1
|
Trentini MM, Rodriguez D, Kanno AI, Goulart C, Darrieux M, de Cerqueira Leite LC. Robust Immune Response and Protection against Lethal Pneumococcal Challenge with a Recombinant BCG-PspA-PdT Prime/Boost Scheme Administered to Neonatal Mice. Vaccines (Basel) 2024; 12:122. [PMID: 38400107 PMCID: PMC10893189 DOI: 10.3390/vaccines12020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Pneumococcal diseases are an important public health problem, with high mortality rates in young children. Although conjugated pneumococcal vaccines offer high protection against invasive pneumococcal diseases, this is restricted to vaccine serotypes, leading to serotype replacement. Furthermore, the current vaccines do not protect neonates. Therefore, several protein-based pneumococcal vaccines have been studied over the last few decades. Our group established a recombinant BCG expressing rPspA-PdT as a prime/rPspA-PdT boost strategy, which protected adult mice against lethal intranasal pneumococcal challenge. Here, we immunized groups of neonate C57/Bl6 mice (6-10) (at 5 days) with rBCG PspA-PdT and a boost with rPspA-PdT (at 12 days). Controls were saline or each antigen alone. The prime/boost strategy promoted an IgG1 to IgG2c isotype shift compared to protein alone. Furthermore, there was an increase in specific memory cells (T and B lymphocytes) and higher cytokine production (IFN-γ, IL-17, TNF-α, IL-10, and IL-6). Immunization with rBCG PspA-PdT/rPspA-PdT showed 100% protection against pulmonary challenge with the WU2 pneumococcal strain; two doses of rPspA-PdT showed non-significant protection in the neonates. These results demonstrate that a prime/boost strategy using rBCG PspA-PdT/rPspA-PdT is effective in protecting neonates against lethal pneumococcal infection via the induction of strong antibody and cytokine responses.
Collapse
Affiliation(s)
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Alex Issamu Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Cibelly Goulart
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Michelle Darrieux
- Laboratório de Microbiologia Molecular e Clínica, Universidade São Francisco, Bragança Paulista 12916-900, Brazil;
| | | |
Collapse
|
2
|
Fusion of parvovirus B19 receptor-binding domain and pneumococcal surface protein A induces protective immunity against parvovirus B19 and Streptococcus pneumoniae. Vaccine 2021; 39:5146-5152. [PMID: 34340860 DOI: 10.1016/j.vaccine.2021.07.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Parvovirus B19 (B19) is a well-known cause of fifth disease in children, but infection during pregnancy may cause hydrops fetalis and stillbirth. The receptor-binding domain (RBD) of the VP1 unique capsid plays a pivotal role in infection. Here, we aimed to improve the immunogenicity of an RBD-based vaccine by genetically fusing it with Streptococcus pneumoniae surface protein A (PspA). METHODS Mice were intramuscularly injected with RBD-based vaccines. Antigen-specific antibodies and neutralizing activity against B19 were measured. Protective immunity against S. pneumoniae was evaluated by monitoring the survival of mice nasally challenged with bacteria and determining antigen-specific T cell activation in splenic cells. RESULTS RBD alone failed to generate neutralizing antibodies against B19, but fusion with PspA induced higher levels of neutralizing IgG compared to B19 virus-like particles. Furthermore, a comparable level of PspA-specific IgG was induced by RBD-PspA and PspA alone, which was sufficient to protect mice against pneumococcal infection. Stimulation with PspA, but not RBD, induced cytokine production in splenic cells from mice immunized with RBD-PspA, suggesting that PspA-specific T cells supported immunoglobulin class switching of both RBD- and PspA-specific B cells. CONCLUSIONS RBD-PspA should be an effective bivalent vaccine against B19 and S. pneumoniae infections.
Collapse
|
3
|
Liu Q, Shen X, Bian X, Kong Q. Effect of deletion of gene cluster involved in synthesis of Enterobacterial common antigen on virulence and immunogenicity of live attenuated Salmonella vaccine when delivering heterologous Streptococcus pneumoniae antigen PspA. BMC Microbiol 2020; 20:150. [PMID: 32513100 PMCID: PMC7278252 DOI: 10.1186/s12866-020-01837-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Enterobacterial common antigen (ECA) is a family-specific surface antigen shared by all members of the Enterobacteriaceae family. Previous studies showed that the loss of ECA results in Salmonella attenuation, indicating its usefulness as a vaccine candidate for Salmonella infection, but no studies have shown whether the mutation resulting from the deletion of the ECA operon in conjunction with other mutations could be used as an antigen vehicle for heterologous protein antigen delivery. RESULTS In this study, we introduced a nonpolar, defined ECA operon deletion into wild-type S. Typhimurium χ3761 and an attenuated vaccine strain χ9241, obtaining two isogenic ECA operon mutants, namely, χ12357 and χ12358, respectively. A number of in vitro and in vivo properties of the mutants were analyzed. We found that the loss of ECA did not affect the growth, lipopolysaccharide (LPS) production and motility of S. Typhimurium wild type strain χ3761 and its attenuated vaccine strain χ9241 but significantly affected the virulence when administered orally to BALB/c mice. Furthermore, the effects of the ECA mutation on the immunogenicity of a recombinant S. Typhimurium vaccine strain χ9241 when delivering the pneumococcal antigen PspA were determined. The result showed that the total anti-PspA IgG level of χ12358 (pYA4088) was slightly lower than that of χ9241 (pYA4088), but the protection rate was not compromised. CONCLUSIONS ECA affects virulence and benefits the Th2 immunity of Salmonella Typhimurium, therefore, it is feasible to use a reversible ECA mutant mode to design future Salmonella vaccine strains for heterologous protective antigens.
Collapse
Affiliation(s)
- Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Chongqing, China
| | - Xuegang Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoping Bian
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, China.
| |
Collapse
|
4
|
Intranasal Immunization with the Commensal Streptococcus mitis Confers Protective Immunity against Pneumococcal Lung Infection. Appl Environ Microbiol 2019; 85:AEM.02235-18. [PMID: 30683742 DOI: 10.1128/aem.02235-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/02/2019] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pneumoniae is a bacterial pathogen that causes various diseases of public health concern worldwide. Current pneumococcal vaccines target the capsular polysaccharide surrounding the cells. However, only up to 13 of more than 90 pneumococcal capsular serotypes are represented in the current conjugate vaccines. In this study, we used two experimental approaches to evaluate the potential of Streptococcus mitis, a commensal that exhibits immune cross-reactivity with S. pneumoniae, to confer protective immunity to S. pneumoniae lung infection in mice. First, we assessed the immune response and protective effect of wild-type S. mitis against lung infection by S. pneumoniae strains D39 (serotype 2) and TIGR4 (serotype 4). Second, we examined the ability of an S. mitis mutant expressing the S. pneumoniae type 4 capsule (S. mitis TIGR4cps) to elicit focused protection against S. pneumoniae TIGR4. Our results showed that intranasal immunization of mice with S. mitis produced significantly higher levels of serum IgG and IgA antibodies reactive to both S. mitis and S. pneumoniae, as well as enhanced production of interleukin 17A (IL-17A), but not gamma interferon (IFN-γ) and IL-4, compared with control mice. The immunization resulted in a reduced bacterial load in respiratory tissues following lung infection with S. pneumoniae TIGR4 or D39 compared with control mice. With S. mitis TIGR4cps, protection upon challenge with S. pneumoniae TIGR4 was superior. Thus, these findings show the potential of S. mitis to elicit natural serotype-independent protection against two pneumococcal serotypes and to provide the benefits of the well-recognized protective effect of capsule-targeting vaccines.IMPORTANCE Streptococcus pneumoniae causes various diseases worldwide. Current pneumococcal vaccines protect against a limited number of more than 90 pneumococcal serotypes, accentuating the urgent need to develop novel prophylactic strategies. S. pneumoniae and the commensal Streptococcus mitis share immunogenic characteristics that make S. mitis an attractive vaccine candidate against S. pneumoniae In this study, we evaluated the potential of S. mitis and its mutant expressing pneumococcal capsule type 4 (S. mitis TIGR4cps) to induce protection against S. pneumoniae lung infection in mice. Our findings show that intranasal vaccination with S. mitis protects against S. pneumoniae strains D39 (serotype 2) and TIGR4 (serotype 4) in a serotype-independent fashion, which is associated with enhanced antibody and T cell responses. Furthermore, S. mitis TIGR4cps conferred additional protection against S. pneumoniae TIGR4, but not against D39. The findings highlight the potential of S. mitis to generate protection that combines both serotype-independent and serotype-specific responses.
Collapse
|
5
|
Beitelshees M, Hill A, Li Y, Chen M, Ahmadi MK, Smith RJ, Andreadis ST, Rostami P, Jones CH, Pfeifer BA. Antigen delivery format variation and formulation stability through use of a hybrid vector. Vaccine X 2019; 1:100012. [PMID: 31384734 PMCID: PMC6668244 DOI: 10.1016/j.jvacx.2019.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 02/04/2023] Open
Abstract
A hybrid biological-biomaterial antigen delivery vector comprised of a polymeric shell encapsulating an Escherichia coli core was previously developed for in situ antigen production and subsequent delivery. Due to the engineering capacity of the bacterial core, the hybrid vector provides unique opportunities for immunogenicity optimization through varying cellular localization (cytoplasm, periplasm, cellular surface) and type (protein or DNA) of antigen. In this work, three protein-based hybrid vector formats were compared in which the pneumococcal surface protein A (PspA) was localized to the cytoplasm, surface, and periplasmic space of the bacterial core for vaccination against pneumococcal disease. Furthermore, we tested the hybrid vector's capacity as a DNA vaccine against Streptococcus pneumoniae by introducing a plasmid into the bacterial core to facilitate PspA expression in antigen presenting cells (APCs). Through testing these various formulations, we determined that cytoplasmic accumulation of PspA elicited the strongest immune response (antibody production and protection against bacterial challenge) and enabled complete protection at substantially lower doses when compared to vaccination with PspA + adjuvant. We also improved the storage stability of the hybrid vector to retain complete activity after 1 month at 4 °C using an approach in which hybrid vectors suspended in a microbial freeze drying buffer were desiccated. These results demonstrate the flexibility and robustness of the hybrid vector formulation, which has the potential to be a potent vaccine against S. pneumoniae.
