1
|
Huang HY, Hsu HY, Kuo CY, Wu ML, Lai CC, Chang GRL, Lin YJ. Heterologous expressing melittin in a probiotic yeast to evaluate its function for promoting NSC-34 regeneration. Appl Microbiol Biotechnol 2024; 108:496. [PMID: 39466458 PMCID: PMC11519230 DOI: 10.1007/s00253-024-13336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/21/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Melittin is a bioactive peptide and the predominant component in bee venom (BV), studied for its many medical properties, such as antibacterial, anti-inflammatory, anti-arthritis, nerve damage reduction, and muscle cell regeneration. Melittin is primarily obtained through natural extraction and chemical synthesis; however, both methods have limitations and cannot be used for mass production. This study established a heterologous melittin expression system in the probiotic yeast Kluyveromyces marxianus. This yeast was selected for its advantages in stress tolerance and high secreted protein yields, simplifying purification. A > 95% high-purity melittin (MET) and its precursor promelittin (ProMET) were successfully produced and purified at 1.68 μg/mL and 3.33 μg/mL concentrations and verified through HPLC and mass spectrum. The functional test of the NSC-34 cell regeneration revealed that MET achieved the best activity compared to ProMET and the natural-extracted BV groups. Growth-related gene expressions were evaluated, including microtubule-associated protein 2 (MAP2), microtubule-associated protein Tau (MAPT), growth-associated protein 43 (GAP-43), choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), and acetylcholine esterase (AChE). The results indicated that treating MET increased MAP2, GAP-43, and VAChT expressions, in which cholinergic signaling is related to neurological functions. A heterologously expressed melittin in a probiotic yeast and its potential for promoting NSC-34 regeneration described here facilitate commercial and therapeutic use. KEY POINTS: • MET and its precursor ProMET were successfully hetero-expressed in K. marxianus • > 95% high-purity MET and ProMET were purified at 1.68 μg/mL and 3.33 μg/mL • MET has no cytotoxicity toward NSC-34 and significantly promotes NSC-34 growth.
Collapse
Affiliation(s)
- Hsiao-Yun Huang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Hung-Yi Hsu
- Section of Neurology, Department of Internal Medicine, Tungs' Taichung Metro-Harbor Hospital, No. 699, Section 8, Taiwan Boulevard, Wuqi District, Taichung City, 43503, Taiwan, ROC
- Department of Post Baccalaureate Medicine, National Chung Hsing University, No.699, Section 8, Taiwan Boulevard, Wuqi District, Taichung City, 43503, Taiwan, ROC
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Mao-Lun Wu
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, No.145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Gary Ro-Lin Chang
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC
| | - Yu-Ju Lin
- Department of Life Sciences, National Chung Hsing University, No. 145, Xing-Da Road, South District, Taichung City, 40227, Taiwan, ROC.
| |
Collapse
|
2
|
CHAT gene polymorphism rs3810950 is associated with the risk of Alzheimer's disease in the Czech population. J Biomed Sci 2018; 25:41. [PMID: 29759072 PMCID: PMC5950140 DOI: 10.1186/s12929-018-0444-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/07/2018] [Indexed: 12/24/2022] Open
Abstract
Background Cholinergic hypothesis of Alzheimer’s disease (AD) is based on the findings that a reduced and/or perturbed cholinergic activity in the central nervous system correlates with cognitive decline in patients with Alzheimer’s disease. The hypothesis resulted in the development of centrally-acting agents potentiating cholinergic neurotransmission; these drugs, however, only slowed down the cognitive decline and could not prevent it. Consequently, the perturbation of the central cholinergic signalling has been accepted as a part of the Alzheimer’s aetiology but not necessarily the primary cause of the disease. In the present study we have focused on the rs3810950 polymorphism of ChAT (choline acetyltransferase) gene that has not been studied in Czech population before. Methods We carried out an association study to test for a relationship between the rs3810950 polymorphism and Alzheimer’s disease in a group of 1186 persons; 759 patients with Alzheimer’s disease and 427 control subjects. Furthermore, we performed molecular modelling of the terminal domain (1st-126th amino acid residue) of one of the ChAT isoforms (M) to visualise in silico whether the rs3810950 polymorphism (A120T) can change any features of the tertiary structure of the protein which would have a potential to alter its function. Results The AA genotype of CHAT was associated with a 1.25 times higher risk of AD (p < 0.002) thus demonstrating that the rs3810950 polymorphism can have a modest but statistically significant effect on the risk of AD in the Czech population. Furthermore, the molecular modelling indicated that the polymorphism is likely to be associated with significant variations in the tertiary structure of the protein molecule which may impact its enzyme activity. Conclusions Our findings are consistent with the results of the meta-analytical studies of the relationship between rs3810950 polymorphism and AD and provide further material evidence for a direct (primary) involvement of cholinergic mechanisms in the etiopathogenesis of AD, particularly as a factor in cognitive decline and perturbed conscious awareness commonly observed in patients with AD.
