1
|
Davletshin AI, Matveeva AA, Poletaeva II, Evgen'ev MB, Garbuz DG. The role of molecular chaperones in the mechanisms of epileptogenesis. Cell Stress Chaperones 2023; 28:599-619. [PMID: 37755620 PMCID: PMC10746656 DOI: 10.1007/s12192-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Epilepsy is a group of neurological diseases which requires significant economic costs for the treatment and care of patients. The central point of epileptogenesis stems from the failure of synaptic signal transmission mechanisms, leading to excessive synchronous excitation of neurons and characteristic epileptic electroencephalogram activity, in typical cases being manifested as seizures and loss of consciousness. The causes of epilepsy are extremely diverse, which is one of the reasons for the complexity of selecting a treatment regimen for each individual case and the high frequency of pharmacoresistant cases. Therefore, the search for new drugs and methods of epilepsy treatment requires an advanced study of the molecular mechanisms of epileptogenesis. In this regard, the investigation of molecular chaperones as potential mediators of epileptogenesis seems promising because the chaperones are involved in the processing and regulation of the activity of many key proteins directly responsible for the generation of abnormal neuronal excitation in epilepsy. In this review, we try to systematize current data on the role of molecular chaperones in epileptogenesis and discuss the prospects for the use of chemical modulators of various chaperone groups' activity as promising antiepileptic drugs.
Collapse
Affiliation(s)
| | - Anna A Matveeva
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow Region, Russia
| | - Inga I Poletaeva
- Biology Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - David G Garbuz
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
| |
Collapse
|
2
|
Zummo L, Vitale AM, Caruso Bavisotto C, De Curtis M, Garbelli R, Giallonardo AT, Di Bonaventura C, Fanella M, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms22168601. [PMID: 34445306 PMCID: PMC8395327 DOI: 10.3390/ijms22168601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a pathologic condition with high prevalence and devastating consequences for the patient and its entourage. Means for accurate diagnosis of type, patient monitoring for predicting seizures and follow up, and efficacious treatment are desperately needed. To improve this adverse outcome, miRNAs and the chaperone system (CS) are promising targets to understand pathogenic mechanisms and for developing theranostics applications. miRNAs implicated in conditions known or suspected to favor seizures such as neuroinflammation, to promote epileptic tolerance and neuronal survival, to regulate seizures, and others showing variations in expression levels related to seizures are promising candidates as useful biomarkers for diagnosis and patient monitoring, and as targets for developing novel therapies. Components of the CS are also promising as biomarkers and as therapeutic targets, since they participate in epileptogenic pathways and in cytoprotective mechanisms in various epileptogenic brain areas, even if what they do and how is not yet clear. The data in this review should help in the identification of molecular targets among the discussed miRNAs and CS components for research aiming at understanding epileptogenic mechanisms and, subsequently, develop means for predicting/preventing seizures and treating the disease.
Collapse
Affiliation(s)
- Leila Zummo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Department of Neurology and Stroke Unit, A.R.N.A.S. Ospedale Civico—Di Cristina Benfratelli, 90127 Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Marco De Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Anna Teresa Giallonardo
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Carlo Di Bonaventura
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Martina Fanella
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Correspondence:
| |
Collapse
|
3
|
Role of a Heat Shock Transcription Factor and the Major Heat Shock Protein Hsp70 in Memory Formation and Neuroprotection. Cells 2021; 10:cells10071638. [PMID: 34210082 PMCID: PMC8305005 DOI: 10.3390/cells10071638] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Heat shock proteins (Hsps) represent the most evolutionarily ancient, conserved, and universal system for protecting cells and the whole body from various types of stress. Among Hsps, the group of proteins with a molecular weight of 70 kDa (Hsp70) plays a particularly important role. These proteins are molecular chaperones that restore the native conformation of partially denatured proteins after exposure to proteotoxic forms of stress and are critical for the folding and intracellular trafficking of de novo synthesized proteins under normal conditions. Hsp70s are expressed at high levels in the central nervous system (CNS) of various animals and protect neurons from various types of stress, including heat shock, hypoxia, and toxins. Numerous molecular and behavioral studies have indicated that Hsp70s expressed in the CNS are important for memory formation. These proteins contribute to the folding and transport of synaptic proteins, modulate signaling cascades associated with synaptic activation, and participate in mechanisms of neurotransmitter release. In addition, HSF1, a transcription factor that is activated under stress conditions and mediates Hsps transcription, is also involved in the transcription of genes encoding many synaptic proteins, whose levels are increased in neurons under stress and during memory formation. Thus, stress activates the molecular mechanisms of memory formation, thereby allowing animals to better remember and later avoid potentially dangerous stimuli. Finally, Hsp70 has significant protective potential in neurodegenerative diseases. Increasing the level of endogenous Hsp70 synthesis or injecting exogenous Hsp70 reduces neurodegeneration, stimulates neurogenesis, and restores memory in animal models of ischemia and Alzheimer’s disease. These findings allow us to consider recombinant Hsp70 and/or Hsp70 pharmacological inducers as potential drugs for use in the treatment of ischemic injury and neurodegenerative disorders.
Collapse
|
4
|
Vishwakarma SK, Bardia A, Fathima N, Chandrakala L, Rahamathulla S, Raju N, Srinivas G, Raj A, Sandhya A, Satti V, Tiwari SK, Paspala SAB, Khan AA. Protective Role of Hypothermia Against Heat Stress in Differentiated and Undifferentiated Human Neural Precursor Cells: A Differential Approach for the Treatment of Traumatic Brain Injury. Basic Clin Neurosci 2017; 8:453-466. [PMID: 29942429 PMCID: PMC6010658 DOI: 10.29252/nirp.bcn.8.6.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction: The present study aimed to explore protective mechanisms of hypothermia against mild cold and heat stress on highly proliferative homogeneous human Neural Precursor Cells (NPCs) derived from Subventricular Zone (SVZ) of human fetal brain. Methods: CD133+ve enriched undifferentiated and differentiated human NPCs were exposed to heat stress at 42°C. Then, Western-blot quantification was performed using Hsp-70 (70 kilodalton heat shock proteins) recombinant protein. Finally, changes in pluripotency and Hsp-70 expression were measured using immunofluorescence staining and RT-qPCR (Quantitative reverse transcription PCR) analysis, respectively. Results: Heat stress resulted in abnormal neurospheres development. The apoptosis rate was enhanced during long-term in vitro culture of neurospheres. Neurogenic differentiation reduced and showed aberrent phenotypes during heat stress. After hypothermia treatment significant improvement in neurospheres and neuronal cell morphology was observed. Conclusion: Mild-hypothermia treatment induces attenuated heat shock response against heat stress resulting in induced HSP-70 expression that significantly improves structure and function of both undifferentiated human NPCs and differentiated neurons.
Collapse
Affiliation(s)
- Sandeep Kumar Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Avinash Bardia
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Nusrath Fathima
- Department of Genetics, Faculty of Science, Osmania University, Hyderabad, India
| | - Lakkireddy Chandrakala
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Syed Rahamathulla
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Nagarapu Raju
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Gunda Srinivas
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Avinash Raj
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Annamaneni Sandhya
- Department of Genetics, Faculty of Science, Osmania University, Hyderabad, India
| | - Vishnupriya Satti
- Department of Genetics, Faculty of Science, Osmania University, Hyderabad, India
| | - Santosh Kumar Tiwari
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Syed Ameer Basha Paspala
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Hyderabad, India
| |
Collapse
|
5
|
Rayasam A, Hsu M, Hernández G, Kijak J, Lindstedt A, Gerhart C, Sandor M, Fabry Z. Contrasting roles of immune cells in tissue injury and repair in stroke: The dark and bright side of immunity in the brain. Neurochem Int 2017; 107:104-116. [PMID: 28245997 DOI: 10.1016/j.neuint.2017.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 01/09/2023]
Abstract
Despite considerable efforts in research and clinical studies, stroke is still one of the leading causes of death and disability worldwide. Originally, stroke was considered a vascular thrombotic disease without significant immune involvement. However, over the last few decades it has become increasingly obvious that the immune responses can significantly contribute to both tissue injury and protection following stroke. Recently, much research has been focused on the immune system's role in stroke pathology and trying to elucidate the mechanism used by immune cells in tissue injury and protection. Since the discovery of tissue plasminogen activator therapy in 1996, there have been no new treatments for stroke. For this reason, research into understanding how the immune system contributes to stroke pathology may lead to better therapies or enhance the efficacy of current treatments. Here, we discuss the contrasting roles of immune cells to stroke pathology while emphasizing myeloid cells and T cells. We propose that focusing future research on balancing the beneficial-versus-detrimental roles of immunity may lead to the discovery of better and novel stroke therapies.
