1
|
Neal-Kluever A, Fisher J, Grylack L, Kakiuchi-Kiyota S, Halpern W. Physiology of the Neonatal Gastrointestinal System Relevant to the Disposition of Orally Administered Medications. Drug Metab Dispos 2018; 47:296-313. [DOI: 10.1124/dmd.118.084418] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
|
2
|
Downes NJ. Consideration of the Development of the Gastrointestinal Tract in the Choice of Species for Regulatory Juvenile Studies. Birth Defects Res 2017; 110:56-62. [PMID: 28872769 DOI: 10.1002/bdr2.1119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/25/2017] [Accepted: 08/02/2017] [Indexed: 11/08/2022]
Abstract
Although the rat is close to being the automatic choice for regulatory juvenile toxicity studies, there are several shortcomings in this model. Choosing a species should take into serious consideration the importance of gastrointestinal tract development in the period before weaning as this may have a major effect on exposure. A comparison of the anatomical changes in the stomach and small intestine of mini-pig and rat show that the mini-pig is a far closer model for man than is the rat, although there are a few unusual aspects of small intestinal development in the mini-pig. Considerations of the development of the gastrointestinal tract and choice of species have the potential to affect safety assessment and should be a prime consideration when planning an investigation. Birth Defects Research 110:56-62, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
|
3
|
Oliver WT, Wells JE. Lysozyme as an alternative to growth promoting antibiotics in swine production. J Anim Sci Biotechnol 2015; 6:35. [PMID: 26273432 PMCID: PMC4535397 DOI: 10.1186/s40104-015-0034-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/15/2015] [Indexed: 11/10/2022] Open
Abstract
Lysozyme is a naturally occurring enzyme found in bodily secretions such as tears, saliva, and milk. It functions as an antimicrobial agent by cleaving the peptidoglycan component of bacterial cell walls, which leads to cell death. Antibiotics are also antimicrobials and have been fed at subtherapeutic levels to swine as growth promoters. These compounds benefit swine producers by minimizing production losses by increasing feed efficiency and decreasing susceptibility to bacterial infection and disease. This manuscript reviews the knowledge of the effects of lysozyme, as compared to traditional subtherapeutic antibiotics in swine feed, on pig performance and health. It is clear from decades of studies that antibiotic use in feeds increases pig performance, particularly in the nursery. Similarly, lysozyme, as a feed additive, increases growth and feed efficiency. While the mechanism by which antibiotics and lysozyme improve performance is not clearly understood, both of these feed additives improve gastrointestinal health, improve the metabolic profile, and alter the gastrointestinal bacteria ecology of swine. Therefore, lysozyme is a suitable alternative to growth-promoting subtherapeutic antibiotic use in swine feed.
Collapse
Affiliation(s)
- W T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, P. O. Box 166, Clay Center, NE 68933-0166 USA
| | - J E Wells
- USDA, ARS, U.S. Meat Animal Research Center, P. O. Box 166, Clay Center, NE 68933-0166 USA
| |
Collapse
|
4
|
Oliver WT, Wells JE. Lysozyme as an alternative to antibiotics improves growth performance and small intestinal morphology in nursery pigs. J Anim Sci 2013; 91:3129-36. [PMID: 23572262 DOI: 10.2527/jas.2012-5782] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysozyme is a 1,4-β-N-acetylmuramidase that has antimicrobial properties. The objective of this experiment was to determine if lysozyme in nursery diets improved growth performance and gastrointestinal health of pigs weaned from the sow at 24 d of age. Two replicates of 96 pigs (192 total; 96 males, 96 females) were weaned from the sow at 24 d of age, blocked by BW and gender, and then assigned to 1 of 24 pens (4 pigs/pen). Each block was randomly assigned 1 of 3 dietary treatments for 28 d: control (two 14-d phases), control + antibiotics (carbadox/copper sulfate), or control + lysozyme (100 mg/kg diet). Pigs were weighed and blood sampled on d 0, 14, and 28 of treatment. Blood was analyzed for plasma urea nitrogen (PUN) and IgA. At 28 d, pigs were killed, and samples of jejunum and ileum were collected and fixed for intestinal morphology measurements. An additional jejunum sample was taken from the 12 pigs with the median BW per treatment to determine transepithelial electrical resistance (TER). Pigs consuming antibiotics or lysozyme grew at a faster rate than control pigs (0.433 ± 0.009 and 0.421 ± 0.008 vs. 0.398 ± 0.008 kg/d, respectively; P < 0.03), which resulted in heavier ending BW (20.00 ± 0.31, 19.8 ± 0.29, and 18.83 ± 0.32 kg, respectively; P < 0.03). Feed intake was not different (P > 0.48), but G:F was improved in pigs consuming antibiotics or lysozyme (0.756 ± 0.014, 0.750 ± 0.021, and 0.695 ± 0.019 kg/kg; P < 0.05). Immunoglobulin A (P < 0.03) and PUN (P < 0.01) increased during the experiment, regardless of dietary treatment (P > 0.48). Dietary treatment did not affect TER (P > 0.37), but gilts had lower TER compared with barrows (P < 0.04). No differences in villi height or crypt depth were observed in the ileum (P > 0.53). However, jejunum villi height was increased and crypt depth was decreased in pigs consuming antibiotics or lysozyme (P < 0.001), resulting in an increased villi height:crypt depth of 72% (P < 0.001). Thus, we concluded that lysozyme is a suitable alternative to carbadox/copper sulfate diets fed to pigs weaned from the sow at 24 d of age.