Collapse
|
3
|
Liu AKL, Chang RCC, Pearce RKB, Gentleman SM. Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer's and Parkinson's disease. Acta Neuropathol 2015; 129:527-40. [PMID: 25633602 PMCID: PMC4366544 DOI: 10.1007/s00401-015-1392-5] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 11/30/2022]
Abstract
It has been well established that neuronal loss within the cholinergic nucleus basalis of Meynert (nbM) correlates with cognitive decline in dementing disorders such as Alzheimer's disease (AD). Friedrich Lewy first observed his eponymous inclusion bodies in the nbM of postmortem brain tissue from patients with Parkinson's disease (PD) and cell loss in this area can be at least as extensive as that seen in AD. There has been confusion with regard to the terminology and exact localisation of the nbM within the human basal forebrain for decades due to the diffuse and broad structure of this "nucleus". Also, while topographical projections from the nbM have been mapped out in subhuman primates, no direct clinicopathological correlations between subregional nbM and cortical pathology and specific cognitive profile decline have been performed in human tissue. Here, we review the evolution of the term nbM and the importance of standardised nbM sampling for neuropathological studies. Extensive review of the literature suggests that there is a caudorostral pattern of neuronal loss within the nbM in AD brains. However, the findings in PD are less clear due to the limited number of studies performed. Given the differing neuropsychiatric and cognitive deficits in Lewy body-associated dementias (PD dementia and dementia with Lewy bodies) as compared to AD, we hypothesise that a different pattern of neuronal loss will be found in the nbM of Lewy body disease brains. Understanding the functional significance of the subregions of the nbM could prove important in elucidating the pathogenesis of dementia in PD.
Collapse
Affiliation(s)
- Alan King Lun Liu
- Neuropathology Unit, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK,
| | | | | | | |
Collapse
|
4
|
Abstract
Decreased metabolic rate may precede cognitive impairment in Alzheimer's disease (AD) and is thus an early occurring hallmark. Several observations in post-mortem brain indicate that activated neurons are better able to withstand aging and AD, a phenomenon paraphrased by us as 'use it or lose it'. Moreover, a number of pharmacological and nonpharmacological studies support the concept that activation of the brain has beneficial effects and may to a certain degree restore several aspects of cognition and other central functions. For instance, the circadian system may be restimulated in Alzheimer patients by exposing them to more light or transcutaneous nerve stimulation. A procedure has been developed to culture human post-mortem brain tissue that allows testing of the efficacy of putative stimulatory compounds such as neurotrophins.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Hardy J, Adolfsson R, Alafuzoff I, Bucht G, Marcusson J, Nyberg P, Perdahl E, Wester P, Winblad B. Transmitter deficits in Alzheimer's disease. Neurochem Int 2012; 7:545-63. [PMID: 20492959 DOI: 10.1016/0197-0186(85)90050-6] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pattern of neurotransmitter pathway losses in Alzheimer's disease are reviewed. Deficits of the cholinergic pathway from the nucleus basalis, the noradrenergic pathway from the locus coeruleus and the serotoninergic pathway from the raphe nuclei are established. Cortical somatostatin interneurons are affected and dopaminergic neurons may be affected although these may be late or secondary phenomena in the disease process. Other neuronal systems, particularly in the hippocampus and temporal cortex, are also damaged. However, the disease is not one of generalised neuronal atrophy since some neurons are selectively spared. The established pathway-specific losses are discussed in relation to the clinical symptomatology and the pathology of the disorder. The biochemical and histological findings are compared with similar measurements made on tissues from other dementing disorders in an attempt to trace features common to dementias. Finally, as an addendum, a hypothesis is briefly outlined which attempts to explain the common features of the affected neurons and the pathogenesis of the disorder.
Collapse
Affiliation(s)
- J Hardy
- Umeå Dementia Research Group, Departments of Pathology, Psychiatry and Geriatric Medicine, University of Umeå, Umeå Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Abstract
Alzheimer's disease (AD) is a cognitive disorder with a number of complex neuropathologies, including, but not limited to, neurofibrillary tangles, neuritic plaques, neuronal shrinkage, hypomyelination, neuroinflammation and cholinergic dysfunction. The role of underlying pathological processes in the evolution of the cholinergic deficit responsible for cognitive decline has not been elucidated. Furthermore, generation of testable hypotheses for defining points of pharmacological intervention in AD are complicated by the large scale occurrence of older individuals dying with no cognitive impairment despite having a high burden of AD pathology (plaques and tangles). To further complicate these research challenges, there is no animal model that reproduces the combined hallmark neuropathologies of AD. These research limitations have stimulated the application of 'omics' technologies in AD research with the goals of defining biologic markers of disease and disease progression and uncovering potential points of pharmacological intervention for the design of AD therapeutics. In the case of sporadic AD, the dominant form of dementia, genomics has revealed that the ε4 allele of apolipoprotein E, a lipid transport/chaperone protein, is a susceptibility factor. This seminal observation points to the importance of lipid dynamics as an area of investigation in AD. In this regard, lipidomics studies have demonstrated that there are major deficits in brain structural glycerophospholipids and sphingolipids, as well as alterations in metabolites of these complex structural lipids, which act as signaling molecules. Peroxisomal dysfunction appears to be a key component of the changes in glycerophospholipid deficits. In this review, lipid alterations and their potential roles in the pathophysiology of AD are discussed.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, Department of Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA.