Collapse
Key Words
- APCs, antigen presenting cells
- AS, aqueous storage
- CDM, chemically defined bacterial growth medium
- CFA, Complete Freund's Adjuvant
- CHV, cytoplasmic hybrid vector
- CPSs, capsular polysaccharides
- ClyA, cytolysin A
- DNA vaccine
- DS, desiccated storage
- EHV, empty hybrid vector
- IN, intranasal
- IP, intraperitoneal
- LBVs, live bacterial vectors
- LLO, listeriolysin O
- NVT, non-vaccine type
- PAMPs, pathogen-associated molecular patterns
- PCVs, pneumococcal conjugate vaccines
- PHV, periplasmic hybrid vector
- PcpA, pneumococcal choline-binding protein A
- PhtD, histidine triad protein D
- Pneumococcal disease
- Pneumococcal surface protein A (PspA)
- PspA, pneumococcal surface protein A
- SC, subcutaneous
- SHV, surface hybrid vector
- Streptococcus pneumoniae
- Vaccine delivery
- pHV, plasmid hybrid vector
Collapse
Affiliation(s)
- Marie Beitelshees
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Andrew Hill
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Abcombi Biosciences Inc., Buffalo, NY 14260-4200, USA
| | - Yi Li
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mingfu Chen
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Mahmoud Kamal Ahmadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Randall J. Smith
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Pooya Rostami
- Abcombi Biosciences Inc., Buffalo, NY 14260-4200, USA
| | | | - Blaine A. Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- Corresponding author at: Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA.
| |
Collapse
|
6
|
Protection elicited by nasal immunization with pneumococcal surface protein A (PspA) adjuvanted with bacterium-like particles against Streptococcus pneumoniae infection in mice. Microb Pathog 2018; 123:115-119. [DOI: 10.1016/j.micpath.2018.06.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 11/18/2022]
|
7
|
Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment. Int J Med Microbiol 2018; 308:722-737. [DOI: 10.1016/j.ijmm.2017.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
|
8
|
Rodrigues TC, Oliveira MLS, Soares-Schanoski A, Chavez-Rico SL, Figueiredo DB, Gonçalves VM, Ferreira DM, Kunda NK, Saleem IY, Miyaji EN. Mucosal immunization with PspA (Pneumococcal surface protein A)-adsorbed nanoparticles targeting the lungs for protection against pneumococcal infection. PLoS One 2018; 13:e0191692. [PMID: 29360883 PMCID: PMC5779684 DOI: 10.1371/journal.pone.0191692] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 11/22/2022] Open
Abstract
Burden of pneumonia caused by Streptococcus pneumoniae remains high despite the availability of conjugate vaccines. Mucosal immunization targeting the lungs is an attractive alternative for the induction of local immune responses to improve protection against pneumonia. Our group had previously described the development of poly(glycerol adipate-co-ω-pentadecalactone) (PGA-co-PDL) polymeric nanoparticles (NPs) adsorbed with Pneumococcal surface protein A from clade 4 (PspA4Pro) within L-leucine microcarriers (nanocomposite microparticles—NCMPs) for mucosal delivery targeting the lungs (NP/NCMP PspA4Pro). NP/NCMP PspA4Pro was now used for immunization of mice. Inoculation of this formulation induced anti-PspA4Pro IgG antibodies in serum and lungs. Analysis of binding of serum IgG to intact bacteria showed efficient binding to bacteria expressing PspA from clades 3, 4 and 5 (family 2), but no binding to bacteria expressing PspA from clades 1 and 2 (family 1) was observed. Both mucosal immunization with NP/NCMP PspA4Pro and subcutaneous injection of the protein elicited partial protection against intranasal lethal pneumococcal challenge with a serotype 3 strain expressing PspA from clade 5 (PspA5). Although similar survival levels were observed for mucosal immunization with NP/NCMP PspA4Pro and subcutaneous immunization with purified protein, NP/NCMP PspA4Pro induced earlier control of the infection. Conversely, neither immunization with NP/NCMP PspA4Pro nor subcutaneous immunization with purified protein reduced bacterial burden in the lungs after challenge with a serotype 19F strain expressing PspA from clade 1 (PspA1). Mucosal immunization with NP/NCMP PspA4Pro targeting the lungs is thus able to induce local and systemic antibodies, conferring protection only against a strain expressing PspA from the homologous family 2.
Collapse
Affiliation(s)
| | | | | | | | - Douglas B. Figueiredo
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Viviane M. Gonçalves
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Daniela M. Ferreira
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Nitesh K. Kunda
- Formulation and Drug Delivery Research, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Imran Y. Saleem
- Formulation and Drug Delivery Research, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Eliane N. Miyaji
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
9
|
Li YA, Ji Z, Wang X, Wang S, Shi H. Salmonella enterica serovar Choleraesuis vector delivering SaoA antigen confers protection against Streptococcus suis serotypes 2 and 7 in mice and pigs. Vet Res 2017; 48:89. [PMID: 29268787 PMCID: PMC5740921 DOI: 10.1186/s13567-017-0494-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Streptococcus suis is one of the major pathogens that cause economic losses in the swine industry worldwide. However, current bacterins only provide limited prophylactic protection in the field. An ideal vaccine against S. suis should protect pigs against the clinical diseases caused by multiple serotypes, or at least protect against the dominant serotype in a given geographic region. A new recombinant Salmonella enterica serotype Choleraesuis vaccine vector, rSC0011, that is based on the regulated delayed attenuation system and regulated delayed antigen synthesis system, was developed recently. In this study, an improved recombinant attenuated Salmonella Choleraesuis vector, rSC0016, was developed by incorporating a sopB mutation to ensure adequate safety and maximal immunogenicity. In the spleens of mice, rSC0016 colonized less than rSC0011. rSC0016 and rSC0011 colonized similarly in Peyer's patches of mice. The recombinant vaccine rSC0016(pS-SaoA) induced stronger cellular, humoral, and mucosal immune responses in mice and swine against SaoA, a conserved surface protein that is present in many S. suis serotypes, than did rSC0011(pS-SaoA) without sopB or rSC0018(pS-SaoA), which is an avirulent, chemically attenuated vaccine strain. rSC0016(pS-SaoA) provided 100% protection against S. suis serotype 2 in mice and pigs, and full cross-protection against SS7 in pigs. This new vaccine vector provides a foundation for the development of a universal vaccine against multiple serotypes of S. suis in pigs.
Collapse
Affiliation(s)
- Yu-An Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Zhenying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Xiaobo Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Shifeng Wang
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611-0880, USA
| | - Huoying Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
10
|
Principi N, Esposito S. Development of pneumococcal vaccines over the last 10 years. Expert Opin Biol Ther 2017; 18:7-17. [DOI: 10.1080/14712598.2018.1384462] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nicola Principi
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Susanna Esposito
- Paediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
11
|
Th17-Mediated Cross Protection against Pneumococcal Carriage by Vaccination with a Variable Antigen. Infect Immun 2017; 85:IAI.00281-17. [PMID: 28717032 DOI: 10.1128/iai.00281-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
Serotype-specific protection against Streptococcus pneumoniae is an important limitation of the current polysaccharide-based vaccines. To prevent serotype replacement, reduce transmission, and limit the emergence of new variants, it is essential to induce broad protection and restrict pneumococcal colonization. In this study, we used a prototype vaccine formulation consisting of lipopolysaccharide (LPS)-detoxified outer membrane vesicles (OMVs) from Salmonella enterica serovar Typhimurium displaying the variable N terminus of PspA (α1α2) for intranasal vaccination, which induced strong Th17 immunity associated with a substantial reduction of pneumococcal colonization. Despite the variable nature of this protein, a common major histocompatibility complex class (MHC-II) epitope was identified, based on in silico prediction combined with ex vivo screening, and was essential for interleukin-17 A (IL-17A)-mediated cross-reactivity and associated with cross protection. Based on 1,352 PspA sequences derived from a pneumococcal carriage cohort, this OMV-based vaccine formulation containing a single α1α2 type was estimated to cover 19.1% of strains, illustrating the potential of Th17-mediated cross protection.
Collapse
|
12
|
Analysis of Spleen-Induced Fimbria Production in Recombinant Attenuated Salmonella enterica Serovar Typhimurium Vaccine Strains. mBio 2017; 8:mBio.01189-17. [PMID: 28830946 PMCID: PMC5565968 DOI: 10.1128/mbio.01189-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica serovar Typhimurium genome encodes 13 fimbrial operons. Most of the fimbriae encoded by these operons are not produced under laboratory conditions but are likely to be synthesized in vivo. We used an in vivo expression technology (IVET) strategy to identify four fimbrial operons, agf, saf, sti, and stc that are expressed in the spleen. When any three of these operons were deleted, the strain retained wild-type virulence. However, when all four operons were deleted, the resulting strain was completely attenuated, indicating that these four fimbriae play functionally redundant roles critical for virulence. In mice, oral doses of as low as 1 × 105 CFU of the strain with four fimbrial operons deleted provided 100% protection against challenge with 1 × 109 CFU of wild-type S. Typhimurium. We also examined the possible effect of these fimbriae on the ability of a Salmonella vaccine strain to deliver a guest antigen. We modified one of our established attenuated vaccine strains, χ9088, to delete three fimbrial operons while the fourth operon was constitutively expressed. Each derivative was modified to express the Streptococcus pneumoniae antigen PspA. Strains that constitutively expressed saf or stc elicited a strong Th1 response with significantly greater levels of anti-PspA serum IgG and greater protective efficacy than strains carrying saf or stc deletions. The isogenic strain in which all four operons were deleted generated the lowest anti-PspA levels and did not protect against challenge with virulent S. pneumoniae. Our results indicate that these fimbriae play important roles, as yet not understood, in Salmonella virulence and immunogenicity. Salmonella enterica is the leading cause of bacterial food-borne infection in the United States. S. Typhimurium is capable of producing up to 13 distinct surface structures called fimbriae that presumably mediate its adherence to surfaces. The roles of most of these fimbriae in disease are unknown. Identifying fimbriae produced during infection will provide important insights into how these bacterial structures contribute to disease and potentially induce protective immunity to Salmonella infection. We identified four fimbriae that are produced during infection. Deletion of all four of these fimbriae results in a significant reduction in virulence. We explored ways in which the expression of these fimbriae may be exploited for use in recombinant Salmonella vaccine strains and found that production of Saf and Stc fimbriae are important for generating a strong immune response against a vectored antigen. This work provides new insight into the role of fimbriae in disease and their potential for improving the efficacy of Salmonella-based vaccines.
Collapse
|
13
|
Conjugation of PspA4Pro with Capsular Streptococcus pneumoniae Polysaccharide Serotype 14 Does Not Reduce the Induction of Cross-Reactive Antibodies. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017. [PMID: 28637805 DOI: 10.1128/cvi.00118-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Current pneumococcal vaccines are composed of bacterial polysaccharides as antigens, plain or conjugated to carrier proteins. While efficacious against vaccine serotypes, epidemiologic data show an increasing incidence of infections caused by nonvaccine serotypes of Streptococcus pneumoniae The use of pneumococcal surface protein A (PspA) as a carrier protein in a conjugate vaccine could help prevent serotype replacement by increasing vaccine coverage and reducing selective pressure of S. pneumoniae serotypes. PspA is present in all pneumococcal strains, is highly immunogenic, and is known to induce protective antibodies. Based on its sequence, PspA has been classified into three families and six clades. A PspA fragment derived from family 2, clade 4 (PspA4Pro), was shown to generate antibodies with a broad range of cross-reactivity, across clades and families. Here, PspA4Pro was modified and conjugated to capsular polysaccharide serotype 14 (PS14). We investigated the impact of conjugation on the immune response induced to PspA4Pro and PS14. Mice immunized with the PS14-mPspA4Pro conjugate produced higher titers of anti-PS14 antibodies than the animals that received coadministered antigens. The conjugate induced antibodies with opsonophagocytic activity against PS14-carrying strains, as well as against a panel of strains bearing PspAs from five clades (encompassing families 1 and 2) bearing a non-PS14 serotype. Furthermore, mice immunized with PS14-mPspA4Pro were protected against nasal colonization with a nonrelated S. pneumoniae strain bearing PspA from clade 1, serotype 6B. These results demonstrate that the cross-reactivity mediated by PspA4Pro is retained following conjugation, supporting the use of PspA4 as a carrier protein in order to enhance pneumococcal vaccine coverage and encourage its further investigation as a candidate in future vaccine designs.
