1
|
Pratt BG, Lee SYJ, Chou GM, Tuthill JC. Miniature linear and split-belt treadmills reveal mechanisms of adaptive motor control in walking Drosophila. Curr Biol 2024; 34:4368-4381.e5. [PMID: 39216486 PMCID: PMC11461123 DOI: 10.1016/j.cub.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
To navigate complex environments, walking animals must detect and overcome unexpected perturbations. One technical challenge when investigating adaptive locomotion is measuring behavioral responses to precise perturbations during naturalistic walking; another is that manipulating neural activity in sensorimotor circuits often reduces spontaneous locomotion. To overcome these obstacles, we introduce miniature treadmill systems for coercing locomotion and tracking 3D kinematics of walking Drosophila. By systematically comparing walking in three experimental setups, we show that flies compelled to walk on the linear treadmill have similar stepping kinematics to freely walking flies, while kinematics of tethered walking flies are subtly different. Genetically silencing mechanosensory neurons altered step kinematics of flies walking on the linear treadmill across all speeds. We also discovered that flies can maintain a forward heading on a split-belt treadmill by specifically adapting the step distance of their middle legs. These findings suggest that proprioceptive feedback contributes to leg motor control irrespective of walking speed and that the fly's middle legs play a specialized role in stabilizing locomotion.
Collapse
Affiliation(s)
- Brandon G Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Su-Yee J Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Grant M Chou
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Lecomte CG, Mari S, Audet J, Yassine S, Merlet AN, Morency C, Harnie J, Beaulieu C, Gendron L, Frigon A. Neuromechanical Strategies for Obstacle Negotiation during Overground Locomotion following Incomplete Spinal Cord Injury in Adult Cats. J Neurosci 2023; 43:5623-5641. [PMID: 37474307 PMCID: PMC10401655 DOI: 10.1523/jneurosci.0478-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023] Open
Abstract
Following incomplete spinal cord injury in animals, including humans, substantial locomotor recovery can occur. However, functional aspects of locomotion, such as negotiating obstacles, remains challenging. We collected kinematic and electromyography data in 10 adult cats (5 males, 5 females) before and at weeks 1-2 and 7-8 after a lateral mid-thoracic hemisection on the right side of the cord while they negotiated obstacles of three different heights. Intact cats always cleared obstacles without contact. At weeks 1-2 after hemisection, the ipsilesional right hindlimb contacted obstacles in ∼50% of trials, triggering a stumbling corrective reaction or absent responses, which we termed Other. When complete clearance occurred, we observed exaggerated ipsilesional hindlimb flexion when crossing the obstacle with contralesional Left limbs leading. At weeks 7-8 after hemisection, the proportion of complete clearance increased, Other responses decreased, and stumbling corrective reactions remained relatively unchanged. We found redistribution of weight support after hemisection, with reduced diagonal supports and increased homolateral supports, particularly on the left contralesional side. The main neural strategy for complete clearance in intact cats consisted of increased knee flexor activation. After hemisection, ipsilesional knee flexor activation remained, but it was insufficient or more variable as the limb approached the obstacle. Intact cats also increased their speed when stepping over an obstacle, an increase that disappeared after hemisection. The increase in complete clearance over time after hemisection paralleled the recovery of muscle activation patterns or new strategies. Our results suggest partial recovery of anticipatory control through neuroplastic changes in the locomotor control system.SIGNIFICANCE STATEMENT Most spinal cord injuries (SCIs) are incomplete and people can recover some walking functions. However, the main challenge for people with SCIs that do recover a high level of function is to produce a gait that can adjust to everyday occurrences, such as turning, stepping over an obstacle, etc. Here, we use the cat model to answer two basic questions: How does an animal negotiate an obstacle after an incomplete SCI and why does it fail to safely clear it? We show that the inability to clear an obstacle is because of improper activation of muscles that flex the knee. Animals recover a certain amount of function thanks to new strategies and changes within the nervous system.