Collapse
Affiliation(s)
- Aditya Rayasam
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin Hsu
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Gianna Hernández
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Julie Kijak
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Anders Lindstedt
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Christian Gerhart
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Abstract
Global and focal ischemias induce a variety of gene families, including immediate early genes, cytokines, neurotransmitter receptors, and heat-shock proteins. The Janus-like effects of several of these gene prod ucts promote neuronal survival and degeneration. Therefore, determining the molecular pathways respon sible for the differential regulation of these genes is of paramount importance. The discovery of apoptosis as a mediator of delayed neuronal death has led to the identification of a number of other genes involved in postischemic brain damage. Future neuroprotective therapies for cerebral ischemia may be directed at preventing alterations in gene expression. NEUROSCIENTIST 5:238-253, 1999
Collapse
Affiliation(s)
- Sean I. Savitz
- Department of Neurology, Neuroscience, Albert Einstein
College of Medicine Bronx, New York
| | - Daniel M. Rosenbaum
- Department of Neurology, Neuroscience and Ophthalmology
Albert Einstein College of Medicine Bronx, New York
| |
Collapse
|
7
|
Atanasova M, Petkova Z, Pechlivanova D, Dragomirova P, Blazhev A, Tchekalarova J. Strain-dependent effects of long-term treatment with melatonin on kainic acid-induced status epilepticus, oxidative stress and the expression of heat shock proteins. Pharmacol Biochem Behav 2013; 111:44-50. [DOI: 10.1016/j.pbb.2013.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/10/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022]
|
8
|
Rejdak K, Kuhle J, Rüegg S, Lindberg RLP, Petzold A, Sulejczak D, Papuc E, Rejdak R, Stelmasiak Z, Grieb P. Neurofilament heavy chain and heat shock protein 70 as markers of seizure-related brain injury. Epilepsia 2012; 53:922-7. [PMID: 22509781 DOI: 10.1111/j.1528-1167.2012.03459.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Status epilepticus (SE) has deleterious effects on brain tissue, but whether brief recurrent seizures may also damage neurons represents a matter of controversy. Therefore, it remains a central area of epilepsy research to identify individuals at risk where disease progression can be potentially prevented. Biomarkers may serve as tools for such identification. Thus the present study aimed at analyzing the levels of heat shock protein 70 (HSP-70, also designated as HSPA1A) and neurofilament heavy chain protein (NfH(SMI35) ) in cerebrospinal fluid (CSF) of patients with seizures of different severity. METHODS Forty-one patients were included, of whom 20 patients had a single generalized tonic-clonic seizure (GTCS) episode (SS), 11 had repetitive GTCS (RS), and 10 experienced convulsive SE. The control group consisted of 18 subjects. HSP-70 levels were measured using a conventional enzyme-linked immunosorbent assay (ELISA), whereas the NfH(SMI35) protein levels were detected by an electrochemiluminescence (ECL) immunoassay. KEY FINDINGS Patients with SE (p < 0.001) and RS (p < 0.05) had significantly higher NfH(SMI35) levels than controls, and SE was associated with increased concentrations when compared with SS (p < 0.001). NfH(SMI35) levels in SS did not differ from controls. Patients with SE had significantly raised HSP-70 levels compared to RS (p < 0.05), SS (p < 0.05), and controls (p < 0.001). SS and RS did not differ from each or from controls. Levels of NfH(SMI35) and HSP-70 showed a significant correlation (r = 0.34; p = 0.007) in the group of all study subjects, which was not apparent when controls and patients with seizures were considered separately. The correlation between NfH(SMI35) and HSP-70 tended to be inverse in patients with SE, but it did not reach statistical significance (r = -0.3; p > 0.05). SIGNIFICANCE Studying biochemical markers as additional quantitative tools for the measurement of neuronal damage (especially subclinical), complementary to available techniques of imaging, and clinical assessment might prove useful for identifying patients at risk of accumulating neuronal injury resulting from uncontrolled seizures. NfH(SMI35) and HSP-70 are of potential value as sensitive and specific biomarkers of seizure-related pathologic events. Future longitudinal studies are needed to monitor such patients by correlating biochemical, neuroimaging, and clinical methods of assessment.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Jaczewskiego 8, Lublin, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Induction of heat shock proteins in the adult rat cerebral cortex following pilocarpine-induced status epilepticus. Brain Res 2011; 1368:271-80. [DOI: 10.1016/j.brainres.2010.10.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 01/30/2023]
|
10
|
Taya K, Marmarou CR, Okuno K, Prieto R, Marmarou A. Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats. J Neurotrauma 2010; 27:229-39. [PMID: 19705963 DOI: 10.1089/neu.2009.0933] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although secondary insults of hypoxia and hypotension (HH) are generally considered to cause fulminant brain edema in traumatic brain injury (TBI), the combined effect of TBI with HH on brain edema and specifically the expression of aquaporin-4 (AQP4) have not been fully elucidated. The goal of this study was to document the effect of secondary insults on brain water, AQP4 expression, electrolytes, and blood-brain barrier (BBB) permeability during the acute stage of edema development. We measured brain water content and electrolytes (series 1); BBB permeability based on Evans blue (EB) dye extravasation (series 2); and AQP4 expression using immunoblotting (series 3) at 1 h and 5 h following cortical contusion injury (CCI). Secondary insults significantly worsened BBB function at 5 h post injury. Moreover, a significant reduction of upregulation on AQP4 expression was observed in trauma, coupled with a mild secondary insult of hypoxia hypotension. These findings indicate that a secondary insult following CCI at 5 h post injury worsens brain edema, disrupts ionic homeostasis, and blunts the normal upregulation of AQP4 that occurs after trauma, suggesting that the blunting of AQP4 may contribute to the detrimental effects of secondary insults.
Collapse
Affiliation(s)
- Keisuke Taya
- Department of Neurosurgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, Virginia 23298-0508, USA
| | | | | | | | | |
Collapse
|
11
|
Shin JK, Jeong YT, Jo HC, Kang MY, Chang IS, Baek JC, Park JK, Lee SA, Lee JH, Choi WS, Paik WY. Increased interaction between heat shock protein 27 and mitogen-activated protein kinase (p38 and extracellular signal-regulated kinase) in pre-eclamptic placentas. J Obstet Gynaecol Res 2010; 35:888-94. [PMID: 20149037 DOI: 10.1111/j.1447-0756.2009.01053.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Heat shock protein 27 (Hsp27) is a well-known stress response protein that is characterized by its phosphorylative capacity. Hsp27 becomes phosphorylated in response to various stimuli through interaction with several different kinases. The purpose of this study was to evaluate the interaction between Hsp27 and mitogen-activated protein kinase (MAPK) (p38, extracellular signal-regulated kinase [ERK], and c-Jun N-terminal kinase) in the human placenta derived from patients with pre-eclampsia. METHODS Western blot analysis was used to examine the levels of expression of Hsp27 and MAPK (p38, ERK, and c-Jun N-terminal kinase). Immunoprecipitation analysis was used to determine the interaction between Hsp27 and MAPK (p38 and ERK). RESULTS Western blotting analysis and immunohistochemistry showed that the expression of Hsp27 and p-Hsp27 in the placental tissues of the pre-eclampsia group were significantly higher than that in the normal pregnancy group. Immunoprecipitation analysis showed that the interaction between Hsp27 and MAPK (p38 and ERK) was significantly increased in the pre-eclamptic placenta tissues. CONCLUSION The interaction between Hsp27 and MAPK was increased, suggesting that phosphorylation of Hsp27 might be induced by p38 and ERK in placentas from patients with pre-eclampsia.