| |
Collapse
|
8
|
Wood PL, Smith T, Lane N, Khan MA, Ehrmantraut G, Goodenowe DB. Oral bioavailability of the ether lipid plasmalogen precursor, PPI-1011, in the rabbit: a new therapeutic strategy for Alzheimer's disease. Lipids Health Dis 2011; 10:227. [PMID: 22142382 PMCID: PMC3260122 DOI: 10.1186/1476-511x-10-227] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 12/03/2022] Open
Abstract
Introduction Docosahexaenoic acid (DHA) and DHA-containing ethanolamine plasmalogens (PlsEtn) are decreased in the brain, liver and the circulation in Alzheimer's disease. Decreased supply of plasmalogen precursors to the brain by the liver, as a result of peroxisomal deficits is a process that probably starts early in the AD disease process. To overcome this metabolic compromise, we have designed an orally bioavailable DHA-containing ether lipid precursor of plasmalogens. PPI-1011 is an alkyl-diacyl plasmalogen precursor with palmitic acid at sn-1, DHA at sn-2 and lipoic acid at sn-3. This study outlines the oral pharmacokinetics of this precursor and its conversion to PlsEtn and phosphatidylethanolamines (PtdEtn). Methods Rabbits were dosed orally with PPI-1011 in hard gelatin capsules for time-course and dose response studies. Incorporation into PlsEtn and PtdEtn was monitored by LC-MS/MS. Metabolism of released lipoic acid was monitored by GC-MS. To monitor the metabolic fate of different components of PPI-1011, we labeled the sn-1 palmitic acid, sn-2 DHA and glycerol backbone with13C and monitored their metabolic fates by LC-MS/MS. Results PPI-1011 was not detected in plasma suggesting rapid release of sn-3 lipoic acid via gut lipases. This conclusion was supported by peak levels of lipoic acid metabolites in the plasma 3 hours after dosing. While PPI-1011 did not gain access to the plasma, it increased circulating levels of DHA-containing PlsEtn and PtdEtn. Labeling experiments demonstrated that the PtdEtn increases resulted from increased availability of DHA released via remodeling at sn-2 of phospholipids derived from PPI-1011. This release of DHA peaked at 6 hrs while increases in phospholipids peaked at 12 hr. Increases in circulating PlsEtn were more complex. Labeling experiments demonstrated that increases in the target PlsEtn, 16:0/22:6, consisted of 2 pools. In one pool, the intact precursor received a sn-3 phosphoethanolamine group and desaturation at sn-1 to generate the target plasmalogen. The second pool, like the PtdEtn, resulted from increased availability of DHA released during remodeling of sn-2. In the case of sn-1 18:0 and 18:1 plasmalogens with [13C3]DHA at sn-2, labeling was the result of increased availability of [13C3]DHA from lipid remodeling. Isotope and repeated dosing (2 weeks) experiments also demonstrated that plasmalogens and/or plasmalogen precursors derived from PPI-1011 are able to cross both the blood-retinal and blood-brain barriers. Conclusions Our data demonstrate that PPI-1011, an ether lipid precursor of plasmalogens is orally bioavailable in the rabbit, augmenting the circulating levels of unesterified DHA and DHA-containing PlsEtn and PtdEtn. Other ethanolamine plasmalogens were generated from the precursor via lipid remodeling (de-acylation/re-acylation reactions at sn-2) and phosphatidylethanolamines were generated via de-alkylation/re-acylation reactions at sn-1. Repeated oral dosing for 2 weeks with PPI-1011 resulted in dose-dependent increases in circulating DHA and DHA-containing plasmalogens. These products and/or precursors were also able to cross the blood-retinal and blood-brain barriers.
Collapse
Affiliation(s)
- Paul L Wood
- Dept, of Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752 USA.
| | | | | | | | | | | |
Collapse
|
9
|
Fukami H, Tachimoto H, Kishi M, Kaga T, Tanaka Y. Acetic acid bacterial lipids improve cognitive function in dementia model rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:4084-4089. [PMID: 20210318 DOI: 10.1021/jf9045842] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Acetic acid bacteria, fermentative microorganisms of traditional foods, have unique alkali-stable lipids (ASL), such as dihydroceramide which is a precursor of sphingolipids. Sphingolipids are important components of the brain tissue. We examined the effect of oral administration of ASL in a rat model of dementia (7-week-old, male) with a basal forebrain lesion. In a water maze test, the dementia model rats demonstrated poor spatial orientation. The administration of ASL (165 or 1650 mg/kg of body weight per day, for 14 days) produced a significant improvement in learning ability in the dementia model rats. In vitro experiments showed ASL had the ability to promote neurite outgrowth in pheochromocytoma (PC12) cells. Among the ASL components, dihydroceramide has the most potent effect on the differentiation of PC12 cells. It is highly possible that oral administration of dihydroceramide-containing ASL reverses the decline in cognitive function in dementia.
Collapse
Affiliation(s)
- Hiroyuki Fukami
- Central Research Institute, Mizkan Group Corporation, Handa-shi, Aichi, Japan.
| | | | | | | | | |
Collapse
|
10
|
Goodenowe DB, Cook LL, Liu J, Lu Y, Jayasinghe DA, Ahiahonu PWK, Heath D, Yamazaki Y, Flax J, Krenitsky KF, Sparks DL, Lerner A, Friedland RP, Kudo T, Kamino K, Morihara T, Takeda M, Wood PL. Peripheral ethanolamine plasmalogen deficiency: a logical causative factor in Alzheimer's disease and dementia. J Lipid Res 2007; 48:2485-98. [PMID: 17664527 DOI: 10.1194/jlr.p700023-jlr200] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although dementia of the Alzheimer's type (DAT) is the most common form of dementia, the severity of dementia is only weakly correlated with DAT pathology. In contrast, postmortem measurements of cholinergic function and membrane ethanolamine plasmalogen (PlsEtn) content in the cortex and hippocampus correlate with the severity of dementia in DAT. Currently, the largest risk factor for DAT is age. Because the synthesis of PlsEtn occurs via a single nonredundant peroxisomal pathway that has been shown to decrease with age and PlsEtn is decreased in the DAT brain, we investigated potential relationships between serum PlsEtn levels, dementia severity, and DAT pathology. In total, serum PlsEtn levels were measured in five independent population collections comprising >400 clinically demented and >350 nondemented subjects. Circulating PlsEtn levels were observed to be significantly decreased in serum from clinically and pathologically diagnosed DAT subjects at all stages of dementia, and the severity of this decrease correlated with the severity of dementia. Furthermore, a linear regression model predicted that serum PlsEtn levels decrease years before clinical symptoms. The putative roles that PlsEtn biochemistry play in the etiology of cholinergic degeneration, amyloid accumulation, and dementia are discussed.