Collapse
Affiliation(s)
- Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Caroline Morency
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
3
|
Audet J, Yassine S, Lecomte CG, Mari S, Soucy F, Morency C, Merlet AN, Harnie J, Beaulieu C, Gendron L, Rybak IA, Prilutsky BI, Frigon A. Spinal Sensorimotor Circuits Play a Prominent Role in Hindlimb Locomotor Recovery after Staggered Thoracic Lateral Hemisections but Cannot Restore Posture and Interlimb Coordination during Quadrupedal Locomotion in Adult Cats. eNeuro 2023; 10:ENEURO.0191-23.2023. [PMID: 37328297 PMCID: PMC10288532 DOI: 10.1523/eneuro.0191-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Spinal sensorimotor circuits interact with supraspinal and peripheral inputs to generate quadrupedal locomotion. Ascending and descending spinal pathways ensure coordination between the forelimbs and hindlimbs. Spinal cord injury (SCI) disrupts these pathways. To investigate the control of interlimb coordination and hindlimb locomotor recovery, we performed two lateral thoracic hemisections on opposite sides of the cord (right T5-T6 and left T10-T11) at an interval of approximately two months in eight adult cats. In three cats, the spinal cord was transected at T12-T13. We collected electromyography (EMG) and kinematic data during quadrupedal and hindlimb-only locomotion before and after spinal lesions. We show that (1) cats spontaneously recover quadrupedal locomotion following staggered hemisections but require balance assistance after the second one, (2) coordination between the forelimbs and hindlimbs displays 2:1 patterns (two cycles of one forelimb within one hindlimb cycle) and becomes weaker and more variable after both hemisections, (3) left-right asymmetries in hindlimb stance and swing durations appear after the first hemisection and reverse after the second, and (4) support periods reorganize after staggered hemisections to favor support involving both forelimbs and diagonal limbs. Cats expressed hindlimb locomotion the day following spinal transection, indicating that lumbar sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered hemisections. These results reflect a series of changes in spinal sensorimotor circuits that allow cats to maintain and recover some level of quadrupedal locomotor functionality with diminished motor commands from the brain and cervical cord, although the control of posture and interlimb coordination remains impaired.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Félix Soucy
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Caroline Morency
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA 19129
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
4
|
Audet J, Yassine S, Lecomte CG, Mari S, Félix S, Caroline M, Merlet AN, Harnie J, Beaulieu C, Gendron L, Rybak IA, Prilutsky BI, Frigon A. Spinal sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered thoracic lateral hemisections but cannot restore posture and interlimb coordination during quadrupedal locomotion in adult cats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533936. [PMID: 36993268 PMCID: PMC10055434 DOI: 10.1101/2023.03.23.533936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Spinal sensorimotor circuits interact with supraspinal and peripheral inputs to generate quadrupedal locomotion. Ascending and descending spinal pathways ensure coordination between the fore-and hindlimbs. Spinal cord injury disrupts these pathways. To investigate the control of interlimb coordination and hindlimb locomotor recovery, we performed two lateral thoracic hemisections placed on opposite sides of the cord (right T5-T6 and left T10-T11) at an interval of approximately two months in eight adult cats. In three cats, we then made a complete spinal transection caudal to the second hemisection at T12-T13. We collected electromyography and kinematic data during quadrupedal and hindlimb-only locomotion before and after spinal lesions. We show that 1) cats spontaneously recover quadrupedal locomotion following staggered hemisections but require balance assistance after the second one, 2) coordination between the fore-and hindlimbs displays 2:1 patterns and becomes weaker and more variable after both hemisections, 3) left-right asymmetries in hindlimb stance and swing durations appear after the first hemisection and reverse after the second, and 4) support periods reorganize after staggered hemisections to favor support involving both forelimbs and diagonal limbs. Cats expressed hindlimb locomotion the day following spinal transection, indicating that lumbar sensorimotor circuits play a prominent role in hindlimb locomotor recovery after staggered hemisections. These results reflect a series of changes in spinal sensorimotor circuits that allow cats to maintain and recover some level of quadrupedal locomotor functionality with diminished motor commands from the brain and cervical cord, although the control of posture and interlimb coordination remains impaired. Significance Statement Coordinating the limbs during locomotion depends on pathways in the spinal cord. We used a spinal cord injury model that disrupts communication between the brain and spinal cord by sectioning half of the spinal cord on one side and then about two months later, half the spinal cord on the other side at different levels of the thoracic cord in cats. We show that despite a strong contribution from neural circuits located below the second spinal cord injury in the recovery of hindlimb locomotion, the coordination between the forelimbs and hindlimbs weakens and postural control is impaired. We can use our model to test approaches to restore the control of interlimb coordination and posture during locomotion after spinal cord injury.
Collapse
Affiliation(s)
- Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Soucy Félix
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Morency Caroline
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19129, USA
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
5
|
Lecomte CG, Mari S, Audet J, Merlet AN, Harnie J, Beaulieu C, Abdallah K, Gendron L, Rybak IA, Prilutsky BI, Frigon A. Modulation of the gait pattern during split-belt locomotion after lateral spinal cord hemisection in adult cats. J Neurophysiol 2022; 128:1593-1616. [PMID: 36382895 PMCID: PMC9744650 DOI: 10.1152/jn.00230.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Most previous studies investigated the recovery of locomotion in animals and people with incomplete spinal cord injury (SCI) during relatively simple tasks (e.g., walking in a straight line on a horizontal surface or a treadmill). We know less about the recovery of locomotion after incomplete SCI in left-right asymmetric conditions, such as turning or stepping along circular trajectories. To investigate this, we collected kinematic and electromyography data during split-belt locomotion at different left-right speed differences before and after a right thoracic lateral spinal cord hemisection in nine adult cats. After hemisection, although cats still performed split-belt locomotion, we observed several changes in the gait pattern compared with the intact state at early (1-2 wk) and late (7-8 wk) time points. Cats with larger lesions showed new coordination patterns between the fore- and hindlimbs, with the forelimbs taking more steps. Despite this change in fore-hind coordination, cats maintained consistent phasing between the fore- and hindlimbs. Adjustments in cycle and phase (stance and swing) durations between the slow and fast sides allowed animals to maintain 1:1 left-right coordination. Periods of triple support involving the right (ipsilesional) hindlimb decreased in favor of quad support and triple support involving the other limbs. Step and stride lengths decreased with concurrent changes in the right fore- and hindlimbs, possibly to avoid interference. The above adjustments in the gait pattern allowed cats to retain the ability to locomote in asymmetric conditions after incomplete SCI. We discuss potential plastic neuromechanical mechanisms involved in locomotor recovery in these conditions.NEW & NOTEWORTHY Everyday locomotion often involves left-right asymmetries, when turning, walking along circular paths, stepping on uneven terrains, etc. To show how incomplete spinal cord injury affects locomotor control in asymmetric conditions, we collected data before and after a thoracic lateral spinal hemisection on a split-belt treadmill with one side stepping faster than the other. We show that adjustments in kinematics and muscle activity allowed cats to retain the ability to perform asymmetric locomotion after hemisection.