Collapse
Affiliation(s)
- W T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933-0166, USA.
| | | |
Collapse
|
5
|
Buddington RK, Sangild PT, Hance B, Huang EY, Black DD. Prenatal gastrointestinal development in the pig and responses after preterm birth. J Anim Sci 2012; 90 Suppl 4:290-8. [DOI: 10.2527/jas.54604] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- R. K. Buddington
- Department of Health and Sport Sciences, University of Memphis, Memphis, TN 38117
| | - P. T. Sangild
- Department of Human Nutrition, University of Copenhagen, Denmark, DK-1958
| | - B. Hance
- Department of Health and Sport Sciences, University of Memphis, Memphis, TN 38117
| | - E. Y. Huang
- Department of Surgery, LeBonheur Children's Hospital and the University of Tennessee Health Science Center, Le Bonheur Children's Hospital, Memphis, TN 38105
| | - D. D. Black
- Children's Foundation Research Institute at Le Bonheur Children's Hospital, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
6
|
Cano M, Ilundain AA. Ontogeny of D-mannose transport and metabolism in rat small intestine. J Membr Biol 2010; 235:101-8. [PMID: 20523973 DOI: 10.1007/s00232-010-9259-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 05/10/2010] [Indexed: 11/28/2022]
Abstract
Oral mannose therapy is used to treat congenital disorders of glycosylation caused by a deficiency in phosphomannose isomerase. The segmental distribution and ontogenic regulation of D-mannose transport, phosphomannose isomerase, and phosphomannose mutase is investigated in the small intestine of fetuses, newborn, suckling, 1-month-old, and adult rats. The small intestine transports D-mannose by both Na(+)-dependent and Na(+)-independent transport mechanisms. The activities of both systems normalized to intestinal weight peak at birth and thereafter they decreased. In all the ages tested, the activity of the Na(+)-independent mechanism was higher than that of the Na(+)/mannose transport system. At birth, the Na(+)-independent D-mannose transport in the ileum was significantly higher than that in jejunum. Phosphomannose isomerase activity and mRNA levels increased at 1 month, and the values in the ileum were lower than in jejunum. Phosphomannose mutase activity in jejunum increased during the early stages of life, and it decreased at 1 month old, as does the amount of mannose incorporated into glycoproteins, whereas in the ileum, they were not affected by age. The phosphomannose isomerase/phosphomannose mutase activity ratio decreased at birth and during the suckling period, and increased at 1 month old. In conclusion, intestinal D-mannose transport activity and metabolism were affected by ontogeny and intestinal segment.
Collapse
Affiliation(s)
- Mecedes Cano
- Departamento de Fisiología y Zoología, Universidad de Sevilla, Spain
| | | |
Collapse
|
7
|
|
8
|
Lentle RG, Mellor DJ, Hulls C, Birtles M, Moughan PJ, Stafford KJ. Changes in tissue nucleic acid content and mucosal morphology during intestinal development in pouch young of the tammar wallaby (Macropus eugenii eugenii). AUST J ZOOL 2007. [DOI: 10.1071/zo07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DNA and RNA content and the timing of development of various histological features in the small and large intestine of in-pouch tammar wallabies (Macropus eugenii eugenii) of various ages were measured. A significant decline in gut tissue DNA concentrations and increase in the RNA/DNA ratios over 300 days postpartum indicated that the early postnatal increase in gut tissue mass resulted largely from hypertrophy. Mean duodenal and ileal villus height and crypt depth were significantly greater for in-pouch young aged >100 days compared with those <100 days and were significantly greater in the duodenum than in the ileum. Goblet cells appeared more slowly during development and were fewer in number in the duodenal than in the colonic mucosa. The numbers of mucin-secreting duodenal goblet cells were greater in pouch young aged >100 days than in young aged <100 days. The colonic mucosa exhibited no villi or villus-like folds. Colonic crypt depth increased uniformly with age.