Collapse
|
11
|
Hefti F, Armanini MP, Beck KD, Caras IW, Chen KS, Godowski PJ, Goodman LJ, Hammonds RG, Mark MR, Moran P, Nishimura MC, Phillips HS, Shih A, Valverde J, Winslow JW. Development of neurotrophic factor therapy for Alzheimer's disease. CIBA FOUNDATION SYMPOSIUM 2007; 196:54-63; discussion 63-9. [PMID: 8991782 DOI: 10.1002/9780470514863.ch5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- F Hefti
- Department of Neuroscience, Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Woulfe JM, Hammond R, Richardson B, Sooriabalan D, Parks W, Rippstein P, Munoz DG. Reduction of neuronal intranuclear rodlets immunoreactive for tubulin and glucocorticoid receptor in Alzheimer's disease. Brain Pathol 2006; 12:300-7. [PMID: 12146798 PMCID: PMC8095929 DOI: 10.1111/j.1750-3639.2002.tb00444.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neuronal intranuclear rodlets were described in normal brain over a century ago, but their functional significance and pathological relevance is unknown. Here, we show co-localization of tubulin and glucocorticoid receptor-like immunoreactivity in these intranuclear inclusions in human brain. In addition, we provide evidence for a massive reduction in their areal density in Alzheimer's disease brain, but not in another common neurodegenerative condition, dementia with Lewy bodies. The marked reduction of these inclusions in Alzheimer's disease may support the concept of a role for stress hormones in Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- John M Woulfe
- Department of Pathology and Laboratory Medicine, The University of Ottawa, The Ottawa Hospital, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
13
|
Schmitt HP. Neuro-modulation, aminergic neuro-disinhibition and neuro-degeneration. Draft of a comprehensive theory for Alzheimer disease. Med Hypotheses 2005; 65:1106-19. [PMID: 16125326 DOI: 10.1016/j.mehy.2005.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 06/22/2005] [Accepted: 06/23/2005] [Indexed: 12/18/2022]
Abstract
A comprehensive theory for Alzheimer disease (AD) which can provide a clue to the neuronal selective vulnerability (pathoklisis) is still missing. Based upon evidence from the current literature, the present work is aimed at proposing such a theory, namely the 'aminergic disinhibition theory' of AD. It includes data-based hypotheses as to the pathoklisis, mechanisms of neuro-degeneration and dementia as well as the aetiology of the disease. Alzheimer disease is regarded as a disorder of neural input modulation caused by the degeneration of four modulatory amine transmitter (MAT) systems, namely the serotoninergic, the noradrenergic, the histaminergic, and the cholinergic systems with ascending projections. MATs modulate cognitive processing including arousal, attention, and synaptic plasticity in learning and memory, not only through direct, mostly inhibitory impact on principal neurones but also partially through interaction with local networks of GABA-ergic inter-neurones. The distribution and magnitude of the pathology in AD roughly correlate with the distribution and magnitude of MAT modulation: Regions more densely innervated by ascending MAT projections are, as a rule, more severely affected than areas receiving less MAT innervation. Because the global effect of MATs in the forebrain is inhibition, the degeneration of four MAT systems, some related peptidergic systems and a secondary alleviation of the GABA-ergic transmission means a fundamental loss of inhibitory impact in the neuronal circuitry resulting in neuronal (aminergic) disinhibition. Clearly, the basic mechanism promoting neuronal death in AD is thought to be a chronic disturbance of the inhibition-excitation balance to the advantage of excitation. Chronic over-excitation is conceived to result in Ca2+ dependent cellular excito-toxicity leading to neuro-degeneration including amyloid-beta production and NFT formation. Disinhibited neurons will degenerate while less excited (relatively over-inhibited) neurones will survive. Because the decline of aminergic transmission in AD is likely to start at the receptor level, it is hypothesized that early impairment by a molecular 'hit' to an MAT receptor (or a group of receptors) initiates a pathogenetic cascade that develops in an avalanche-like manner. Based on experimental evidence from the literature, the 'hit' might be the attachment of a targeted pathogen like a small roaming amino acid sequence to the receptor(s), e.g., the serotoninergic 5-HT2A-R. Referential sequence analysis could be a means to identify such a small pathogen hidden in a large receptor molecule.