Collapse
Affiliation(s)
- Charly G Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claudie Beaulieu
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Khaled Abdallah
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Louis Gendron
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
6
|
Harnie J, Audet J, Mari S, Lecomte CG, Merlet AN, Genois G, Rybak IA, Prilutsky BI, Frigon A. State- and Condition-Dependent Modulation of the Hindlimb Locomotor Pattern in Intact and Spinal Cats Across Speeds. Front Syst Neurosci 2022; 16:814028. [PMID: 35221937 PMCID: PMC8863752 DOI: 10.3389/fnsys.2022.814028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Locomotion after complete spinal cord injury (spinal transection) in animal models is usually evaluated in a hindlimb-only condition with the forelimbs suspended or placed on a stationary platform and compared with quadrupedal locomotion in the intact state. However, because of the quadrupedal nature of movement in these animals, the forelimbs play an important role in modulating the hindlimb pattern. This raises the question: whether changes in the hindlimb pattern after spinal transection are due to the state of the system (intact versus spinal) or because the locomotion is hindlimb-only. We collected kinematic and electromyographic data during locomotion at seven treadmill speeds before and after spinal transection in nine adult cats during quadrupedal and hindlimb-only locomotion in the intact state and hindlimb-only locomotion in the spinal state. We attribute some changes in the hindlimb pattern to the spinal state, such as convergence in stance and swing durations at high speed, improper coordination of ankle and hip joints, a switch in the timing of knee flexor and hip flexor bursts, modulation of burst durations with speed, and incidence of bi-phasic bursts in some muscles. Alternatively, some changes relate to the hindlimb-only nature of the locomotion, such as paw placement relative to the hip at contact, magnitude of knee and ankle yield, burst durations of some muscles and their timing. Overall, we show greater similarity in spatiotemporal and EMG variables between the two hindlimb-only conditions, suggesting that the more appropriate pre-spinal control is hindlimb-only rather than quadrupedal locomotion.
Collapse
Affiliation(s)
- Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gabriel Genois
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
- *Correspondence: Alain Frigon,
| |
Collapse
|
7
|
Stein PSG. Central pattern generators in the turtle spinal cord: selection among the forms of motor behaviors. J Neurophysiol 2018; 119:422-440. [PMID: 29070633 PMCID: PMC5867383 DOI: 10.1152/jn.00602.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022] Open
Abstract
Neuronal networks in the turtle spinal cord have considerable computational complexity even in the absence of connections with supraspinal structures. These networks contain central pattern generators (CPGs) for each of several behaviors, including three forms of scratch, two forms of swim, and one form of flexion reflex. Each behavior is activated by a specific set of cutaneous or electrical stimuli. The process of selection among behaviors within the spinal cord has multisecond memories of specific motor patterns. Some spinal cord interneurons are partially shared among several CPGs, whereas other interneurons are active during only one type of behavior. Partial sharing is a proposed mechanism that contributes to the ability of the spinal cord to generate motor pattern blends with characteristics of multiple behaviors. Variations of motor patterns, termed deletions, assist in characterization of the organization of the pattern-generating components of CPGs. Single-neuron recordings during both normal and deletion motor patterns provide support for a CPG organizational structure with unit burst generators (UBGs) whose members serve a direction of a specific degree of freedom of the hindlimb, e.g., the hip-flexor UBG, the hip-extensor UBG, the knee-flexor UBG, the knee-extensor UBG, etc. The classic half-center hypothesis that includes all the hindlimb flexors in a single flexor half-center and all the hindlimb extensors in a single extensor half-center lacks the organizational complexity to account for the motor patterns produced by turtle spinal CPGs. Thus the turtle spinal cord is a valuable model system for studies of mechanisms responsible for selection and generation of motor behaviors. NEW & NOTEWORTHY The concept of the central pattern generator (CPG) is a major tenet in motor neuroethology that has influenced the design and interpretations of experiments for over a half century. This review concentrates on the turtle spinal cord and describes studies from the 1970s to the present responsible for key developments in understanding the CPG mechanisms responsible for the selection and production of coordinated motor patterns during turtle hindlimb motor behaviors.