Collapse
Affiliation(s)
- Jeong-Kyu Shin
- Department of Obstetrics and Gynecology, College of Medicine, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Proteomic analysis of differentiating neuroblastoma cells treated with sub-lethal neurite inhibitory concentrations of diazinon: Identification of novel biomarkers of effect. Toxicol Appl Pharmacol 2009; 240:159-65. [DOI: 10.1016/j.taap.2009.07.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/23/2009] [Accepted: 07/23/2009] [Indexed: 11/18/2022]
|
13
|
Cannon JR, Xi G, Keep RF. Recent research on changes in genomic regulation and protein expression in intracerebral haemorrhage. Int J Stroke 2009; 2:265-9. [PMID: 18705926 DOI: 10.1111/j.1747-4949.2007.00160.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intracerebral haemorrhage (ICH) is a devastating form of stroke that accounts for roughly 10% of all strokes and the effects on those that survive are often debilitating. To date, no suitable therapy exists. Recent work has examined alterations in gene and protein expression after ICH. The focus of this review is to outline the current knowledge of changes in genetic and protein expression after ICH and how those changes may affect the course of brain injury. Both animal and human data are reviewed.
Collapse
Affiliation(s)
- Jason R Cannon
- Department of Neurology, Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
14
|
Jadhav KB, Rajini PS. Evaluation of sublethal effects of dichlorvos uponCaenorhabditis elegansbased on a set of end points of toxicity. J Biochem Mol Toxicol 2009; 23:9-17. [DOI: 10.1002/jbt.20258] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Ayala GX, Tapia R. HSP70 expression protects against hippocampal neurodegeneration induced by endogenous glutamate in vivo. Neuropharmacology 2008; 55:1383-90. [DOI: 10.1016/j.neuropharm.2008.08.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/26/2008] [Accepted: 08/27/2008] [Indexed: 11/29/2022]
|
16
|
Corinne G. Wong Mojgan Bonakdar Ron. EFFECTS OF REPEATED SIDESTREAM CIGARETTE SMOKE INHALATION ON STRESS-INDUCIBLE HEAT SHOCK PROTEIN 70 IN THE FERRET LUNG. Inhal Toxicol 2008. [DOI: 10.1080/089583797198312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
DILWORTH C, TIMBRELL JA. An investigation into the sensitivity of heat shock proteins as markers of cellular damage: a comparative study of hydrazine and cadmium chloride in primary rat hepatocyte cultures. Biomarkers 2008; 3:177-90. [DOI: 10.1080/135475098231200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- C. DILWORTH
- Toxicology Department, School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | | |
Collapse
|
18
|
Wong CG, Bonakdar M, Kleinman MT, Chow J, Bhalla DK. Elevation of Stress-Inducible Heat Shock Protein 70 in the Rat Lung After Exposure to Ozone and Particle-Containing Atmospheres. Inhal Toxicol 2008. [DOI: 10.3109/08958379409040507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Wong CG, Rasmussen RE, Bonakdar M. Lack of Elevation of Stress-Inducible Heat-Shock Protein 70 in the Ferret Lung After Chronic Cigarette Smoke Inhalation. Inhal Toxicol 2008. [DOI: 10.3109/08958379509012811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Lively S, Brown IR. Extracellular matrix protein SC1/hevin in the hippocampus following pilocarpine-induced status epilepticus. J Neurochem 2008; 107:1335-46. [PMID: 18808451 DOI: 10.1111/j.1471-4159.2008.05696.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pilocarpine-induced status epilepticus (SE) mimics many features of temporal lobe epilepsy and is a useful model to study neural changes that result from prolonged seizure activity. In this study, distribution of the anti-adhesive extracellular matrix protein SC1 was examined in the rat hippocampus following SE. Western blotting showed decreased levels of SC1 protein in the week following SE. Immunohistochemistry demonstrated that the decrease in overall SC1 protein levels was reflected by a reduction of SC1 signal in granule cells of the dentate gyrus. Interestingly, levels of SC1 protein in neurons of the seizure-resistant CA2 sector of the hippocampus did not change throughout the seizure time course. However, at 1 day post-SE, a subset of neurons of the hippocampal CA1, CA3, and hilar regions, which are noted for extensive neuronal degeneration after SE, exhibited a transient increase in SC1 signal. Neurons exhibiting enhanced SC1 signal were not detected at 7 days post-SE. The cellular stress response was also examined. A prominent induction of heat-shock protein (Hsp70) and Hsp27 was detected following SE, while levels of constitutively expressed Hsp40, Hsp90, Hsp110, and Hsc70 showed little change at the time points examined. The subset of neurons that demonstrated a transient increase in SC1 colocalized with the cellular stress marker Hsp70, the degeneration marker Fluoro-Jade B, and the neuron activity marker activity-regulated cytoskeleton-associated protein (Arc). Taken together, these findings suggest that SC1 may be a component of the 'matrix response' involved in remodeling events associated with neuronal degeneration following neural injury.
Collapse
Affiliation(s)
- Starlee Lively
- Center for the Neurobiology of Stress, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | | |
Collapse
|
21
|
Zhan X, Kim C, Sharp FR. Very brief focal ischemia simulating transient ischemic attacks (TIAs) can injure brain and induce Hsp70 protein. Brain Res 2008; 1234:183-97. [PMID: 18708034 DOI: 10.1016/j.brainres.2008.07.094] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 07/21/2008] [Accepted: 07/24/2008] [Indexed: 12/29/2022]
Abstract
This study examined very brief focal ischemia that simulates transient ischemic attacks (TIAs) that occur in humans. Adult rats were subjected to sham operations or 5 min, 10 min, or 2 h of middle cerebral artery (MCA) ischemia using the suture (thread) model. Hsp70 protein was induced 24 h, 48 h and 72 h later in neurons throughout the entire MCA territory in many but not all animals. Following 5- and 10-minute MCA occlusions, 9 of 32 animals (28%) had microinfarcts mostly in dorsal lateral striatum. Uncommon Hsp70 stained intracellular cytoplasmic inclusions, some of which co-localized with activated caspase-3, were detected in microglia, macrophages, astrocytes and oligodendrocytes. Hsp70 stained neurons were TUNEL negative at 24 h and 48 h whereas some Hsp70 stained neurons were TUNEL positive at 72 h after reperfusion. Hsp70 positive, activated "bushy" microglia and Hsp70 negative, activated "polarized" or rod-shaped microglia were located outside of the microinfarcts. Thus, experimental focal ischemia simulating TIAs can: induce Hsp70 protein throughout the ischemic vessel territory; produce Hsp70 protein positive glial inclusions; activate Hsp70 positive and negative microglia; and cause microinfarcts in some animals.
Collapse
Affiliation(s)
- Xinhua Zhan
- Department of Neurology and M.I.N.D. Institute, University of California at Davis, Sacramento, CA 95817, USA.
| | | | | |
Collapse
|
22
|
Sidiropoulou E, Sachana M, Flaskos J, Harris W, Hargreaves AJ, Woldehiwet Z. Diazinon oxon affects the differentiation of mouse N2a neuroblastoma cells. Arch Toxicol 2008; 83:373-80. [DOI: 10.1007/s00204-008-0339-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 07/03/2008] [Indexed: 12/31/2022]
|
23
|
Flaskos J, Harris W, Sachana M, Muñoz D, Tack J, Hargreaves AJ. The effects of diazinon and cypermethrin on the differentiation of neuronal and glial cell lines. Toxicol Appl Pharmacol 2007; 219:172-80. [PMID: 17239417 DOI: 10.1016/j.taap.2006.10.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 10/22/2006] [Accepted: 10/23/2006] [Indexed: 11/16/2022]
Abstract
Diazinon and cypermethrin are pesticides extensively used in sheep dipping. Diazinon is a known anti-cholinesterase, but there is limited information regarding its molecular mechanism of action. This paper describes the effects of diazinon and cypermethrin at a morphological and molecular level on differentiating mouse N2a neuroblastoma and rat C6 glioma cell lines. Concentrations up to 10 microM of both compounds and their mixture had no effect on the viability of either cell line, as determined by methyl blue tetrazolium reduction and total protein assays. Microscopic analysis revealed that 1 microM and 10 microM diazinon but not cypermethrin inhibited the outgrowth of axon-like processes in N2a cells after a 24-h exposure but neither compound affected process outgrowth by differentiating C6 cells at these concentrations. Under these conditions, 10 microM diazinon inhibited AChE slightly compared to the control after a 4-h exposure but not after 24 h. Western blotting analysis showed that morphological changes were associated with reduced cross-reactivity with antibodies that recognize the neurofilament heavy chain (NFH), microtubule associated protein MAP 1B and HSP-70 compared to control cell extracts, whereas reactivity with anti-alpha-tubulin antibodies was unchanged. Aggregation of NFH was observed in cell bodies of diazinon-treated N2a cells, as determined by indirect immunofluorescence staining. These data demonstrate that diazinon specifically targets neurite outgrowth in neuronal cells and that this effect is associated with disruption of axonal cytoskeleton proteins, whereas cypermethrin has no effect on the same parameters.