Collapse
Affiliation(s)
- H Peter Schmitt
- Institute of Pathology, Department for Neuropathology, University of Heidelberg, Im Neuernheimer Feld 220-221, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Ogawa N, Mizukawa K, Asanuma M, Kanazawa I. Abnormalities in muscarinic cholinergic receptors and their G-protein coupling systems in the cerebral frontal cortex in Alzheimer's disease. Arch Gerontol Geriatr 2005; 17:77-89. [PMID: 15374321 DOI: 10.1016/0167-4943(93)90040-o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1993] [Revised: 06/18/1993] [Accepted: 06/24/1993] [Indexed: 11/22/2022]
Abstract
Receptor binding assays and in vitro macroautoradiography were used to analyze muscarinic cholinergic receptors (MCR) in the cerebral frontal cortex of Alzheimer's disease (AD), senile dementia of Alzheimer type (SDAT), and age-matched control brains at autopsy. Total MCR binding, detected by [(3)H]quiniclinidyl benzilate binding, did not differ significantly between the 3 groups. The concentrations of M1 subtype (M1-R), detected by [(3)H]pirenzepine binding, and high affinity state MCRs, however, were significantly lower in AD than in control and SDAT frontal cortices. No differences were detected in the affinity of these receptors for their ligands. The MCRs in AD frontal cortex were more sensitive to the agonist carbachol than were control MCRs. Autoradiography revealed a complete destruction of the laminar distribution of MCR and M1-R in AD and SDAT frontal cortices. Forskolin and phorbol ester binding sites, used to analyze second messenger systems, were significantly and markedly reduced in AD frontal cortex. In addition, coupling between MCR and second messenger systems was supersensitive in AD frontal cortex. Our findings that there are alterations in the structural distribution of MCR as well as reductions and abnormalities in second messenger systems in AD cerebral frontal cortex, suggest that drug therapy with acetylcholine precursors, choline esterase inhibitors and muscarinic agonists cannot eliminate symptoms in dementia patients. Furthermore, they point out the need for techniques to diagnose the disease prior to disintegration of the neuronal network, and the need for therapies to delay or prevent the progression of structural changes.
Collapse
Affiliation(s)
- N Ogawa
- Department of Neuroscience, Institute of Molecular and Cellular Medicine, Japan
| | | | | | | |
Collapse
|
15
|
Hulse GK, Lautenschlager NT, Tait RJ, Almeida OP. Dementia associated with alcohol and other drug use. Int Psychogeriatr 2005; 17 Suppl 1:S109-27. [PMID: 16240487 DOI: 10.1017/s1041610205001985] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The acute use of alcohol and several other licit and illicit drugs can affect mental state and cognitive function. The chronic use of certain drugs may also increase the risk of cognitive impairment and perhaps dementia in later life. This paper focuses on the long-term cognitive consequences of using alcohol, benzodiazepines, tobacco and cannabis. Currently available evidence indicates that mild to moderate alcohol consumption is not associated with increased risk of cognitive decline and may in fact have a protective effect against dementia, although heavy, long-term consumption is likely to have a negative impact on cognitive function. The degree that alcohol-related cognitive impairment must reach to be classified as dementia is currently obscure. Longer-term smoking is associated with increased risk of cognitive impairment and possibly dementia. The chronic use of benzodiazepines has been associated with increased risk of cognitive impairment but information relating to dementia remains inconclusive. The chronic use of cannabis may impair intellectual abilities but data on this topic remain sparse and difficult to interpret. In conclusion, there is evidence that some drugs contribute to the causal pathway that leads to the development of cognitive impairment but currently available data do not support the introduction of a separate diagnostic category of drug-induced dementia (such as alcohol-related dementia). Health promotion programs designed to decrease tobacco smoking and "harmful" alcohol use (and possibly other drug use) may decrease the burden of cognitive impairment and perhaps dementia in later life.
Collapse
Affiliation(s)
- Gary K Hulse
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Australia.
| | | | | | | |
Collapse
|
16
|
Barbelivien A, Vaussy C, Marchalant Y, Maubert E, Bertrand N, Beley A, Roussel S, Mackenzie ET, Dauphin F. Degeneration of the basalocortical pathway from the cortex induces a functional increase in galaninergic markers in the nucleus basalis magnocellularis of the rat. J Cereb Blood Flow Metab 2004; 24:1255-66. [PMID: 15545921 DOI: 10.1097/01.wcb.0000139447.69413.05] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present work aimed 1) to evaluate whether an increase in galanin or galanin receptors could be induced in the nucleus basalis magnocellularis (nbm) by degeneration of the basalocortical neurons from the cortex and 2) to analyze the consequences of such an increase on cortical activity. First, a mild ischemic insult to the frontoparietal cortex was performed to induce the degeneration of the basalocortical system; galanin immunoreactivity, galanin binding sites, and cholinergic muscarinic receptors were quantified through immunocytochemistry and autoradiography. Second, galanin infusions in the nbm were undertaken to mimic a local increase of the galaninergic innervation; cortical acetylcholine release, cerebral glucose use, and cerebral blood flow were then measured as indices of cortical activity. As a result of the cortical ischemic lesion, the postsynaptic M1 and presynaptic M2 muscarinic receptors were found to be reduced in the altered cortex. In contrast, galaninergic binding capacity and fiber density were found to be increased in the ipsilateral nbm in parallel with a local decrease in the cholinergic markers such as the muscarinic M1 receptor density. Galanin infusion into the nbm inhibited the cortical acetylcholine release and cerebral blood flow increases elicited by the activation of the cholinergic basalocortical system but failed to affect acetylcholine release, cerebral blood flow, and cerebral glucose use when injected alone in the nbm. These results demonstrate that degeneration of the basalocortical system from the cortex induces an increase in galaninergic markers in the nbm, a result that might suggest that the galaninergic overexpression described in the basal forebrain of patients with Alzheimer's disease can result from a degeneration of the cholinergic basalocortical system from the cortex. Because galanin was found to reduce the activity of the basalocortical cholinergic system only when this one is activated, galanin might exert its role rather during activation deficits than under resting conditions such as the resting cortical hypometabolism, which is characteristic of Alzheimer's disease.