Collapse
|
9
|
The effect of mineral adsorbent in calf diet colostrum on the levels of serum immunoglobulin G, protein and glucose. ACTA VET-BEOGRAD 2007. [DOI: 10.2298/avb0703169f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
10
|
García-Miranda P, Durán JM, Peral MJ, Ilundáin AA. Developmental maturation and segmental distribution of rat small intestinal L-carnitine uptake. J Membr Biol 2006; 206:9-16. [PMID: 16440177 DOI: 10.1007/s00232-005-0769-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Indexed: 01/20/2023]
Abstract
Oral L-carnitine supplementation is commonly used in sports nutrition and in medicine; however, there is controversy regarding the mechanisms that mediate intestinal L-carnitine transport. We have previously reported that the Na(+)/L-carnitine transporter OCTN2 is present in the small intestinal apical membrane. Herein we aimed to find out if this step of intestinal L-carnitine absorption is ontogenically regulated, and if so, to determine the molecular mechanism(s) involved. L-[(3)H]-Carnitine uptake was measured in the jejunum and ileum of fetuses (E17 and E21), newborn (1 day-old), suckling (15 day-old), weaning (1 month-old) and adult (2 and 6 month-old) Wistar rats. Both, Na(+) -dependent and Na(+) -independent L-carnitine uptake rates, normalized to intestinal weight, significantly increased during the late gestation period, and then declined during the suckling period. After weaning, the rate of Na(+) -dependent L-carnitine uptake is no longer measurable. In E21- fetuses and newborn rats, L-carnitine uptake was higher in the ileum than in the jejunum. The decline in Na(+) -dependent L-carnitine uptake with maturation was mediated via a decrease in the V(max) of the uptake process with no change in its apparent K(m). Semi-quantitative RT-PCR assays showed that OCTN2 mRNA levels were significantly higher in E21-fetuses and newborn rats compared to suckling rats, which were in turn significantly higher than that in adult rats. Neither retardation of weaning nor L-carnitine supplementation prevented the down-regulation of Na(+)/L-carnitine transport activity. The results demonstrate for the first time that intestinal Na(+) -dependent L-carnitine uptake activity is under genetic regulation at the transcriptional level.
Collapse
Affiliation(s)
- P García-Miranda
- Depto. Fisiología y Zoología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
11
|
Lu S, Yao Y, Cheng X, Mitchell S, Leng S, Meng S, Gallagher JW, Shelness GS, Morris GS, Mahan J, Frase S, Mansbach CM, Weinberg RB, Black DD. Overexpression of apolipoprotein A-IV enhances lipid secretion in IPEC-1 cells by increasing chylomicron size. J Biol Chem 2005; 281:3473-83. [PMID: 16338933 DOI: 10.1074/jbc.m502501200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intestinal apolipoprotein A-IV expression is highly regulated by dietary lipid in newborn swine, suggesting a role in lipid absorption. Constitutive overexpression of apoA-IV in newborn swine enterocytes enhances basolateral secretion of triacylglycerol (TG) in TG-rich lipoproteins 4.9-fold (Lu, S., Yao, Y., Meng, S., Cheng, X., and Black, D. D. (2002) J. Biol. Chem. 277, 31929-31937). To investigate the mechanism of this enhancement, IPEC-1 cells were transfected with a tetracycline-regulatable expression system (Tet-On). In cells incubated with oleic acid, a dose response relationship was observed between medium doxycycline concentration and basolateral apoA-IV and TG secretion. Similarly regulated expression of apoA-I did not enhance lipid secretion. The mean diameter of TG-rich lipoproteins secreted from doxycycline-treated cells was larger than from untreated cells (87.0 nm versus 53.4 nm). Basolateral apoB secretion decreased. Using the same expression system, full-length human apoA-IV (376 amino acids); a "pig-like" human apoA-IV, lacking the C-terminal EQQQ repeats (361 amino acids); and a "chicken-like" apoA-IV, further truncated to 343 amino acids, were expressed in IPEC-1 cells. With increasing protein secretion, cells expressing the