Collapse
|
14
|
Kim GL, Seon SH, Rhee DK. Pneumonia and Streptococcus pneumoniae vaccine. Arch Pharm Res 2017; 40:885-893. [PMID: 28735461 PMCID: PMC7090487 DOI: 10.1007/s12272-017-0933-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Abstract
Pneumonia is an inflammatory disease of the lung, responsible for high morbidity and mortality worldwide. It is caused by bacteria, viruses, fungi, or other microorganisms. Streptococcus pneumoniae, a gram-positive bacterium with over 90 serotypes, is the most common causative agent. Moreover, comorbid factors including heart failure, renal disease, and pulmonary disease could increase the risk of pneumococcal pneumonia. Since the advent of the pneumococcal vaccine in the 1980s, the incidence of pneumonia has decreased significantly. However, current vaccines confer only limited protection against serotypes included in the vaccine. Thus, to overcome this limitation, new types of pneumococcal vaccines have been sought and under clinical trials. In this review, we discuss pneumonia and summarize the various types of pneumococcal vaccines in progress.
Collapse
Affiliation(s)
- Gyu-Lee Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Seung-Han Seon
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, South Korea.
| |
Collapse
|
15
|
Sheen YH, Rajagopalan G, Snapper CM, Kita H, Wi CI, Umaretiya PJ, Juhn YJ. Influence of HLA-DR polymorphism and allergic sensitization on humoral immune responses to intact pneumococcus in a transgenic mouse model. HLA 2016; 88:25-34. [PMID: 27506953 DOI: 10.1111/tan.12851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/06/2016] [Accepted: 07/21/2016] [Indexed: 01/22/2023]
Abstract
Asthma is independently associated with HLA-DR3 and increased risks of pneumococcal diseases. We aimed to determine whether HLA-DR polymorphism (HLA-DRB1*03), sensitization to house dust mite (HDM), or their interaction affects humoral immune responses to pneumococcal polysaccharide and protein antigens of intact pneumococci. Induction of serum titers of anti-pneumococcal polysaccharide and anti-surface protein IgM and IgG in response to immunization with intact pneumococci (Pn) serotype 14 was determined using humanized HLA-DR3 and DR2 transgenic mice. Transgenic mice were sensitized by injecting HDM and challenged with intranasal HDM. Mice were subsequently immunized with heat-killed Pn14 at day 24. Serum titers of anti-phosphorylcholine (PC) IgM and IgG, anti-pneumococcal polysaccharide, capsular type 14 (PPS14) IgM and IgG, and anti-pneumococcal surface protein A (PspA) IgG were measured. We included a total of 44 mice (22 DR3 and 22 DR2 mice) and half of mice in each group were sensitized with HDM (i.e. 22 HDM-sensitized and 22 control mice). HDM-sensitized mice, irrespective of HLA-DR polymorphism, had significantly lower humoral immune responses. HLA-DR3 mice, irrespective of HDM sensitization, elicited a significantly lower anti-PC IgG response. In contrast, the anti-PspA IgG response was higher in DR3 relative to DR2 mice. The effect of HDM sensitization on lowering humoral immune responses to Pn14 was observed in DR3 mice regardless of the nature of the antigen, whereas such decreases were observed only for the anti-PPS14 IgG and anti-PC IgM responses in DR2 mice. HDM sensitization lowered humoral immune responses to intact pneumococcus and this effect was significantly modified by the HLA-DR polymorphism.
Collapse
Affiliation(s)
- Y H Sheen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Korea
| | - G Rajagopalan
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - C M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - H Kita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - C-I Wi
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - P J Umaretiya
- Children's Hospital Primary Care Center, Boston Children's Hospital, Boston, MA, USA
| | - Y J Juhn
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Choline Binding Proteins from Streptococcus pneumoniae: A Dual Role as Enzybiotics and Targets for the Design of New Antimicrobials. Antibiotics (Basel) 2016; 5:antibiotics5020021. [PMID: 27314398 PMCID: PMC4929436 DOI: 10.3390/antibiotics5020021] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/04/2016] [Accepted: 05/16/2016] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is an important pathogen responsible for acute invasive and non-invasive infections such as meningitis, sepsis and otitis media, being the major cause of community-acquired pneumonia. The fight against pneumococcus is currently hampered both by insufficient vaccine coverage and by rising antimicrobial resistances to traditional antibiotics, making necessary the research on novel targets. Choline binding proteins (CBPs) are a family of polypeptides found in pneumococcus and related species, as well as in some of their associated bacteriophages. They are characterized by a structural organization in two modules: a functional module (FM), and a choline-binding module (CBM) that anchors the protein to the choline residues present in the cell wall through non-covalent interactions. Pneumococcal CBPs include cell wall hydrolases, adhesins and other virulence factors, all playing relevant physiological roles for bacterial viability and virulence. Moreover, many pneumococcal phages also make use of hydrolytic CBPs to fulfill their infectivity cycle. Consequently, CBPs may play a dual role for the development of novel antipneumococcal drugs, both as targets for inhibitors of their binding to the cell wall and as active cell lytic agents (enzybiotics). In this article, we review the current state of knowledge about host- and phage-encoded pneumococcal CBPs, with a special focus on structural issues, together with their perspectives for effective anti-infectious treatments.
Collapse
|
17
|
Saumyaa, Pujanauski L, Colino J, Flora M, Torres RM, Tuomanen E, Snapper CM. Pneumococcal Surface Protein A Plays a Major Role in Streptococcus pneumoniae-Induced Immunosuppression. THE JOURNAL OF IMMUNOLOGY 2016; 196:3677-85. [PMID: 27029587 DOI: 10.4049/jimmunol.1502709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/29/2016] [Indexed: 01/22/2023]
Abstract
Intact, inactivated Streptococcus pneumoniae [including the unencapsulated S. pneumoniae, serotype 2 strain (R36A)] markedly inhibits the humoral immune response to coimmunized heterologous proteins, a property not observed with several other intact Gram-positive or Gram-negative bacteria. In this study, we determined the nature of this immunosuppressive property. Because phosphorylcholine (PC), a major haptenic component of teichoic acid in the S. pneumoniae cell wall, and lipoteichoic acid in the S. pneumoniae membrane were previously reported to be immunosuppressive when derived from filarial parasites, we determined whether R36A lacking PC (R36A(pc-)) was inhibitory. Indeed, although R36A(pc-) exhibited a markedly reduced level of inhibition of the IgG response to coimmunized chicken OVA (cOVA), no inhibition was observed when using several other distinct PC-expressing bacteria or a soluble, protein-PC conjugate. Further, treatment of R36A with periodate, which selectively destroys PC residues, had no effect on R36A-mediated inhibition. Because R36A(pc-) also lacks choline-binding proteins (CBPs) that require PC for cell wall attachment, and because treatment of R36A with trypsin eliminated its inhibitory activity, we incubated R36A in choline chloride, which selectively strips CBPs from its surface. R36A lacking CBPs lost most of its inhibitory property, whereas the supernatant of choline chloride-treated R36A, containing CBPs, was markedly inhibitory. Coimmunization studies using cOVA and various S. pneumoniae mutants, each genetically deficient in one of the CBPs, demonstrated that only S. pneumoniae lacking the CBP pneumococcal surface protein A lost its ability to inhibit the IgG anti-cOVA response. These results strongly suggest that PspA plays a major role in mediating the immunosuppressive property of S. pneumoniae.
Collapse
Affiliation(s)
- Saumyaa
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani 333031, India
| | - Lindsey Pujanauski
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO 80206
| | - Jesus Colino
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Michael Flora
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814; and
| | - Raul M Torres
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, CO 80206
| | - Elaine Tuomanen
- Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814;
| |
Collapse
|
18
|
Daniels CC, Rogers PD, Shelton CM. A Review of Pneumococcal Vaccines: Current Polysaccharide Vaccine Recommendations and Future Protein Antigens. J Pediatr Pharmacol Ther 2016; 21:27-35. [PMID: 26997927 PMCID: PMC4778694 DOI: 10.5863/1551-6776-21.1.27] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review describes development of currently available pneumococcal vaccines, provides summary tables of current pneumococcal vaccine recommendations in children and adults, and describes new potential vaccine antigens in the pipeline. Streptococcus pneumoniae, the bacteria responsible for pneumonia, otitis media, meningitis and bacteremia, remains a cause of morbidity and mortality in both children and adults. Introductions of unconjugated and conjugated pneumococcal polysaccharide vaccines have each reduced the rate of pneumococcal infections caused by the organism S. pneumoniae. The first vaccine developed, the 23-valent pneumococcal polysaccharide vaccine (PPSV23), protected adults and children older than 2 years of age against invasive disease caused by the 23 capsular serotypes contained in the vaccine. Because PPSV23 did not elicit a protective immune response in children younger than 2 years of age, the 7-valent pneumococcal conjugate vaccine (PCV7) containing seven of the most common serotypes from PPSV23 in pediatric invasive disease was developed for use in children younger than 2 years of age. The last vaccine to be developed, the 13-valent pneumococcal conjugate vaccine (PCV13), contains the seven serotypes in PCV7, five additional serotypes from PPSV23, and a new serotype not contained in PPSV23 or PCV7. Serotype replacement with virulent strains that are not contained in the polysaccharide vaccines has been observed after vaccine implementation and stresses the need for continued research into novel vaccine antigens. We describe eight potential protein antigens that are in the pipeline for new pneumococcal vaccines.
Collapse
Affiliation(s)
- Calvin C. Daniels
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - P. David Rogers
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
- Center for Pediatric Pharmacokinetics and Therapeutics, Memphis, Tennessee
| | - Chasity M. Shelton
- Department of Clinical Pharmacy, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
19
|
Khan MN, Pichichero ME. The host immune dynamics of pneumococcal colonization: implications for novel vaccine development. Hum Vaccin Immunother 2015; 10:3688-99. [PMID: 25668673 DOI: 10.4161/21645515.2014.979631] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The human nasopharynx (NP) microbiota is complex and diverse and Streptococcus pneumoniae (pneumococcus) is a frequent member. In the first few years of life, children experience maturation of their immune system thereby conferring homeostatic balance in which pneumococci are typically rendered as harmless colonizers in the upper respiratory environment. Pneumococcal carriage declines in many children before they acquire capsular-specific antibodies, suggesting a capsule antibody-independent mechanism of natural protection against pneumococcal carriage in early childhood. A child's immune system in the first few years of life is Th2-skewed so as to avoid inflammation-induced immunopathology. Understanding Th1/Th2 and Th17 ontogeny in early life and how adjuvant vaccine formulations shift the balance of T helper-cell differentiation, may facilitate the development of new protein-based pneumococcal vaccines. This article will discuss the immune dynamics of pneumococcal colonization in infants. The discussion aims to benefit the design and improvement of protein subunit-based next-generation pneumococcal vaccines.