Collapse
|
17
|
Swaab DF, Dubelaar EJG, Scherder EJA, van Someren EJW, Verwer RWH. Therapeutic strategies for Alzheimer disease: focus on neuronal reactivation of metabolically impaired neurons. Alzheimer Dis Assoc Disord 2003; 17 Suppl 4:S114-22. [PMID: 14512817 DOI: 10.1097/00002093-200307004-00006] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Based on several lines of evidence, it has been hypothesized that decreased neuronal metabolic rate may precede cognitive impairment, contributing to neuronal atrophy as well as reduced neuronal function in Alzheimer disease (AD). Additionally, studies have shown that stimulation of neurons through different mechanisms may protect those cells from the deleterious effects of aging and AD, a phenomenon we paraphrased as "use it or lose it." Therefore, it is attractive to direct the development of therapeutic strategies toward stimulation of metabolic rate/neuronal activity to improve cognition and other symptoms in AD. A number of pharmacological and nonpharmacological approaches discussed here support the concept that stimulation of the brain has beneficial effects and may, to a certain degree, restore several aspects of cognition and other central functions. For instance, the circadian system, which controls the sleep/wake cycle, may be stimulated in AD patients by exposing them to more light or transcutaneous nerve stimulation. We will also discuss a procedure that has been developed to culture human postmortem brain tissue, which allows testing of the efficacy of putative stimulatory compounds.
Collapse
Affiliation(s)
- D F Swaab
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
German DC, Yazdani U, Speciale SG, Pasbakhsh P, Games D, Liang CL. Cholinergic neuropathology in a mouse model of Alzheimer's disease. J Comp Neurol 2003; 462:371-81. [PMID: 12811807 DOI: 10.1002/cne.10737] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transgenic mice overexpressing mutant human amyloid precursor protein (PDAPP mice) develop several Alzheimer's disease (AD)-like lesions including an age-related accumulation of amyloid-beta (Abeta)-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes characteristic of AD pathology, no evidence of widespread neuronal loss has been observed. The present study sought to determine whether homozygous PDAPP mice, which express very high levels of Abeta peptide, exhibit AD-like cholinergic degenerative changes, and whether the changes parallel the deposition of Abeta plaques. Mice were examined at 2 and 4 months and at 1 and 2 years of age. There was an age-related increase in the density of Abeta plaques in the cortex and hippocampus of the PDAPP animals; at 4 months of age there were very few plaques, and at 2 years there was a very high density of plaques. There was an age-related reduction in the density of cholinergic nerve terminals in the cerebral cortex; at 2 months there was a normal density of nerve terminals, but as early as age 4 months there was an approximately 50% reduction. However, at age 2 years there was no difference in the number or size of basal forebrain cholinergic somata compared with 2-month-old PDAPP mice. These data indicated that the homozygous PDAPP mouse exhibits cholinergic nerve terminal degenerative pathology and that the cortical neurodegenerative changes occur before the deposition of Abeta-containing neuritic plaques.
Collapse
Affiliation(s)
- Dwight C German
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, Texas 75390-9070, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Swaab DF, Dubelaar EJG, Hofman MA, Scherder EJA, van Someren EJW, Verwer RWH. Brain aging and Alzheimer's disease; use it or lose it. PROGRESS IN BRAIN RESEARCH 2002; 138:343-73. [PMID: 12432778 DOI: 10.1016/s0079-6123(02)38086-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
(1) Alzheimer's disease is a multifactorial disease in which age and APOE-epsilon 4 are important risk factors. (2) The neuropathological hallmarks of AD, i.e. amorphous plaques, neuritic plaques (NPs), pretangles, neurofibrillary tangles (NFT) and cell death are not part of a single pathogenetic cascade but may occur independently. (3) In brain areas where classical AD changes, i.e. NPs and NFTs, are present, such as the CA1 area of the hippocampus, the nucleus basalis of Meynert and the tuberomamillary nucleus, a decreased metabolic rate is found. The decreased metabolic rate appears not to be induced by the presence of pretangles, NFT or NPs. (4) Decreased metabolic rate may precede cognitive impairment and is thus an early occurring hallmark of AD, which, in principle, may be reversible. The observation that the administration of glucose or insulin enhances memory in AD patients also supports the view that AD has a metabolic basis. (5) Moreover, several observations in postmortem brain indicate that activated neurons are better able to withstand aging and AD, a phenomenon paraphrased by us as 'use it or lose it'. (6) It is, therefore, attractive to direct the development of therapeutic strategies towards restimulation of neuronal metabolic rate in order to improve cognition and other symptoms in AD. A number of pharmacological and non-pharmacological studies support the concept that activation of the brain has beneficial effects and may, to a certain degree, restore several aspects of cognition and other central functions. For instance, the circadian system may be restimulated in AD patients by exposing them to more light or transcutaneous nerve stimulation. A procedure has been developed to culture human postmortem brain tissue that allows testing of the efficacy of putative stimulatory compounds such as neurotrophins.
Collapse
Affiliation(s)
- D F Swaab
- Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
20
|
Gau JT, Steinhilb ML, Kao TC, D'Amato CJ, Gaut JR, Frey KA, Turner RS. Stable beta-secretase activity and presynaptic cholinergic markers during progressive central nervous system amyloidogenesis in Tg2576 mice. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:731-8. [PMID: 11839594 PMCID: PMC1850661 DOI: 10.1016/s0002-9440(10)64893-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We examined presynaptic cholinergic markers and beta-secretase activity during progressive central nervous system amyloidogenesis in Tg2576 Alzheimer mice (transgenic for human amyloid precursor protein Swedish mutation; hAPPswe). At 14, 18, and 23 months of age there were no significant differences between wild-type and transgenic mice in four distinct central nervous system cholinergic indices--choline acetyltransferase and acetylcholinesterase activities, and binding to vesicular acetylcholine transporter and Na(+)-dependent high-affinity choline uptake sites. A novel enzyme-linked immunosorbent assay measuring only the secreted human beta-secretase cleavage product (APPsbetaswe) of APPswe also revealed no change with aging in Tg2576 mouse brain. In contrast, transgenic but not wild-type mice exhibited an age-dependent increase in soluble Abeta40 and Abeta42 levels and progressive amyloid deposition in brain. Thus, aging Tg2576 mice exhibited presynaptic cholinergic integrity despite progressively increased soluble Abeta40 and Abeta42 levels and amyloid plaque density in brain. Older Tg2576 mice may best resemble preclinical or early stages of human Alzheimer's disease with preserved presynaptic cholinergic innervation. Homeostatic APPsbetaswe levels with aging suggest that progressive amyloid deposition in brain results not from increased beta-secretase cleavage of APP but from impaired Abeta/amyloid clearance mechanisms.
