1
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
2
|
Thorogate R, Török K. Role of Ca2+ activation and bilobal structure of calmodulin in nuclear and nucleolar localization. Biochem J 2007; 402:71-80. [PMID: 17040208 PMCID: PMC1783980 DOI: 10.1042/bj20061111] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca2+ signalling to the nucleus is thought to occur by calmodulin entry into the nucleus where calmodulin has many functions. In the present study we have investigated the role of Ca2+ and the N- and C-terminal lobes of calmodulin in its subnuclear targeting by using fluorescently labelled calmodulin and its mutants and confocal microscopy. Our data show, first, that Ca2+ stimulation induces a reorganization of subnuclear structures to which apo-calmodulin can bind. Secondly, Ca2+-independent association of the C-terminal lobe is seen with subnuclear structures such as chromatin, the nuclear envelope and the nucleoli. Thirdly, Ca2+-dependent accumulation of both calmodulin and the C-terminal calmodulin lobe occurs in the nucleoli. The N-terminal lobe of calmodulin does not show significant binding to subnuclear structures although, similarly to the C-terminal lobe, it accumulates in the nucleoplasm of wheat germ agglutinin-blocked nuclei suggesting that a facilitated nuclear export mechanism exists for calmodulin.
Collapse
Affiliation(s)
- Richard Thorogate
- Division of Basic Medical Sciences, St George's University of London, London SW17 0RE, UK
| | | |
Collapse
|
3
|
Limbäck-Stokin K, Korzus E, Nagaoka-Yasuda R, Mayford M. Nuclear calcium/calmodulin regulates memory consolidation. J Neurosci 2005; 24:10858-67. [PMID: 15574736 PMCID: PMC6730218 DOI: 10.1523/jneurosci.1022-04.2004] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The neuronal response to a Ca2+ stimulus is a complex process involving direct Ca2+/calmodulin (CaM) actions as well as secondary activation of multiple signaling pathways such as cAMP and ERK (extracellular signal-regulated kinase). These signals can act in both the cytoplasm and the nucleus to control gene expression. To dissect the role of nuclear from cytoplasmic Ca2+/CaM signaling in memory formation, we generated transgenic mice that express a dominant inhibitor of Ca2+/CaM selectively in the nuclei of forebrain neurons and only after the animals reach adulthood. These mice showed diminished neuronal activity-induced phosphorylation of cAMP response element-binding protein, reduced expression of activity-induced genes, altered maximum levels of hippocampal long-term potentiation, and severely impaired formation of long-term, but not short-term, memory. Our results demonstrate that nuclear Ca2+/CaM signaling plays a critical role in memory consolidation in the mouse.
Collapse
Affiliation(s)
- Klara Limbäck-Stokin
- Institute for Childhood and Neglected Diseases and Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
4
|
Chin ER, Grange RW, Viau F, Simard AR, Humphries C, Shelton J, Bassel-Duby R, Williams RS, Michel RN. Alterations in slow-twitch muscle phenotype in transgenic mice overexpressing the Ca2+ buffering protein parvalbumin. J Physiol 2003; 547:649-63. [PMID: 12562945 PMCID: PMC2342652 DOI: 10.1113/jphysiol.2002.024760] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study was to determine whether induced expression of the Ca2+ buffering protein parvalbumin (PV) in slow-twitch fibres would lead to alterations in physiological, biochemical and molecular properties reflective of a fast fibre phenotype. Transgenic (TG) mice were generated that overexpressed PV in slow (type I) muscle fibres. In soleus muscle (SOL; 58 % type I fibres) total PV expression was 2- to 6-fold higher in TG compared to wild-type (WT) mice. Maximum twitch and tetanic tensions were similar in WT and TG but force at subtetanic frequencies (30 and 50 Hz) was reduced in TG SOL. Twitch time-to-peak tension and half-relaxation time were significantly decreased in TG SOL (time-to-peak tension: 39.3 +/- 2.6 vs. 55.1 +/- 4.7 ms; half-relaxation time: 42.1 +/- 3.5 vs. 68.1 +/- 9.6 ms, P < 0.05 for TG vs. WT, respectively; n = 8-10). There was a significant increase in expression of type IIa myosin heavy chain (MHC) and ryanodine receptor at the mRNA level in TG SOL but there were no differences in MHC expression at the protein level and thus no difference in fibre type. Whole muscle succinate dehydrogenase activity was reduced by 12 +/- 0.4 % in TG SOL and single fibre glycerol-3-phosphate dehydrogenase activity was decreased in a subset of type IIa fibres. These differences were associated with a 64 % reduction in calcineurin activity in TG SOL. These data show that overexpression of PV, resulting in decreased calcineurin activity, can alter the functional and metabolic profile of muscle and influence the expression of key marker genes in a predominantly slow-twitch muscle with minimal effects on the expression of muscle contractile proteins.