Collapse
Affiliation(s)
- Paul S G Stein
- Department of Biology, Washington University , St. Louis, Missouri
| |
Collapse
|
8
|
Kjeldsen HD, Kaiser M, Whittington MA. Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue. J Neurosci Methods 2015; 253:1-9. [PMID: 26026581 PMCID: PMC4550477 DOI: 10.1016/j.jneumeth.2015.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022]
Abstract
We developed a method to estimate electromagnetic field vectors from microelectrode array data. The vectors allow high-resolution holographic reconstruction of spatiotemporal activity. Separation of electromagnetic source density and dissipation informs on activity structure. Electromagnetic flow maps quantify dynamic causal interactions in brain tissue.
Background Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. New method Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. Results The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. Comparison with existing methods The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Conclusions Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity.
Collapse
Affiliation(s)
- Henrik D Kjeldsen
- University of Newcastle, Institute of Neuroscience, Framlington Place, Newcastle upon Tyne NE2 4HH, UK; University of Newcastle, School of Computing Science, Interdisciplinary Computing and Complex BioSystems Research Group, Claremont Tower, Newcastle upon Tyne NE1 7RU, UK.
| | - Marcus Kaiser
- University of Newcastle, School of Computing Science, Interdisciplinary Computing and Complex BioSystems Research Group, Claremont Tower, Newcastle upon Tyne NE1 7RU, UK.
| | | |
Collapse
|
9
|
Thibaudier Y, Frigon A. Spatiotemporal control of interlimb coordination during transverse split-belt locomotion with 1:1 or 2:1 coupling patterns in intact adult cats. J Neurophysiol 2014; 112:2006-18. [PMID: 25057143 DOI: 10.1152/jn.00236.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interlimb coordination must be flexible to adjust to an ever-changing environment. Here adjustments in interlimb coordination were quantified during tied-belt (equal speed of the fore- and hindlimbs) and transverse split-belt (unequal speed of the fore- and hindlimbs) locomotion in five intact adult cats. Cats performed tied-belt locomotion at 0.4 m/s and 0.8 m/s. For transverse split-belt locomotion, the forelimbs stepped at 0.4 m/s and 0.8 m/s while the hindlimbs stepped at 0.8 m/s (4F8H condition) and 0.4 m/s (8F4H condition), respectively. In the 8F4H condition, the forelimbs could take two steps within one hindlimb cycle, or a 2:1 forelimb-hindlimb relationship. The sequence of limbs contacting the ground and the duration of support periods were differentially modified if the forelimbs stepped faster or slower than the hindlimbs. During transverse split-belt locomotion, the hindlimbs performed longer strides when the forelimbs took shorter strides. In the 8F4H condition with a 2:1 forelimb-hindlimb relationship, phase and gap intervals for the first and second steps were found around certain values and were not randomly distributed, indicating that a new coupling pattern was established. However, temporal and spatial coordination indexes revealed that bilateral coordination between hindlimbs was less accurate and more variable with a 2:1 coupling pattern. Importantly, the animals did not stumble, indicating that spatial and temporal adjustments in interlimb coordination allowed the animals to maintain dynamic stability. The results provide a better understanding of the spatiotemporal adjustments that take place among the four limbs during locomotion when interlimb coordination is challenged.
Collapse
Affiliation(s)
- Yann Thibaudier
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alain Frigon
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
10
|
D'Angelo G, Thibaudier Y, Telonio A, Hurteau MF, Kuczynski V, Dambreville C, Frigon A. Modulation of phase durations, phase variations, and temporal coordination of the four limbs during quadrupedal split-belt locomotion in intact adult cats. J Neurophysiol 2014; 112:1825-37. [PMID: 25031257 DOI: 10.1152/jn.00160.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stepping along curvilinear paths produces speed differences between the inner and outer limb(s). This can be reproduced experimentally by independently controlling left and right speeds with split-belt locomotion. Here we provide additional details on the pattern of the four limbs during quadrupedal split-belt locomotion in intact cats. Six cats performed tied-belt locomotion (same speed bilaterally) and split-belt locomotion where one side (constant side) stepped at constant treadmill speed while the other side (varying side) stepped at several speeds. Cycle, stance, and swing durations changed in parallel in homolateral limbs with shorter and longer stance and swing durations on the fast side, respectively, compared with the slow side. Phase variations were quantified in all four limbs by measuring the slopes of the regressions between stance and cycle durations (rSTA) and between swing and cycle durations (rSW). For a given limb, rSTA and rSW were not significantly different from one another on the constant side whereas on the varying side rSTA increased relative to tied-belt locomotion while rSW became more negative. Phase variations were similar for homolateral limbs. Increasing left-right speed differences produced a large increase in homolateral double support on the slow side, while triple-support periods decreased. Increasing left-right speed differences altered homologous coupling, homolateral coupling on the fast side, and coupling between the fast hindlimb and slow forelimb. Results indicate that homolateral limbs share similar control strategies, only certain features of the interlimb pattern adjust, and spinal locomotor networks of the left and right sides are organized symmetrically.