Collapse
Affiliation(s)
- M Nadeem Khan
- a Center for Infectious Diseases and Immunology; Rochester General Hospital Research Institute ; Rochester , NY USA
| | | |
Collapse
|
20
|
Multivalent Pneumococcal Protein Vaccines Comprising Pneumolysoid with Epitopes/Fragments of CbpA and/or PspA Elicit Strong and Broad Protection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1079-89. [PMID: 26245351 DOI: 10.1128/cvi.00293-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
Abstract
Immunization with the pneumococcal proteins pneumolysin (Ply), choline binding protein A (CbpA), or pneumococcal surface protein A (PspA) elicits protective responses against invasive pneumococcal disease in animal models. In this study, we used different mouse models to test the efficacy of a variety of multivalent protein-based vaccines that comprised various combinations of full-length or peptide regions of the immunogens Ply, CbpA, or PspA: Ply toxoid with the L460D substitution (referred to herein as L460D); L460D fused with protective peptide epitopes from CbpA (YPT-L460D-NEEK [YLN]); L460D fused with the CD2 peptide containing the proline-rich region (PRR) of PspA (CD2-L460D); a combination of L460D and H70 (L460D+H70), a slightly larger PspA-derived peptide containing the PRR and the SM1 region; H70+YLN; and other combinations. Each mouse was immunized either intraperitoneally (i.p.) or subcutaneously (s.c.) with three doses (at 2-week intervals) of the various antigen combinations in alum adjuvant and then challenged in mouse models featuring different infection routes with multiple Streptococcus pneumoniae strains. In the i.p. infection sepsis model, H70+YLN consistently provided significant protection against three different challenge strains (serotypes 1, 2, and 6A); the CD2+YLN and H70+L460D combinations also elicited significant protection. Protection against intravenous (i.v.) sepsis (type 3 and 6A challenge strains) was largely dependent on PspA-derived antigen components, and the most protection was elicited by H70 with or without L460D or YLN. In a type 4 intratracheal (i.t.) challenge model that results in progression to meningitis, antigen combinations that contained YLN elicited the strongest protection. Thus, the trivalent antigen combination of H70+YLN elicited the strongest and broadest protection in diverse pneumococcal challenge models.
Collapse
|
21
|
Peptidoglycan Branched Stem Peptides Contribute to Streptococcus pneumoniae Virulence by Inhibiting Pneumolysin Release. PLoS Pathog 2015; 11:e1004996. [PMID: 26114646 PMCID: PMC4483231 DOI: 10.1371/journal.ppat.1004996] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/02/2015] [Indexed: 11/29/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) colonizes the human nasopharynx and is a significant pathogen worldwide. Pneumolysin (Ply) is a multi-functional, extracellular virulence factor produced by this organism that is critical for pathogenesis. Despite the absence of any apparent secretion or cell surface attachment motifs, Ply localizes to the cell envelope of actively growing cells. We sought to characterize the consequences of this surface localization. Through functional assays with whole cells and subcellular fractions, we determined that Ply activity and its release into the extracellular environment are inhibited by peptidoglycan (PG) structure. The ability of PG to inhibit Ply release was dependent on the stem peptide composition of this macromolecule, which was manipulated by mutation of the murMN operon that encodes proteins responsible for branched stem peptide synthesis. Additionally, removal of choline-binding proteins from the cell surface significantly reduced Ply release to levels observed in a mutant with a high proportion of branched stem peptides suggesting a link between this structural feature and surface-associated choline-binding proteins involved in PG metabolism. Of clinical relevance, we also demonstrate that a hyperactive, mosaic murMN allele associated with penicillin resistance causes decreased Ply release with concomitant increases in the amount of branched stem peptides. Finally, using a murMN deletion mutant, we observed that increased Ply release is detrimental to virulence during a murine model of pneumonia. Taken together, our results reveal a novel role for branched stem peptides in pneumococcal pathogenesis and demonstrate the importance of controlled Ply release during infection. These results highlight the importance of PG composition in pathogenesis and may have broad implications for the diverse PG structures observed in other bacterial pathogens. Pneumolysin (Ply) is a protein toxin produced by Streptococcus pneumoniae that contributes to the ability of this organism to cause invasive disease. Release of this protein from the bacterial cell is necessary for many of its functions but the underlying mechanisms driving this process are not well characterized. Previous research demonstrated that Ply localizes to the cell wall compartment. Here, we address the consequences of this localization and reveal a role for the major cell wall structural component, peptidoglycan, in inhibiting Ply activity and release into the extracellular environment. Peptidoglycan is an essential, mesh-like sac that encases the cell, and alterations affecting its composition lead to differences in the amount of Ply released. How molecules interact with and traverse through the restrictive matrix of the cell wall and its associated structures is incompletely understood, particularly with respect to protein secretion and surface attachment. Our results argue that proper maintenance of cell wall-associated Ply is dependent on surface architecture and may be critical for S. pneumoniae pathogenesis.
Collapse
|
22
|
Kuipers K, Daleke-Schermerhorn MH, Jong WSP, ten Hagen-Jongman CM, van Opzeeland F, Simonetti E, Luirink J, de Jonge MI. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine 2015; 33:2022-9. [PMID: 25776921 DOI: 10.1016/j.vaccine.2015.03.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/24/2015] [Accepted: 03/04/2015] [Indexed: 11/17/2022]
Abstract
Bacterial outer membrane vesicles (OMVs) are attractive vaccine formulations because they have intrinsic immunostimulatory properties. In principle, heterologous antigens incorporated into OMVs will elicit specific immune responses, especially if presented at the vesicle surface and thus optimally exposed to the immune system. In this study, we explored the feasibility of our recently developed autotransporter Hbp platform, designed to efficiently and simultaneously display multiple antigens at the surface of bacterial OMVs, for vaccine development. Using two Streptococcus pneumoniae proteins as model antigens, we showed that intranasally administered Salmonella OMVs displaying high levels of antigens at the surface induced strong protection in a murine model of pneumococcal colonization, without the need for a mucosal adjuvant. Importantly, reduction in bacterial recovery from the nasal cavity was correlated with local production of antigen-specific IL-17A. Furthermore, the protective efficacy and the production of antigen-specific IL-17A, and local and systemic IgGs, were all improved at increased concentrations of the displayed antigen. This discovery highlights the importance of an adequate antigen expression system for development of recombinant OMV vaccines. In conclusion, our findings demonstrate the suitability of the Hbp platform for development of a new generation of OMV vaccines, and illustrate the potential of using this approach to develop a broadly protective mucosal pneumococcal vaccine.
Collapse
Affiliation(s)
- Kirsten Kuipers
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria H Daleke-Schermerhorn
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden
| | - Wouter S P Jong
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden
| | - Corinne M ten Hagen-Jongman
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden
| | - Fred van Opzeeland
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elles Simonetti
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joen Luirink
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Abera Bioscience AB, Stockholm, Sweden.
| | - Marien I de Jonge
- Laboratory of Pediatric Infectious Diseases, Department of Pediatrics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Evaluation of a vaccine formulation against Streptococcus pneumoniae based on choline-binding proteins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:213-20. [PMID: 25520146 DOI: 10.1128/cvi.00692-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus pneumoniae has proteins that are attached to its surface by binding to phosphorylcholine of teichoic and lipoteichoic acids. These proteins are known as choline-binding proteins (CBPs). CBPs are an interesting alternative for the development of a cost-effective vaccine, and PspA (pneumococcal surface protein A) is believed to be the most important protective component among the different CBPs. We sought to use CBPs eluted from pneumococci as an experimental vaccine. Since PspA shows variability between isolates, we constructed strains producing different PspAs. We used the nonencapsulated Rx1 strain, which produces PspA from clade 2 (PspA2), to generate a pspA-knockout strain (Rx1 ΔpspA) and strains expressing PspA from clade 1 (Rx1 pspA1) and clade 4 (Rx1 pspA4). We grew Rx1, Rx1 ΔpspA, Rx1 pspA1, and Rx1 pspA4 in Todd-Hewitt medium containing 0.5% yeast extract and washed cells in 2% choline chloride (CC). SDS-PAGE analysis of the proteins recovered by a CC wash showed few bands, and the CBPs PspA and PspC (pneumococcal surface protein C) were identified by mass spectrometry analysis. Subcutaneous immunization of mice with these full-length native proteins without adjuvant led to significantly higher rates of survival than immunization with diluent after an intranasal lethal challenge with two pneumococcal strains and also after a colonization challenge with one strain. Importantly, immunization with recombinant PspA4 (rPspA4) without adjuvant did not elicit significant protection.
Collapse
|
24
|
Miyaji EN, Oliveira MLS, Carvalho E, Ho PL. Serotype-independent pneumococcal vaccines. Cell Mol Life Sci 2013; 70:3303-26. [PMID: 23269437 PMCID: PMC11113425 DOI: 10.1007/s00018-012-1234-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae remains an important cause of disease with high mortality and morbidity, especially in children and in the elderly. The widespread use of the polysaccharide conjugate vaccines in some countries has led to a significant decrease in invasive disease caused by vaccine serotypes, but an increase in disease caused by non-vaccine serotypes has impacted on the overall efficacy of these vaccines on pneumococcal disease. The obvious solution to overcome such shortcomings would be the development of new formulations that provide serotype-independent immunity. This review focuses on the most promising approaches, including protein antigens, whole cell pneumococcal vaccines, and recombinant bacteria expressing pneumococcal antigens. The protective capacity of these vaccine candidates against the different stages of pneumococcal infection, including colonization, mucosal disease, and invasive disease in animal models is reviewed. Some of the human trials that have already been performed or that are currently ongoing are presented. Finally, the feasibility and the possible shortcomings of these candidates in relation to an ideal vaccine against pneumococcal infections are discussed.
Collapse
Affiliation(s)
- Eliane Namie Miyaji
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| | | | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| | - Paulo Lee Ho
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| |
Collapse
|
25
|
A colanic acid operon deletion mutation enhances induction of early antibody responses by live attenuated Salmonella vaccine strains. Infect Immun 2013; 81:3148-62. [PMID: 23774599 DOI: 10.1128/iai.00097-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colanic acid (CA) is a common exopolysaccharide produced by many genera in the Enterobacteriaceae. It is critical for biofilm formation on HEp-2 cells and on chicken intestinal tissue by Salmonella. In this study, we generated different CA synthesis gene mutants and evaluated the immune responses induced by these mutants. One of these mutations, Δ(wza-wcaM)8, which deleted the whole operon for CA synthesis, was introduced into two Salmonella vaccine strains attenuated by auxotrophic traits or by the regulated delayed attenuation strategy (RDAS). The mice immunized with the auxotrophic Salmonella vaccine strain with the deletion mutation Δ(wza-wcaM)8 developed higher vaginal IgA titers against the heterologous protective antigen and higher levels of antigen-specific IgA secretion cells in lungs. In Salmonella vaccine strains with RDAS, the strain with the Δ(wza-wcaM)8 mutation resulted in higher levels of protective antigen production during in vitro growth. Mice immunized with this strain developed higher serum IgG and mucosal IgA antibody responses at 2 weeks. This strain also resulted in better gamma interferon (IFN-γ) responses than the strain without this deletion at doses of 10(8) and 10(9) CFU. Thus, the mutation Δ(wza-wcaM)8 will be included in various recombinant attenuated Salmonella vaccine (RASV) strains with RDAS derived from Salmonella enterica serovar Paratyphi A and Salmonella enterica serovar Typhi to induce protective immunity against bacterial pathogens.