full-length human apoA-IV displayed a 2-fold increase in TG secretion; in sharp contrast, cells expressing the pig-like human apoA-IV displayed a 25-fold increase in TG secretion and a 27-fold increase in lipoprotein diameter. When human apoA-IV was further truncated to yield a chicken-like protein, TG secretion was inhibited. We conclude that overexpression of swine apoA-IV enhances basolateral TG secretion in a dose-dependent manner by increasing the size of secreted lipoproteins. These data suggest that the region in the human apoA-IV protein from residues 344 to 354 is critical to its ability to enhance lipid secretion, perhaps by enabling the packaging of additional core TG into chylomicron particles. The EQQQ-rich region may play an inhibitory or modulatory role in chylomicron packaging in humans.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Apolipoproteins/chemistry
- Apolipoproteins A/biosynthesis
- Apolipoproteins A/physiology
- Blotting, Western
- Cell Line
- Chickens
- Chylomicrons/chemistry
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Doxycycline/metabolism
- Doxycycline/pharmacology
- Electrophoresis, Polyacrylamide Gel
- Humans
- Immunoprecipitation
- Intestinal Mucosa/metabolism
- Intestines/cytology
- Lipid Metabolism
- Lipids/chemistry
- Lipoproteins/metabolism
- Microscopy, Electron
- Microscopy, Electron, Transmission
- Molecular Sequence Data
- Mutation
- Oleic Acid/chemistry
- Oleic Acid/metabolism
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Swine
- Tetracycline/pharmacology
- Transcriptional Activation
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Song Lu
- Children's Foundation Research Center at Le Bonheur Children's Medical Center and Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee 38103, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Walthall K, Cappon GD, Hurtt ME, Zoetis T. Postnatal development of the gastrointestinal system: a species comparison. ACTA ACUST UNITED AC 2005; 74:132-56. [PMID: 15834902 DOI: 10.1002/bdrb.20040] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Karen Walthall
- Aclairo Pharmaceutical Development Group, Inc., Sterling, Virginia, USA
| | | | | | | |
Collapse
|
13
|
Peral MJ, Gálvez M, Soria ML, Ilundáin AA. Developmental decrease in rat small intestinal creatine uptake. Mech Ageing Dev 2004; 126:523-30. [PMID: 15722111 DOI: 10.1016/j.mad.2004.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2004] [Indexed: 11/25/2022]
Abstract
Phosphocreatine is an energy buffer and transducer in the heart, the brain and the skeletal muscle. Recently, we have demonstrated the presence of the Na+/Cl-/creatine transporter at the apical membrane of the small intestinal epithelium. Herein the ontogeny and segmental distribution of rat intestinal creatine transport activity are investigated. [14C]-Creatine uptake was measured in the jejunum and ileum of 16 day gestation foetuses, newborn, suckling, weaning, 1-, 2-, 7- and 12-month-old (adult) rats. Creatine content in amniotic fluid, in rat and commercial milk and in rat chow, was measured by HPLC. NaCl-dependent creatine uptake was maximal in newborn rats and, in all the ages tested, higher in the ileum than in the jejunum. In the latter, NaCl-dependent creatine uptake was undetectable after weaning. Kinetic studies revealed that the jejunum and ileum have the same creatine uptake system, and that maturation decreases its Vmax but not the apparent Km. Maintenance of the pups on a commercial milk diet supplemented with creatine prevented the ileal periweaning decline in creatine uptake activity, but not that in the jejunum. In 1-month-old rats, supplementation with creatine increased ileal, but not jejunal, creatine uptake. The results demonstrate for the first time that: (i) creatine uptake along the length of the small intestine is mediated by the same transport system, (ii) the activity of this transport system changes in a specific manner with maturation and (iii) these changes appear to be genetically programmed and controlled by the intestinal creatine content.
