1
|
Liu Q, Chen Y, Wang B, Chen Y, Li B, Guan S, Du K, Liu X, Yu Y, Liu J, Wang Z. Arginine Biosynthesis Pathway Found to Play a Key Role in the Neuroprotective Effect of Liu-Wei-Luo-Bi (LWLB) Granules in Diabetic db/db Mice with Peripheral Neuropathy Using an Untargeted Metabolomics Strategy. Diabetes Metab Syndr Obes 2023; 16:4065-4080. [PMID: 38106622 PMCID: PMC10723181 DOI: 10.2147/dmso.s423388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023] Open
Abstract
Aim Liu-Wei-Luo-Bi (LWLB) granules was a Chinese compound prescription for treating diabetic peripheral neuropathy (DPN). The aim of this study was to investigate the effect of LWLB granules on diabetic mice with peripheral neuropathy and to elucidate the potential mechanism based on an untargeted metabolomics approach. Methods One hundred forty db/db mice were randomly divided into seven groups: the Control group, DPN group, Mudan (MD) granules group, Epalrestat (Epa) group, and the LWLB low, medium, or high dose (LW-l, LW-m, or LW-h) group. After 12 weeks of treatment, body weight, blood glucose, mechanical pain threshold, motor conduction velocity (MCV), sensory conduction velocity (SCV), and Pathological Organization of the Sciatic and Caudal Nerves in mice were measured. Serum samples were collected for untargeted metabolomics analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and multivariate statistics. Disease-related pathways were screened out with function enrichment analyses of candidate biomarkers. Results LWLB granules can improve the peripheral neuropathy of type 2 diabetic mice with peripheral nerve conduction disorders, mainly through significantly improving the nerve conduction velocity (P < 0.05) and lowering the mechanical pain threshold (P < 0.05). A total of 43 metabolites were identified as potential biomarkers related to the therapeutic effect of LWLB granules. Fifty, 4, and 26; 23, 4, and 22; and 24, 1, and 16 biomarkers were discovered in the LW-l, LW-m, and LW-h groups at the 4th, 6th, and 12th weeks, respectively. Five, three, seven, five, and four metabolic pathways were found in MD, Epa, LW-l, LW-m, and LW-h groups, respectively. The arginine biosynthesis pathway is the overlapping pathway in LW-l, LW-m, and LW-h groups. Conclusion LWLB granules have an obvious neuroprotective effect on diabetic peripheral neuropathy, and the metabolism mechanism of LWLB is mainly related to the arginine biosynthesis pathway on diabetic db/db mice with peripheral neuropathy.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Postdoctoral Research Station, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yafei Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Bo Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yinying Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Shuang Guan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kehe Du
- iPhase Pharma Services, Beijing, People’s Republic of China
| | - Xiaoyang Liu
- iPhase Pharma Services, Beijing, People’s Republic of China
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Davisson RL, Bates JN, Johnson AK, Lewis SJ. Effects of intracerebroventricular injections of 5-HT on systemic vascular resistances of conscious rats. Microvasc Res 2014; 95:116-23. [PMID: 25128748 PMCID: PMC4188728 DOI: 10.1016/j.mvr.2014.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 12/21/2022]
Abstract
The aims of this study were to determine (i) the effects of intracerebroventricular (i.c.v.) injections of 5-hydroxytryptamine (5-HT, 10μg) on mean arterial blood pressure (MAP), heart rate (HR) and mesenteric (MR), renal (RR) and hindquarter (HQR) vascular resistances of conscious rats, (ii) the central 5-HT receptor subtype which mediates these effects, and (iii) the role of nitric oxide (NO) in the expression of these responses. The i.c.v. injection of 5-HT had minor effects on MAP but produced a decrease in HR (-18±4%), which lasted for 20min. The i.c.v. injection of 5-HT elicited marked increases in MR (+50±7%) and reductions in HQR (-31±3%). These responses occurred promptly and lasted for 25-35min. 5-HT also produced a transient decrease in RR (-26±8% at 10min). All of these responses were prevented by the prior i.c.v. injection of the 5-HT1/5-HT2-receptor antagonist, methysergide (10μg). The intravenous injection of the NO synthesis inhibitor, L-NAME (25μmol/kg), produced a sustained pressor response, bradycardia and increases in MR, RR and HQR. Subsequent i.c.v. injection of 5-HT produced a minor pressor response (+7±2%), bradycardia (-18±3%), an increase in MR (+52±8%) but no decreases in RR or HQR. This study demonstrates that i.c.v. 5-HT differentially affects peripheral vascular resistances by activation of central 5-HT1/5-HT2-receptors. It appears that L-NAME did not interfere with the central actions of 5-HT as it did not prevent the 5-HT-induced bradycardia or mesenteric vasoconstriction. Since the 5-HT-induced falls in RR and HQR were abolished by L-NAME, it is possible that these responses are mediated by an active neurogenic process involving the release of NO within the vasculature.
