1
|
Erttmann SF, Gekara NO, Fällman M. Bacteria induce prolonged PMN survival via a phosphatidylcholine-specific phospholipase C- and protein kinase C-dependent mechanism. PLoS One 2014; 9:e87859. [PMID: 24498214 PMCID: PMC3909253 DOI: 10.1371/journal.pone.0087859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/31/2013] [Indexed: 01/11/2023] Open
Abstract
Polymorphonuclear leukocytes (PMNs) are essential for the human innate immune defense, limiting expansion of invading microorganisms. PMN turnover is controlled by apoptosis, but the regulating signaling pathways remain elusive, largely due to inherent differences between mice and humans that undermine use of mouse models for understanding human PMN biology. Here, we aim to elucidate signal transduction mediating survival of human peripheral blood PMNs in response to bacteria, such as Yersinia pseudotuberculosis, an enteropathogen that causes the gastro-intestinal disease yersiniosis, as well as Escherichia coli and Staphylococcus aureus. Determinations of cell death reveal that uninfected control cells undergo apoptosis, while PMNs infected with either Gram-positive or -negative bacteria show profoundly increased survival. Infected cells exhibit decreased caspase 3 and 8 activities, increased mitochondrial integrity and are resistant to apoptosis induced by a death receptor ligand. This bacteria-induced response is accompanied by pro-inflammatory cytokine production including interleukin-8 and tumor necrosis factor-α competent to attract additional PMNs. Using agonists and pharmacological inhibitors, we show participation of Toll-like receptor 2 and 4, and interestingly, that protein kinase C (PKC) and phosphatidylcholine-specific phospholipase C (PC-PLC), but not tyrosine kinases or phosphatidylinositol-specific phospholipase C (PI-PLC) are key players in this dual PMN response. Our findings indicate the importance of prolonged PMN survival in response to bacteria, where general signaling pathways ensure complete exploitation of PMN anti-microbial capacity.
Collapse
Affiliation(s)
- Saskia F. Erttmann
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå Sweden
| | - Nelson O. Gekara
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå Sweden
| | - Maria Fällman
- Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå Sweden
- * E-mail:
| |
Collapse
|
2
|
Fan QW, Cheng C, Knight ZA, Haas-Kogan D, Stokoe D, James CD, McCormick F, Shokat KM, Weiss WA. EGFR signals to mTOR through PKC and independently of Akt in glioma. Sci Signal 2009; 2:ra4. [PMID: 19176518 DOI: 10.1126/scisignal.2000014] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Amplification of the gene encoding the epidermal growth factor (EGF) receptor (EGFR) occurs commonly in glioblastoma, leading to activation of downstream kinases including phosphatidylinositol 3'-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR). Here, we show that phosphorylation of mTOR and its downstream substrate rpS6 (ribosomal protein S6) are robust biomarkers for the antiproliferative effect of EGFR inhibitors. Inhibition of EGFR signaling correlated with decreased abundance of phosphorylated mTOR (p-mTOR) and rpS6 (p-rpS6) in cells wild type for the gene encoding PTEN (phosphatase and tensin homolog on chromosome 10), a negative regulator of PI3K. In contrast, inhibition of EGFR signaling failed to affect p-mTOR or p-rpS6 in cells mutant for PTEN, which are resistant to EGFR inhibitors. Although the abundance of phosphorylated Akt (p-Akt) decreased in response to inhibition of EGFR signaling, Akt was dispensable for signaling between EGFR and mTOR. We identified an Akt-independent pathway linking EGFR to mTOR that was critically dependent on protein kinase C (PKC). Consistent with these observations, the abundance of EGFR generally correlated with phosphorylation of rpS6 and PKC in primary human glioblastoma tumors, and correlated poorly with phosphorylation of Akt. Inhibition of PKC led to decreased viability of glioma cells regardless of PTEN or EGFR status, suggesting that PKC inhibitors should be tested in glioma. These findings underline the importance of signaling between EGFR and mTOR in glioma, identify PKCalpha as essential to this network, and question the necessity of Akt as a critical intermediate coupling EGFR and mTOR in glioma.