Collapse
Affiliation(s)
- M J Peral
- Departamento de Fisiología y Zoología, Facultad de Farmacia, Universidad de Sevilla, C/Garcia Gonzalez no. 2, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
14
|
Sangild P, Xu R, Trahair J. Chapter 3 Maturation of intestinal function: The role of cortisol and birth. BIOLOGY OF GROWING ANIMALS 2002. [DOI: 10.1016/s1877-1823(09)70119-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Buddington RK, Elnif J, Puchal-Gardiner AA, Sangild PT. Intestinal apical amino acid absorption during development of the pig. Am J Physiol Regul Integr Comp Physiol 2001; 280:R241-7. [PMID: 11124157 DOI: 10.1152/ajpregu.2001.280.1.r241] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amino acids originating from the diet are the principal metabolic fuels for the small intestine, and although the developing intestine is exposed to dramatic changes in the types and amounts of protein, there is little known about rates of amino acid absorption across the apical membrane during development. Therefore, rates of absorption were measured for five amino acids that are substrates for the acidic (aspartate), basic (lysine), neutral (leucine and methionine), and imino (proline) amino acid carriers using intact tissues from the proximal, mid-, and distal small intestines of pigs ranging in age from 90% of gestation to 42 days after birth (12 days after weaning). Rates of absorption (sum of carrier-mediated and apparent diffusion) were highest at birth (except for proline) and declined by an average of 30% during the first 24 h of suckling. There were continuing declines for leucine, methionine, and proline but not for aspartate and lysine. Due to rapid growth of the intestine, absorption capacities for all amino acids increased faster than predicted from gains in metabolic mass. Regional differences for rates of absorption were not detected until after birth, and only for aspartate and proline. Maximum rates of saturable absorption (nmol. min(-1). mg tissue(-1)) by the midintestine increased during the last 10% of gestation, were highest at birth, and then declined. The contribution of apparent diffusion to amino acid absorption was lowest at birth, then increased after onset of suckling.
Collapse
Affiliation(s)
- R K Buddington
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi 39762-5759, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Considerable progress has been made over the last decade in the understanding of mechanisms responsible for the ontogenetic changes of mammalian intestine. This review presents the current knowledge about the development of intestinal transport function in the context of intestinal mucosa ontogeny. The review predominantly focuses on signals that trigger and/or modulate the developmental changes of intestinal transport. After an overview of the proliferation and differentiation of intestinal mucosa, data about the bidirectional traffic (absorption and secretion) across the developing intestinal epithelium are presented. The largest part of the review is devoted to the description of developmental patterns concerning the absorption of nutrients, ions, water, vitamins, trace elements, and milk-borne biologically active substances. Furthermore, the review examines the development of intestinal secretion that has a variety of functions including maintenance of the fluidity of the intestinal content, lubrication of mucosal surface, and mucosal protection. The age-dependent shifts of absorption and secretion are the subject of integrated regulatory mechanisms, and hence, the input of hormonal, nervous, immune, and dietary signals is reviewed. Finally, the utilization of energy for transport processes in the developing intestine is highlighted, and the interactions between various sources of energy are discussed. The review ends with suggestions concerning possible directions of future research.
Collapse
Affiliation(s)
- J Pácha
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
17
|
Shen WH, Xu RJ. Gastrointestinal stability and absorption of insulin in suckling pigs. Comp Biochem Physiol A Mol Integr Physiol 2000; 125:389-401. [PMID: 10794968 DOI: 10.1016/s1095-6433(00)00169-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Stability and absorption of orally administered fluorescein-isothiocyanate labeled insulin (FITC-insulin) in the gastrointestinal (GI) tract were investigated in newborn and 3-day-old pigs. The uptake of FITC-insulin by the intestinal epithelial cells was visualized using confocal laser scanning microscopy. Following oral administration, 3 h later 56 and 88% of orally administered fluorescence was found in the GI tract in newborn and 3-day-old piglets, respectively. Chromatographic analysis revealed that 15-37% of fluorescence recovered from the gastric and proximal intestinal contents was eluted in the void volume of a Sephadex G-25 column. It was also observed that oral administration of FITC-insulin at a dose of 100 nmol/kg body weight led to a significant decrease in blood glucose in newborn pigs (P<0. 05) but not in 3-day-old pigs. Microscopic examination showed that FITC-insulin was taken up via the vesicular transport mechanism throughout the whole small intestine but the ileum appeared to be a preferred site for FITC-insulin transport in newborn pigs. In 3-day-old pigs, the uptake of FITC-insulin occurred only in the distal part of the small intestine. These findings suggest that milk-borne insulin may partially survive in the GI lumen and subsequently act on the gastrointestinal tract in suckling piglets, while GI absorption of milk-borne insulin is limited to newborn pigs.