Collapse
Affiliation(s)
- Robin L. Davisson
- Departments of Biomedical Sciences (College of Veterinary Medicine), Ithaca, New York, and Cell and Developmental Biology (Weil Cornell Medical College), New York, New York, USA
| | - James N. Bates
- Department of Anesthesia, University of Iowa, Iowa City, Iowa, USA
| | - Alan Kim Johnson
- Departments of Psychology, Health and Human Physiology, and Pharmacology, and the Francois M. Abboud Cardiovascular Research Center, The University of lowa, Iowa City, Iowa, USA
| | - Stephen J. Lewis
- Departments of Pediatrics and Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Gaston B, May WJ, Sullivan S, Yemen S, Marozkina NV, Palmer LA, Bates JN, Lewis SJ. Essential role of hemoglobin beta-93-cysteine in posthypoxia facilitation of breathing in conscious mice. J Appl Physiol (1985) 2014; 116:1290-9. [PMID: 24610531 DOI: 10.1152/japplphysiol.01050.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
When erythrocyte hemoglobin (Hb) is fully saturated with O2, nitric oxide (NO) covalently binds to the cysteine 93 residue of the Hb β-chain (B93-CYS), forming S-nitrosohemoglobin. Binding of NO is allosterically coupled to the O2 saturation of Hb. As saturation falls, the NO group on B93-CYS is transferred to thiols in the erythrocyte, and in the plasma, forming circulating S-nitrosothiols. Here, we studied whether the changes in ventilation during and following exposure to a hypoxic challenge were dependent on erythrocytic B93-CYS. Studies were performed in conscious mice in which native murine Hb was replaced with human Hb (hB93-CYS mice) and in mice in which murine Hb was replaced with human Hb containing an alanine rather than cysteine at position 93 on the Bchain (hB93-ALA). Both strains expressed human γ-chain Hb, likely allowing a residual element of S-nitrosothiol-dependent signaling. While resting parameters and initial hypoxic (10% O2, 90% N2) ventilatory responses were similar in hB93-CYS mice and hB93-ALA mice, the excitatory ventilatory responses (short-term potentiation) that occurred once the mice were returned to room air were markedly diminished in hB93-ALA mice. Further, short-term potentiation responses were virtually absent in mice with bilateral transection of the carotid sinus nerves. These data demonstrate that hB93-CYS plays an essential role in mediating carotid sinus nerve-dependent short-term potentiation, an important mechanism for recovery from acute hypoxia.
Collapse
Affiliation(s)
- Benjamin Gaston
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia;
| | - Walter J May
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Spencer Sullivan
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sean Yemen
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nadzeya V Marozkina
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lisa A Palmer
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, Iowa; and
| | - Stephen J Lewis
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
4
|
Palmer LA, May WJ, deRonde K, Brown-Steinke K, Bates JN, Gaston B, Lewis SJ. Ventilatory responses during and following exposure to a hypoxic challenge in conscious mice deficient or null in S-nitrosoglutathione reductase. Respir Physiol Neurobiol 2012. [PMID: 23183419 DOI: 10.1016/j.resp.2012.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure to a hypoxic challenge increases ventilation in wild-type (WT) mice that diminish during the challenge (roll-off) whereas return to room air causes an increase in ventilation (short-term facilitation, STF). Since plasma and tissue levels of ventilatory excitant S-nitrosothiols such as S-nitrosoglutathione (GSNO) increase during hypoxia, this study examined whether (1) the initial increase in ventilation is due to generation of GSNO, (2) roll-off is due to increased activity of the GSNO degrading enzyme, GSNO reductase (GSNOR), and (3) STF is limited by GSNOR activity. Initial ventilatory responses to hypoxic challenge (10% O(2), 90% N(2)) were similar in WT, GSNO+/- and GSNO-/- mice. These responses diminished markedly during hypoxic challenge in WT mice whereas there was minimal roll-off in GSNOR+/- and GSNOR-/- mice. Finally, STF was greater in GSNOR+/- and GSNOR-/- mice than in WT mice (especially females). This study suggests that GSNOR degradation of GSNO is a vital step in the expression of ventilatory roll-off and that GSNOR suppresses STF.