Collapse
|
26
|
Evaluation of regulated delayed attenuation strategies for Salmonella enterica serovar Typhi vaccine vectors in neonatal and infant mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:931-44. [PMID: 23616408 DOI: 10.1128/cvi.00003-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We developed regulated delayed attenuation strategies for Salmonella vaccine vectors. In this study, we evaluated the combination of these strategies in recombinant attenuated Salmonella enterica serovar Typhi and Salmonella enterica serovar Typhimurium vaccine vectors with similar genetic backgrounds in vitro and in vivo. Our goal is to develop a vaccine to prevent Streptococcus pneumoniae infection in newborns; thus, all strains delivered a pneumococcal antigen PspA and the impact of maternal antibodies was evaluated. The results showed that all strains with the regulated delayed attenuated phenotype (RDAP) displayed an invasive ability stronger than that of the S. Typhi vaccine strain, Ty21a, but weaker than that of their corresponding wild-type parental strains. The survival curves of different RDAP vaccine vectors in vitro and in vivo exhibited diverse regulated delayed attenuation kinetics, which was different from S. Typhi Ty21a and the wild-type parental strains. Under the influence of maternal antibody, the persistence of the S. Typhimurium RDAP strain displayed a regulated delayed attenuation trend in nasal lymphoid tissue (NALT), lung, and Peyer's patches, while the persistence of S. Typhi RDAP strains followed the curve only in NALT. The bacterial loads of S. Typhi RDAP strains were lower in NALT, lung, and Peyer's patches in mice born to immune mothers than in those born to naive mothers. In accordance with these results, RDAP vaccine strains induced high titers of IgG antibodies against PspA and against Salmonella lipopolysaccharides. Immunization of mothers with S. Typhi RDAP strains enhanced the level of vaginal mucosal IgA, gamma interferon (IFN-γ), and interleukin 4 (IL-4) and resulted in a higher level of protection against S. pneumoniae challenge.
Collapse
|
27
|
Mukerji R, Mirza S, Roche AM, Widener RW, Croney CM, Rhee DK, Weiser JN, Szalai AJ, Briles DE. Pneumococcal surface protein A inhibits complement deposition on the pneumococcal surface by competing with the binding of C-reactive protein to cell-surface phosphocholine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:5327-35. [PMID: 23105137 PMCID: PMC3517878 DOI: 10.4049/jimmunol.1201967] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the presence of normal serum, complement component C3 is deposited on pneumococci primarily via the classical pathway. Pneumococcal surface protein A (PspA), a major virulence factor of pneumococci, effectively inhibits C3 deposition. PspA's C terminus has a choline-binding domain that anchors PspA to the phosphocholine (PC) moieties on the pneumococcal surface. C-reactive protein (CRP), another important host defense molecule, also binds to PC, and CRP binding to pneumococci enhances complement C3 deposition through the classical pathway. Using flow cytometry of PspA(+) and PspA(-) strains, we observed that the absence of PspA led to exposure of PC, enhanced the surface binding of CRP, and increased the deposition of C3. Moreover, when the PspA(-) mutant was incubated with a pneumococcal eluate containing native PspA, there was decreased deposition of CRP and C3 on the pneumococcal surface compared with incubation with an eluate from a PspA(-) strain. This inhibition was not observed when a recombinant PspA fragment, which lacks the choline-binding region of PspA, was added to the PspA(-) mutant. Also, there was much greater C3 deposition onto the PspA(-) pneumococcus when exposed to normal mouse serum from wild-type mice as compared with that from CRP knockout mice. Furthermore, when CRP knockout mouse serum was replenished with CRP, there was a dose-dependent increase in C3 deposition. The combined data reveal a novel mechanism of complement inhibition by a bacterial protein: inhibition of CRP surface binding and, thus, diminution of CRP-mediated complement deposition.
Collapse
Affiliation(s)
- Reshmi Mukerji
- Department of Microbiology, University of Alabama at Birmingham
| | - Shaper Mirza
- University of Texas School of Public Health Division of Epidemiology Brownsville regional campus Brownsville TX
| | - Aoife M. Roche
- Department of Microbiology, School of Medicine, University of Pennsylvania
| | | | | | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jeffrey N. Weiser
- Department of Microbiology, School of Medicine, University of Pennsylvania
| | - Alexander J. Szalai
- Department of Microbiology, University of Alabama at Birmingham
- Division of Immunology Department of Medicine, University of Alabama at Birmingham
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham
- Department of Pediatrics, University of Alabama at Birmingham
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
28
|
The Asd(+)-DadB(+) dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated Salmonella vaccine. Infect Immun 2012; 80:3621-33. [PMID: 22868499 DOI: 10.1128/iai.00620-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth. The second component is the Asd(+)-DadB(+) plasmid pair carrying wild-type copies of asdA and dadB, respectively, to complement the mutations. To evaluate the protection efficacy of the dual-plasmid vaccine, S. Typhimurium strain χ9760 (a strain with multiple attenuating mutations: Δasd Δalr ΔdadB ΔrecF) was transformed with Asd(+) and DadB(+) plasmids specifying pneumococcal antigens PspA and PspC, respectively. Both plasmids were stable in χ9760 for 50 generations when grown in nonselective medium. This was significantly (P < 0.05) greater than the stability seen in its recF(+) counterpart χ9590 and could be attributed to reduced interplasmid recombination in χ9760. Oral immunization of BALB/c mice with 1 × 10(9) CFU of χ9760 (carrying Asd(+)-PspA and DadB(+)-PspC plasmids) elicited a dominant Th1-type serum IgG response against both antigens and protected mice against intraperitoneal challenge with 200 50% lethal doses (LD(50)s) of virulent Streptococcus pneumoniae strain WU2 or intravenous challenge with 100 LD(50)s of virulent S. pneumoniae strain L81905 or intranasal challenge with a lethal dose of S. pneumoniae A66.1 in a pneumonia model. Protection offered by χ9760 was superior to that offered by the mixture of two strains, χ9828 (Asd(+)-PspA) and χ11026 (DadB(+)-PspC). This novel dual-plasmid system marks a remarkable improvement in the development of live bacterial vaccines.
Collapse
|
29
|
Colino J, Duke L, Arjunaraja S, Chen Q, Liu L, Lucas AH, Snapper CM. Differential idiotype utilization for the in vivo type 14 capsular polysaccharide-specific Ig responses to intact Streptococcus pneumoniae versus a pneumococcal conjugate vaccine. THE JOURNAL OF IMMUNOLOGY 2012; 189:575-86. [PMID: 22706079 DOI: 10.4049/jimmunol.1200599] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Murine IgG responses specific for the capsular polysaccharide (pneumococcal capsular polysaccharide serotype 14; PPS14) of Streptococcus pneumoniae type 14 (Pn14), induced in response to intact Pn14 or a PPS14-protein conjugate, are both dependent on CD4(+) T cell help but appear to use marginal zone versus follicular B cells, respectively. In this study, we identify an idiotype (44.1-Id) that dominates the PPS14-specific IgG, but not IgM, responses to intact Pn14, isolated PPS14, and Group B Streptococcus (strain COH1-11) expressing capsular polysaccharide structurally identical to PPS14. The 44.1-Id, however, is not expressed in the repertoire of natural PPS14-specific Abs. In distinct contrast, PPS14-specific IgG responses to a soluble PPS14-protein conjugate exhibit minimal usage of the 44.1-Id, although significant 44.1-Id expression is elicited in response to conjugate attached to particles. The 44.1-Id elicited in response to intact Pn14 was expressed in similar proportions among all four IgG subclasses during both the primary and secondary responses. The 44.1-Id usage was linked to the Igh(a), but not Igh(b), allotype and was associated with induction of relatively high total PPS14-specific IgG responses. In contrast to PPS14-protein conjugate, avidity maturation of the 44.1-Id-dominant PPS14-specific IgG responses was limited, even during the highly boosted T cell-dependent PPS14-specific secondary responses to COH1-11. These results indicate that different antigenic forms of the same capsular polysaccharide can recruit distinct B cell clones expressing characteristic idiotypes under genetic control and suggest that the 44.1-Id is derived from marginal zone B cells.
Collapse
Affiliation(s)
- Jesus Colino
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Wright AKA, Ferreira DM, Gritzfeld JF, Wright AD, Armitage K, Jambo KC, Bate E, El Batrawy S, Collins A, Gordon SB. Human nasal challenge with Streptococcus pneumoniae is immunising in the absence of carriage. PLoS Pathog 2012; 8:e1002622. [PMID: 22496648 PMCID: PMC3320601 DOI: 10.1371/journal.ppat.1002622] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/21/2012] [Indexed: 11/18/2022] Open
Abstract
Infectious challenge of the human nasal mucosa elicits immune responses that determine the fate of the host-bacterial interaction; leading either to clearance, colonisation and/or disease. Persistent antigenic exposure from pneumococcal colonisation can induce both humoral and cellular defences that are protective against carriage and disease. We challenged healthy adults intra-nasally with live 23F or 6B Streptococcus pneumoniae in two sequential cohorts and collected nasal wash, bronchoalveolar lavage (BAL) and blood before and 6 weeks after challenge. We hypothesised that both cohorts would successfully become colonised but this did not occur except for one volunteer. The effect of bacterial challenge without colonisation in healthy adults has not been previously assessed. We measured the antigen-specific humoral and cellular immune responses in challenged but not colonised volunteers by ELISA and Flow Cytometry. Antigen-specific responses were seen in each compartment both before and after bacterial challenge for both cohorts. Antigen-specific IgG and IgA levels were significantly elevated in nasal wash 6 weeks after challenge compared to baseline. Immunoglobulin responses to pneumococci were directed towards various protein targets but not capsular polysaccharide. 23F but not 6B challenge elevated IgG anti-PspA in BAL. Serum immunoglobulins did not increase in response to challenge. In neither challenge cohort was there any alteration in the frequencies of TNF, IL-17 or IFNγ producing CD4 T cells before or after challenge in BAL or blood. We show that simple, low dose mucosal exposure with pneumococci may immunise mucosal surfaces by augmenting anti-protein immunoglobulin responses; but not capsular or cellular responses. We hypothesise that mucosal exposure alone may not replicate the systemic immunising effect of experimental or natural carriage in humans. Exposure to respiratory pathogens such as Streptococcus pneumoniae (pneumococcus) is a frequent event that can result in immediate clearance, nasal colonisation or disease for the host. Human and mouse studies have shown that natural colonisation is an immunising event. Colonisation is prevalent in children but rare in human adults (<10%), suggesting that despite high pneumococcal exposure adult mucosal defences are sufficient to prevent colonisation. We exposed healthy adults to pneumococci in the nose in order to achieve colonisation and mimic a natural colonisation event. In most volunteers, however, we were not able to obtain colonisation using this protocol. In exposed but not colonised volunteers we measured antibody and cellular responses in nose, lung and blood samples. The mucosal defences elicited during acute pneumococcal exposure are poorly described but these data will shed light on the mechanisms that prevent colonisation in healthy adults and inform future vaccine design. Live bacterial exposure increases specific antibody and innate responses at mucosal surfaces such as the nose and lung. Systemic responses were not increased. These data suggest that acute bacterial exposure per se augments mucosal but not systemic defences. Natural or experimental colonisation may be required for systemic immunisation.