Collapse
Affiliation(s)
- J Flaskos
- Laboratory of Biochemistry and Toxicology, Faculty of Veterinary Medicine, Aristotelian University, 54124 Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
24
|
WELSH FRANKA. Regional Expression of Immediate-Early Genes and Heat-Shock Genes after Cerebral Ischemia a. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.1994.tb36737.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Tovar-y-Romo LB, Tapia R. Cerebral neurons of transgenic ALS mice are vulnerable to glutamate release stimulation but not to increased extracellular glutamate due to transport blockade. Exp Neurol 2006; 199:281-90. [PMID: 16364298 DOI: 10.1016/j.expneurol.2005.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/21/2005] [Accepted: 11/01/2005] [Indexed: 11/16/2022]
Abstract
Mechanisms of motor neuron loss in amyotrophic lateral sclerosis (ALS) are unknown, but it has been postulated that excitotoxicity due to excessive glutamatergic neurotransmission by decreased efficiency of glutamate transport may be involved in both familial (FALS) and sporadic ALS. Using microdialysis in vivo, we tested the effects of the glutamate transport inhibitor L-trans-pyrrolidine-2,4-dicarboxylate (PDC) and of 4-aminopyridine (4-AP), which stimulates glutamate release from nerve endings, in the hippocampus and motor cortex of wild type (WT) and transgenic SOD1/G93A mice, an established model of FALS. Perfusion of 4-AP induced convulsions, expression of the inducible stress-marker heat-shock protein 70 (HSP70) and hippocampal neuronal loss. These effects were similar in both WT and G93A mice, and, in both groups, they were prevented by the previous systemic administration of the NMDA receptor antagonist MK-801. In contrast, perfusion of PDC resulted in a large and long-lasting (2 h) increase of extracellular glutamate, but no convulsions, neuronal damage or HSP70 expression were observed in either the WT or the G93A mice. Our results demonstrate that SOD1 G93A mutation does not enhance the vulnerability to endogenous glutamate-mediated excitotoxicity in brain, neither by blocking glutamate transport nor by stimulating its release. Therefore, these data do not support the possibility that glutamate transport deficiency may be an important factor of brain neuronal degeneration in familial ALS.
Collapse
Affiliation(s)
- Luis B Tovar-y-Romo
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, D. F., México
| | | |
Collapse
|
26
|
Ayala GX, Tapia R. LateN-methyl-d-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. Eur J Neurosci 2005; 22:3067-76. [PMID: 16367773 DOI: 10.1111/j.1460-9568.2005.04509.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The intrahippocampal perfusion of 4-aminopyridine (4-AP) in the rat produces immediate seizures and delayed neuronal death, due to the overactivation of N-methyl-D-aspartate (NMDA) receptors by endogenous glutamate released from nerve endings. With the same time course, 4-AP also induces the expression of the cell stress marker heat shock protein 70 (HSP70) in the contralateral non-damaged hippocampus. We have used this experimental model to study the mechanisms of the delayed neuronal stress and death. The NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imine maleate (MK-801), administered intraperitoneally 30 or 60 but not 120 min after 4-AP perfusion, when animals show intense electroencephalography epileptiform activity, prevented the delayed neurodegeneration whereas the seizures continued for about 3 h as in the control animals. With an identical time window, MK-801 treatment also modified the pattern of HSP70 expression; the protein was expressed in the protected perfused hippocampus but no longer in the undamaged contralateral hippocampus. The possible role of Ca2+ in the delayed cell death and HSP70 expression was also studied by coperfusing the intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester) with 4-AP. This treatment resulted in protective and HSP70 effects very similar to those of MK-801. These results suggest that the seizures are not linked to neurodegeneration and that NMDA receptors need to be continuously overactivated by endogenous glutamate for at least 60 min in order to induce delayed neuronal stress and death, which are dependent on Ca2+ entry through the NMDA receptor channel.
Collapse
Affiliation(s)
- Gabriela X Ayala
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, DF, México
| | | |
Collapse
|
27
|
Sharma S, Kaur G. Neuroprotective potential of dietary restriction against kainate-induced excitotoxicity in adult male Wistar rats. Brain Res Bull 2005; 67:482-91. [PMID: 16216697 DOI: 10.1016/j.brainresbull.2005.07.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/07/2005] [Accepted: 07/10/2005] [Indexed: 01/11/2023]
Abstract
The influence that dietary factors have on the nervous system and its susceptibility to disease, is an active area of biomedical research. Recent studies have shown that dietary restriction (DR) can have profound effect on brain function and vulnerability to injury and disease and can also enhance synaptic plasticity, which may increase the ability of brain to resist aging and restore function following injury. The dietary restriction may result in neuroprotection as suggested by marked reduction in neuronal cell death of the CA3 region of hippocampus after kainate administration in our study. We examined the effects of 3 months of DR (alternate day feeding regimen) on the antioxidants and antioxidant enzymes from different brain regions such as cerebral hemispheres, diencephalon, cerebellum and brain stem after kainate-induced excitotoxicity in adult male Wistar rats. The present study reports the beneficial effects of dietary restriction on different antioxidants and antioxidant enzymes against kainate-induced excitotoxicity in different brain regions of young adult male Wistar rats. The expression of stress response protein heat shock protein 70 (HSP 70) was also studied from discrete regions of rat brain under the same set of experimental conditions. DR significantly enhanced the expression of HSP 70 in kainic acid (KA)-treated rats, whereas KA treatment of ad libitum fed rats resulted in decreased HSP 70 expression. The DR was observed to exert neuroprotection by enhancing the expression of HSP 70 in kainic acid treated rats.
Collapse
Affiliation(s)
- Sandeep Sharma
- Neurochemistry and Neuroendocrinology Lab, Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | | |
Collapse
|
28
|
Park EM, Cho BP, Volpe BT, Cruz MO, Joh TH, Cho S. Ibuprofen protects ischemia-induced neuronal injury via up-regulating interleukin-1 receptor antagonist expression. Neuroscience 2005; 132:625-31. [PMID: 15837124 DOI: 10.1016/j.neuroscience.2005.01.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
The inflammatory response accompanies and exacerbates the developing injury after cerebral ischemia. Ibuprofen, a non-steroidal anti-inflammatory drug, has been shown to attenuate injuries in animal models of various neurological diseases. In the present study, we investigated ibuprofen's neuroprotective effects in rats exposed to transient forebrain ischemia and in cultures exposed to oxygen glucose deprivation (OGD). Rats treated with ibuprofen after transient forebrain ischemia displayed long-lasting protection of CA1 hippocampal neurons. There were selective increases in interleukin-1 receptor antagonist gene and protein expression in ibuprofen-treated OGD microglia. Furthermore, treatment with ibuprofen in neuron/microglia co-cultures increased the number of surviving HC2S2 neurons against OGD whereas IL-1ra neutralizing antibody reversed the ibuprofen-induced neuroprotection. The data indicate that ibuprofen-induced IL-1ra secretion is involved in neuroprotection against ischemic conditions.
Collapse
Affiliation(s)
- E-M Park
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, W. M. Burke Medical Research Institute, White Plains, NY 10605, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kalkkila JP, Sharp FR, Kärkkäinen I, Reilly M, Lu A, Solway K, Murrel M, Honkaniemi J. Cloning and expression of short interspersed elements B1 and B2 in ischemic brain. Eur J Neurosci 2004; 19:1199-206. [PMID: 15016078 DOI: 10.1111/j.1460-9568.2004.03233.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Global ischemia causes an extensive cell death 3 days after the ischemia in the CA1 region of the hippocampus, which is preceded by induction of a spectrum of genes with both neuroprotective and detrimental properties. This delayed cell death has been suggested to be mainly caused by programmed cell death. Here we applied differential display to characterize transcripts induced by global ischemia after 1 day in Mongolian gerbils, when the cells in the CA1 region are still viable, but initiating the cell death pathway. One of the cloned transcripts turned out to be a repeat sequence termed SINE B2. We also cloned the other member of the SINE family, SINE B1, and found it also to be slightly induced by ischemia in the CA1 region. The SINE repeat regions are not translated and their role in ischemia may be related the neurons' attempt to cope with decreased translational levels and/or genomic reorganization. Together with the previous data demonstrating the inducibility of the SINE transcripts using in vitro stress models, the present study shows that SINE transcripts are stress-inducible factors in the central nervous system.