Collapse
Affiliation(s)
- Lisa A Palmer
- Pediatric Respiratory Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Savidge TC, Sofroniew MV, Neunlist M. Starring roles for astroglia in barrier pathologies of gut and brain. J Transl Med 2007; 87:731-6. [PMID: 17607301 DOI: 10.1038/labinvest.3700600] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal tract is a highly innervated organ and enteric neuropathy is emerging as a central feature of a wide range of gut diseases. Although most considerations of the enteric nervous system have focused on neuronal dysfunction, a large population of astrocyte-like glia populates gut muscle layers and the intestinal mucosa, and mounting new evidence points toward enteric glia as active participants in gut pathology. Similarly, in the central nervous system increasing evidence suggests that dysfunctions of astrocytes play central roles in disease mechanisms. On the basis of the premise that gut-brain disease paradigms may exist, we explore the possibility that enteric glia constitute a previously unrecognized disease target in pathologies associated with intestinal barrier dysfunction, notably inflammatory bowel disease, necrotizing enterocolitis, irritable bowel syndrome, diabetes, autoimmune disease and neurotrophic virus infection of the gut.
Collapse
Affiliation(s)
- Tor C Savidge
- Department of Gastroenterology & Hepatology, Division of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | |
Collapse
|
6
|
Lee S, Bergeron H, Lau PCK, Rosazza JPN. Thiols in nitric oxide synthase-containing Nocardia sp. strain NRRL 5646. Appl Environ Microbiol 2007; 73:3095-7. [PMID: 17337559 PMCID: PMC1892879 DOI: 10.1128/aem.02809-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mycothiol (MSH) [1-D-myo-inosityl-2-(N-acetyl-l-cysteinyl)amido-2-deoxy-alpha-D-glucopyranoside], isolated as the bimane derivative, was established to be the major thiol in Nocardia sp. strain NRRL 5646, a species most closely related to Nocardia brasiliensis strain DSM 43758(T). Thiol formation and detection of MSH-dependent formaldehyde dehydrogenase activity in cell extracts are relevant to the possible modulation of nitric oxide toxicity generated by strain NRRL 5646.
Collapse
Affiliation(s)
- Sungwon Lee
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, and Center for Biocatalysis and Bioprocessing, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
7
|
Velayos JL, Oliva M, Alfageme F. Afferent projections to the mediodorsal and anterior thalamic nuclei in the cat. Anatomical-clinical correlations. Brain Pathol 2006; 8:549-52. [PMID: 9669706 PMCID: PMC8098412 DOI: 10.1111/j.1750-3639.1998.tb00177.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Afferent projections to the mediodorsal and anterior thalamic nuclei in the cat were studied by means of stereotaxic injection of neuronal tracers (horseradish peroxidase and fluorochromes). Acetylcholinesterase reaction was studied, as well as horseradish peroxidase and NADPH-diaphorase colocation in neuronal bodies which send and receive projections to and from the mediodorsal thalamic nucleus. Based on the connectivity and histochemistry findings, the possibility that prion agents responsible for fatal familial insomnia spread from the mediodorsal and anterior thalamic nuclei through a retrograde pathway is discussed. The possible pathophysiological implication of nitrergic systems in fatal familial insomnia is also considered.