Collapse
Affiliation(s)
- Adam K. A. Wright
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- NIHR Biomedical Research Centre in Microbial Diseases, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Daniela M. Ferreira
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jenna F. Gritzfeld
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angela D. Wright
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kathryn Armitage
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- NIHR Biomedical Research Centre in Microbial Diseases, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Kondwani C. Jambo
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Chichiri, Blantyre, Malawi
| | - Emily Bate
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherouk El Batrawy
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- NIHR Biomedical Research Centre in Microbial Diseases, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Andrea Collins
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- NIHR Biomedical Research Centre in Microbial Diseases, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Stephen B. Gordon
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Snapper CM. Mechanisms underlying in vivo polysaccharide-specific immunoglobulin responses to intact extracellular bacteria. Ann N Y Acad Sci 2012; 1253:92-101. [DOI: 10.1111/j.1749-6632.2011.06329.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Kono M, Hotomi M, Hollingshead SK, Briles DE, Yamanaka N. Maternal immunization with pneumococcal surface protein A protects against pneumococcal infections among derived offspring. PLoS One 2011; 6:e27102. [PMID: 22073127 PMCID: PMC3205068 DOI: 10.1371/journal.pone.0027102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 10/10/2011] [Indexed: 11/25/2022] Open
Abstract
Pathogen-specific antibody plays an important role in protection against pneumococcal carriage and infections. However, neonates and infants exhibit impaired innate and adaptive immune responses, which result in their high susceptibility to pneumococci. To protect neonates and infants against pneumococcal infection it is important to elicit specific protective immune responses at very young ages. In this study, we investigated the protective immunity against pneumococcal carriage, pneumonia, and sepsis induced by maternal immunization with pneumococcal surface protein A (PspA). Mother mice were intranasally immunized with recombinant PspA (rPspA) and cholera toxin B subunit (CTB) prior to being mated. Anti-PspA specific IgG, predominantly IgG1, was present at a high level in the serum and milk of immunized mothers and in the sera of their pups. The pneumococcal densities in washed nasal tissues and in lung homogenate were significantly reduced in pups delivered from and/or breast-fed by PspA-immunized mothers. Survival after fatal systemic infections with various types of pneumococci was significantly extended in the pups, which had received anti-PspA antibody via the placenta or through their milk. The current findings strongly suggest that maternal immunization with PspA is an attractive strategy against pneumococcal infections during early childhood. (191 words)
Collapse
Affiliation(s)
- Masamitsu Kono
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| | - Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama-city, Wakayama, Japan
- * E-mail:
| | - Susan K. Hollingshead
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Noboru Yamanaka
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama-city, Wakayama, Japan
| |
Collapse
|
33
|
Palmitoylation state impacts induction of innate and acquired immunity by the Salmonella enterica serovar typhimurium msbB mutant. Infect Immun 2011; 79:5027-38. [PMID: 21930761 DOI: 10.1128/iai.05524-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Lipopolysaccharide (LPS), composed of lipid A, core, and O-antigen, is a major virulence factor of Salmonella enterica serovar Typhimurium, with lipid A being a major stimulator to induce the proinflammatory response via the Toll-like receptor 4 (TLR4)-MD2-CD14 pathway. While Salmonella msbB mutants lacking the myristate chain in lipid A were investigated widely as an anticancer vaccine, inclusion of the msbB mutation in a Salmonella vaccine to deliver heterologous antigens has not yet been investigated. We introduced the msbB mutation alone or in combination with mutations in other lipid A acyl chain modification genes encoding PagL, PagP, and LpxR into wild-type S. enterica serovar Typhimurium. The msbB mutation reduced virulence, while the pagL, pagP, and lpxR mutations did not affect virulence in the msbB mutant background when administered orally to BALB/c mice. Also, all mutants exhibited sensitivity to polymyxin B but did not display sensitivity to deoxycholate. LPS derived from msbB mutants induced less inflammatory responses in human Mono Mac 6 and murine macrophage RAW264.7 cells in vitro. However, an msbB mutant did not decrease the induction of inflammatory responses in mice compared to the levels induced by the wild-type strain, whereas an msbB pagP mutant induced less inflammatory responses in vivo. The mutations were moved to an attenuated Salmonella vaccine strain to evaluate their effects on immunogenicity. Lipid A modification caused by the msbB mutation alone and in combination with pagL, pagP, and lpxR mutations led to higher IgA production in the vaginal tract but still retained the same IgG titer level in serum to PspA, a test antigen from Streptococcus pneumoniae, and to outer membrane proteins (OMPs) from Salmonella.
Collapse
|
34
|
Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar typhimurium. Infect Immun 2011; 79:4227-39. [PMID: 21768282 DOI: 10.1128/iai.05398-11] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lipopolysaccharide (LPS) is a major virulence factor of Salmonella enterica serovar Typhimurium and is composed of lipid A, core oligosaccharide (C-OS), and O-antigen polysaccharide (O-PS). While the functions of the gene products involved in synthesis of core and O-antigen have been elucidated, the effect of removing O-antigen and core sugars on the virulence and immunogenicity of Salmonella enterica serovar Typhimurium has not been systematically studied. We introduced nonpolar, defined deletion mutations in waaG (rfaG), waaI (rfaI), rfaH, waaJ (rfaJ), wbaP (rfbP), waaL (rfaL), or wzy (rfc) into wild-type S. Typhimurium. The LPS structure was confirmed, and a number of in vitro and in vivo properties of each mutant were analyzed. All mutants were significantly attenuated compared to the wild-type parent when administered orally to BALB/c mice and were less invasive in host tissues. Strains with ΔwaaG and ΔwaaI mutations, in particular, were deficient in colonization of Peyer's patches and liver. This deficiency could be partially overcome in the ΔwaaI mutant when it was administered intranasally. In the context of an attenuated vaccine strain delivering the pneumococcal antigen PspA, all of the mutations tested resulted in reduced immune responses against PspA and Salmonella antigens. Our results indicate that nonreversible truncation of the outer core is not a viable option for developing a live oral Salmonella vaccine, while a wzy mutant that retains one O-antigen unit is adequate for stimulating the optimal protective immunity to homologous or heterologous antigens by oral, intranasal, or intraperitoneal routes of administration.
Collapse
|
35
|
Kong Q, Six DA, Roland KL, Liu Q, Gu L, Reynolds CM, Wang X, Raetz CRH, Curtiss R. Salmonella synthesizing 1-dephosphorylated [corrected] lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity. THE JOURNAL OF IMMUNOLOGY 2011; 187:412-23. [PMID: 21632711 DOI: 10.4049/jimmunol.1100339] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of safe live, attenuated Salmonella vaccines may be facilitated by detoxification of its LPS. Recent characterization of the lipid A 1-phosphatase, LpxE, from Francisella tularensis allowed us to construct recombinant, plasmid-free strains of Salmonella that produce predominantly 1-dephosphorylated lipid A, similar to the adjuvant approved for human use. Complete lipid A 1-dephosphorylation was also confirmed under low pH, low Mg(2+) culture conditions, which induce lipid A modifications. LpxE expression in Salmonella reduced its virulence in mice by five orders of magnitude. Moreover, mice inoculated with these detoxified strains were protected against wild-type challenge. Candidate Salmonella vaccine strains synthesizing pneumococcal surface protein A (PspA) were also confirmed to possess nearly complete lipid A 1-dephosphorylation. After inoculation by the LpxE/PspA strains, mice produced robust levels of anti-PspA Abs and showed significantly improved survival against challenge with wild-type Streptococcus pneumoniae WU2 compared with vector-only-immunized mice, validating Salmonella synthesizing 1-dephosphorylated lipid A as an Ag-delivery system.
Collapse
Affiliation(s)
- Qingke Kong
- Center for Infectious Diseases and Vaccinology, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Goulart C, Darrieux M, Rodriguez D, Pimenta FC, Brandileone MCC, de Andrade ALS, Leite LC. Selection of family 1 PspA molecules capable of inducing broad-ranging cross-reactivity by complement deposition and opsonophagocytosis by murine peritoneal cells. Vaccine 2011; 29:1634-42. [DOI: 10.1016/j.vaccine.2010.12.074] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/30/2010] [Accepted: 12/16/2010] [Indexed: 11/27/2022]
|
37
|
Comparison of a regulated delayed antigen synthesis system with in vivo-inducible promoters for antigen delivery by live attenuated Salmonella vaccines. Infect Immun 2010; 79:937-49. [PMID: 21134969 DOI: 10.1128/iai.00445-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Induction of strong immune responses against a vectored antigen in hosts immunized with live attenuated Salmonella vaccines is related in part to the amount of antigen delivered and the overall fitness of the Salmonella vector in relation to its ability to stimulate the host immune system. Constitutive high-level antigen synthesis causes a metabolic burden to the vaccine vector strain that can reduce the vaccine strain's ability to interact with host lymphoid tissues, resulting in a compromised immune response. A solution to this problem is the use of systems that regulate antigen gene expression, permitting high levels of antigen synthesis only after the vaccine strain has reached its target tissues. In vivo-inducible promoters (IVIPs) are often used to accomplish this. We recently developed an alternative strategy, a regulated delayed antigen synthesis (RDAS) system, in which the LacI-repressible P(trc) promoter controls antigen gene expression by adding arabinose. In this paper, we compared the RDAS system with two commonly used IVIPs, P(ssaG) and P(pagC). Three nearly identical plasmids, differing only in the promoter used to direct transcription of the pneumococcal pspA gene, P(trc), P(ssaG), or P(pagC), were constructed and introduced into isogenic Salmonella vaccine strains with or without arabinose-inducible LacI synthesis. Mice immunized with the RDAS strain developed slightly higher titers of mucosal and serum anti-PspA antibodies than P(pagC)-immunized mice, while titers in mice immunized with the P(ssaG) strain were 100-fold lower. Both the RDAS and P(pagC) strains conferred similar levels of protection against Streptococcus pneumoniae challenge, significantly greater than those for the P(ssaG) strain or controls. Thus, RDAS provides another choice for inclusion in the live vaccine design to increase immunogenicity.