Collapse
Affiliation(s)
- Giuseppe D'Angelo
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Yann Thibaudier
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alessandro Telonio
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-France Hurteau
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Victoria Kuczynski
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Charline Dambreville
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alain Frigon
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
11
|
Frigon A, D'Angelo G, Thibaudier Y, Hurteau MF, Telonio A, Kuczynski V, Dambreville C. Speed-dependent modulation of phase variations on a step-by-step basis and its impact on the consistency of interlimb coordination during quadrupedal locomotion in intact adult cats. J Neurophysiol 2014; 111:1885-902. [PMID: 24523521 DOI: 10.1152/jn.00524.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
It is well established that stance duration changes more than swing duration for a given change in cycle duration. Small variations in cycle duration are also observed at any given speed on a step-by-step basis. To evaluate the step-by-step effect of speed on phase variations, we measured the slopes of the linear regressions between the phases (i.e., stance, swing) and cycle duration during individual episodes at different treadmill speeds in five adult cats. We also determined the pattern of dominance, defined as the phase that varies most with cycle duration. We found a significant effect of speed on hindlimb phase variations, with significant differences observed between the slowest speed of 0.3 m/s compared with faster speeds. Moreover, although patterns of phase dominance were primarily stance/extensor dominated at the slowest speeds, as speed increased the patterns were increasingly categorized as covarying, whereby both stance/extensor and swing/flexor phases changed in approximately equal proportion with cycle duration. Speed significantly affected the relative duration of support periods as well as interlimb phasing between homolateral and diagonal pairs of limbs but not between homologous pairs of limbs. Speed also significantly affected the consistency of interlimb coordination on a step-by-step basis, being less consistent at the slowest speed of 0.3 m/s compared with faster speeds. We found a strong linear relationship between hindlimb phase variations and the consistency of interlimb coordination. Therefore, results show that phase variations on a step-by-step basis are modulated by speed, which appears to influence the consistency of interlimb coordination.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Centre de recherche Clinique Étienne-Le Bel, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Stuart DG, Brownstone RM. The beginning of intracellular recording in spinal neurons: facts, reflections, and speculations. Brain Res 2011; 1409:62-92. [PMID: 21782158 PMCID: PMC5061568 DOI: 10.1016/j.brainres.2011.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/02/2011] [Indexed: 02/02/2023]
Abstract
Intracellular (IC) recording of action potentials in neurons of the vertebrate central nervous system (CNS) was first reported by John Eccles and two colleagues, Walter Brock and John Coombs, in Dunedin, NZL in 1951/1952 and by Walter Woodbury and Harry Patton in Seattle, WA, USA in 1952. Both groups studied spinal cord neurons of the adult cat. In this review, we discuss the precedents to their notable achievement and reflect and speculate on some of the scientific and personal nuances of their work and its immediate and later impact. We then briefly discuss early achievements in IC recording in the study of CNS neurobiology in other laboratories around the world, and some of the methods that led to enhancement of CNS IC-recording techniques. Our modern understanding of CNS neurophysiology directly emanates from the pioneering endeavors of the five who wrote the seminal 1951/1952 articles.
Collapse
Affiliation(s)
- Douglas G Stuart
- Department of Physiology, University of Arizona, Tucson, AZ 85721-0093, USA.
| | | |
Collapse
|
13
|
Jones JG, Tansey E(T, Stuart DG. Thomas Graham Brown (1882–1965): Behind the Scenes at the Cardiff Institute of Physiology. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2011; 20:188-209. [PMCID: PMC3259622 DOI: 10.1080/0964704x.2010.510991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Thomas Graham Brown undertook seminal experiments on the neural control of locomotion between 1910 and 1915. Although elected to the Royal Society in 1927, his locomotion research was largely ignored until the 1960s when it was championed and extended by the distinguished neuroscientist, Anders Lundberg. Puzzlingly, Graham Brown's published research stopped in the 1920s and he became renowned as a mountaineer. In this article, we review his life and multifaceted career, including his active neurological service in WWI. We outline events behind the scenes during his tenure at Cardiff's Institute of Physiology in Wales, UK, including an interview with his technician, Terrence J. Surman, who worked in this institute for over half a century.