Collapse
Affiliation(s)
- Qi-Wen Fan
- Department of Neurology, University of California, 533 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Verma SK, Ganesan TS, Parker PJ. The tumour suppressor RASSF1A is a novel substrate of PKC. FEBS Lett 2008; 582:2270-6. [PMID: 18514071 DOI: 10.1016/j.febslet.2008.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 05/18/2008] [Indexed: 11/15/2022]
Abstract
Ras association domain family 1A (RASSF1A) is a tumour suppressor that contains an amino-terminal cysteine-rich region, similar to the diacylglycerol (DAG)-binding domain (C1 domain) found in the protein kinase C (PKC) family of proteins, and a carboxy-terminal Ras-association (RA) domain. In the present study, RASSF1A was identified as a substrate for PKC. Using classical biochemical approaches, it was established that S197 and S203 within the RA domain of RASSF1A are phosphorylated by PKC in vitro and in vivo. Unlike the WT protein, the S197, 203D double mutant of RASSF1A failed to modulate microtubule organization and perinuclear vimentin collapse. By contrast, the equivalent AA mutant of RASSF1A phenocopied the WT protein. These findings indicate that PKC phosphorylation of RASSF1A regulates its ability to reorganize the microtubule network.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Medical Oncology, Medical Sciences Division, The University of Oxford, Oxford, UK
| | | | | |
Collapse
|
4
|
Morris TL, Arnold RR, Webster-Cyriaque J. Signaling cascades triggered by bacterial metabolic end products during reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol 2007; 81:6032-42. [PMID: 17376930 PMCID: PMC1900322 DOI: 10.1128/jvi.02504-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present studies explore the role of polymicrobial infection in the reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) and analyze signaling pathways activated upon this induction. We hypothesized that activation of the cellular stress-activated mitogen-activated protein kinase (MAPK) p38 pathway would play a key role in the bacterium-mediated disruption of viral latency similar to that of previously reported results obtained with other inducers of gammaherpesvirus lytic replication. KSHV within infected BCBL-1 cells was induced to replicate following exposure to metabolic end products from gram-negative or -positive bacteria that were then simultaneously exposed to specific inhibitors of signal transduction pathways. We have determined that bacterium-mediated induction of lytic KSHV infection is significantly reduced by the inhibition of the p38 MAPK pathway. In contrast, inhibition of the phosphatidylinositol 3-kinase pathway did not impair induction of lytic replication or p38 phosphorylation. Protein kinase C, though activated, was not the major pathway used for bacterium-induced viral reactivation. Furthermore, hyperacetylation of histones 3 and 4 was detected. Collectively, our results show that metabolic end products from these pathogens induce lytic replication of KSHV in BCBL-1 cells primarily via the activation of a stress-activated MAPK pathway. Importantly, we demonstrate for the first time a mechanism by which polymicrobial bacterial infections result in KSHV reactivation and pathogenesis.
Collapse
Affiliation(s)
- T L Morris
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
5
|
Doucet C, Gutierrez GJ, Lindon C, Lorca T, Lledo G, Pinset C, Coux O. Multiple phosphorylation events control mitotic degradation of the muscle transcription factor Myf5. BMC BIOCHEMISTRY 2005; 6:27. [PMID: 16321160 PMCID: PMC1322219 DOI: 10.1186/1471-2091-6-27] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 12/01/2005] [Indexed: 11/30/2022]
Abstract
Background The two myogenic regulatory factors Myf5 and MyoD are basic helix-loop-helix muscle transcription factors undergoing differential cell cycle dependent proteolysis in proliferating myoblasts. This regulated degradation results in the striking expression of these two factors at distinct phases of the cell cycle, and suggests that their precise and alternated disappearance is an important feature of myoblasts, maybe connected to the maintenance of the proliferative status and/or commitment to the myogenic lineage of these cells. One way to understand the biological function(s) of the cyclic expression of these proteins is to specifically alter their degradation, and to analyze the effects of their stabilization on cells. To this aim, we undertook the biochemical analysis of the mechanisms governing Myf5 mitotic degradation, using heterologous systems. Results We show here that mitotic degradation of Myf5 is conserved in non-myogenic cells, and is thus strictly under the control of the cell cycle apparatus. Using Xenopus egg extracts as an in vitro system to dissect the main steps of Myf5 mitotic proteolysis, we show that (1) Myf5 stability is regulated by a complex interplay of phosphorylation/dephosphorylation, probably involving various kinases and phosphatases, (2) Myf5 is ubiquitylated in mitotic extracts, and this is a prerequisite to its degradation by the proteasome and (3) at least in the Xenopus system, the E3 responsible for its mitotic degradation is not the APC/C (the major E3 during mitosis). Conclusion Altogether, our data strongly suggest that the mitotic degradation of Myf5 by the ubiquitin-proteasome system is precisely controlled by multiple phosphorylation of the protein, and that the APC/C is not involved in this process.
Collapse
Affiliation(s)
- Christine Doucet
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | - Gustavo J Gutierrez
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
- Present address: Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Catherine Lindon
- Wellcome Trust/Cancer Research UK, Gurdon Institute, Cambridge, UK
| | - Thierry Lorca
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | - Gwendaline Lledo
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| | | | - Olivier Coux
- Centre de Recherches de Biochimie Macromoléculaire (CRBM), CNRS FRE 2593, Montpellier, France
| |
Collapse
|
6
|
Deutsch E, Cohen A, Kazimirsky G, Dovrat S, Rubinfeld H, Brodie C, Sarid R. Role of protein kinase C delta in reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol 2004; 78:10187-92. [PMID: 15331751 PMCID: PMC515025 DOI: 10.1128/jvi.78.18.10187-10192.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TPA (12-O-tetradecanoylphorbol-13-acetate), a well-known activator of protein kinase C (PKC), can experimentally induce reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) in certain latently infected cells. We selectively blocked the activity of PKC isoforms by using GF 109203X or rottlerin and demonstrated that this inhibition largely decreased lytic KSHV reactivation by TPA. Translocation of the PKCdelta isoform was evident shortly after TPA stimulation. Overexpression of the dominant-negative PKCdelta mutant supported an essential role for the PKCdelta isoform in virus reactivation, yet overexpression of PKCdelta alone was not sufficient to induce lytic reactivation of KSHV, suggesting that additional signaling molecules participate in this pathway.