Collapse
|
38
|
Immunization with Salmonella enterica serovar Typhimurium-derived outer membrane vesicles delivering the pneumococcal protein PspA confers protection against challenge with Streptococcus pneumoniae. Infect Immun 2010; 79:887-94. [PMID: 21115718 DOI: 10.1128/iai.00950-10] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gram-negative bacteria produce outer membrane vesicles (OMVs) that serve a variety of functions related to survival and pathogenicity. Periplasmic and outer membrane proteins are naturally captured during vesicle formation. This property has been exploited as a method to derive immunogenic vesicle preparations for use as vaccines. In this work, we constructed a Salmonella enterica serovar Typhimurium strain that synthesized a derivative of the pneumococcal protein PspA engineered to be secreted into the periplasmic space. Vesicles isolated from this strain contained PspA in the lumen. Mice intranasally immunized with the vesicle preparation developed serum antibody responses against vesicle components that included PspA and Salmonella-derived lipopolysaccharide and outer membrane proteins, while no detectable responses developed in mice immunized with an equivalent dose of purified PspA. Mucosal IgA responses developed against the Salmonella components, while the response to PspA was less apparent in most mice. Mice immunized with the vesicle preparation were completely protected against a 10× 50% lethal dose (LD₅₀) challenge of Streptococcus pneumoniae and significantly protected against a 200× LD₅₀ challenge, while control mice immunized with purified PspA or empty vesicles were not protected. These results establish that vesicles can be used to mucosally deliver an antigen from a Gram-positive organism and induce a protective immune response.
Collapse
|
39
|
Salmonella vaccine vectors displaying delayed antigen synthesis in vivo to enhance immunogenicity. Infect Immun 2010; 78:3969-80. [PMID: 20605977 DOI: 10.1128/iai.00444-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have developed a regulated delayed antigen synthesis (RDAS) system for use in recombinant attenuated Salmonella vaccine (RASV) strains to enhance immune responses by reducing the adverse effects of high-level antigen synthesis. This system includes a chromosomal repressor gene, lacI, expressed from the arabinose-regulated araC PBAD promoter. LacI serves to regulate expression from a plasmid promoter, Ptrc, that directs antigen synthesis. In the presence of arabinose LacI is produced, which binds to Ptrc, blocking antigen synthesis. In vivo, an arabinose-poor environment, the concentration of LacI decreases with each cell division, allowing increased antigen synthesis. To optimize the system and for comparison, we altered the lacI ribosome-binding site, start codon, and/or codon content to construct RDAS strains chi9095, chi9959, and chi9241, synthesizing from low to high levels of LacI, respectively, and non-RDAS strain chi9555 as a control. We evaluated this system with two test antigens, the green fluorescent protein for initial in vitro assessment and the Streptococcus pneumoniae PspA protein for validation of our system in mice. All RASV strains expressing PspA generated high antilipopolysaccharide antibody titers, indicating that expression of lacI did not interfere with the capacity to induce an immune response. Strain chi9241 induced significantly higher anti-PspA IgG and IgA antibody titers than strain chi9555, which expressed PspA constitutively. Anti-PspA antibody titers were inversely correlated to the level of LacI synthesis. Strain chi9241 also induced significantly greater protective efficacy against challenge with virulent S. pneumoniae. These results suggest that regulated delayed antigen synthesis is useful for improving immunogenicity of RASV strains.
Collapse
|
40
|
Kong Q, Liu Q, Jansen AM, Curtiss R. Regulated delayed expression of rfc enhances the immunogenicity and protective efficacy of a heterologous antigen delivered by live attenuated Salmonella enterica vaccines. Vaccine 2010; 28:6094-103. [PMID: 20599580 DOI: 10.1016/j.vaccine.2010.06.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/18/2010] [Accepted: 06/23/2010] [Indexed: 12/22/2022]
Abstract
The Salmonella rfc gene encodes the O-antigen polymerase. We constructed three strains in which we replaced the native rfc promoter with the arabinose-dependent araC P(BAD) promoter so that rfc expression was dependent on exogenously supplied arabinose provided during in vitro growth. The three mutant strains were designed to synthesize different amounts of Rfc by altering the ribosome-binding sequence and start codon. We examined these strains for a number of in vitro characteristics compared to an isogenic Deltarfc mutant and the wild-type parent strain. One promoter-replacement mutation, DeltaP(rfc174), yielded an optimal profile, exhibiting wild-type characteristics when grown with arabinose, and Deltarfc characteristics when grown without arabinose. In addition, when administered orally, the DeltaP(rfc174) strain was completely attenuated in for virulence in mice. The DeltaP(rfc174) mutation was introduced into attenuated Salmonella vaccine strain chi9241 (DeltapabA DeltapabB DeltaasdA) followed by introduction of an Asd(+) balanced-lethal plasmid to designed for expression of the pneumococcal surface protein PspA. Mice immunized with either chi9241 or its DeltaP(rfc174) derivative expressing pspA were protected against S. pneumoniae challenge.
Collapse
Affiliation(s)
- Qingke Kong
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | |
Collapse
|
41
|
Shi H, Santander J, Brenneman KE, Wanda SY, Wang S, Senechal P, Sun W, Roland KL, Curtiss R. Live recombinant Salmonella Typhi vaccines constructed to investigate the role of rpoS in eliciting immunity to a heterologous antigen. PLoS One 2010; 5:e11142. [PMID: 20585446 PMCID: PMC2887840 DOI: 10.1371/journal.pone.0011142] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 05/27/2010] [Indexed: 11/18/2022] Open
Abstract
We hypothesized that the immunogenicity of live Salmonella enterica serovar Typhi vaccines expressing heterologous antigens depends, at least in part, on its rpoS status. As part of our project to develop a recombinant attenuated S. Typhi vaccine (RASTyV) to prevent pneumococcal diseases in infants and children, we constructed three RASTyV strains synthesizing the Streptococcus pneumoniae surface protein PspA to test this hypothesis. Each vector strain carried ten engineered mutations designed to optimize safety and immunogenicity. Two S. Typhi vector strains (chi9639 and chi9640) were derived from the rpoS mutant strain Ty2 and one (chi9633) from the RpoS(+) strain ISP1820. In chi9640, the nonfunctional rpoS gene was replaced with the functional rpoS gene from ISP1820. Plasmid pYA4088, encoding a secreted form of PspA, was moved into the three vector strains. The resulting RASTyV strains were evaluated for safety in vitro and for immunogenicity in mice. All three RASTyV strains were similar to the live attenuated typhoid vaccine Ty21a in their ability to survive in human blood and human monocytes. They were more sensitive to complement and were less able to survive and persist in sewage and surface water than their wild-type counterparts. Adult mice intranasally immunized with any of the RASTyV strains developed immune responses against PspA and Salmonella antigens. The RpoS(+) vaccines induced a balanced Th1/Th2 immune response while the RpoS(-) strain chi9639(pYA4088) induced a strong Th2 immune response. Immunization with any RASTyV provided protection against S. pneumoniae challenge; the RpoS(+) strain chi9640(pYA4088) provided significantly greater protection than the ISP1820 derivative, chi9633(pYA4088). In the pre-clinical setting, these strains exhibited a desirable balance between safety and immunogenicity and are currently being evaluated in a Phase 1 clinical trial to determine which of the three RASTyVs has the optimal safety and immunogenicity profile in human hosts.
Collapse
Affiliation(s)
- Huoying Shi
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Javier Santander
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Karen E. Brenneman
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Soo-Young Wanda
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Shifeng Wang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | | | - Wei Sun
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Kenneth L. Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
42
|
Immune responses to recombinant pneumococcal PsaA antigen delivered by a live attenuated Salmonella vaccine. Infect Immun 2010; 78:3258-71. [PMID: 20479086 DOI: 10.1128/iai.00176-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of morbidity and mortality among children worldwide and particularly in developing countries. In this study, we evaluated PsaA, a conserved antigen important for S. pneumoniae adhesion to and invasion into nasopharynx epithelia, for its ability to induce protective immunity against S. pneumoniae challenge when delivered by recombinant attenuated Salmonella vaccine (RASVs) strains. RASVs were engineered to synthesize PsaA peptides of various lengths. Vaccination with an RASV synthesizing full-length PsaA induced high titers of anti-PsaA antibodies in both systemic (IgG in serum) and mucosal (IgA in vaginal washes, nasal washes, and lung homogenates) sites. BALB/c (haplotype H2(d)) or C57BL/6 (haplotype H2(b)) mice vaccinated either orally or intranasally exhibited a significant reduction in colonization of nasopharyngeal tissues after intranasal challenge with S. pneumoniae strains compared to controls, although protection was not observed with all challenge strains. None of the vaccine constructs provided protection against intraperitoneal challenge with S. pneumoniae strain WU2 (serotype 3). Immunization with RASVs synthesizing truncated PsaA generated lower titers of IgA and IgG and did not provide significant protection. Our results showed that RASVs synthesizing full-length PsaA can provide protection against nasal colonization by some S. pneumoniae strains. PsaA may be a useful addition to a multivalent vaccine, providing protection against pneumonia, otitis media, and other diseases caused by S. pneumoniae.
Collapse
|
43
|
Immunogenicity of a live recombinant Salmonella enterica serovar typhimurium vaccine expressing pspA in neonates and infant mice born from naive and immunized mothers. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:363-71. [PMID: 20053873 DOI: 10.1128/cvi.00413-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We are developing a Salmonella vectored vaccine to prevent infant pneumonia and other diseases caused by Streptococcus pneumoniae. One prerequisite for achieving this goal is to construct and evaluate new recombinant attenuated Salmonella vaccine (RASV) strains suitable for use in neonates and infants. Salmonella enterica serovar Typhimurium strain chi9558(pYA4088) specifies delivery of the pneumococcal protective antigen PspA and can protect adult mice from challenge with S. pneumoniae. This strain is completely safe for oral delivery to day-old and infant mice. Here we assess the colonizing ability, immunogenicity, and protective efficacy of chi9558(pYA4088) in neonatal mice. Colonization was assessed in mice 0, 2, 4, or 7 days of age after oral inoculation. In the presence of maternal antibodies, the colonization of lymphoid tissues was delayed, but the immune responses were enhanced in mice born to immunized mothers. Both oral and intranasal routes were used to assess immunogenicity. All orally or intranasally immunized neonatal and infant mice born to either immunized or naïve mothers developed PspA-specific mucosal and systemic immune responses. Mice born to immunized mothers produced higher titers of PspA-specific antibodies in the blood and mucosa and greater numbers of PspA-specific interleukin-4 (IL-4)-secreting cells than mice born to naïve mothers. More importantly, mice born to immune mothers showed a significant increase in protection against S. pneumoniae challenge. These results suggest that strain chi9558(pYA4088) can circumvent some of the limitations of the immature immune system in neonatal and infant mice, generating enhanced protective immune responses in the presence of maternal antibodies.
