. 4. Exocytotic frequency evoked by bath application of tetraethylammonium (1-10 mM) was significantly enhanced following chronic hypoxia. 5. In both control and chronically hypoxic PC12 cells, exocytosis in response to acute hypoxia was completely abolished in Ca2+-free solutions. Cd2+ (200 microM) completely inhibited exocytosis from control cells, but left a significant residual release in chronically hypoxic PC12 cells. 6. The Cd2+-resistant release evoked by acute hypoxia in chronically hypoxic PC12 cells was inhibited by inorganic ions (0.01-10 mM) in a potency order of La3+ > Gd3+ > Zn2+. Ni2+ (10 mM) was without effect. 7. Our results suggest that chronic hypoxia enhances the secretory response of PC12 cells in part by increasing the depolarization mediated by an oxygen-sensitive K+ channel. In addition, acute hypoxia activates a Cd2+-resistant Ca2+ influx pathway in chronically hypoxic PC12 cells.
Collapse
Affiliation(s)
- S C Taylor
- Institute for Cardiovascular Research, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
21
|
Taylor SC, Peers C. Hypoxia evokes catecholamine secretion from rat pheochromocytoma PC-12 cells. Biochem Biophys Res Commun 1998; 248:13-7. [PMID: 9675077 DOI: 10.1006/bbrc.1998.8905] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have monitored exocytosis of catecholamines from individual PC-12 cells by amperometry using carbon fiber microelectrodes in order to investigate possible secretory responses to acute hypoxia. In normoxia, no secretion was detected from cells perfused with a solution containing 5 mM K+. However, when [K+] was raised (10-100 mM), exocytotic events were observed. Hypoxia (PO2 11 mmHg) stimulated secretion from PC-12 cells, and in hypoxic conditions exocytosis was greater at each [K+] studied as compared with normoxia. Hypoxia-evoked secretion was abolished in Ca2+ free solutions containing 1 mM EGTA and by the non-specific Ca2+ channel blocker, Cd2+ (200 microM). Secretion was also largely inhibited by omega-conotoxin GVIA (1 microM). Exocytosis was also observed in normoxia when cells were exposed to tetraethylammonium (1-10 mM), but not 4-aminopyridine (3 mM). Our findings indicate that hypoxia evokes exocytosis via depolarization arising from inhibition of a TEA-sensitive K+ conductance, leading to Ca2+ influx primarily via N-type Ca2+ channels.
Collapse
Affiliation(s)
- S C Taylor
- Institute for Cardiovascular Research, University of Leeds, United Kingdom
| | | |
Collapse
|
22
|
Zerby SE, Ewing AG. Electrochemical monitoring of individual exocytotic events from the varicosities of differentiated PC12 cells. Brain Res 1996; 712:1-10. [PMID: 8705289 DOI: 10.1016/0006-8993(95)01383-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rat pheochromocytoma (PC12) cells have been used as a model of developing neurons to study exocytosis during differentiation. Upon treatment with nerve growth factor, PC12 cells become more neuronal-like. Using amperometric detection at carbon fiber microelectrodes, time-resolved exocytosis of electroactive catecholamines can be observed. The site of exocytosis has been compared for differentiated and undifferentiated cells. Upon differentiation, cells release catecholamines primarily from varicosities along their neurites with no release from the cell body. In addition, the mean vesicular content is not significantly altered upon differentiation although it appears that the distribution of vesicle content becomes more narrow. The number of release events observed also decreases as the cells become more neuronal in character. It is possible that the smaller range of vesicle dopamine content and the decreased number of release events observed after differentiation are a result of the relocation of the site of exocytosis.
Collapse
Affiliation(s)
- S E Zerby
- Department of Chemistry, Pennsylvania State University, University Park 16802, USA
| | | |
Collapse
|
23
|
Takashima A, Kenimer JG. Regulation of muscarinic stimulation of norepinephrine release and PI hydrolysis during cell growth in PC12 cells. Neurosci Lett 1993; 153:77-9. [PMID: 8390033 DOI: 10.1016/0304-3940(93)90081-u] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have studied the relationships of cell growth to muscarinic stimulation of norepinephrine release and phosphoinositide hydrolysis in the rat pheochromocytoma PC12 cells. The ability of these cells to release norepinephrine in response to muscarinic agonists was maximal during the early phase of exponential growth, and then rapidly decreased to undetectable levels as the cells approached stationary phase. In contrast, muscarinic stimulation of phosphoinositide hydrolysis was low in the early exponential phase of growth, increased to a maximum during late exponential growth and then dramatically dropped in the stationary phase. The number of muscarinic receptors, as measured by antagonist-binding studies, also varied during cell growth with maximal levels at days 2 and 8, corresponding to the maxima in muscarinic-stimulated norepinephrine release and phosphoinositide hydrolysis, respectively.