Collapse
Affiliation(s)
- W H Shen
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | | |
Collapse
|
18
|
Allemand D, Furla P, Bénazet-Tambutté S. Mechanisms of carbon acquisition for endosymbiont photosynthesis in Anthozoa. ACTA ACUST UNITED AC 1998. [DOI: 10.1139/b98-086] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In contrast to free-living photoautotrophs, endosymbiontic dinoflagellates of the genus Symbiodinium must absorb their inorganic carbon from the cytoplasm of their host anthozoan cell rather then from seawater. The purpose of this paper is to review the present knowledge on the source of dissolved inorganic carbon supply for endosymbiont photosynthesis and the transport mechanisms involved. Symbiodinium spp., generally known as zooxanthellae, live within the endodermal cells of their hosts, corals and sea anemones. They are separated from the surrounding seawater by the host tissues (oral ectodermal cell layer, collagenous basal membrane, endodermal cell, and perisymbiotic vesicles). The symbiotic association is therefore faced with the problem of delivering dissolved inorganic carbon to an endodermal site of consumption from an, essentially, ectodermal site of availability. Studies using original methods demonstrated that neither the internal medium (coelenteric fluid) nor paracellular diffusion could supply enough dissolved inorganic carbon for endosymbiont photosynthesis. A transepithelial active mechanism must be present in the host tissues to maintain the photosynthetic rate under saturating irradiance. A pharmacological approach led to propose a working model of dissolved inorganic carbon transport from seawater to zooxanthellae. This vectorial transport generates a pH gradient across the epithelium. The role of this gradient as well as the physiological adaptation of Symbiodinium spp. to symbiotic life are discussed.Key words: carbon concentrating mechanism, anthozoan, dinoflagellates, anion transport, symbiosis, transepithelial transport.
Collapse
|
19
|
Schröder B, Hattenhauer O, Breves G. Phosphate transport in pig proximal small intestines during postnatal development: lack of modulation by calcitriol. Endocrinology 1998; 139:1500-7. [PMID: 9528927 DOI: 10.1210/endo.139.4.5922] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The role of calcitriol in the intestinal absorption of inorganic phosphate (Pi) during postnatal development was studied in newborn [<1 week postpartum (pp)], suckling (3-4 weeks pp), and weaned (>6 weeks pp) control piglets (con) and piglets suffering from inherited calcitriol deficiency (def). In addition, a number of def piglets were treated with vitamin D3 (def-D3). Regardless of age, plasma calcitriol concentrations in def piglets were unphysiologically low (16-21 pg/ml) and differed significantly from those in respective con animals (60-69 pg/ml) and vitamin D3-treated def piglets (50-56 pg/ml). However, newborn and suckling def piglets had normal Ca (approximately 3.0 mmol/liter) and Pi (approximately 2.8 mmol/liter) plasma levels. Def piglets became hypocalcemic (1.9 mmol/liter) and hypophosphatemic (1.9 mmol/liter) between 4-6 weeks pp. Treatment with vitamin D3 significantly increased plasma Ca (3.2 mmol/liter) and Pi (2.7 mmol/liter) levels in weaned def animals. Regardless of calcitriol status, net Pi flux rates (active Pi absorption, as determined with the in vitro Ussing-chamber technique) from the upper small intestines was maximal at birth [170-224 nmol/(cm2 x h)] and decreased by approximately 80% during the first week of life before remaining constant [30-50 nmol/(cm2 x h)] during the following development. In weaned def piglets, net Pi flux rates were significantly lower by about 80% compared with those in con animals. Treatment of def piglets with vitamin D3 had no effect in newborn and suckling animals but reconstituted net Pi flux rates to normal values at weaning age. Age-dependent and calcitriol-mediated changes in net Pi flux rates were paralleled by respective maximum velocity values of Na+-dependent Pi uptake across the brush border membrane of the enterocytes (newborn piglets, 1.9-2.2 nmol/(mg protein 10 sec); suckling piglets, 0.4-0.6 nmol/(mg protein x 10 sec); weaned piglets, 0.7, 0.3, and 0.7 nmol/(mg protein x 10 sec) in con, def, and def-D3 animals, respectively). These findings suggest that the apical Pi uptake represents the major rate-limiting step of the overall transepithelial Pi transport. At weaning, Na+/Pi transport across the intestinal brush-border membrane is clearly stimulated by calcitriol, but no significant effects of age or calcitriol on the Km values (0.5-0.7 mmol/liter) were observed. In conclusion, our findings reveal calcitriol-independent mechanisms for active intestinal Pi absorption during the neonatal and suckling periods. The onset of the classical calcitriol-dependent mechanism for active intestinal Pi absorption does not occur until weaning.