Collapse
Affiliation(s)
- Einat Deutsch
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
7
|
Wheaton K, Riabowol K. Protein kinase C delta blocks immediate-early gene expression in senescent cells by inactivating serum response factor. Mol Cell Biol 2004; 24:7298-311. [PMID: 15282327 PMCID: PMC479731 DOI: 10.1128/mcb.24.16.7298-7311.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fibroblasts lose the ability to replicate in response to growth factors and become unable to express growth-associated immediate-early genes, including c-fos and egr-1, as they become senescent. The serum response factor (SRF), a major transcriptional activator of immediate-early gene promoters, loses the ability to bind to the serum response element (SRE) and becomes hyperphosphorylated in senescent cells. We identify protein kinase C delta (PKC delta) as the kinase responsible for inactivation of SRF both in vitro and endogenously in senescent cells. This is due to a higher level of PKC delta activity as cells age, production of the PKC delta catalytic fragment, and its nuclear localization in senescent but not in low-passage-number cells. The phosphorylation of T160 of SRF by PKC delta in vitro and in vivo led to loss of SRF DNA binding activity. Both the PKC delta inhibitor rottlerin and ectopic expression of a dominant negative form of PKC delta independently restored SRE-dependent transcription and immediate-early gene expression in senescent cells. Modulation of PKC delta activity in vivo with rottlerin or bistratene A altered senescent- and young-cell morphology, respectively. These observations support the idea that the coordinate transcriptional inhibition of several growth-associated genes by PKC delta contributes to the senescent phenotype.
Collapse
Affiliation(s)
- Keith Wheaton
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Centre, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
8
|
Schmitt M, Horbach A, Kubitz R, Frilling A, Häussinger D. Disruption of hepatocellular tight junctions by vascular endothelial growth factor (VEGF): a novel mechanism for tumor invasion. J Hepatol 2004; 41:274-83. [PMID: 15288477 DOI: 10.1016/j.jhep.2004.04.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2003] [Revised: 04/10/2004] [Accepted: 04/26/2004] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS Vascular endothelial growth factor (VEGF) is expressed by many tumors, including hepatocellular carcinoma (HCC) and is involved in tumor angiogenesis. Little is known about its role for HCC infiltration into normal liver parenchyma. METHODS The effects of VEGF on the integrity of tight junctions were studied in HepG2 cells and human HCC by means of confocal laser scanning microscopy. RESULTS VEGF induced within 45 min a marked loss of pseudocanaliculi and disruption of occludin-delineated tight junctions. This effect of VEGF was mimicked by phorbol-12-myristate-13-acetate (PMA) and was sensitive to protein kinase C (PKC) inhibition by Gö6850. VEGF induced within 15 min the translocation of the PKC alpha-isoform to the plasma-membrane, but had no effect on the activity of Erks and p38(MAPK). Sections from surgically removed HCC showed expression of VEGF in the tumor and occludin disassembly in normal liver parenchyma next to the tumor. CONCLUSIONS VEGF induces disruption of tight junctions in a PKC-alpha dependent manner. In addition to its known angioneogenic properties, VEGF may promote HCC spreading into normal liver parenchyma. The data may provide another rationale for the use of VEGF antagonists for tumor therapy.
Collapse
Affiliation(s)
- Marcus Schmitt
- Department of Gastroenterology, Hepatology and Infectiology, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
9
|
Deb TB, Coticchia CM, Dickson RB. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells. J Biol Chem 2004; 279:38903-11. [PMID: 15247222 DOI: 10.1074/jbc.m405314200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.