Collapse
Affiliation(s)
- Juha-Pekka Kalkkila
- Department of Neurology and Rehabilitation, University of Tampere and Tampere University Hospital, Finn-Medi 3, Lenkkeilijänkatu 10, 33014 Tampereen Yliopisto, Finland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Dupont-Versteegden EE, Houlé JD, Dennis RA, Zhang J, Knox M, Wagoner G, Peterson CA. Exercise-induced gene expression in soleus muscle is dependent on time after spinal cord injury in rats. Muscle Nerve 2003; 29:73-81. [PMID: 14694501 DOI: 10.1002/mus.10511] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cycling exercise attenuates atrophy in hindlimb muscles and causes changes in spinal cord properties after spinal cord injury in rats. We hypothesized that exercising soleus muscle expresses genes that are potentially beneficial to the injured spinal cord. Rats underwent spinal cord injury at T10 and were exercised on a motor-driven bicycle. Soleus muscle and lumbar spinal cord tissue were used for messenger RNA (mRNA) analysis. Gene expression of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) was elevated 11- and 14-fold, respectively, in soleus muscle after one bout of exercise performed 5 days after spinal cord transection. Also, c-fos and heat shock protein-27 (HSP27) mRNA abundance were increased 11- and 7-fold, respectively. When exercise was started 2 days after the injury, the changes in gene expression were not observed. By contrast, at 2 but not at 5 days after transection, expression of the HSP27 gene was elevated sixfold in the lumbar spinal cord, independent of exercise. Electromyographic activity in soleus muscles was also decreased at 2 days, indicating that the spinal cord was less permissive to exercise at this early time. Long-term exercise for 4 weeks attenuated muscle atrophy equally well in rats started at 2 days or 5 days after injury. We conclude that BDNF and GDNF released from exercising muscle may be involved in exercise-induced plasticity of the spinal cord. Furthermore, the data suggest that the lumbar spinal cord undergoes time-dependent changes that temporarily impede the ability of the muscle to respond to exercise.
Collapse
Affiliation(s)
- Esther E Dupont-Versteegden
- Department of Geriatrics, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ayala GX, Tapia R. Expression of heat shock protein 70 induced by 4-aminopyridine through glutamate-mediated excitotoxic stress in rat hippocampus in vivo. Neuropharmacology 2003; 45:649-60. [PMID: 12941378 DOI: 10.1016/s0028-3908(03)00230-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The intrahippocampal administration of 4-aminopyridine (4-AP) induces epileptic seizures and neurodegeneration, due probably to stimulation of glutamate release from synaptic terminals. We have studied the time course of the neurodegenerative changes produced by 4-AP, perfused through microdialysis cannulas in rat hippocampus, and correlated them with the expression of the inducible heat shock protein 70 (HSP70), detected immunocytochemically. Electroencephalographic seizure activity appeared immediately after the beginning of 4-AP perfusion. The first signs of histological neuronal damage were observed in CA1 and CA3 subfields of the perfused hippocampus 3 h after treatment and progressed until reaching a maximal neuronal loss at 24 h. In 4-AP-treated rats HSP70 was expressed mainly in neurons of the contralateral hippocampus, with a time course and cellular distribution very similar to the neurodegeneration observed in the perfused hippocampus, but no neuronal damage was observed. The N-methyl-D-aspartate (NMDA) receptor antagonists MK-801 and (3-phosphonopropyl)-piperazine-2-carboxylic acid prevented the seizures, the neurodegeneration and the expression of HSP70. These data demonstrate that the 4-AP-induced release of endogenous glutamate overactivates NMDA receptors in the perfused hippocampus and that the resulting neuronal hyperexcitability propagates to the contralateral hippocampus, generating a glutamate-mediated neuronal stress sufficient to induce the expression of HSP70 but not to produce neurodegeneration. These findings provide a useful model for investigating the relationships between neuronal hyperexcitation, neurodegeneration and the role of HSP expression.
Collapse
Affiliation(s)
- Gabriela X Ayala
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, C.P. 04510 México D.F., Mexico
| | | |
Collapse
|
32
|
Kokubo Y, Liu J, Rajdev S, Kayama T, Sharp FR, Weinstein PR. Differential cerebral protein synthesis and heat shock protein 70 expression in the core and penumbra of rat brain after transient focal ischemia. Neurosurgery 2003; 53:186-90; discussion 190-1. [PMID: 12823888 DOI: 10.1227/01.neu.0000069023.01440.d6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2002] [Accepted: 03/11/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The purpose of this study was to correlate the cerebral protein synthesis (CPS) reductions in the ischemic core and penumbra with the metabolic stress response indicated by heat shock protein 70 (HSP70) synthesis. METHODS Rats were subjected to 90 minutes of temporary focal cerebral ischemia produced by occlusion of the middle cerebral artery, using the endovascular suture model. Regional CPS was qualitatively evaluated, with [(35)S]methionine autoradiography, after reperfusion for 2 to 72 hours. The observed changes were correlated with HSP70 immunoreactivity, as assessed in the same brain sections. The ischemic core in the striatum was characterized by HSP70 expression only in endothelial and/or glial cells, with an absence of expression in neurons. The penumbra was delineated as the cortical middle cerebral artery territory region in which HSP70 was also expressed in metabolically stressed neurons. RESULTS After 2 hours of reperfusion, CPS was reduced to 30 +/- 16% of the homologous contralateral hemisphere value in the core and to 75 +/- 22% in the penumbra (P < 0.05). This difference was still present at 72 hours, when CPS values were 62 +/- 21% and 98 +/- 29% of the nonischemic contralateral hemisphere values in the core and penumbra, respectively (P < 0.05). CONCLUSION Persistent inhibition of CPS in regions in which neuronal HSP70 expression is absent may distinguish core areas of infarction from penumbral regions in which neuronal HSP70 is present, which eventually recover from sublethal metabolic stress during reperfusion after temporary focal ischemia.
Collapse
Affiliation(s)
- Yasuaki Kokubo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
33
|
Thom M, Seetah S, Sisodiya S, Koepp M, Scaravilli F. Sudden and unexpected death in epilepsy (SUDEP): evidence of acute neuronal injury using HSP-70 and c-Jun immunohistochemistry. Neuropathol Appl Neurobiol 2003; 29:132-43. [PMID: 12662321 DOI: 10.1046/j.1365-2990.2003.00452.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Post-mortem and neuropathological examination in sudden and unexpected death in epilepsy (SUDEP) shows no specific lesions and the exact cause and mechanism of death in these cases remains undetermined. There is clinical evidence to support the fact that SUDEP is a seizure-mediated event, and patients with poorly controlled seizures are at higher risk. We aimed to identify any evidence of acute neuronal injury in SUDEP cases at post-mortem to support that a recent seizure had occurred. We analysed the distribution and frequency of heat shock protein (HSP)-70 and c-Jun immunopositive neurones in the hippocampus in 18 SUDEP cases and 22 control cases, both markers being nonspecific but early and reliable indicators of acute neuronal injury. Post-mortem control groups included patients with epilepsy with cause of death other than SUDEP (including status epilepticus and accidental death), and patients with sudden cardiac death without an epilepsy history. An additional surgical control group included patients with refractory epilepsy and hippocampal sclerosis who had undergone temporal lobectomy. Semiquantitative analysis of the distribution of HSP-70 staining showed significantly more SUDEP cases with positively labelled neurones in hippocampal subfields compared to epilepsy and cardiac post-mortem controls (P < 0.001) but not compared to the epilepsy surgical controls (P = 0.4). No significant difference in immunostaining patterns between groups was seen in the parahippocampal gyrus with HSP-70 or with c-Jun in either the hippocampus or parahippocampal gyrus regions. The detection of HSP-70 positive neurones in the hippocampus in SUDEP is supportive of ante-mortem neuronal injury including a recent seizure prior to death.