Collapse
Affiliation(s)
- A Takashima
- Laboratory of Protein Research, Mitsubishikasei Institute of Life Science, Tokyo, Japan
| | | |
Collapse
|
24
|
Koike T. Depolarization-induced increase in surface binding and internalization of 125I-nerve growth factor by PC12 pheochromocytoma cells. J Neurochem 1987; 49:1784-9. [PMID: 2445917 DOI: 10.1111/j.1471-4159.1987.tb02436.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The binding and internalization of 125I-nerve growth factor (NGF) by PC12 pheochromocytoma cells was studied as a function of extracellular potassium concentration. Both surface-bound and internalized fractions of 125I-NGF associated with the cells under depolarizing conditions (50 mM K+) increased to 144 +/- 28% (average +/- SEM, six different cell preparations) and to 176 +/- 12% (n = 6), respectively, of those observed at 6.0 mM K+. Scatchard-type analysis of the data indicates increased sites for the binding and internalization of iodinated NGF by the cells. Similar enhancement was observed for cells treated with NGF as well. This voltage-dependent phenomenon was reversible, and also observed in the presence of veratridine. Moreover, withdrawal of extracellular Ca2+ abolished high K+-induced modulation of 125I-NGF binding and internalization, indicating that this effect may be mediated by Ca2+.
Collapse
Affiliation(s)
- T Koike
- Department of Natural Science, Saga Medical School, Japan
| |
Collapse
|
25
|
Takashima A, Koike T. Nicardipine-sensitive enhancement of high K+ -evoked dopamine release in PC12 cells pretreated with 12-O-tetradecanoylphorbol 13-acetate. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 930:264-71. [PMID: 2441763 DOI: 10.1016/0167-4889(87)90039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA) on stimulus-evoked dopamine release were studied in PC12 cells. Pretreatment of the cells with TPA resulted in an enhancement of dopamine release which could be further stimulated by high concentrations of K+, A23187, but not with carbamylcholine. TPA-dependent, high-K+ -evoked enhancement of dopamine release was studied in detail: a maximum release was observed (169% of control) in response to 50 mM KCl upon treatment with 10(-7) M TPA for 5 min at 37 degrees C. This enhancement of dopamine release was associated with the concomitant reduction of the concentration rise of intracellular Ca2+ ([Ca2+]i) induced by a high concentration of K+ monitored by a fluorescent indicator, fura2. Thus, these data provide an example for alteration in the efficiency of stimulus-secretion coupling as pointed out in our previous paper. Moreover, we have shown that nicardipine, CdCl2, and CoCl2 inhibit high-K+ -evoked dopamine release more effectively in TPA treated cells than that of untreated cells, and that the TPA-dependent, high-K+ -evoked dopamine release observed in TPA treated cells is completely abolished by the presence of nicardipine, Cd2+ or Co2+, but is only partially inhibited in the presence of verapamil. These relevant findings suggest the possible involvement of protein kinase C in regulating the efficiency of a high-K+ -evoked dopamine release through the modification of nicardipine-sensitive Ca2+ channels.
Collapse
|
26
|
Koike T, Takashima A. Cell cycle-dependent modulation of biosynthesis and stimulus-evoked release of catecholamines in PC12 pheochromocytoma cells. J Neurochem 1986; 46:1493-500. [PMID: 2870133 DOI: 10.1111/j.1471-4159.1986.tb01767.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Catecholamine biosynthesis and its stimulus-evoked release in PC12 pheochromocytoma cells were studied as a function of cell cycle by means of HPLC with electrochemical detection. We found that 3,4-dihydroxyphenylethylamine (dopamine) levels in PC12 cells remained constant throughout the period of cell cycle. In contrast, the noradrenaline content was dependent on the cell cycle: it increased during the S + G2 phase followed by a decrease in the M phase. These results were confirmed further by measuring the activities catalyzing the catecholamine biosynthesis. Thus, activities of tyrosine 3-monooxygenase and 3,4-dihydroxyphenylalanine decarboxylase were independent of the cell cycle, whereas both soluble and membrane-bound dopamine beta-monooxygenase activities were modulated during the cell cycle. On the other hand, release of the catecholamines stimulated with 50 mM KCl increased in the G1 phase, reached a maximum in the late G1, and then gradually decreased in later periods. We also found that carbamylcholine-induced release of the catecholamines occurred maximally in the early S + G2 phase followed by a decrease during the M phase. Cell cycle dependence of the catecholamine release was in good agreement with that of 45Ca2+ uptake. Thus, this study provides evidence that the catecholamine biosynthesis and its release in PC12 cells are modulated during the period of cell cycle.
Collapse
|