Collapse
Affiliation(s)
- Tushar B Deb
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
10
|
McLaughlin M, Breen KC. Protein Kinase C Activation Potentiates the Rapid Secretion of the Amyloid Precursor Protein from Rat Cortical Synaptosomes. J Neurochem 2004. [DOI: 10.1046/j.1471-4159.1999.0720273.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Kochin V, Pallari HM, Pant H, Eriksson JE. Approaches to Study Posttranslational Regulation of Intermediate Filament Proteins. Methods Cell Biol 2004; 78:373-409. [PMID: 15646626 DOI: 10.1016/s0091-679x(04)78014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Vitaly Kochin
- Turku Centre for Biotechnology University of Turku, FIN-20521 Turku, Finland
| | | | | | | |
Collapse
|
12
|
Orihuela PA, Parada-Bustamante A, Cortés PP, Gatica C, Croxatto HB. Estrogen receptor, cyclic adenosine monophosphate, and protein kinase A are involved in the nongenomic pathway by which estradiol accelerates oviductal oocyte transport in cyclic rats. Biol Reprod 2003; 68:1225-31. [PMID: 12606351 DOI: 10.1095/biolreprod.102.011395] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This investigation examined the role of estrogen receptor (ER) on the stimulatory effect of estradiol (E2) on protein phosphorylation in the oviduct as well as on E2-induced acceleration of oviductal oocyte transport in cyclic rats. Estrous rats were injected with E2 s.c. and with the ER antagonist ICI 182 780 intrabursally (i.b.), and 6 h later, oviducts were excised and protein phosphorylation was determined by Western blot analysis. ICI 182 780 inhibited the E2-induced phosphorylation of some oviductal proteins. Other estrous rats were treated with E2 s.c. and ICI 182 780 i.b. The number of eggs in the oviduct, assessed 24 h later, showed that ICI 182 780 blocked the E2-induced egg transport acceleration. The possible involvement of adenylyl cyclase, protein kinase A (PK-A), protein kinase C (PK-C), or tyrosine kinases on egg transport acceleration induced by E2 was then examined. Selective inhibitors of adenylyl cyclase or PK-A inhibited the E2-induced egg transport acceleration, whereas PK-C or tyrosine kinase inhibitors had no effect. Furthermore, forskolin, an adenylyl cyclase activator, mimicked the effect of E2 on ovum transport and E2 increased the level of cAMP in the oviduct of cycling rats. Finally, we measured PK-A activity in vitro in the presence of E2 or E2-ER complex. Activity of PK-A in the presence of E2 or E2-ER was similar to PK-A alone, showing that E2 or E2-ER did not directly activate PK-A. We conclude that the nongenomic pathway by which E2 accelerates oviductal egg transport in the rat requires absolute participation of ER and cAMP and partial participation of PK-A signaling pathways in the oviduct.
Collapse
Affiliation(s)
- Pedro A Orihuela
- Unidad de Reproducción y Desarrollo, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
13
|
Pickett CA, Manning N, Akita Y, Gutierrez-Hartmann A. Role of specific protein kinase C isozymes in mediating epidermal growth factor, thyrotropin-releasing hormone, and phorbol ester regulation of the rat prolactin promoter in GH4/GH4C1 pituitary cells. Mol Endocrinol 2002; 16:2840-52. [PMID: 12456804 DOI: 10.1210/me.2001-0305] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Epidermal growth factor (EGF) and TRH both produce enhanced prolactin (PRL) gene transcription and PRL secretion in GH4 rat pituitary tumor cell lines. These agents also activate protein kinase C (PKC) in these cells. Previous studies have implicated the PKCepsilon isozyme in mediating TRH-induced PRL secretion. However, indirect studies using phorbol ester down-regulation to investigate the role of PKC in EGF- and TRH-induced PRL gene transcription have been inconclusive. In the present study, we examined the role of multiple PKC isozymes on EGF- and TRH-induced activation of the PRL promoter by utilizing general and selective PKC inhibitors and by expression of genes for wild-type and kinase-negative forms of the PKC isozymes. Multiple nonselective PKC inhibitors, including staurosporine, bisindolylmaleimide I, and Calphostin C, inhibited both EGF and TRH induced rat PRL promoter activity. TRH effects were more sensitive to Calphostin C, a competitive inhibitor of diacylglycerol, whereas Go 6976, a selective inhibitor of Ca(2+)-dependent PKCs, produced a modest inhibition of EGF but no inhibition of TRH effects. Rottlerin, a specific inhibitor of the novel nPKCdelta isozyme, significantly blocked both EGF and TRH effects. Overexpression of genes encoding PKCs alpha, betaI, betaII, delta, gamma, and lambda failed to enhance either EGF or TRH responses, whereas overexpression of nPKCeta enhanced the EGF response. Neither stable nor transient overexpression of nPKCepsilon produced enhancement of EGF- or TRH-induced PRL promoter activity, suggesting that different processes regulate PRL transcription and hormone secretion. Expression of a kinase inactive nPKCdelta construct produced modest inhibition of EGF-mediated rPRL promoter activity. Taken together, these data provide evidence for a role of multiple PKC isozymes in mediating both EGF and TRH stimulated PRL gene transcription. Both EGF and TRH responses appear to require the novel isozyme, nPKCdelta, whereas nPKCeta may also be able to transmit the EGF response. Inhibitor data suggest that the EGF response may also involve Ca(2+)-dependent isozymes, whereas the TRH response appears to be more dependent on diacylglycerol.
Collapse
Affiliation(s)
- Cheryl A Pickett
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195-6426, USA.
| | | | | | | |
Collapse
|
14
|
Mwimbi XKMS, Muimo R, Treharne KJ, Sijumbila G, Green M, Mehta A. 4alpha-Phorbol negates the inhibitory effects of phorbol-12-myristate-13-acetate on human cilia and alters the phosphorylation of PKC. FEBS Lett 2002; 530:31-6. [PMID: 12387861 DOI: 10.1016/s0014-5793(02)03358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In medium 199, ciliary beat frequency (CBF) in human nasal epithelium declines to 60% of baseline by 2 h and 1 nM phorbol-12-myristate-13-acetate (PMA) doubles the rate of decline by activating protein kinase C (PKC). We find that a reported negative control for PMA, 4alpha-phorbol (1 pM-1 nM)+/-1 nM PMA, not only maintains CBF at baseline, but arrests a pre-existing PMA-induced decline in CBF and alters the profile of multiple phosphorylated PKC species. Thus, 4alpha-phorbol not only potently prevents PMA from inhibiting CBF but also has potent effects on the phosphorylation of PKC.