Collapse
Affiliation(s)
- M Thom
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London.
| | | | | | | | | |
Collapse
|
34
|
Pettigrew LC, Holtz ML, Minger SL, Craddock SD. Glutamate receptor antagonists modulate heat shock protein response in focal brain ischemia. Neurol Res 2003; 25:201-7. [PMID: 12635523 DOI: 10.1179/016164103101201201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Neurons and glia reacting to ischemic injury exhibit delayed expression of heat shock proteins (HSPs). We tested the hypothesis that glutamate receptor antagonists alter neuronal and glial activation during focal cerebral ischemia, as shown by spatio-temporal changes in HSP immunoreactivity. Rats underwent focal ischemia by permanent occlusion of the middle cerebral artery. All animals were pre-treated with NBQX (30 mg kg-1), a competitive antagonist of the AMPA/kainate receptor, or CGS-19755 (10 mg kg-1), a competitive NMDA receptor antagonist, and euthanatized after 6 or 24 h of ischemia to demonstrate regional immunoreactivity of HSP-72 or 32 in brain. Neurons immunolabeled for HSP-72 appeared in the penumbral region adjacent to the infarct at 24 h and increased in number and distribution after pretreatment with NBQX or CGS-19755. Immunolabeling for HSP-32 revealed that pre-treatment with CGS-19755 caused ramified glia to infiltrate the ischemic cortex at 6 h, a pattern that was not seen in ischemic controls until 24 h. Blockade of the NMDA or AMPA/kainate receptor modulates cellular stress responses in both neurons and glia within the developing infarct. We conclude that early, rather than delayed, expression of HSP-32 is a sensitive indicator of glial activation induced specifically by CGS-19755.
Collapse
Affiliation(s)
- L Creed Pettigrew
- Department of Neurology, University of Kentucky College of Medicine, Department of Veterans Affairs Medical Center, Lexington, Kentucky, USA
| | | | | | | |
Collapse
|
35
|
Bueno A, De Olmos S, Heimer L, De Olmos J. NMDA-antagonist MK-801-induced neuronal degeneration in Wistar rat brain detected by the Amino-Cupric-Silver method. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2003; 54:319-34. [PMID: 12710716 DOI: 10.1078/0940-2993-00264] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The neurotoxic effect following a single intraperitoneal injection of MK-801 (10 mg/kg) in adult female Wistar rats at different survival times was studied with the 1994 version of de Olmos' Amino-Cupric-Silver (A-Cu-Ag) technique for detection of neural degeneration. In addition to the well documented somatodendritic degeneration observable in cortical olfactory structures, dentate gyrus, retrosplenial and sensory cortices, we detected this type of neuronal degeneration also in the main olfactory bulb, motor and anterior cingulate cortices, thalamus and cerebellum. Terminal degeneration, not reported by previous authors, was detected in cortical olfactory structures, hippocampal formation, sensory, infralimbic, prelimbic, agranular insular, ectorhinal, perirhinal and lateral orbital cortices. These results demonstrate that the A-Cu-Ag procedure is more efficient than other silver methods for detecting the degeneration induced by MK-801. In fact, the use of the A-Cu-Ag method has made it possible to infer the connectional relations between the damaged cell bodies and corresponding terminal degeneration. Our results also indicate that the A-Cu-Ag technique may be a suitable method for the staining of neurons undergoing apoptotic-like degeneration. The probable degenerative mechanism of MK-801 in the main olfactory system is discussed.
Collapse
Affiliation(s)
- Adrian Bueno
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
| | | | | | | |
Collapse
|
36
|
Sachana M, Flaskos J, Alexaki E, Hargreaves AJ. Inhibition of neurite outgrowth in N2a cells by leptophos and carbaryl: effects on neurofilament heavy chain, GAP-43 and HSP-70. Toxicol In Vitro 2003; 17:115-20. [PMID: 12537969 DOI: 10.1016/s0887-2333(02)00121-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neurodegenerative properties of the organophosphate ester leptophos (LEP) and the carbamate ester carbaryl (CB), both of which can cause neuropathic effects in animals, were investigated in differentiating mouse N2a neuroblastoma cells. At a sublethal concentration of 3 microM, both LEP and CB were able to inhibit the outgrowth of axon-like processes from N2a cells after only 4 h of exposure. Extracts of cells exposed to LEP showed decreased cross-reactivities with monoclonal antibodies that recognise the neurofilament heavy chain (NFH) and the growth-associated protein GAP-43. However, they exhibited increased cross-reactivity with a monoclonal antibody that recognises the heat shock protein HSP-70. In contrast, no changes were noted in the levels of antibody binding in blots of extracts of cells exposed to CB. It is concluded that, although both LEP and CB inhibit the formation of axons in vitro, the early biochemical changes underlying the neurodegenerative effects of the two compounds are different.
Collapse
Affiliation(s)
- M Sachana
- Laboratory of Biochemistry and Toxicology, Faculty of Veterinary Medicine, Aristotelian University of Thessaloniki, 546 06 Thessaloniki, Greece
| | | | | | | |
Collapse
|
37
|
Kanemitsu H, Nakagomi T, Tamura A, Tsuchiya T, Kono G, Sano K. Differences in the extent of primary ischemic damage between middle cerebral artery coagulation and intraluminal occlusion models. J Cereb Blood Flow Metab 2002; 22:1196-204. [PMID: 12368658 DOI: 10.1097/01.wcb.0000037992.07114.95] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors studied the differences between heat-shock/stress protein 70 (hsp70) gene expression and protein synthesis in the unilateral middle cerebral artery (MCA) microsurgical direct occlusion (Tamura's) model and the unilateral intraluminal occlusion model. In Tamura's model, expression of hsp70 mRNA and HSP70 protein and decreased protein synthesis were detected in the ischemic areas, including the ipsilateral cortex and caudate. These phenomena, however, were not observed in the areas outside the MCA territory, including the ipsilateral thalamus, hippocampus, and substantia nigra. These results were consistent among the experimental rats. In the intraluminal occlusion model, however, induction of both hsp70 mRNA and HSP70 protein and impairment of protein synthesis were noted in the areas outside the MCA territory, including the ipsilateral thalamus, hypothalamus, hippocampus, and substantia nigra, as well as in the MCA territory, including the ipsilateral cortex and caudate. These results were not consistent among the experimental rats. These different results might be due to widespread damage resulting from internal carotid artery (ICA) occlusion in the intraluminal occlusion model. Accordingly, the authors suggest that this model be called an ICA occlusion model, rather than a pure MCA occlusion model.
Collapse
Affiliation(s)
- Hideaki Kanemitsu
- Department of Neurosurgery, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Differences in the Extent of Primary Ischemic Damage Between Middle Cerebral Artery Coagulation and Intraluminal Occlusion Models. J Cereb Blood Flow Metab 2002. [DOI: 10.1097/00004647-200210000-00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Marciano PG, Eberwine JH, Ragupathi R, Saatman KE, Meaney DF, McIntosh TK. Expression profiling following traumatic brain injury: a review. Neurochem Res 2002; 27:1147-55. [PMID: 12462413 DOI: 10.1023/a:1020973308941] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Traumatic brain injury (TBI) elicits a complex sequence of putative autodestructive and neuroprotective cellular cascades. It is hypothesized that the genomic responses of cells in the injured brain serve as the basis for these cascades. Traditional methods for analyzing differential gene expression following brain trauma demonstrate that immediate early genes, cytokines, transcription factors, and neurotrophic factors can all participate in the brain's active and directed response to injury, and may do so concurrently. It is this complexity and multiplicity of interrelated molecular mechanisms that has demanded new methods for comprehensive and parallel evaluation of putative as well as novel gene targets. Recent advances in DNA microarray technology have enabled the simultaneous evaluation of thousands of genes and the subsequent generation of massive amounts of biological data relevant to CNS injury. This emerging technology can serve to further current knowledge regarding recognized molecular cascades as well as to identify novel molecular mechanisms that occur throughout the post-traumatic period. The elucidation of the complex alterations in gene expression underlying the pathological sequelae following TBI is of central importance in the design of future therapeutic agents.