Collapse
Affiliation(s)
- J L Velayos
- Faculty of Medicine, Autonomous University of Madrid, Spain.
| | | | | |
Collapse
|
8
|
Mayorov DN. Selective Sensitization by Nitric Oxide of Sympathetic Baroreflex in Rostral Ventrolateral Medulla of Conscious Rabbits. Hypertension 2005; 45:901-6. [PMID: 15753230 DOI: 10.1161/01.hyp.0000160322.83725.6b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nitric oxide (NO) deficiency in the rostral ventrolateral medulla (RVLM) has been implicated in impaired baroreflex control in hypertensive and heart failure animals. However, the role of local NO in normal baroreflex regulation remains unclear. This study aimed to examine the role of NO in tonic and baroreflex control of blood pressure (BP) in the RVLM of conscious rabbits. Microinjections of NO donors, S-nitroso-N-acetylpenicillamine and sodium nitroprusside (5 to 20 nmol), or NO itself (20 to 200 pmol) into the RVLM dose-dependently increased BP. Bilateral microinjections of an NO synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 10 nmol), its inactive enantiomer D-NAME, or soluble guanylate cyclase (sGC) inhibitors, 1-H-[1,2,4]oxadiaolo[4,3-a]quinoxalin-1-one (ODQ, 250 pmol) and methylene blue (10 nmol), into the RVLM did not affect resting BP, heart rate, or renal sympathetic nerve activity (RSNA). However, L-NAME, methylene blue, and ODQ decreased RSNA baroreflex gain by 42% to 55%, whereas D-NAME did not affect this reflex. Co-microinjections of L-NAME and superoxide scavenger tempol (20 nmol) decreased RSNA baroreflex gain by 37+/-8%. Microinjections of a neuronal NOS (nNOS) inhibitor, 7-nitroindazole (500 pmol), into the RVLM decreased RSNA baroreflex gain by 42+/-12%, without altering resting BP, heart rate, or RSNA. Local administration of inducible NOS (iNOS) inhibitors, S-methylisothiourea (0.25 nmol) and aminoguanidine (0.25 and 2.5 nmol), affected neither resting nor baroreflex parameters. These results suggest that nNOS-derived NO facilitates sympathetic baroreflex transmission in the RVLM at least in part via a sGC-dependent, superoxide-independent mechanism. However, local nNOS and iNOS play little role in the tonic support of BP in conscious rabbits.
Collapse
|
9
|
West AR, Galloway MP, Grace AA. Regulation of striatal dopamine neurotransmission by nitric oxide: effector pathways and signaling mechanisms. Synapse 2002; 44:227-45. [PMID: 11984858 DOI: 10.1002/syn.10076] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An important role for the reactive gas nitric oxide (NO) in regulating striatal dopaminergic neurotransmission was identified shortly after initial observations indicated that this unorthodox neurotransmitter mediates many of the influences of glutamatergic neurotransmission in the cerebellum, cortex, and hippocampus. While the precise actions of NO on striatal presynaptic and postsynaptic elements remain to be fully characterized, the recent application of sophisticated anatomical, neurochemical, and electrophysiological approaches to the study of nitrergic signaling has revealed that NO exerts a powerful influence both on tonic extracellular dopamine (DA) levels and phasic DA neuron spike activity via the modulation of intrinsic striatal mechanisms and striatonigral feedback loops. Although the nature of the NO-mediated modulatory influence on DA neurotransmission was initially clouded by seemingly conflicting neurochemical observations, a growing body of literature and understanding of the diverse signaling mechanisms and effector pathways utilized by NO indicates that NO exerts a primary facilitatory influence over tonic and phasic dopaminergic neurotransmission under physiological conditions. A review of neurochemical and electrophysiological studies examining the influence of endogenous and exogenous NO on DA neurotransmission indicates that NO signaling exerts multiple effects on local striatal circuits and projection neurons involved in regulating basal ganglia output and nigrostriatal DA neuron activity. In addition to summarizing these influences, the current review focuses on the mechanisms utilized by striatal NO signaling pathways involved in modulating DA transmission at the level of the terminal and cell body and attempts to integrate these observations into a functional model of NO-dependent regulation of basal ganglia systems.