Collapse
|
14
|
Jefferson SC, Tester NJ, Howland DR. Chondroitinase ABC promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection. J Neurosci 2011; 31:5710-20. [PMID: 21490212 PMCID: PMC3117673 DOI: 10.1523/jneurosci.4459-10.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 01/17/2011] [Accepted: 02/16/2011] [Indexed: 01/23/2023] Open
Abstract
A number of studies have shown that chondroitinase ABC (Ch'ase ABC) digestion of inhibitory chondroitin sulfate glycosaminoglycans significantly enhances axonal growth and recovery in rodents following spinal cord injury (SCI). Further, our group has shown improved recovery following SCI in the larger cat model. The purpose of the current study was to determine whether intraspinal delivery of Ch'ase ABC, following T10 hemisections in adult cats, enhances adaptive movement features during a skilled locomotor task and/or promotes plasticity of spinal and supraspinal circuitry. Here, we show that Ch'ase ABC enhanced crossing of a peg walkway post-SCI and significantly improved ipsilateral hindlimb trajectories and integration into a functional forelimb-hindlimb coordination pattern. Recovery of these complex movements was associated with significant increases in neurofilament immunoreactivity immediately below the SCI in the ipsilateral white (p = 0.033) and contralateral gray matter (p = 0.003). Further, the rubrospinal tract is critical in the normal cat during skilled movements that require accurate paw placements and trajectories like those seen during peg walkway crossing. Rubrospinal connections were assessed following Fluoro-Gold injections, caudal to the hemisection. Significantly more retrogradely labeled right (axotomized) red nucleus (RN) neurons were seen in Ch'ase ABC-treated (23%) compared with control-treated cats (8%; p = 0.032) indicating that a larger number of RN neurons in Ch'ase ABC-treated cats had axons below the lesion level. Thus, following SCI, Ch'ase ABC may facilitate axonal growth at the spinal level, enhance adaptive features of locomotion, and affect plasticity of rubrospinal circuitry known to support adaptive behaviors in the normal cat.
Collapse
Affiliation(s)
- Stephanie C Jefferson
- Brain Rehabilitation and Research Center, Malcom Randall VA Medical Center, Gainesville, North Florida/South Georgia Veterans Health System, Florida 32608, USA
| | | | | |
Collapse
|
15
|
Kaufman MP, Forster HV. Reflexes Controlling Circulatory, Ventilatory and Airway Responses to Exercise. Compr Physiol 2011. [DOI: 10.1002/cphy.cp120110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Gossard JP, Sirois J, Noué P, Côté MP, Ménard A, Leblond H, Frigon A. The spinal generation of phases and cycle duration. PROGRESS IN BRAIN RESEARCH 2011; 188:15-29. [DOI: 10.1016/b978-0-444-53825-3.00007-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
|
18
|
|
19
|
Do innate motor programs simplify voluntary motor control? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
|
21
|
|
22
|
|
23
|
On the conceptual integration of ethology and neurophysiology. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
|
25
|
Adaptation and mechanical impedance regulation in the control of movements. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
|
27
|
Are we asking too much of the stretch reflex? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
|
29
|
Reciprocal reflex action and adaptive gain control in the context of the equilibrium-point hypothesis. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
|
31
|
|
32
|
Do the α and λ models adequately describe reflex behavior in man? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
|
34
|
|
35
|
Simple changes in reflex threshold cannot explain all aspects of rapid voluntary movements. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00051347] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
|
37
|
Abstract
AbstractThe following factors underlying behavioral plasticity are discussed: (1) reflex adaptability and its role in the voluntary control of movement, (2) degrees of freedom and motor equivalence, and (3) the problem of the discrete organization of motor behavior. Our discussion concerns a variety of innate motor patterns, with emphasis on the wiping reflex in the frog.It is proposed that central regulation of stretch reflex thresholds governs voluntary control over muscle force and length. This suggestion is an integral part of the equilibrium-point hypothesis, two versions of which are compared.Kinematic analysis of the wiping reflex in the spinal frog has shown that each stimulated skin site is associated with a group of different but equally effective trajectories directed to the target site. Such phenomena reflect the principle of motor equivalence -the capacity of the neuronal structures responsible for movement to select one or another of a set of possible trajectories leading to the goal. Redundancy of degrees of freedom at the neuronal level as well as at the mechanical level of the body's joints makes motor equivalence possible. This sort of equivalence accommodates the overall flexibility of motor behavior.An integrated behavioral act or a single movement consists of dynamic components. We distinguish six components for the wiping reflex, each associated with a certain functional goal, specific body positions, and motor-equivalent movement patterns. The nervous system can combine the available components in various ways in forming integrated behavioral sequences. The significance of command neuronal organization is discussed with respect to (1) the combinatory strategy of the nervous system and (2) the relation between continuous and discrete forms of motor control. We conclude that voluntary movements are effected by the central nervous system with the help of the mechanisms that underlie the variability and modifiability of innate motor patterns.