Collapse
Affiliation(s)
- Eva R Chin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, NB11.200, Dallas, TX 75235-8573, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Reiner DS, Hetsko ML, Meszaros JG, Sun CH, Morrison HG, Brunton LL, Gillin FD. Calcium signaling in excystation of the early diverging eukaryote, Giardia lamblia. J Biol Chem 2003; 278:2533-40. [PMID: 12397071 DOI: 10.1074/jbc.m208033200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excystation of Giardia lamblia, which initiates infection, is a poorly understood but dramatic differentiation induced by physiological signals from the host. Our data implicate a central role for calcium homeostasis in excystation. Agents that alter cytosolic Ca(2+) levels (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-tetra(acetyloxymethyl) ester, a Ca(2+) channel blocker, Ca(2+) ionophores, and thapsigargin) strongly inhibit excystation. Treatment of Giardia with thapsigargin raised intracellular Ca(2+) levels, and peak Ca(2+) responses increased with each stage of excystation, consistent with the kinetics of inhibition. Fluorescent thapsigargin localized to a likely Ca(2+) storage compartment in cysts. The ability to sequester ions in membrane-bounded compartments is a hallmark of the eukaryotic cell. These studies support the existence of a giardial thapsigargin-sensitive Ca(2+) storage compartment resembling the sarcoplasmic/endoplasmic reticulum calcium ATPase pump-leak system and suggest that it is important in regulation of differentiation and appeared early in the evolution of eukaryotic cells. Calmodulin antagonists also blocked excystation. The divergent giardial calmodulin localized to the eight flagellar basal bodies/centrosomes, like protein kinase A. Inhibitor kinetics suggest that protein kinase A signaling triggers excystation, whereas calcium signaling is mainly required later, for parasite activation and emergence. Thus, the basal bodies may be a cellular control center to coordinate the resumption of motility and cytokinesis in excystation.
Collapse
Affiliation(s)
- David S Reiner
- Department of Pathology, University of California, San Diego, 92103, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Thorns C, Gaiser T, Lange K, Merz H, Feller AC. cDNA arrays: gene expression profiles of Hodgkin's disease and anaplastic large cell lymphoma cell lines. Pathol Int 2002; 52:578-85. [PMID: 12406187 DOI: 10.1046/j.1320-5463.2002.01400.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
cDNA arrays are a powerful tool for the identification of differentially expressed genes in malignant tumors. We used this technique to study the gene expression profiles of anaplastic large cell lymphoma (ALCL) and Hodgkin's disease (HD). Gene expression of 11 lymphoma cell lines was analyzed covering 1176 cDNA sequences. Comparing these data to the expression profiles of B- and T-lymphocytes, we identified 27 genes that were deregulated in all cell lines or in a particular entity. For the establishment of gene expression profiles the 27 genes were assigned to four groups composed of genes deregulated in (i) all lymphoma cell lines, (ii) ALCL and HD, (iii) only HD, and (iv) ALCL exclusively. Our results indicate that ALCL and HD share the differential expression of at least five genes. In addition, both entities are characterized by the differentially deregulated expression of four genes in HD and seven genes in ALCL. Because the expression profiling was performed on cell lines, further studies are needed to clarify the biological significance of the differentially expressed genes.