Collapse
Affiliation(s)
- Xowi K M S Mwimbi
- Tayside Institute of Child Health, Ninewells Hospital and Medical School, University of Dundee, UK
| | | | | | | | | | | |
Collapse
|
15
|
Perez OD, Nolan GP. Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat Biotechnol 2002; 20:155-62. [PMID: 11821861 DOI: 10.1038/nbt0202-155] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intracellular assays of signaling systems have been limited by an inability to correlate functional subsets of cells in complex populations on the basis of active kinase states. Such correlations could be important in distinguishing changes in signaling status that arise in rare cell subsets during functional activation or in disease manifestation. Here we demonstrate the ability to simultaneously detect activated kinase members of the mitogen-activated protein kinases family (p38 MAPK, p44/42 MAPK, JNK/SAPK), members of cell survival pathways (AKT/PKB), and members of T-cell activation pathways (TYK2), among others, in subpopulations of complex cell populations by multiparameter flow-cytometric analysis. We demonstrate the utility of these probes in identifying distinct signaling cascades for (1) both artificial and physiological stimulatory conditions of peripheral blood mononuclear cells (PBMCs), (2) cytokine stimulation in human memory and naïve lymphocyte subsets as identified by five differentiation markers, and (3) ordering of kinase activation in potential signaling hierarchies. Polychromatic flow-cytometric active kinase measurements demonstrate that multidimensional analysis of signaling pathways can provide functional signaling pathway assessment on a single-cell level and allow for potential correlation with biological and clinical parameters.
Collapse
Affiliation(s)
- Omar D Perez
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5175, USA
| | | |
Collapse
|
16
|
Orihuela PA, Croxatto HB. Acceleration of oviductal transport of oocytes induced by estradiol in cycling rats is mediated by nongenomic stimulation of protein phosphorylation in the oviduct. Biol Reprod 2001; 65:1238-45. [PMID: 11566749 DOI: 10.1095/biolreprod65.4.1238] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In order to explore nongenomic actions of estradiol (E2) and progesterone (P4) in the oviduct, we determined the effect of E2 and P4 on oviductal protein phosphorylation. Rats on Day 1 of the cycle (C1) or pregnancy (P1) were treated with E2, P4, or E2 + P4, and 0.5 h or 2.5 h later their oviducts were incubated in medium with 32P-orthophosphate for 2 h. Oviducts were homogenized and proteins were separated by SDS-PAGE. Following autoradiography, protein bands were quantitated by densitometry. The phosphorylation of some proteins was increased by hormonal treatments, exhibiting steroid specificity and different individual time courses. Possible mediation of the E2 effect by mRNA synthesis or protein kinases A (PK-A) or C (PK-C) was then examined. Rats on C1 treated with E2 also received an intrabursal (i.b.) injection of alpha-amanitin (Am), or the PK inhibitors H-89 or GF 109203X, and 0.5 h later their oviducts were incubated as above plus the corresponding inhibitors in the medium. Increased incorporation of 32P into total oviductal protein induced by E2 was unchanged by Am, whereas it was completely suppressed by PK inhibitors. Local administration of H-89 was utilized to determine whether or not E2-induced egg transport acceleration requires protein phosphorylation. Rats on C1 or P1 were treated with E2 s.c. and H-89 i.b. The number and distribution of eggs in the genital tract assessed 24 h later showed that H-89 blocked the E2-induced oviductal egg loss in cyclic rats and had no effect in mated rats. It is concluded that E2 and P4 change the pattern of oviductal protein phosphorylation. Estradiol increases oviductal protein phosphorylation in cyclic rats due to a nongenomic action mediated by PK-A and PK-C. In the absence of mating, this action is essential for its oviductal transport accelerating effect. Mating changes the mechanism of action of E2 in the oviduct by waiving this nongenomic action as a requirement for E2-induced embryo transport acceleration.