Collapse
|
44
|
Regulated delayed expression of rfaH in an attenuated Salmonella enterica serovar typhimurium vaccine enhances immunogenicity of outer membrane proteins and a heterologous antigen. Infect Immun 2009; 77:5572-82. [PMID: 19805538 DOI: 10.1128/iai.00831-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RfaH is a transcriptional antiterminator that reduces the polarity of long operons encoding secreted and surface-associated cell components of Salmonella enterica serovar Typhimurium, including O antigen and lipopolysaccharide core sugars. A DeltarfaH mutant strain is attenuated in mice (50% lethal dose [LD(50)], >10(8) CFU). To examine the potential for using rfaH in conjunction with other attenuating mutations, we designed a series of strains in which we replaced the native rfaH promoter with the tightly regulated arabinose-dependent araC P(BAD) promoter so that rfaH expression was dependent on exogenously supplied arabinose provided during in vitro growth. Following colonization of host lymphoid tissues, where arabinose was not available, the P(BAD) promoter was no longer active and rfaH was not expressed. In the absence of RfaH, O antigen and core sugars were not synthesized. We constructed three mutant strains that expressed different levels of RfaH by altering the ribosome-binding sequence and start codon. One mutation, DeltaP(rfaH178), was introduced into the attenuated vaccine strain chi9241 (DeltapabA DeltapabB DeltaasdA) expressing the pneumococcal surface protein PspA from an Asd(+) balanced-lethal plasmid. Mice immunized with this strain and boosted 4 weeks later induced higher levels of serum immunoglobulin G specific for PspA and for outer membrane proteins from other enteric bacteria than either an isogenic DeltarfaH derivative or the isogenic RfaH(+) parent. Eight weeks after primary oral immunization, mice were challenged with 200 LD(50) of virulent Streptococcus pneumoniae WU2. Immunization with DeltaP(rfaH178) mutant strains led to increased levels of protection compared to that of the parent chi9241 and of a DeltarfaH derivative of chi9241.
Collapse
|
45
|
PspA family fusion proteins delivered by attenuated Salmonella enterica serovar Typhimurium extend and enhance protection against Streptococcus pneumoniae. Infect Immun 2009; 77:4518-28. [PMID: 19687204 DOI: 10.1128/iai.00486-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Pneumococcal surface protein A (PspA) is highly immunogenic and can induce a protective immune response against pneumococcal infection. PspA is divided into two major families based on serological variability: family 1 and family 2. To provide broad protection, PspA proteins from pneumococcal strains Rx1 (family 1) and EF5668 (family 2) were combined to form two PspA fusion proteins, PspA/Rx1-EF5668 and PspA/EF5668-Rx1. Each protein was fused to a type II secretion signal and delivered by a recombinant attenuated Salmonella vaccine (RASV). Both PspA/Rx1-EF5668 and PspA/EF5668-Rx1 were synthesized in the RASV and secreted into the periplasm and supernatant. The fusion proteins reacted strongly with both anti-PspA/Rx1 and anti-PspA/EF5668 antisera. Oral immunization of BALB/c mice with RASV synthesizing either PspA fusion protein elicited serum immunoglobulin G (IgG) and mucosal IgA responses against both families of PspA. Analysis of IgG isotypes (IgG2a and IgG1) indicated a strong Th1 bias to the immune responses to both proteins. Sera from mice immunized with RASV synthesizing PspA/Rx1-EF5668 bound to the surface and directed C3 complement deposition on representative strains from all five PspA clades. Immunization with RASV synthesizing either protein protected mice against intraperitoneal challenge with Streptococcus pneumoniae WU2 strain (family 1), intravenous challenge with S. pneumoniae 3JYP2670 strain (family 2), and intranasal challenge with S. pneumoniae A66.1 (family 1). The PspA/Rx1-EF5668 protein elicited significantly greater protection than PspA/EF5668-Rx1, PspA/Rx1, or PspA/EF5668. These results indicate an RASV synthesizing a PspA fusion protein representing both PspA families constitutes an effective antipneumococcal vaccine, extending and enhancing protection against multiple strains of S. pneumoniae.
Collapse
|
46
|
Colino J, Chattopadhyay G, Sen G, Chen Q, Lees A, Canaday DH, Rubtsov A, Torres R, Snapper CM. Parameters underlying distinct T cell-dependent polysaccharide-specific IgG responses to an intact gram-positive bacterium versus a soluble conjugate vaccine. THE JOURNAL OF IMMUNOLOGY 2009; 183:1551-9. [PMID: 19570830 DOI: 10.4049/jimmunol.0900238] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
IgG anti-polysaccharide (PS) responses to both intact Streptococcus pneumoniae (Pn) and PS conjugate vaccines are dependent on CD4(+) T cells, B7-dependent costimulation, and CD40-CD40-ligand interactions. Nevertheless, the former response, in contrast to the latter, is mediated by an ICOS-independent, apoptosis-prone, extrafollicular pathway that fails to generate PS-specific memory. We show that pre-existing PS-specific Igs, the bacterial surface or particulation, selective recruitment of B cell subsets, or activation and recruitment of Pn protein-specific CD4(+) T cells do not account for the failure of Pn to generate PS-specific IgG memory. Rather, the data suggest that the critical factor may be the lack of covalent attachment of PS to protein in intact Pn, highlighting the potential importance of the physicochemical relationship of PS capsule with the underlying bacterial structure for in vivo induction of PS-specific Igs.
Collapse
Affiliation(s)
- Jesus Colino
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rohatgi S, Dutta D, Tahir S, Sehgal D. Molecular Dissection of Antibody Responses against Pneumococcal Surface Protein A: Evidence for Diverse DH-Less Heavy Chain Gene Usage and Avidity Maturation. THE JOURNAL OF IMMUNOLOGY 2009; 182:5570-85. [PMID: 19380805 DOI: 10.4049/jimmunol.0803254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/biosynthesis
- Antibodies, Bacterial/genetics
- Antibodies, Bacterial/metabolism
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibody Affinity/genetics
- Antibody Diversity/genetics
- Bacterial Proteins/immunology
- Base Sequence
- Epitopes, B-Lymphocyte/metabolism
- Female
- Gene Deletion
- Gene Rearrangement, B-Lymphocyte, Heavy Chain/genetics
- Hybridomas
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred CBA
- Molecular Sequence Data
- Multigene Family/immunology
- Streptococcus pneumoniae/immunology
Collapse
Affiliation(s)
- Soma Rohatgi
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | |
Collapse
|
48
|
Chattopadhyay G, Chen Q, Colino J, Lees A, Snapper CM. Intact bacteria inhibit the induction of humoral immune responses to bacterial-derived and heterologous soluble T cell-dependent antigens. THE JOURNAL OF IMMUNOLOGY 2009; 182:2011-9. [PMID: 19201854 DOI: 10.4049/jimmunol.0802615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During infections with extracellular bacteria, such as Streptococcus pneumoniae (Pn), the immune system likely encounters bacterial components in soluble form, as well as those associated with the intact bacterium. The potential cross-regulatory effects on humoral immunity in response to these two forms of Ag are unknown. We thus investigated the immunologic consequences of coimmunization with intact Pn and soluble conjugates of Pn-derived proteins and polysaccharides (PS) as a model. Coimmunization of mice with Pn and conjugate resulted in marked inhibition of conjugate-induced PS-specific memory, as well as primary and memory anti-protein Ig responses. Inhibition occurred with unencapsulated Pn, encapsulated Pn expressing different capsular types of PS than that present in the conjugate, and with conjugate containing protein not expressed by Pn, but not with 1-microm latex beads in adjuvant. Inhibition was long-lasting and occurred only during the early phase of the immune response, but it was not associated with tolerance. Pn inhibited the trafficking of conjugate from the splenic marginal zone to the B cell follicle and T cell area, strongly suggesting a potential mechanism for inhibition. These data suggest that during infection, bacterial-associated Ags are the preferential immunogen for antibacterial Ig responses.
Collapse
Affiliation(s)
- Gouri Chattopadhyay
- Department of Pathology, Uniformed Services University of Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | |
Collapse
|
49
|
Vasilevsky S, Chattopadhyay G, Colino J, Yeh TJ, Chen Q, Sen G, Snapper CM. B and CD4+ T-cell expression of TLR2 is critical for optimal induction of a T-cell-dependent humoral immune response to intact Streptococcus pneumoniae. Eur J Immunol 2009; 38:3316-26. [PMID: 19003933 DOI: 10.1002/eji.200838484] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
TLR2(-/-) mice immunized with Streptococcus pneumoniae (Pn) elicit normal IgM, but defective CD4(+) T-cell-dependent type 1 IgG isotype production, associated with a largely intact innate immune response. We studied the T-cell-dependent phosphorylcholine (PC)-specific IgG3 versus the T-cell-independent IgM response to Pn to determine whether TLR2 signals directly via the adaptive immune system. Pn-activated TLR2(-/-) BMDC have only a modest defect in cytokine secretion, undergo normal maturation, and when transferred into naïve WT mice elicit a normal IgM and IgG3 anti-PC response, relative to WT BMDC. Pn synergizes with BCR and TCR signaling for DNA synthesis in purified WT B and CD4(+)T cells, respectively, but is defective in cells lacking TLR2. Pn primes TLR2(-/-) mice for a normal CD4(+) T-cell IFN-gamma recall response. Notably, TLR2(-/-) B cells transferred into RAG-2(-/-) mice with WT CD4(+)T cells, or TLR2(-/-) CD4(+)T cells transferred into athymic nude mice, each elicit a defective IgG3, in contrast to normal IgM, anti-PC response relative to WT cells. These data are the first to demonstrate a major role for B-cell and CD4(+) T-cell expression of TLR2 for eliciting an anti-bacterial humoral immune response.
Collapse
Affiliation(s)
- Sam Vasilevsky
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Park SM, Ko HJ, Shim DH, Yang JY, Park YH, Curtiss R, Kweon MN. MyD88 signaling is not essential for induction of antigen-specific B cell responses but is indispensable for protection against Streptococcus pneumoniae infection following oral vaccination with attenuated Salmonella expressing PspA antigen. THE JOURNAL OF IMMUNOLOGY 2009; 181:6447-55. [PMID: 18941235 DOI: 10.4049/jimmunol.181.9.6447] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
TLRs directly induce innate host defense responses, but the mechanisms of TLR-mediated adaptive immunity remain subject to debate. In this study, we clarified a role of TLR-mediated innate immunity for induction of adaptive immunity by oral vaccination with a live recombinant attenuated Salmonella enteric serovar Typhimurium vaccine (RASV) strain expressing Streptococcus pneumoniae surface protein A (PspA) Ag. Of note, oral or intranasal vaccination with RASV expressing PspA resulted in identical or even significantly higher levels of PspA-specific IgG and IgA responses in the systemic and mucosal compartments of MyD88(-/-) mice of either BALB/c or C57BL/6 background when compared with those of wild-type mice. Although PspA-specific CD4(+) T cell proliferation in the MyD88(-/-) mice was minimal, depletion of CD4(+) T cells abolished PspA-specific IgG and IgA responses in the MyD88(-/-) mice of BALB/c background. Of the greatest interest, MyD88(-/-) mice that possessed high levels of PspA-specific IgG and IgA responses but minimal levels of CD4(+) T cell responses died earlier than nonvaccinated and vaccinated wild-type mice following i.v. or intranasal challenge with virulent S. pneumoniae. Taken together, these results suggest that innate immunity activated by MyD88 signals might not be necessary for Ag-specific Ab induction in both systemic and mucosal sites but is critical for protection following oral vaccination with attenuated Salmonella expressing PspA.
Collapse
Affiliation(s)
- Sung-Moo Park
- Mucosal Immunology Section, Laboratory Science Division, International Vaccine Institute, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|