Collapse
Affiliation(s)
- Christoph Thorns
- Department of Pathology, German Consultation and Reference Center for Lymphomas, Medical University of Luebeck, Luebeck, Germany.
| | | | | | | | | |
Collapse
|
7
|
Porter LA, Dellinger RW, Tynan JA, Barnes EA, Kong M, Lenormand JL, Donoghue DJ. Human Speedy: a novel cell cycle regulator that enhances proliferation through activation of Cdk2. J Cell Biol 2002; 157:357-66. [PMID: 11980914 PMCID: PMC2173287 DOI: 10.1083/jcb.200109045] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The decision for a cell to self-replicate requires passage from G1 to S phase of the cell cycle and initiation of another round of DNA replication. This commitment is a critical one that is tightly regulated by many parallel pathways. Significantly, these pathways converge to result in activation of the cyclin-dependent kinase, cdk2. It is, therefore, important to understand all the mechanisms regulating cdk2 to determine the molecular basis of cell progression. Here we report the identification and characterization of a novel cell cycle gene, designated Speedy (Spy1). Spy1 is 40% homologous to the Xenopus cell cycle gene, X-Spy1. Similar to its Xenopus counterpart, human Speedy is able to induce oocyte maturation, suggesting similar biological characteristics. Spy1 mRNA is expressed in several human tissues and immortalized cell lines and is only expressed during the G1/S phase of the cell cycle. Overexpression of Spy1 protein demonstrates that Spy1 is nuclear and results in enhanced cell proliferation. In addition, flow cytometry profiles of these cells demonstrate a reduction in G1 population. Changes in cell cycle regulation can be attributed to the ability of Spy1 to bind to and prematurely activate cdk2 independent of cyclin binding. We demonstrate that Spy1-enhanced cell proliferation is dependent on cdk2 activation. Furthermore, abrogation of Spy1 expression, through the use of siRNA, demonstrates that Spy1 is an essential component of cell proliferation pathways. Hence, human Speedy is a novel cell cycle protein capable of promoting cell proliferation through the premature activation of cdk2 at the G1/S phase transition.
Collapse
Affiliation(s)
- Lisa A Porter
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Ortiz D, del Carmen Dominguez-Robles M, Villegas-Sepúlveda N, Meza I. Actin induction during PMA and cAMP-dependent signal pathway activation in Entamoeba histolytica trophozoites. Cell Microbiol 2000; 2:391-400. [PMID: 11207595 DOI: 10.1046/j.1462-5822.2000.00060.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of PKC or cAMP-dependent signalling pathways in Entamoeba histolytica triggers the phosphorylation of proteins involved in actin rearrangements necessary for adhesion and locomotion. Analogous motifs to SRE and CRE sequences--known to respond to PMA and cAMP--were identified within the 5' regulatory region (5'RR) of one of the parasite actin genes. These sequences could be involved in the actin transcriptional upregulation reported during signalling. To test this hypothesis, a plasmid containing the 5'RR of the actin gene fused to the bacterial neomycin gene (neo) was used for stable transfection. Expression of neo and endogenous actin was measured after stimulation of transfected amoebae by PMA and dcAMP. It was found that both compounds induced neo and actin expression and showed a co-operative effect in the induction of neo. Induction by PMA or dcAMP failed if the directing amoebic 5'RR lacked SRE and CRE motifs. Transfection of amoebae with plasmid constructs, containing either progressive deletions of the actin 5'RR or site-directed mutations of the SRE and CRE-like motifs, corroborated that these sequences and a co-ordinated participation of PKC- and PKA-activated transcription factors are responsible for the increments in neo and actin mRNAs. In vivo, these PMA and cAMP-response elements could play an important role in regulating actin expression and organization in signalling processes activated during tissue invasion.
Collapse
Affiliation(s)
- D Ortiz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México, DF, Mexico
| | | | | | | |
Collapse
|
9
|
Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1:11-21. [PMID: 11413485 DOI: 10.1038/35036035] [Citation(s) in RCA: 4100] [Impact Index Per Article: 170.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The universality of calcium as an intracellular messenger depends on its enormous versatility. Cells have a calcium signalling toolkit with many components that can be mixed and matched to create a wide range of spatial and temporal signals. This versatility is exploited to control processes as diverse as fertilization, proliferation, development, learning and memory, contraction and secretion, and must be accomplished within the context of calcium being highly toxic. Exceeding its normal spatial and temporal boundaries can result in cell death through both necrosis and apoptosis.