Collapse
Affiliation(s)
- P A Orihuela
- Unidad de Reproducción y Desarrollo, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
17
|
Córdoba M, Beconi MT. Progesterone effect mediated by the voltage-dependent calcium channel and protein kinase C on noncapacitated cryopreserved bovine spermatozoa. Andrologia 2001; 33:105-12. [PMID: 11350374 DOI: 10.1046/j.1439-0272.2001.00414.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An increase in intracellular calcium is essential to trigger capacitation and the acrosome reaction. The aim of this study was to determine the progesterone effect mediated by the voltage-dependent calcium channel and protein kinase C on heparin-capacitated and noncapacitated spermatozoa. Protein kinase C was activated by 1-oleoyl-2-acetyl glycerol, a membrane-permeant diacyl-glycerol, and inhibited by GF-109203X. The percentage of true acrosome reaction was evaluated using differential-interferential optical contrast microscopy and trypan blue stain. The calcium concentration was evaluated by FURA-2AM and methoxyverapamil was used as a voltage-dependent calcium channel inhibitor. A rapid calcium increase and acrosome reaction were induced by progesterone in capacitated and noncapacitated spermatozoa, a higher intracellular calcium increase being observed in capacitated than in noncapacitated samples (P < 0.05). The calcium increase and acrosome reaction were blocked significantly by GF-109203X in noncapacitated and capacitated spermatozoa by the addition of progesterone and/or 1-oleoyl-2-acetylglycerol. Methoxyverapamil blocked calcium influx in samples treated with progesterone and heparin/progesterone, but not in those treated with 1-oleoyl-2-acetyl glycerol. Progesterone induces the acrosome reaction in noncapacitated cryopreserved bovine spermatozoa through intracellular mechanisms dependent on protein kinase C and the voltage-dependent calcium channel.
Collapse
Affiliation(s)
- M Córdoba
- Area of Biochemistry, School of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
18
|
Deli E, Kiss Z. Protein kinase C-stimulated formation of ethanolamine from phosphatidylethanolamine involves a protein phosphorylation mechanism: negative regulation by p21 Ras protein. Arch Biochem Biophys 2000; 377:171-7. [PMID: 10775457 DOI: 10.1006/abbi.2000.1768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mammalian cells express a phospholipase D (PLD)-like enzyme which forms ethanolamine from phosphatidylethanolamine (PtdEtn) by a protein kinase C-alpha (PKC-alpha)-activated, presently unknown, mechanism. Now we report that addition of a PKC-alpha-enriched purified PKC preparation or recombinant PKC-alpha to a plasma membrane-enriched membrane fraction, isolated from leukemic HL60 cells, greatly ( approximately 6.5-fold stimulation) enhanced PtdEtn hydrolysis if the PKC activator phorbol 12-myristate 13-acetate (PMA) and ATP were both present; this was accompanied by PKC-mediated phosphorylation of several membrane proteins. The combined effects of PKC-alpha, ATP, and PMA on [(14)C]PtdEtn hydrolysis were inhibited by GF 109203X (10 microM), an inhibitor of catalytic activity of PKC. In this membrane fraction, PMA alone also had a smaller ( approximately 3.5-fold) stimulatory effect on PtdEtn hydrolysis which was not affected by adding ATP or GF 109203X to the membranes. These results suggest that PMA can stimulate PtdEtn hydrolysis via a PKC-catalyzed phosphorylation mechanism as well as by a phosphorylation-independent process. Transformation of NIH 3T3 fibroblasts by H-ras reduced the effect of PMA on PtdEtn hydrolysis. Furthermore, in NIH 3T3 fibroblasts, scrape-loaded Y13-259 anti Ras antibody enhanced PMA-stimulated hydrolysis of PtdEtn. These results suggest that activation of the PtdEtn-hydrolyzing PLD enzyme by PKC-alpha is inhibited by p21 Ras.
Collapse
Affiliation(s)
- E Deli
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | |
Collapse
|
19
|
Popoff IJ, Deans JP. Activation and tyrosine phosphorylation of protein kinase C delta in response to B cell antigen receptor stimulation. Mol Immunol 1999; 36:1005-16. [PMID: 10698304 DOI: 10.1016/s0161-5890(99)00128-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of the B cell through antigen receptor (BCR) crosslinking is known to initiate a prominent tyrosine kinase cascade and lipid second messenger production through the activation of phospholipase Cgamma and phosphatidylinositol 3' kinase. In this study, we demonstrate that protein kinase C delta (PKCdelta) responds to crosslinking of the BCR by becoming activated and tyrosine phosphorylated within 30s of stimulation. PKC6 activation was dependent primarily on phosphatidylinositol 3' kinase, and this in turn was dependent on an upstream tyrosine phosphorylation event. Inhibition of PKCdelta activation by blocking phosphatidylinositol 3' kinase was also accompanied by a decrease in its tyrosine phosphorylation, suggesting that PKCdelta must be activated in order to become tyrosine phosphorylated. Inhibition of phospholipase C activation had an insignificant effect on the activation of PKCdelta, however it attenuated the tyrosine phosphorylation of PKCdelta. This suggests a distinct role for phospholipase C in the regulation of PKCdelta. This report describes a role for PKCdelta in response to the combined signals originated by the BCR.