Collapse
Affiliation(s)
- Jen-Tzer Gau
- Department of Medicine, Division of Geriatric Medicine, the Institute of Gerontology, University of Michigan, Ann Arbor, MI 48105, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Michalak A, Chatauret N, Butterworth RF. Evidence for a serotonin transporter deficit in experimental acute liver failure. Neurochem Int 2001; 38:163-68. [PMID: 11137885 DOI: 10.1016/s0197-0186(00)00062-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
It has been suggested that alterations of serotonin transport may be implicated in the pathogenesis of the neuropsychiatric symptoms encountered in acute liver failure. In order to address this issue, microdialysate concentrations of serotonin, its precursor L-tryptophan and metabolite 5-hydroxyindoleacetic acid (5-HIAA) as well as brain regional distribution of serotonin transporter ([3H]-citalopram) sites were measured in rats with acute liver failure resulting from hepatic devascularization. A significant loss of [3H]-citalopram sites was observed in dorsal Raphe nucleus, in frontal and frontoparietal cortices as well as in substantia nigra of rats with severe encephalopathy resulting from acute liver failure. In frontal cortex, this loss of transporter binding sites was accompanied by significant increases of L-tryptophan, serotonin and 5-HIAA concentrations in extracellular fluid. Pharmacological manipulation of the brain serotonin system could afford a novel therapeutic approach to the prevention of the neuropsychiatric symptoms characteristic of acute liver failure in humans.
Collapse
Affiliation(s)
- A Michalak
- Neuroscience Research Unit, CHUM Hôpital Saint-Luc, University of Montreal, 1058 St. Denis Street, Montreal, Que., Canada H2X 3J4
| | | | | |
Collapse
|
22
|
Efange SM. In vivo imaging of the vesicular acetylcholine transporter and the vesicular monoamine transporter. FASEB J 2000; 14:2401-13. [PMID: 11099458 DOI: 10.1096/fj.00-0204rev] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Validation of the vesicular acetylcholine transporter (VAChT) and the neuronal vesicular monoamine transporter (VMAT2) as important molecular targets in the cholinergic and dopamine neurons, respectively, has sparked interest in the development of radiotracers for studying these markers in vitro and in vivo. Currently, a number of selective high-affinity radiotracers are available for studying these targets in vivo with positron emission tomography (PET) or single photon emission computed tomography (SPECT). PET studies of VMAT2 in neuropathology reveal changes in the density of this marker that can be verified independently. Similarly, in vivo studies with VAChT ligands suggest that the latter are potentially useful in detecting cholinergic lesions in vivo; however, additional development is required to fully realize the potential of these radioligands.
Collapse
Affiliation(s)
- S M Efange
- Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
23
|
Abstract
Millions of people are affected by Alzheimer disease. As longevity increases, so will the number of patients with dementia. This has led to an intense search for successful treatment strategies. One area of interest is neurotrophic factors. Brain development and neuronal maintenance, as well as protective efforts, are mediated by a large number of different neurotrophic factors acting on specific receptors. In neurodegenerative disorders, there may be a possibility of rescuing degenerating neurons and stimulating terminal outgrowth with use of neurotrophic factors. The first neurotrophic factor discovered was nerve growth factor (NGF). A wealth of animal studies have shown that cholinergic neurons are NGF sensitive and NGF dependent, which is especially interesting in cognitive disorders, in which central cholinergic projections are important for cognitive function. In Alzheimer disease, cholinergic neurons have been shown to degenerate. This suggests that NGF may be used to pharmacologically counteract cholinergic degeneration and/or induce terminal sprouting in Alzheimer disease. Data from animal studies, as well as from the author's recent clinical trial, in which NGF was infused to the lateral ventricle in patients with Alzheimer disease, will be presented. Effects of NGF on cognition, as well as issues regarding dosage, side effects, and alternative ways of administering NGF, will be discussed.
Collapse
Affiliation(s)
- M E Jönhagen
- Department of Clinical Neuroscience, Karolinska Institute, Huddinge University Hospital, Sweden
| |
Collapse
|
24
|
Abstract
The synthesis, storage and release of acetylcholine (ACh) requires the expression of several specialized proteins, including choline acetyltransferase (ChAT) and the vesicular ACh transporter (VAChT). The VAChT gene is located within the first intron of the ChAT gene. This unique genomic organization permits coordinated activation of expression of the two genes by extracellular factors. Much less is known about factors that reduce the expression of the cholinergic phenotype. A cholinergic deficit is one of the primary features of Alzheimer's disease (AD), and AD brains are characterized by amyloid deposits composed primarily of A beta peptides. Although A beta peptides are neurotoxic, part of the cholinergic deficit in AD could be attributed to the suppression of cholinergic markers in the absence of cell death. Indeed, we and others demonstrated that synthetic A beta peptides, at submicromolar concentrations that cause no cytotoxicity, reduce the expression of cholinergic markers in neuronal cells. Another feature of AD is abnormal phospholipid turnover, which might be related to the progressive accumulation of apolipoprotein E (apoE) within amyloid plaques, leading perhaps to the reduction of apoE content in the CSF of AD patients. ApoE is a component of very low density lipoproteins (VLDL). As a first step in investigating a potential neuroprotective function of apoE, we determined the effects of VLDL on ACh content in neuronal cells. We found that VLDL increases ACh levels, and that it can partially offset the anticholinergic actions of A beta peptides.