Collapse
Affiliation(s)
- M J Berridge
- The Babraham Institute, Laboratory of Molecular Signalling, Babraham Hall, Babraham, Cambridge, CB2 4AT, UK.
| | | | | |
Collapse
|
10
|
Hoetelmans R, van Slooten HJ, Keijzer R, Erkeland S, van de Velde CJ, Dierendonck JH. Bcl-2 and Bax proteins are present in interphase nuclei of mammalian cells. Cell Death Differ 2000; 7:384-92. [PMID: 10773823 DOI: 10.1038/sj.cdd.4400664] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Bcl-2 family of proteins comprises both cell death inhibiting and cell death promoting members, generally believed to be cytoplasmic and predominantly membrane-associated. Like Bcl-2, many Bcl-2-related proteins contain a C-terminal membrane insertion domain and much research is aimed at evaluating the functional role of their localization to the outer membranes of mitochondria, the endoplasmic reticulum, and perinuclear membranes. However, confocal fluorescence microscopy of human breast cancer cells and rat colon cancer cells immunostained with commercial antibodies raised against different epitopes of the anti-apoptotic Bcl-2 and the pro-apoptotic Bax protein revealed that these proteins are not only present in the cellular cytoplasm, but also within interphase nuclei. This was confirmed by Western blot analysis of isolated nuclei. In human cells, certain epitopes of Bcl-2, but not of Bax, were also found to be associated with mitotic chromatin. Anti-estrogen treatment of human breast cancer cells or transfection with antisense bcl-2 led to a reduction in both cytoplasmic and nuclear Bcl-2. Transfection of human bcl-2 and bax into rat cells resulted in cytoplasmic and nuclear Bcl-2 and Bax. This data seems in line with increasing evidence that the role of the Bcl-2 family of proteins should be extended to activities inside the nuclear compartment.
Collapse
Affiliation(s)
- R Hoetelmans
- Department of Surgery, Leiden University Medical Center, Building 1, K6R, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Blondelle SE, Crooks E, Aligué R, Agell N, Bachs O, Esteve V, Tejero R, Celda B, Pastor MT, Pérez-Payá E. Novel, potent calmodulin antagonists derived from an all-D hexapeptide combinatorial library that inhibit in vivo cell proliferation: activity and structural characterization. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 55:148-62. [PMID: 10784031 DOI: 10.1034/j.1399-3011.2000.00162.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calmodulin is known to bind to various amphipathic helical peptide sequences, and the calmodulin-peptide binding surface has been shown to be remarkably tolerant sterically. D-Amino acid peptides, therefore, represent potential nonhydrolysable intracellular antagonists of calmodulin. In the present study, synthetic combinatorial libraries have been used to develop novel D-amino acid hexapeptide antagonists to calmodulin-regulated phosphodiesterase activity. Five hexapeptides were identified from a library containing over 52 million sequences. These peptides inhibited cell proliferation both in cell culture using normal rat kidney cells and by injection via the femoral vein following partial hepatectomy of rat liver cells. These hexapeptides showed no toxic effect on the cells. Despite their short length, the identified hexapeptides appear to adopt a partial helical conformation similar to other known calmodulin-binding peptides, as shown by CD spectroscopy in the presence of calmodulin and NMR spectroscopy in DMSO. The present peptides are the shortest peptide calmodulin antagonists reported to date showing potential in vivo activity.