Collapse
Affiliation(s)
- Anthony R West
- Department of Neuroscience, 446 Crawford Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
10
|
Hermann A, Varga V, Janáky R, Dohovics R, Saransaari P, Oja SS. Interference of S-nitrosoglutathione with the binding of ligands to ionotropic glutamate receptors in pig cerebral cortical synaptic membranes. Neurochem Res 2000; 25:1119-24. [PMID: 11055750 DOI: 10.1023/a:1007626230278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The interactions of S-nitrosoglutathione (GSNO) with the ionotropic glutamate receptors were studied on synaptic membranes isolated from the pig cerebral cortex. GSNO displaced the binding of [3H]glutamate, 3-[(R)-2-carboxypiperazin-4-yl] [3H]propyl-1-phosphonate ([3H]CPP), a competitive N-methyl-D-aspartate (NMDA) antagonist, and [3H]kainate, with IC50 values in the low micromolar range. It failed to displace (S)-5-fluoro-[3H]willardiine, a selective agonist of 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. Reduced and oxidized glutathione were almost as effective as GSNO in glutamate and CPP binding. Of the three, GSNO was the most potent in kainate binding. They all stimulated [3H]dizocilpine binding in a concentration-dependent manner. This effect was additive to that of glycine and not mimicked by NO donors such as S-nitroso-N-acetylpenicillamine, 5-amino-3-morpholinyl-1,2,3-oxadiazolium chloride (SIN-1) and nitroglycerin. We assume that GSNO may act as an endogenous ligand at the NMDA and non-NMDA classes of glutamate receptors. In this manner it may facilitate NO transfer and target its delivery to specific sites in these receptors.
Collapse
Affiliation(s)
- A Hermann
- Brain Research Center, Medical School, University of Tampere, Finland
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The discoveries of physiological roles of nitric oxide (.NO) as the mediator of endothelium-derived relaxing factor (EDRF) action and the activator of guanylyl cyclase to increase cyclic guanosine monophosphate (cGMP), which lead to vasorelaxation in the cardiovascular system, have been awarded with the 1998 Nobel Prize of Medicine. The present review discusses putative beneficial effects of .NO in the central nervous system (CNS). In addition to its prominent roles of the regulation of cerebral blood flow and the modulation of cell to cell communication in the brain, recent in vitro and in vivo results indicated that .NO is a potent antioxidative agent. .NO terminates oxidant stress in the brain by (i) suppressing iron-induced generation of hydroxyl radicals (.OH) via the Fenton reaction, (ii) interrupting the chain reaction of lipid peroxidation, (iii) augmenting the antioxidative potency of reduced glutathione (GSH) and (iv) inhibiting cysteine proteases. It is apparent that .NO--a relative long half-life nitrogen-centered weak radical--scavenges those short-lived, highly reactive free radicals such as superoxide anion (O2.-), .OH, peroxyl lipid radicals (LOO.) and thiyl radicals (i.e., GS.), yielding reactive nitrogen species including nitrites, nitrates, S-nitrosoglutathione (GSNO) and peroxynitrite (ONOO-). GSNO is 100-fold more potent than GSH; it completely inhibits the weak peroxidative effect of ONOO-. Moreover, CO2 and .NO neutralize prooxidative effects of ONOO-. CO2 prevents protein oxidation but not 3-nitrotyrosine formation caused by ONOO-. Finally, neuroprotective effects of GSNO and .NO have been demonstrated in brain preparations in vivo. These novel neuroprotective properties of .NO and GSNO may have their physiological significance, since oxidative stress depletes GSH while increasing GS. and .NO formation in astroglial and endothelial cells, resulting in the generation of a more potent antioxidant GSNO and providing additional neuro-protection at microM concentrations. This putative GSNO pathway (GSH-->GS.-->GSNO-->.NO + GSSG-->GSH) may be an important part of endogenous antioxidative defense system, which could protect neurons and other brain cells against oxidative stress caused by oxidants, iron complexes, proteases and cytokines. In conclusion, .NO is a potent antioxidant against oxidative damage caused by reactive oxygen species, which are generated by Fenton reaction or other mechanisms in the brain via redox cycling of iron complexes.