Collapse
Affiliation(s)
- B Schröder
- Physiologisches Institut, Tierärztliche Hochschule Hannover, Germany.
| | | | | |
Collapse
|
20
|
Zhang H, Malo C, Buddington RK. Suckling induces rapid intestinal growth and changes in brush border digestive functions of newborn pigs. J Nutr 1997; 127:418-26. [PMID: 9082025 DOI: 10.1093/jn/127.3.418] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The interplay between suckling, intestinal growth and brush-border membrane functions is critical during the perinatal period. The present study investigates changes in intestinal dimensions, activities of four brush border membrane hydrolases (lactase, sucrase, maltase and aminooligopeptidase) and rates of sugar and amino acid uptake by intact tissues and brush border membrane vesicles during the first 24 h of suckling. Total intestinal weight, mucosal weight and protein content increased 58%, 80% and 126% (P < 0.05) during the first 6 h of suckling; length and surface area did not increase. Total mucosal DNA content was 4.6-fold higher at 24 h after birth, with the rate of increase differing among intestinal regions. Hydrolytic capacities of the entire small intestine increased, more so for homogenates than for brush border membrane vesicles, and more for lactase relative to the other hydrolases studied. Rates of nutrient transport declined, especially for brush border membrane vesicles, for proximal and mid-intestine relative to distal intestine, and for glucose relative to galactose and amino acids. We conclude that 1) changes in brush border membrane digestive functions coincide with rapid intestinal growth, with postnatal patterns varying among hydrolases, transporters and regions; 2) insertion into the brush border membrane, not synthesis, limits the postnatal increase of hydrolase activity; and 3) despite declines in specific activity, hydrolytic and glucose transport capacities of the entire intestine remained stable or increased, and exceeded estimated dietary loads because of intestinal growth.
Collapse
Affiliation(s)
- H Zhang
- Department of Biological Sciences, Mississippi State University, 39762-5759, USA
| | | | | |
Collapse
|
21
|
Munck LK, Grøndahl ML, Skadhauge E. beta-Amino acid transport in pig small intestine in vitro by a high-affinity, chloride-dependent carrier. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1238:49-56. [PMID: 7654750 DOI: 10.1016/0005-2736(95)00107-e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study describes unidirectional influx of amino acids and D-glucose across the small intestinal brush-border membrane of fully weaned eight week old pigs. Influx is minimal in the duodenum and maximal in the distal and/or mid small intestine. Influx of beta-alanine, taurine and N-methyl-aminoisobutyric acid is chloride-dependent. The activation stoichiometry for taurine influx is 1.0 +/- 0.2 chloride/2.4 +/- 0.3 sodium/1 taurine. Influx of D-glucose, lysine, glycine and glutamate is chloride-independent. An ABC test demonstrates a common beta-amino acid carrier: (a) the apparent affinity constant K1/2Taurine is 44 +/- 13 microM (means +/- S.D.) and the inhibitory constant (KiTaurine) against beta-alanine influx is 41 +/- 5 microM (means +/- S.E.). (b) K1/2beta-alanine is 97 +/- 23 microM and Kibeta-alanine against taurine influx is 160 +/- 22 microM. (c) KiHypotaurine against taurine and beta-alanine influx is 43 +/- 4 (n = 7) and 22 +/- 5 microM (n = 7), respectively. In conclusion, a high affinity, low capacity, sodium- and chloride-dependent carrier of beta-amino acids is present in pig small intestine.
Collapse
Affiliation(s)
- L K Munck
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
22
|
Munck LK. Chloride-dependent amino acid transport in the small intestine: occurrence and significance. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:195-213. [PMID: 7640296 DOI: 10.1016/0304-4157(95)00005-c] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The unidirectional influx of amino acids, D-glucose and ions across the brush-border membrane of the small intestine of different species has been measured in vitro with emphasis on characterization of topographic and species differences and on chloride dependence. The regional differences in transport along the small intestine are outlined and shown to be caused by variation in transport capacity, while the apparent affinity constants are unchanged. Rabbit small intestine is unique by exhibiting maximal rates of transport in the distal ileum and a very steep decline in the oral direction from where tissues are normally harvested for preparation of brush-border membrane vesicles. Transport in the guinea pig and rat is much more constant throughout the small intestine. Since the capacity of nutrient carriers is regulated by their substrates it is possible that bacterial breakdown of peptides and proteins in rabbit distal ileum increases the concentration of amino acids leading to an upregulation of the carriers. Chloride dependence is a characteristics of the carrier rather than the transported amino acid, and is used to improve the classification of amino acid carriers in rabbit small intestine. In this species the imino acid carrier, the beta-amino acid carrier, and the beta-alanine carrier, which should be renamed the B0,+ carrier, are chloride-dependent. The steady-state mucosal uptake of classical substrates for these carriers in biopsies from the human duodenum is also chloride-dependent. The carrier of beta-amino acids emerges as ubiquitous and chloride-dependent, and evidence of cotransport with both sodium and chloride is reviewed. A sodium:chloride:2-methyl-aminoisobutyric acid coupling stoichiometry of approx. 2:1:1 is suggested by ion activation studies. Direct measurements of coupled ion fluxes in rabbit distal ileum confirm that sodium, chloride and 2-methyl-aminoisobutyric acid are cotransported on the imino acid carrier with an identical influx stoichiometry. Control experiments and reference to the literature on the electrophysiology of the small intestine exclude alterations of the membrane potential as a feasible explanation of the chloride dependence. Thus, it is concluded that chloride is cotransported with both sodium and 2-methyl-aminoisobutyric acid across the brush-border membrane of rabbit distal ileum.