Collapse
Affiliation(s)
- S E Blondelle
- Torrey Pines Institute for Molecular Studies, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li C, Lü P, Zhang D. Using a GFP-gene fusion technique to study the cell cycle-dependent distribution of calmodulin in living cells. ACTA ACUST UNITED AC 1999; 42:517-28. [DOI: 10.1007/bf02881776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1999] [Indexed: 11/29/2022]
|
13
|
Thomson PJ, McGurk M, Potten CS, Walton GM, Appleton DR. Tritiated thymidine and bromodeoxyuridine double-labelling studies on growth factors and oral epithelial proliferation in the mouse. Arch Oral Biol 1999; 44:721-34. [PMID: 10471156 DOI: 10.1016/s0003-9969(99)00066-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mouse tongue epithelium is characterized by a circadian variation in the number of cells undergoing DNA synthesis. Groups of male BDF1 mice were followed over 48 h and a double-labelling method with tritiated thymidine and bromodeoxyuridine used to determine S-phase labelling indices, together with cell influx to and cell efflux from S, at 4-hourly time points. Control animals exhibited diurnal peaks in labelling index at 03:00 with trough activity 12 h later at 15:00. Cell influx peaked at 23:00 with troughs occurring between 11:00 to 15:00. Peak cell efflux occurred at 07:00 with trough activity at 19:00. Animals injected with epidermal growth factor at 05:00 demonstrated a significant fall in both influx and efflux throughout the 48-h period (P < 0.001), but with preservation of labelling indices, suggesting a slower transit of cells through S-phase, whereas epidermal growth factor injected at 15:00 only produced a significant rise in cell-efflux values. Adrenergic stimulation by intravenous phenylephrine/isoprenaline injection at both 05:00 and 15:00 resulted in a significant rise in cell efflux (P < 0.001), although there was also a rise in labelling index in the 15:00 group (P < 0.001). Animals injected with calmodulin at 05:00 demonstrated a significant reduction in labelling index throughout the 48-h period (P < 0.001), but maintained control values for cell influx and efflux, suggesting faster transit of cells through S. Calmodulin injection at 15:00 produced only a significant reduction in cell influx (P < 0.001). Administration of exogenous growth factors significantly alters the normal rhythmical proliferation of oral epithelial cells in a mouse model. These effects appear to be both growth factor- and time-dependent, and may have both physiological and pathological implications.
Collapse
Affiliation(s)
- P J Thomson
- Oral and MaxilloFacial Surgery, The Dental School, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
14
|
Kleene SJ. Both external and internal calcium reduce the sensitivity of the olfactory cyclic-nucleotide-gated channel to CAMP. J Neurophysiol 1999; 81:2675-82. [PMID: 10368387 DOI: 10.1152/jn.1999.81.6.2675] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vertebrate olfaction, odorous stimuli are first transduced into an electrical signal in the cilia of olfactory receptor neurons. Many odorants cause an increase in ciliary cAMP, which gates cationic channels in the ciliary membrane. The resulting influx of Ca2+ and Na+ produces a depolarizing receptor current. Modulation of the cyclic-nucleotide-gated (CNG) channels is one mechanism of adjusting olfactory sensitivity. Modulation of these channels by divalent cations was studied by patch-clamp recording from single cilia of frog olfactory receptor neurons. In accord with previous reports, it was found that cytoplasmic Ca2+ above 1 microM made the channels less sensitive to cAMP. The effect of cytoplasmic Ca2+ was eliminated by holding the cilium in a divalent-free cytoplasmic solution and was restored by adding calmodulin (CaM). An unexpected result was that external Ca2+ could also greatly reduce the sensitivity of the channels to cAMP. This reduction was seen when external Ca2+ exceeded 30 microM and was not affected by the divalent-free solution, by CaM, or by Ca2+ buffering. The effects of cytoplasmic and external Ca2+ were additive. Thus the effects of cytoplasmic and external Ca2+ are apparently mediated by different mechanisms. There was no effect of CaM on a Ca2+-activated Cl- current that also contributes to the receptor current. Increases in Ca2+ concentration on either side of the ciliary membrane may influence olfactory adaptation.
Collapse
Affiliation(s)
- S J Kleene
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati, Cincinnati, Ohio 45267-0521, USA
| |
Collapse
|
15
|
Liao B, Paschal BM, Luby-Phelps K. Mechanism of Ca2+-dependent nuclear accumulation of calmodulin. Proc Natl Acad Sci U S A 1999; 96:6217-22. [PMID: 10339568 PMCID: PMC26862 DOI: 10.1073/pnas.96.11.6217] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intracellular Ca2+ receptor calmodulin (CaM) coordinates responses to extracellular stimuli by modulating the activities of its various binding proteins. Recent reports suggest that, in addition to its familiar functions in the cytoplasm, CaM may be directly involved in rapid signaling between cytoplasm and nucleus. Here we show that Ca2+-dependent nuclear accumulation of CaM can be reconstituted in permeabilized cells. Accumulation was blocked by M13, a CaM antagonist peptide, but did not require cytosolic factors or an ATP regenerating system. Ca2+-dependent influx of CaM into nuclei was not blocked by inhibitors of nuclear localization signal-mediated nuclear import in either permeabilized or intact cells. Fluorescence recovery after photobleaching studies of CaM in intact cells showed that influx is a first-order process with a rate constant similar to that of a freely diffusible control molecule (20-kDa dextran). Studies of CaM efflux from preloaded nuclei in permeablized cells revealed the existence of three classes of nuclear binding sites that are distinguished by their Ca2+-dependence and affinity. At high [Ca2+], efflux was enhanced by addition of a high affinity CaM-binding protein outside the nucleus. These data suggest that CaM diffuses freely through nuclear pores and that CaM-binding proteins in the nucleus act as a sink for Ca2+-CaM, resulting in accumulation of CaM in the nucleus on elevation of intracellular free Ca2+.