Collapse
|
38
|
|
39
|
Clarac F, Massion J, Stuart DG. Reflections on Jacques Paillard (1920–2006) — A pioneer in the field of motor cognition. ACTA ACUST UNITED AC 2009; 61:256-80. [DOI: 10.1016/j.brainresrev.2009.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/30/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
|
40
|
Goslow GE, Van De Graaff KM. Hindlimb joint angle changes and action of the primary ankle extensor muscles during posture and locomotion in the Striped skunk (Mephitis mephitis). J Zool (1987) 2009. [DOI: 10.1111/jzo.1982.197.3.405] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Pay RG. The Conditioned Reflex in Cerebral Processing: Aggregated Information Processes form Elements in a Model of Simple Learning. Int J Neurosci 2009. [DOI: 10.3109/00207457709147663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Stuart DG, Hultborn H. Thomas Graham Brown (1882--1965), Anders Lundberg (1920-), and the neural control of stepping. ACTA ACUST UNITED AC 2008; 59:74-95. [PMID: 18582502 DOI: 10.1016/j.brainresrev.2008.06.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 10/22/2022]
Abstract
Thomas Graham Brown (1882--1965) undertook experiments on the neural control of stepping in the University of Liverpool laboratory of Charles Sherrington (1857--1952) in 1910--13 and his own laboratory in 1913--15 at the University of Manchester. His results revealed the intrinsic capability of the spinal cord in the guinea pig and cat to generate a stepping output pattern whose timing did not depend upon descending or sensory inputs. This idea was then revolutionary because the prevailing viewpoint was that the stepping rhythm was generated by spinal reflexes. Sadly, Graham Brown's GBR peers gave little credence to this seminal accomplishment, except perhaps Sherrington, who waxed but largely waned on the potential significance of the work. It remained for the Swedish neuroscientist, Anders Lundberg (1920-), to rescue Graham Brown's concepts from obscurity: in seminars presented in several countries between 1957 and 1980, and in widely read articles and reviews (1965--1981). Graham Brown had proposed mutually inhibitory connections between a pair of intrinsically active flexor and extensor "half-centers" on each side of the spinal cord, with the rhythmic output modulated by sensory proprioceptive input. Lundberg, Elzbieta Jankowska (1930-), and their colleagues provided seminal, compelling evidence for spinal half-center interneuronal circuitry implicated in the control of stepping and Lundberg and Ingemar Engberg (1935--2005) made behavioral EMG observations on unrestrained cats that supported a central generation of the rhythm. Subsequently, models of the spinal pattern generators for mammalian locomotion have become progressively more complex but they mostly still include a half-center component.
Collapse
Affiliation(s)
- Douglas G Stuart
- Department of Physiology, University of Arizona, AHSC, Tucson, AZ 85724-5051, USA.
| | | |
Collapse
|
43
|
Clarac F. Some historical reflections on the neural control of locomotion. ACTA ACUST UNITED AC 2008; 57:13-21. [DOI: 10.1016/j.brainresrev.2007.07.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 07/01/2007] [Indexed: 11/24/2022]
|
44
|
Clarac F, Pearlstein E. Invertebrate preparations and their contribution to neurobiology in the second half of the 20th century. ACTA ACUST UNITED AC 2007; 54:113-61. [PMID: 17500093 DOI: 10.1016/j.brainresrev.2006.12.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review summarized the contribution to neurobiology achieved through the use of invertebrate preparations in the second half of the 20th century. This fascinating period was preceded by pioneers who explored a wide variety of invertebrate phyla and developed various preparations appropriate for electrophysiological studies. Their work advanced general knowledge about neuronal properties (dendritic, somatic, and axonal excitability; pre- and postsynaptic mechanisms). The study of invertebrates made it possible to identify cell bodies in different ganglia, and monitor their operation in the course of behavior. In the 1970s, the details of central neural circuits in worms, molluscs, insects, and crustaceans were characterized for the first time and well before equivalent findings were made in vertebrate preparations. The concept and nature of a central pattern generator (CPG) have been studied in detail, and the stomatogastric nervous system (STNS) is a fine example, having led to many major developments since it was first examined. The final part of the review is a discussion of recent neuroethological studies that have addressed simple cognitive functions and confirmed the utility of invertebrate models. After presenting our invertebrate "mice," the worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, our conclusion, based on arguments very different from those used fifty years ago, is that invertebrate models are still essential for acquiring insight into the complexity of the brain.
Collapse
Affiliation(s)
- François Clarac
- P3M, CNRS, Université de la Méditerranée, Marseille, France.
| | | |
Collapse
|
45
|
Xiang Y, John P, Yakushin SB, Kunin M, Raphan T, Cohen B. Dynamics of quadrupedal locomotion of monkeys: implications for central control. Exp Brain Res 2006; 177:551-72. [PMID: 17006683 DOI: 10.1007/s00221-006-0707-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
We characterized the three-dimensional kinematics and dynamics of quadrupedal gait of young adult rhesus and cynomolgus monkeys while they walked with diagonal and lateral gaits at 0.4-1.0 m/s on a treadmill. Rigid bodies on the wrist, ankle, and back were monitored by an optical motion detection system (Optotrak). Kinematic data could be normalized using characteristic stride length, reducing variance due to different gait styles, to emphasize common characteristics of swing and stance parameters among animals. Mean swing phase durations fell as walking speed increased, but the swing phase durations increased at each walking velocity as a linear function of increases in amplitude, thereby following a main sequence relationship. The phase plane trajectories of the swing phases, i.e., plots of the relation of the rising and falling limb velocity to limb position in the sagittal (X-Z) plane, had unique dynamic characteristics. Trajectories were separable at each walking velocity and increases in swing amplitude were linearly related to peak swing velocities, thus comprising main sequences. We infer that the swing phase dynamics are set by central neural mechanisms at the onset of the swing phases according to the intended amplitude, which in turn is based on the walking velocity in the stance phases. From the many dynamic similarities between swing phases and rapid eye movements, we further suggest that the swing phases may be generated by neural mechanisms similar to those that produce saccades and quick phases of nystagmus from a signal related to sensed or desired walking velocity.