Collapse
Affiliation(s)
- C C Chiueh
- Unit on Neurodegeneration and Neuroprotection, National Institute of Mental Health, NIH Clinical Center, Bethesda, Maryland 20892-1264, USA.
| |
Collapse
|
12
|
Martins-Pinge MC, Araújo GC, Lopes OU. Nitric oxide-dependent guanylyl cyclase participates in the glutamatergic neurotransmission within the rostral ventrolateral medulla of awake rats. Hypertension 1999; 34:748-51. [PMID: 10523354 DOI: 10.1161/01.hyp.34.4.748] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A well-known action of nitric oxide (NO) is to stimulate the soluble form of guanylyl cyclase, evoking an accumulation of cyclic GMP in target cells. The aim of the present study was to examine the effects of inhibition of guanylyl cyclase dependent on NO during cardiovascular responses induced by L-glutamate and S-nitrosoglutathione (SNOG) microinjected into the rostral ventrolateral medulla (RVLM) of awake rats. Three days before the experiments, adult male Wistar rats (280 to 320 g) were anesthetized for implantation of guide cannulas to the desired stereotaxic position (AP=-2.5 mm, L=1.8 mm) in relation to lambda. The cannulas were fixed to the skull with acrylic cement. Twenty-four hours before the experiments, a femoral artery and vein were cannulated for recording arterial pressure (AP) and heart rate (HR) and injection of anesthetic. Unilateral microinjections (100 nL) of L-glutamate (5 nmol/L) and SNOG (2.5 nmol/L) were made into the histologically confirmed RVLM. The cardiovascular responses to these drugs were evaluated before and after microinjection (3 nmol/L, 200 nL) of either methylene blue or oxodiazoloquinoxaline (ODQ). The hypertensive effect of L-glutamate was attenuated by 74% after methylene blue (DeltaAP=49+/-8 to 13+/-4 mm Hg) and by 80.5% after ODQ (DeltaAP=30+/-2 to 6+/-2 mm Hg). The increase in AP produced by SNOG was fully blocked by ODQ (DeltaAP=39+/-8 to 1+/-2 mm Hg). These data indicate that cyclic GMP mechanisms have a key role in glutamatergic neurotransmission in the RVLM of awake rats, and it is most probable that NO participates in this response.
Collapse
Affiliation(s)
- M C Martins-Pinge
- Department of Physiology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | |
Collapse
|
13
|
Hammermann R, Hirschmann J, Hey C, Mössner J, Folkerts G, Nijkamp FP, Wessler I, Racké K. Cationic proteins inhibit L-arginine uptake in rat alveolar macrophages and tracheal epithelial cells. Implications for nitric oxide synthesis. Am J Respir Cell Mol Biol 1999; 21:155-62. [PMID: 10423396 DOI: 10.1165/ajrcmb.21.2.3574] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eosinophil-derived cationic proteins play an essential role in the pathogenesis of bronchial asthma. We tested whether cationic proteins interfere with the cationic amino-acid transport in alveolar macrophages (AMPhi) and tracheal epithelial cells, and whether L-arginine-dependent pathways were affected. The effect of cationic polypeptides on cellular uptake of [(3)H]-L-arginine, nitrite accumulation, and the turnover of [(3)H]-L-arginine by nitric oxide (NO) synthase and arginase (formation of [(3)H]-L-citrulline and [(3)H]-L-ornithine, respectively) were studied. Poly-L-arginine reduced [(3)H]-L-arginine uptake in rat AMPhi and tracheal epithelial cells in a concentration-dependent manner (at 300 microgram/ml by 70%). Poly-L-lysine, protamine, and major basic protein (each up to 300 microgram/ml) tested in rat AMPhi inhibited [(3)H]-L-arginine uptake by 35 to 50%. During 6 h incubation in amino acid-free Krebs solution, rat AMPhi, precultured in the absence or presence of LPS (1 microgram/ml), accumulated 1.4 and 3.5 nmol/10(6) cells nitrite, respectively. Addition of 100 microM L-arginine increased nitrite accumulation by 70 and 400% in control and lipopolysaccharide-treated AMPhi, respectively. Nitrite accumulation in the presence of L-arginine was reduced by poly-L-arginine and poly-L-lysine (100 and 300 microgram/ml) by 60 to 85% and 20 to 30%, respectively. Poly-L-arginine, but not poly-L-lysine, inhibited nitrite accumulation already in the absence of extracellular L-arginine. Poly-L-arginine (300 microgram/ml) inhibited [(3)H]-L-citrulline formation by AMPhi stronger than that of [(3)H]-L-ornithine. We conclude that cationic proteins can inhibit cellular transport of L-arginine and this can limit NO synthesis. Poly-L-arginine inhibits L-arginine uptake more effectively than other cationic proteins and exerts additional direct inhibitory effects on NO synthesis.