Collapse
Affiliation(s)
- I J Popoff
- Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| | | |
Collapse
|
20
|
Fatatis A, Miller RJ. Cell cycle control of PDGF-induced Ca(2+) signaling through modulation of sphingolipid metabolism. FASEB J 1999; 13:1291-301. [PMID: 10428754 DOI: 10.1096/fasebj.13.11.1291] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of growth factors have been shown to depend on the position of a cell in the cell cycle. However, the physiological basis for this phenomenon remains unclear. Here we show that the majority of both CEINGE clone3 (cl3) and human embryonic kidney 293 cells, when arrested in a quiescent phase (G(0)), responded to platelet-derived growth factor BB (PDGF-BB) with non-oscillatory Ca(2+) signals. Furthermore, the same type of Ca(2+) response was also observed in CEINGE cl3 cells (and to a lesser extent in HEK 293 cells) blocked at the G(1)/S boundary. In contrast, CEINGE cl3 cells synchronized in early G(1) or released from G(1)/S arrest responded in an oscillatory fashion. This cell cycle-dependent modulation of Ca(2+) signaling was not observed on epidermal growth factor and G-protein-coupled receptor stimulation and was not due to differences in the expression of PDGF receptors (PDGFRs) during the cell cycle. We demonstrate that inhibition of sphingosine-kinase, which converts sphingosine to sphingosine-1-phosphate, caused G(0) as well as G(1)/S synchronized cells to restore the oscillatory Ca(2+) response to PDGF-BB. In addition, we show that the synthesis of sphingosine and sphingosine-1-phosphate is regulated by the cell cycle and may underlie the differences in Ca(2+) signaling after PDGFR stimulation.
Collapse
Affiliation(s)
- A Fatatis
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
21
|
Johnson J, Bierle BM, Gallicano GI, Capco DG. Calcium/calmodulin-dependent protein kinase II and calmodulin: regulators of the meiotic spindle in mouse eggs. Dev Biol 1998; 204:464-77. [PMID: 9882483 DOI: 10.1006/dbio.1998.9038] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Elevation of intracellular free calcium causes egg activation by initiating a cascade of interacting signaling pathways that, in unison, act to remodel the cytoplasmic compartment and the nuclear compartment of the egg. We show here that calcium/calmodulin-dependent protein kinase II (CaM kinase II) is tightly associated with the meiotic spindle and that 5 min after egg activation there is a transient, tight association of calmodulin (colocalized with CaM kinase II) on the meiotic spindle. These correlative observations caused us to test whether activation of CaM kinase II mediated the chromosomal transit into an anaphase configuration. We demonstrate that calcium and calmodulin, at physiological levels, along with ATP were capable of driving the spindle (with its associated CaM kinase II) into an anaphase configuration in a permeabilized egg system. The transit into anaphase was dependent on the presence of both calcium and calmodulin and occurred normally when they were present at a ratio of 4 to 1. Peptide and pharmacologic inhibitors of CaM kinase II blocked the transit into anaphase, both in the permeabilized egg system and in living eggs (inhibitors of protein kinase C did not block the transit into anaphase). Using a biochemical approach we confirm that CaM kinase II increases in activity 5 min after egg activation and that a second increase occurs 45 min after activation at the approximate time that the contractile ring of the second polar body is constricting. This corresponds to the approximate time when calmodulin and CaM kinase II colocalize at several points in the activated egg including the region containing midzone microtubules. CaM kinase II appears localized on midzone microtubules as soon as they form and may have a role in specifying the position of the contractile ring of the second polar body.
Collapse
Affiliation(s)
- J Johnson
- Molecular and Cellular Biology Program/Biology, Arizona State University, Tempe, Arizona, 85287-1501, USA
| | | | | | | |
Collapse
|
22
|
Wang F, Weaver VM, Petersen OW, Larabell CA, Dedhar S, Briand P, Lupu R, Bissell MJ. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci U S A 1998; 95:14821-6. [PMID: 9843973 PMCID: PMC24533 DOI: 10.1073/pnas.95.25.14821] [Citation(s) in RCA: 509] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anchorage and growth factor independence are cardinal features of the transformed phenotype. Although it is logical that the two pathways must be coregulated in normal tissues to maintain homeostasis, this has not been demonstrated directly. We showed previously that down-modulation of beta1-integrin signaling reverted the malignant behavior of a human breast tumor cell line (T4-2) derived from phenotypically normal cells (HMT-3522) and led to growth arrest in a three-dimensional (3D) basement membrane assay in which the cells formed tissue-like acini (14). Here, we show that there is a bidirectional cross-modulation of beta1-integrin and epidermal growth factor receptor (EGFR) signaling via the mitogen-activated protein kinase (MAPK) pathway. The reciprocal modulation does not occur in monolayer (2D) cultures. Antibody-mediated inhibition of either of these receptors in the tumor cells, or inhibition of MAPK kinase, induced a concomitant down-regulation of both receptors, followed by growth-arrest and restoration of normal breast tissue morphogenesis. Cross-modulation and tissue morphogenesis were associated with attenuation of EGF-induced transient MAPK activation. To specifically test EGFR and beta1-integrin interdependency, EGFR was overexpressed in nonmalignant cells, leading to disruption of morphogenesis and a compensatory up-regulation of beta1-integrin expression, again only in 3D. Our results indicate that when breast cells are spatially organized as a result of contact with basement membrane, the signaling pathways become coupled and bidirectional. They further explain why breast cells fail to differentiate in monolayer cultures in which these events are mostly uncoupled. Moreover, in a subset of tumor cells in which these pathways are misregulated but functional, the cells could be "normalized" by manipulating either pathway.