Collapse
Affiliation(s)
- L K Munck
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
23
|
Posho L, Darcy-Vrillon B, Morel MT, Cherbuy C, Blachier F, Duée PH. Control of glucose metabolism in newborn pig enterocytes: evidence for the role of hexokinase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1224:213-20. [PMID: 7981235 DOI: 10.1016/0167-4889(94)90193-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The objective of the present work was to identify the regulatory step(s) in the post-natal development of a high glycolytic capacity previously evidenced in newborn pig enterocytes (Darcy-Vrillon et al. (1994) Pediat. Res., 36, 175-181. Glucose entry via the Na+/glucose cotransporter, estimated by the uptake of the non-metabolizable analogue methyl alpha-D-[U-14C]glucopyranoside, slightly decreased between birth and 2 days of sucking. The flux of glucose metabolized into the pentose cycle pathway slightly increased but could not account for the 3-fold increase observed in the glycolytic capacity. Whereas the maximal activity of 6-phosphofructo-1-kinase did not change between stages, there was a significant increase in hexokinase activity as well as in the flux of glucose phosphorylated. These findings suggest that the stimulation of glucose phosphorylation through hexokinase is the key event leading to an increased glycolytic capacity of small intestinal cells at the onset of sucking.
Collapse
Affiliation(s)
- L Posho
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, CRJ, Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
The responsiveness of the rat gustatory system to monochloride salts changes during development. Neurophysiological recordings in the chorda tympani indicate that a) the taste responses to NaCl and KCl in early postnatal rats are small relative to NH4Cl, b) both salts become more potent stimuli as the animal matures, and c) the developmental increase is accompanied by an increase in sensitivity of the NaCl response to the sodium transport blocker amiloride. We measured ion transport properties of in vitro tongue epithelia from Wistar rats. When the tissue is mounted in an Ussing chamber, the short-circuit current responses to NaCl and KCl are small in the neonatal rat and increase during development in postweaning and adult animals. Amiloride sensitivity of the NaCl response also increases with age. This study confirms that increased sensitivity of the rat gustatory system to NaCl with age reflects changes in the peripheral membranes. The results support hypothesis that the increased sensitivity is due to amiloride-sensitive membrane components being added or becoming functional.
Collapse
Affiliation(s)
- A M Settles
- School of Life and Health Sciences, University of Delaware, Newark 19716
| | | |
Collapse
|
25
|
Croom WJ, Bird AR, Black BL, McBride BW. Manipulation of gastrointestinal nutrient delivery in livestock. J Dairy Sci 1993; 76:2112-24. [PMID: 8345134 DOI: 10.3168/jds.s0022-0302(93)77546-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Discussed herein are the constraints of nutrient delivery from the gastrointestinal tract that are placed on postabsorptive synthetic processes in highly selected strains of domestic livestock or livestock treated with growth promotants exogenously or via transgenic manipulation. Emphasis is placed on the discussion of recent advances in the knowledge of the regulation and manipulation of digestion and the absorption by the intestinal epithelium. Slaframine, a muscarinic exocrine secretagogue with a high affinity for the gastrointestinal tract, and epidermal growth factor may have practical potential for the manipulation of digestion and absorption, respectively. Special consideration is given to energetic considerations that must accompany any manipulation of gastrointestinal function. Down-regulation and up-regulation of mechanisms must be equally considered as this area is explored further.
Collapse
Affiliation(s)
- W J Croom
- Department of Animal Science and Department of Zoology, North Carolina State University, Raleigh 27695
| | | | | | | |
Collapse
|
26
|
|