Collapse
Affiliation(s)
- Paolo G Marciano
- Department of Neuroscience, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | |
Collapse
|
40
|
Krueger-Naug AMR, Plumier JCL, Hopkins DA, Currie RW. Hsp27 in the nervous system: expression in pathophysiology and in the aging brain. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 28:235-51. [PMID: 11908063 DOI: 10.1007/978-3-642-56348-5_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A M R Krueger-Naug
- Laboratory of Molecular Neurobiology, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | |
Collapse
|
41
|
Takuma K, Mori K, Lee E, Enomoto R, Baba A, Matsuda T. Heat shock inhibits hydrogen peroxide-induced apoptosis in cultured astrocytes. Brain Res 2002; 946:232-8. [PMID: 12137926 DOI: 10.1016/s0006-8993(02)02888-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Heat shock proteins (HSPs) have been shown to act as inhibitors of apoptosis, but this anti-apoptotic effect is not known in the central nervous system. Prior heat shock has been demonstrated to protect astrocytes from cell death in a model of reperfusion injury (Brain Res. 735 (1996) 265). The present study examines the mechanism underlying the protective effect of the heat shock. Preincubation of astrocytes at 40 degrees C for 10 min attenuated the hydrogen peroxide (H(2)O(2))-induced decrease in cell viability, DNA ladder formation and nuclear condensation, and these effects were blocked by the protein synthesis inhibitor cycloheximide. The thermal stress inhibited the H(2)O(2)-induced increase in caspase-3 like protease activity, but it did not affect the H(2)O(2)-induced loss of mitochondrial membrane potential. The cytosol prepared from preheated cells did not affect Ca(2+)-induced swelling of mitochondria, a marker of the permeable transition pore. The protective effect of the thermal stress on the H(2)O(2)-induced decrease in cell viability was not affected by the mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor 2'-amino-3'-methoxyflavone, the phosphatidylinositol-3 kinase inhibitor wortmannin and the NF-kappaB inhibitor pyrrolidinedithiocarbamate. These findings suggest that HSPs inhibit apoptosis via an inhibition of caspase-3 activation without effect on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kazuhiro Takuma
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences and High Technology Research Center, Kobe Gakuin University, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Ozer EA, Yilmaz O, Akhisaroglu M, Tuna B, Bakiler AR, Ozer E. Heat shock protein 70 expression in neonatal rats after hypoxic stress. J Matern Fetal Neonatal Med 2002; 12:112-7. [PMID: 12420841 DOI: 10.1080/jmf.12.2.112.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The tissue damage due to hypoxia in newborns is to some extent age-dependent; organs of premature babies are more vulnerable to hypoxic insult than full-term neonates. The aim of this immunohistochemical study was to investigate the role of heat shock protein 70 (HSP70), a stress-inducible protein, in developing the response to hypoxia in premature newborns. METHODS Postnatal day-7 rats (corresponding to a human fetus of 32-34 weeks' gestation) and day-12 rats (corresponding to a full-term newborn infant) (n = 7) were subjected to mild hypoxia at 33 degrees C. Control rats (n = 7) for each group breathed room air for 4 h. After 4 h of recovery, the animals were killed, and brains, hearts and kidneys were removed for immunohistochemical staining. RESULTS Immunohistochemically, HSP70 expression was found to be induced in the hippocampus and myocardium after exposure to hypoxia. The level of HSP70 expression in the hippocampus after hypoxic stress was significantly higher in the 12-day rats than in the 7-day rats (p = 0.03). However, HSP70 expression in the myocardium did not show any significant difference between the two groups. In addition, no significant induction of HSP70 expression was apparent in the kidney of rats exposed to hypoxia or in any organ of the control animals. CONCLUSIONS We conclude that diminished HSP70 expression in the hippocampus of premature newborns may play a critical role in developing the response to hypoxic stress. However, HSP70 expression in the heart and the kidney after exposure to hypoxia did not appear to be related to fetal maturity.
Collapse
Affiliation(s)
- E A Ozer
- Clinics of Pediatrics, SSK Tepecik Teaching Hospital, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
43
|
Tasneem S, Islam N, Ali R. Crossreactivity of SLE autoantibodies with 70 kDa heat shock proteins of Mycobacterium tuberculosis. Microbiol Immunol 2002; 45:841-6. [PMID: 11838901 DOI: 10.1111/j.1348-0421.2001.tb01323.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heat shock proteins (hsp) may be involved in the initiation and perpetuation of autoimmune diseases. In order to investigate the possible role of hsp and other intracellular proteins of Mycobacterium tuberculosis in the autoantibody production in SLE, the immuno-crossreactivity of SLE autoantibodies with Mycobacterium tuberculosis sonic extract and hsp-70 kDa was investigated. These proteins showed significant binding with Protein A-Sepharose isolated SLE IgG. Western blotting of hsp-70 with SLE IgG showed strong recognition, suggesting possible involvement of hsp and other intracellular proteins of Mycobacterium tuberculosis in the autoantibody induction in SLE.
Collapse
Affiliation(s)
- S Tasneem
- Department of Biochemistry, Faculty of Medicine, JN Medical College, AMU Aligarth, India
| | | | | |
Collapse
|
44
|
Kelly S, Bieneman A, Uney JB, McCulloch J. Cerebral glucose utilization in transgenic mice overexpressing heat shock protein 70 is altered by dizocilpine. Eur J Neurosci 2002; 15:945-52. [PMID: 11918653 DOI: 10.1046/j.1460-9568.2002.01931.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heat shock protein (HSP70), a member of the 70 kDa HSP superfamily, has been widely implicated in the cellular stress response to numerous insults. HSP70 may be a significant factor in cell survival following stresses such as cerebral ischaemia. The precise mechanisms by which HSP70 facilitates cell survival remain unclear. The aim of this study was to ascertain whether any differences in local cerebral glucose utilization (LCGU) existed between transgenic mice overexpressing HSP70 (HSP70 Tg) and wild- type littermate (WT) mice. LCGU was assessed using (14)C-2-deoxyglucose in HSP70 Tg and WT mice under basal conditions (intraperitoneal injection of saline) and during metabolic activation produced by NMDA receptor blockade (intraperitoneal injection of dizocilpine, 1 mg/kg). No significant alterations in LCGU were observed between saline injected HSP70 Tg and WT mice in any of the 35 brain regions analyzed. Dizocilpine injection produced significant heterogeneous alterations in LCGU in HSP70 Tg mice (24 of 35 brain regions) and in WT mice (22 of 35 brain regions) compared with saline injected mice. The distribution of altered LCGU produced by dizocilpine was similar in HSP70 Tg and WT mice. However in five brain regions, dizocilpine injected HSP70 Tg mice displayed significantly altered LCGU compared to dizocilpine injected WT mice (anterior thalamic nucleus +27%, dorsal CA1 stratum lacunosum molecularae +22%, dorsal CA1 stratum oriens + 14%, superior olivary body -26%, and the nucleus of the lateral lemniscus -16%). These data highlight that while overexpression of HSP70 transgene does not significantly alter LCGU in the basal state, mice overexpressing the HSP70 transgene respond differently to metabolic stress produced by NMDA receptor blockade in some important brain regions.
Collapse
Affiliation(s)
- Stephen Kelly
- Wellcome Surgical Institute and Hugh Fraser Neuroscience Laboratories, University of Glasgow, Glasgow, Scotland, UK.
| | | | | | | |
Collapse
|
45
|
Eisenbrand G, Pool-Zobel B, Baker V, Balls M, Blaauboer BJ, Boobis A, Carere A, Kevekordes S, Lhuguenot JC, Pieters R, Kleiner J. Methods of in vitro toxicology. Food Chem Toxicol 2002; 40:193-236. [PMID: 11893398 DOI: 10.1016/s0278-6915(01)00118-1] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In vitro methods are common and widely used for screening and ranking chemicals, and have also been taken into account sporadically for risk assessment purposes in the case of food additives. However, the range of food-associated compounds amenable to in vitro toxicology is considered much broader, comprising not only natural ingredients, including those from food preparation, but also compounds formed endogenously after exposure, permissible/authorised chemicals including additives, residues, supplements, chemicals from processing and packaging and contaminants. A major promise of in vitro systems is to obtain mechanism-derived information that is considered pivotal for adequate risk assessment. This paper critically reviews the entire process of risk assessment by in vitro toxicology, encompassing ongoing and future developments, with major emphasis on cytotoxicity, cellular responses, toxicokinetics, modelling, metabolism, cancer-related endpoints, developmental toxicity, prediction of allergenicity, and finally, development and application of biomarkers. It describes in depth the use of in vitro methods in strategies for characterising and predicting hazards to the human. Major weaknesses and strengths of these assay systems are addressed, together with some key issues concerning major research priorities to improve hazard identification and characterisation of food-associated chemicals.