Collapse
Affiliation(s)
- Yongqing Xiang
- Department of Computer and Information Science, Brooklyn College, CUNY, Brooklyn, NY 11210, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Most human gait forms assume symmetrical, alternating patterns of interlimb coordination (e.g., crawling, walking, running). Human galloping is a notable exception. In contrast to extensive information on galloping in animals, little is known about this gait in humans. Therefore, kinematic and topographical analyses of running and galloping were undertaken to investigate the manner in which the lower limbs are uncoupled to produce this asymmetrical gait. Seven adult females were filmed while running and galloping at their preferred speed. Analysis of the gaits revealed differences in the following: (a) preferred speed, (b) coupling between upper- and lower-limb girdles, and (c) point of foot fall (end-point trajectories). In contrast to clear differences in interlimb coordination, intralimb coordination was remarkably similar across gaits, although when galloping was adopted, the rear leg did show more variable change than the front leg.
Collapse
Affiliation(s)
- J Whitall
- Department of Physical Education and Dance, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
47
|
|
48
|
Kaufman MP, Hayes SG, Adreani CM, Pickar JG. Discharge properties of group III and IV muscle afferents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 508:25-32. [PMID: 12171119 DOI: 10.1007/978-1-4615-0713-0_4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Stimulation of group III and IV muscle afferents has been shown to have important reflex effects on both the somatic and autonomic nervous systems. These include an inhibitory effect on alpha motoneurones, an excitatory effect on gamma motoneurones and an excitatory effect on the sympathetic nervous system. The purpose of this review is to describe the mechanical and metabolic stimuli that discharge group III and IV muscle afferents. Particular attention will be paid to the responses of these afferents to dynamic exercise induced by electrical stimulation of the mesencephalic locomotor region.
Collapse
Affiliation(s)
- Marc P Kaufman
- Department of Internal Medicine and Human Physiology, University of California, Davis, USA.
| | | | | | | |
Collapse
|
49
|
Williams GN, Chmielewski T, Rudolph K, Buchanan TS, Snyder-Mackler L. Dynamic knee stability: current theory and implications for clinicians and scientists. J Orthop Sports Phys Ther 2001; 31:546-66. [PMID: 11665743 DOI: 10.2519/jospt.2001.31.10.546] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We will discuss the mechanisms by which dynamic knee stability may be achieved and relate this to issues that interest clinicians and scientists concerned with dynamic knee stability. Emphasis is placed on the neurophysiologic evidence and theory related to neuromuscular control. Specific topics discussed include the ensemble firing of peripheral mechanoreceptors, the potential for muscle stiffness modulation via force and length feedback, postural control synergies, motor programs, and the neural control of gait. Factors related to answering the difficult question of whether or not knee ligament injuries can be prevented during athletic activities are discussed. Prevention programs that train athletes to perform their sport skills in a safe fashion are put forth as the most promising prospect for injury prevention. Methods of assessing neuromuscular function are reviewed critically and the need for future research in this area is emphasized. We conclude with a brief review of the literature regarding neuromuscular training programs.
Collapse
Affiliation(s)
- G N Williams
- Biomechanics and Movement Science Program, University of Delaware, Newark, 19716, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
This article reviews the principles that rule the organization of motor commands that have been described over the past five decades in crayfish. The adaptation of motor behaviors requires the integration of sensory cues into the motor command. The respective roles of central neural networks and sensory feedback are presented in the order of increasing complexity. The simplest circuits described are those involved in the control of a single joint during posture (negative feedback-resistance reflex) and movement (modulation of sensory feedback and reversal of the reflex into an assistance reflex). More complex integration is required to solve problems of coordination of joint movements in a pluri-segmental appendage, and coordination of different limbs and different motor systems. In addition, beyond the question of mechanical fitting, the motor command must be appropriate to the behavioral context. Therefore, sensory information is used also to select adequate motor programs. A last aspect of adaptability concerns the possibility of neural networks to change their properties either temporarily (such on-line modulation exerted, for example, by presynaptic mechanisms) or more permanently (such as plastic changes that modify the synaptic efficacy). Finally, the question of how "automatic" local component networks are controlled by descending pathways, in order to achieve behaviors, is discussed.
Collapse
|