Collapse
Affiliation(s)
- R Hammermann
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn; Department of Pharmacology, University of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Schmidlin and A, Wiesinger H. Argininosuccinate synthetase: Localization in astrocytes and role in the production of glial nitric oxide. Glia 1998. [DOI: 10.1002/(sici)1098-1136(199812)24:4<428::aid-glia8>3.0.co;2-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Pfeiffer S, Schrammel A, Schmidt K, Mayer B. Electrochemical determination of S-nitrosothiols with a Clark-type nitric oxide electrode. Anal Biochem 1998; 258:68-73. [PMID: 9527850 DOI: 10.1006/abio.1998.2562] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Low-molecular-mass thiols and nitric oxide (NO) form S-nitrosothiols (thionitrites) in the presence of oxygen. Thionitrites play an integral role in a variety of NO-dependent physiological processes. This study describes a sensitive analytical method for the quantitative determination of thionitrites. The method is based on the Cu+-catalyzed homolytic cleavage of thionitrites and electrochemical detection of the released NO with a Clark-type electrode. Cu+ was generated by addition of Cu(NO3)2 to samples containing 1 mM GSH or 4 mM L-cysteine as reducing agents. The effect of Cu(NO3)2 on the release of NO from GSNO was concentration-dependent. In the presence of 1 mM GSH, the EC50 for Cu(NO3)2 was 1.34 +/- 0.08 mM. Using cysteine instead of GSH, NO release was quantitative at much lower concentrations of Cu(NO3)2 (EC50 = 8.5 +/- 2.8 microM. NO release was not significantly affected by pH (7.0-9.0) and was inhibited by the Cu+-selective chelator neocuproine, whereas the Cu2+ chelator cuprizone was approximately 16-fold less potent. Calibration of the method with GSNO, S-nitroso-N-acetyl-penicillamine, or S-nitrosated bovine serum albumin yielded linear plots of initial rates of NO release versus thionitrite concentration from 50 nM to 5 microM. This method may be useful for the quantitative determination of thionitrites in biological samples.
Collapse
Affiliation(s)
- S Pfeiffer
- Institut für Pharmakologie und Toxikologie, Karl-Franzens-Universität Graz, Universitätsplatz 2, Graz, A-8010, Austria
| | | | | | | |
Collapse
|
17
|
Rauhala P, Lin AM, Chiueh CC. Neuroprotection by S-nitrosoglutathione of brain dopamine neurons from oxidative stress. FASEB J 1998; 12:165-73. [PMID: 9472981 DOI: 10.1096/fasebj.12.2.165] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The proposed anti- and pro-oxidant effects of nitric oxide (NO) derivatives, such as S-nitrosoglutathione (GSNO) and peroxynitrite, were investigated in the rat nigrostriatal dopaminergic system. Intranigral infusion of freshly prepared GSNO (0-16.8 nmol, i.n.) prevented iron-induced (4.2 nmol, i.n.) oxidative stress and nigral injury, reflected by a decrease in striatal dopamine levels. This neuroprotective effect of GSNO was verified by ex vivo imaging of brain dopamine uptake sites using 125I-labeled RTI-55. In addition, in vitro data indicate that GSNO concentration-dependently inhibited iron-evoked hydroxyl radical generation and brain lipid peroxidation. In this iron-induced oxidant stress model, GSNO was approximately 100-fold more potent than the antioxidant glutathione (GSH). Light-exposed, NO-exhausted GSNO produced neither antioxidative nor neuroprotective effects, which indicates that NO may mediate at least part of GSNO's effects. Moreover, GSNO completely (and GSH only partially) inhibited the weak pro-oxidant effect of peroxynitrite, which produced little injury to nigral neurons in vivo. This study provides relevant in vivo evidence suggesting that nanomol GSNO can protect brain dopamine neurons from iron-induced oxidative stress and degeneration. In conclusion, S-nitrosylation of GSH by NO and oxygen may be part of the antioxidative cellular defense system.
Collapse
Affiliation(s)
- P Rauhala
- Unit on Neurodegeneration and Neuroprotection, Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, Maryland 20892-1264, USA
| | | | | |
Collapse
|
18
|
|