Collapse
Affiliation(s)
- G Eisenbrand
- University of Kaiserslautern, Department of Chemistry Food Chemistry & Environmental Toxicology, PO Box 3049, D-67653, Kaiserslautern, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Akbar MT, Wells DJ, Latchman DS, de Belleroche J. Heat shock protein 27 shows a distinctive widespread spatial and temporal pattern of induction in CNS glial and neuronal cells compared to heat shock protein 70 and caspase 3 following kainate administration. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 93:148-63. [PMID: 11589992 DOI: 10.1016/s0169-328x(01)00199-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Kainate-induced status epilepticus is associated with both apoptotic and necrotic cell death and induction of heat shock proteins (HSPs) in hippocampal and cortical regions of the rodent brain. In the present study we have examined the temporal, spatial and cellular expression patterns of mRNAs for the highly inducible HSPs, HSP70 and HSP27, together with the apoptotic marker, caspase 3 (CPP32) in rat brain after systemic administration of kainate. HSP70 mRNA was transiently induced in the forebrain by kainate, principally in the CA1, CA3 and hilar cells of the hippocampal formation, in piriform cortex and discrete thalamic nuclei. Maximal expression was seen at 8 h after kainate which then declined to background levels by 7 days. Labelling was predominantly neuronal. In contrast, HSP27 mRNA expression was more widespread. Intense labelling was observed in CA1, CA3 and the hilar region at 8 h after kainate but the expression profile for HSP27 mRNA expanded considerably with intense signals seen in corpus callosum, cortex and thalamus at 24 h post kainate. Emulsion autoradiographs indicated a predominantly glial localisation for HSP27 mRNA. In the hilus, a distinct subpopulation of interneurones were found to express HSP27 mRNA. CPP32 mRNA was upregulated in CA1, CA3 and hilus of the hippocampal formation and in piriform cortex. CPP32 mRNA expression was more restricted and similar in distribution to HSP70 mRNA being localised to neurones. The present study demonstrates the unique early expression of HSP27 mRNA by glial cells and distinct populations of neurones which extends beyond those in which HSP70 and CPP32 induction occurs with subsequent cell loss.
Collapse
Affiliation(s)
- M T Akbar
- Department of Neuromuscular Diseases, Division of Neuroscience and Psychological Medicine, Imperial College of Science, Technology and Medicine, Charing Cross Hospital, Fulham Palace Road, W6 8RF, London, UK
| | | | | | | |
Collapse
|
47
|
Kelly S, McCulloch J, Horsburgh K. Minimal ischaemic neuronal damage and HSP70 expression in MF1 strain mice following bilateral common carotid artery occlusion. Brain Res 2001; 914:185-95. [PMID: 11578611 DOI: 10.1016/s0006-8993(01)02801-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Investigation into the influence of specific genes and gene products upon the pathophysiology of cerebral ischaemia has been greatly enhanced by the use of genetically modified mice. A simple model of global cerebral ischaemia in mouse is bilateral common carotid artery occlusion (BCCAo) and the neuropathological impact of BCCAo has been investigated in several mouse strains. Bilateral carotid occlusion produces extensive neuronal damage in C57Bl/6J strain mice and this damage is linked to posterior communicating artery (PcomA) hypoplasticity in the circle of Willis. In the present study, we investigated the effect of BCCAo in MF1 strain mice and compared them with C57Bl/6J mice. The neuropathological consequences of BCCAo were assessed using standard histochemical staining and heat shock protein 70 (HSP70) immunohistochemical staining (to demarcate cells that had been ischaemically stressed). The effect of BCCAo on mean arterial blood pressure (MABP) was also measured. The plasticity of the circle of Willis was recorded using carbon black perfusion. MF1 mice displayed significantly less ischaemic neuronal damage and HSP70 immunoreactivity compared to C57Bl/6J mice following 10-20 min BCCAo. Moreover, ischaemic neuronal damage and HSP70 immunoreactivity in MF1 mice subjected to extended BCCAo (25-45 min) was never as extensive or widespread as that observed in C57Bl/6J mice after 20 min BCCAo. MABP in MF1 mice (102+/-5 mmHg) was significantly higher than in C57Bl/6J mice (87+/-5) during 20 min BCCAo. MABP in MF1 mice during 20 and 40 min (103+/-12 mmHg) BCCAo remained above pre-occlusion values for the entire occlusion period. MF1 mice had significantly greater circle of Willis plasticity (more PcomAs) than C57Bl/6J mice did. These data indicate that MF1 mice are less susceptible to BCCAo than C57Bl/6J mice and that this could be due to maintained increases in MABP during BCCAo and the lower prevalence of abnormalities of the circle of Willis in MF1 mice.
Collapse
Affiliation(s)
- S Kelly
- Wellcome Surgical Institute and Hugh Fraser Neuroscience Laboratories, University of Glasgow, Garscube Estate, Bearsden Road, G61 1QH, Glasgow, UK
| | | | | |
Collapse
|
48
|
Sharp FR, Bernaudin M, Bartels M, Wagner KR. Glial expression of heat shock proteins (HSPs) and oxygen-regulated proteins (ORPs). PROGRESS IN BRAIN RESEARCH 2001; 132:427-40. [PMID: 11545009 DOI: 10.1016/s0079-6123(01)32093-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- F R Sharp
- Department of Neurology, University of Cincinnati, Vontz Center for Molecular Studies, Room 2327, 3125 Eden Avenue, Cincinnati, OH 45267-0536, USA.
| | | | | | | |
Collapse
|
49
|
Sachana M, Flaskos J, Alexaki E, Glynn P, Hargreaves AJ. The toxicity of chlorpyrifos towards differentiating mouse N2a neuroblastoma cells. Toxicol In Vitro 2001; 15:369-72. [PMID: 11566565 DOI: 10.1016/s0887-2333(01)00038-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aim of this work was to study the effects of chlorpyrifos (CPF) on the outgrowth of axons by differentiating mouse N2a neuroblastoma cells. This was achieved by morphological, Western blotting and enzymatic analyses of cells induced to differentiate in the presence and absence of CPF added either at the same time (co-differentiation) or 16 h after (post-differentiation) the induction of cell differentiation. The outgrowth of axon-like processes was impaired following 4 or 8 h exposure to CPF in both co- and post-differentiation experiments. Western blotting analysis revealed reduced levels of neurofilament heavy chain (NF-H) following 8 h of exposure but no significant effect at 4 h under both co- and post-differentiation conditions. By contrast, levels of the heat shock protein HSP-70 were raised at both time points, but only in co-differentiation experiments. Neuropathy target esterase (NTE) activity was lower than controls following 4 or 8 h of exposure under co-differentiation conditions, but not under any post-differentiation conditions. The results suggest that the inhibition of axon production and maintenance by CPF in differentiating N2a cells may involve multiple targets, which are different under co- and post-differentiation conditions.
Collapse
Affiliation(s)
- M Sachana
- Laboratory of Biochemistry and Toxicology, Faculty of Veterinary Medicine, Aristotelian University, Thessaloniki, Greece
| | | | | | | | | |
Collapse
|
50
|
Zagulska-Szymczak S, Filipkowski RK, Kaczmarek L. Kainate-induced genes in the hippocampus: lessons from expression patterns. Neurochem Int 2001; 38:485-501. [PMID: 11248397 DOI: 10.1016/s0197-0186(00)00101-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kainate, the analog of the excitatory amino acid L-glutamate, upon binding to non-NMDA glutamate receptors, causes depolarization of neurons followed by severe status epilepticus, neurodegeneration, plasticity and gliosis. These events are best observed in hippocampus, the limbic structure implicated in learning and long-term memory formation. Neurons in all hippocampal structures undergo hyper-activation, however, whereas the cells in the CA subfields degenerate within 2--3 days following the application of kainate, the granule cells of the dentate gyrus are resistant to any form of neurodegeneration and even initiate new synaptic contacts. These physiological and histological changes are modulated by short-term and long-term alterations in gene expression. Perhaps close examination of the changing spatio-temporal patterns of mRNAs of various genes may help in generating a clearer picture of the molecular events leading to complex cognitive functions.
Collapse
Affiliation(s)
- S Zagulska-Szymczak
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | | | |
Collapse
|