Collapse
Affiliation(s)
- F Wang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang D, Yu X, Brecher P. Nitric oxide and N-acetylcysteine inhibit the activation of mitogen-activated protein kinases by angiotensin II in rat cardiac fibroblasts. J Biol Chem 1998; 273:33027-34. [PMID: 9830056 DOI: 10.1074/jbc.273.49.33027] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensin II acts on the cardiac fibroblast to produce a mitogenic response. Nitric oxide and N-acetylcysteine have been used to determine if oxidative stress influenced the effects of angiotensin II on the cardiac fibroblast. Angiotensin II activated the mitogen-activated protein kinases designated extracellular signal-regulated kinases within 5 min by interacting with the AT1 receptor. This activation was completely independent of protein kinase C and was inhibited when farnesylation was blocked, implicating Ras involvement. Pretreatment of cardiac fibroblasts with either N-acetylcysteine for 8 h or nitric oxide for 10 min suppressed this activation by angiotensin II in a dose-dependent manner. However, when both agents were added, inhibition was essentially complete. This combined effect of N-acetylcysteine and nitric oxide to block ERKs activation also was found if the activity was stimulated by either another growth factor (platelet-derived growth factor) or by the addition of phorbol ester, suggesting the effect was not limited to the receptor site alone. The results are consistent with the hypothesis that hormonal activation of mitogenic steps such as ERKs is influenced by increased oxidative stress, which is reduced by the combined effects of N-acetylcysteine and nitric oxide.
Collapse
Affiliation(s)
- D Wang
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
24
|
Thorsen VA, Bruland O, Lillehaug JR, Holmsen H. Choline derived from the phosphatidylcholine specific phospholipase D is not directly available for the CDP choline pathway in phorbol ester-treated C3H10T1/2 Cl 8 fibroblasts. Mol Cell Biochem 1998; 187:147-54. [PMID: 9788752 DOI: 10.1023/a:1006813524791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have shown that 12-O-tetradecanoylphorbol 13-acetate (TPA) increases protein kinase C (PKC)-mediated choline transport, incorporation of choline into phosphatidylcholine (PtdCho) and PtdCho degradation by phospholipase D (PLD) in C3H10T1/2 Cl 8 cells. Dual prelabeling experiment using [3H]/[14C]choline indicated that intracellular choline generated from the PLD reaction was not directly recycled to PtdCho synthesis within the cell, and that a large fraction of the choline was transported out of the TPA-treated cells. In contrast, medium derived choline was preferably channeled to PtdCho synthesis. These results indicate that in TPA-treated cells, the choline derived from the PKC-mediated increased PLD activity and the choline newly taken up by the cell behave as two distinctly different metabolic pools.
Collapse
Affiliation(s)
- V A Thorsen
- Department of Biochemistry and Molecular Biology, University of Bergen, Norway
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- K B Bacon
- Department of Immunobiology, DNAX Research Institute, Palo Alto, California 94304-1104, USA
| |
Collapse
|
26
|
Rapuano BE, Bockman RS. Protein kinase C-independent activation of a novel nonspecific phospholipase C pathway by phorbol myristate acetate releases arachidonic acid for prostaglandin synthesis in MC3T3-E1 osteoblasts. PROSTAGLANDINS 1997; 53:163-86. [PMID: 9131731 DOI: 10.1016/s0090-6980(97)00011-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of phorbol myristate acetate, an activator of protein kinase C, on the release of [3H]arachidonic acid and prostaglandin synthesis were studied in an osteoblast cell line (MC3T3-E1). Phorbol myristate acetate (20 uM) liberated 16 and 55% of the [3H]arachidonate in prelabeled phosphatidylinositol and phosphatidylethanolamine, respectively; and evoked a 19-fold stimulation in the synthesis of prostaglandin E2. Phorbol myristate acetate doubled the cellular mass of 1,2-diacylglycerol and stimulated the liberation of [3H]arachidonate from the diacylglycerol pool in prelabeled cells. The diacylglycerol lipase inhibitor RHC 80267 blocked 75-80% of the phorbol ester-promoted (total) cellular liberation of [3H]arachidonic acid and production of prostaglandin E2. In comparison, the release of [3H]arachidonate from phosphatidylethanolamine (but not phosphatidylinositol) was only partially antagonized (to the same degree) by the PLA2 inhibitor p-bromophenacylbromide and the protein kinase C inhibitor Et-18-OMe, PMA-induced formation of diacylglycerol or synthesis of PGE2 was not affected by the prior inhibition of protein kinase C. Therefore, we have shown a novel pathway for the liberation of arachidonic acid in osteoblasts involving the nonspecific hydrolysis of phosphatidylinositol and phosphatidylethanolamine by phospholipase C followed by the deesterification of diacylglycerol. This pathway can be activated by a phorbol ester through a protein kinase C-independent mechanism.
Collapse
Affiliation(s)
- B E Rapuano
- Division of Endocrinology, Cornell University Medical College, Hospital for Special Surgery, N.Y., N.Y. 10021, USA
| | | |
Collapse
|