Collapse
Affiliation(s)
- B Liao
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, TX 75235, USA
| | | | | |
Collapse
|
16
|
Craig R, Norbury C. The novel murine calmodulin-binding protein Sha1 disrupts mitotic spindle and replication checkpoint functions in fission yeast. J Cell Sci 1998; 111 ( Pt 24):3609-19. [PMID: 9819352 DOI: 10.1242/jcs.111.24.3609] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry into mitosis is normally blocked in eukaryotic cells that have not completed replicative DNA synthesis; this ‘S-M’ checkpoint control is fundamental to the maintenance of genomic integrity. Mutants of the fission yeast Schizosaccharomyces pombe defective in the S-M checkpoint fail to arrest the cell cycle when DNA replication is inhibited and hence attempt mitosis and cell division with unreplicated chromosomes, resulting in the ‘cut’ phenotype. In an attempt to identify conserved molecules involved in the S-M checkpoint we have screened a regulatable murine cDNA library in S. pombe and have identified cDNAs that induce the cut phenotype in cells arrested in S phase by hydroxyurea. One such cDNA encodes a novel protein with multiple calmodulin-binding motifs that, in addition to its effects on the S-M checkpoint, perturbed mitotic spindle functions, although spindle pole duplication was apparently normal. Both aspects of the phenotype induced by this cDNA product, which we term Sha1 (for spindle and hydroxyurea checkpoint abnormal), were suppressed by simultaneous overexpression of calmodulin. Sha1 is structurally related to the product of the Drosophila gene abnormal spindle (asp). These data suggest that calmodulin-binding protein(s) are important in the co-ordination of mitotic spindle functions with mitotic entry in fission yeast, and probably also in multicellular eukaryotes.
Collapse
Affiliation(s)
- R Craig
- Imperial Cancer Research Fund, Molecular Oncology Laboratory, University of Oxford Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | |
Collapse
|
17
|
King KL, Moreira KM, Babcock GF, Wang J, Campos B, Kaetzel MA, Dedman JR. Temporal inhibition of calmodulin in the nucleus. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1448:245-53. [PMID: 9920415 DOI: 10.1016/s0167-4889(98)00136-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calmodulin (CaM) acts as a primary mediator of calcium signaling by interacting with target proteins. We have previously shown that nuclear CaM is critical for cell cycle progression using a transgene containing four repeats of a CaM inhibitor peptide and nuclear targeting signals (J. Wang et al., J. Biol. Chem. 270 (1995) 30245 30248; Biochim. Biophys. Acta 1313 (1996) 223-228). To evaluate the role of CaM in the nucleus specifically during S phase of the cell cycle, a motif which stabilizes the mRNA only during S phase was included in the transgene. The CaM inhibitor mRNA transcript contains a self-annealing stem-loop derived from histone H2B at the 3' end. This structure provides stability of the mRNA only during S phase, thereby restricting CaM inhibitor expression to S phase. The inhibitor accumulates in the nucleus, particularly in the nucleoli. Flow cytometric analysis demonstrated that the CaM inhibitor is expressed in S and G2. Transfected cells show growth inhibition and a reduction in DNA synthesis. The CaM inhibitor peptide is a versatile reagent that allows spatial as well as temporal dissection of calmodulin function.
Collapse
Affiliation(s)
- K L King
- Department of Molecular and Cellular Physiology, University of Cincinnati Medical Center, OH 45267-0576, USA
| | | | | | | | | | | | | |
Collapse
|