Collapse
Affiliation(s)
- J K Blusztajn
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, MA 02118, USA.
| | | |
Collapse
|
25
|
Mufson EJ, Cai WJ, Jaffar S, Chen E, Stebbins G, Sendera T, Kordower JH. Estrogen receptor immunoreactivity within subregions of the rat forebrain: neuronal distribution and association with perikarya containing choline acetyltransferase. Brain Res 1999; 849:253-74. [PMID: 10592312 DOI: 10.1016/s0006-8993(99)01960-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Administration of the neuroactive steroid hormone estrogen has been shown to effect cholinergic basal forebrain neuronal function. Antibodies directed against the estrogen receptor alpha (ERalpha) revealed dark (type 1) and light (type 2) nuclear positive neurons within the islands of Calleja, endopiriform nucleus, lateral septum, subfields of the cholinergic basal forebrain, bed nucleus of the stria terminalis, striohypothalamic region, medial preoptic region, periventricular, ventromedial, arcuate and tuberal mammillary nuclei of the hypothalamus, reuniens and anterior medial thalamic nuclei, amygdaloid complex, piriform cortex and subfornical organ. In contrast, only a few scattered ERalpha labeled neurons were found in cortex and hippocampus. ERalpha stained cell bodies were not seen in the striatum. Counts of ERalpha labeled neurons in intact female rats revealed significantly more type 2 neurons within the basal forebrain subfields. Quantitation of ERalpha immunoreactive neurons revealed a significant decrease in the relative number of type 1 neurons within the medial septum (MS), horizontal limb of the diagonal band (HDB) and substantia innominata/nucleus basalis (SI/NB) following ovariectomy. Quantitation following choline acetyltransferease (ChAT) immunohistochemistry revealed a significant decrease in the number of ChAT positive neurons within the MS, HDB and SI/NB, but not VDB following ovariectomy. Following ovx, the percentage of double labeled cholinergic basal forebrain neurons also declined significantly within the MS, VDB, HDB and SI/NB. These observations suggest that estrogen effects a subpopulation of cholinergic basal forebrain neurons and may provide insight into the biologic actions of this steroid in Alzheimer's disease.
Collapse
Affiliation(s)
- E J Mufson
- Department of Neurological Sciences, Center For Brain Repair, Rush Alzheimer's Disease Center, Rush Presbyterian-St. Luke's Medical Center, Chicago, IL, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, Mufson EJ, Levey AI. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990906)411:4<693::aid-cne13>3.0.co;2-d] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Katsumi Y, Hanakawa T, Fukuyama H, Hayashi T, Nagahama Y, Yamauchi H, Ouchi Y, Tsukada H, Shibasaki H. The effect of sequential lesioning in the basal forebrain on cerebral cortical glucose metabolism in rats. An animal positron emission tomography study. Brain Res 1999; 837:75-82. [PMID: 10433990 DOI: 10.1016/s0006-8993(99)01530-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the effect of the cortical projection from the basal forebrain on the cerebral cortical metabolism using positron emission tomography (PET) with [(18)F] fluorodeoxyglucose. Unilateral damage of the nucleus basalis magnocellularis (NBM) did not cause a permanent reduction of cortical metabolism: recovery was observed 4 weeks after the operation. Destruction of the contralateral side after recovery from unilateral damage produced persistent bilateral suppression of glucose metabolism, with partial recovery. We speculate that recovery from the unilateral NBM lesions is partly ascribable to the cholinergic projection from the contralateral NBM, and partly due to non-cholinergic systems, and conclude that bilateral damage might be responsible for persistent cortical glucose metabolism suppression.
Collapse
Affiliation(s)
- Y Katsumi
- Department of Neurology, Faculty of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Salehi A, Verhaagen J, Swaab DF. Neurotrophin receptors in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 1999; 117:71-89. [PMID: 9932402 DOI: 10.1016/s0079-6123(08)64009-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- A Salehi
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
29
|
Abstract
A cholinergically disrupted laboratory animal has been produced by administration of the cholinotoxin ethylcholine aziridinium mustard (AF64A), which produced a dysfunction in the cholinergic forebrain system. After AF64A treatment, a reduction of choline acetyl transferase (ChAT) activity was measured in the hippocampal regions. ChAT activity was preferentially reduced in tissue samples of the dorsal with respect to the ventral hippocampus, and concomitantly with this reduction, a compensatory increase in ChAT activity in the medial septum was found. Tissue gamma-aminobutyric acid (GABA) content in the hippocampal and septal brain areas was not affected by AF64A, indicating a specific effect on the cholinergic septohippocampal projection. The rate of GABA accumulation induced by aminooxyacetic acid administration was higher in the dorsal hippocampus and medial septum of AF64A-treated animals, but not in their ventral hippocampus and lateral septum, where significant changes occurred in ChAT activity. Concomitantly with the changes in GABA metabolism, a significant Bmax increase and Kd reduction of 3H-flunitrazepam binding in the hippocampus of AF64A-treated animals were associated with changes in the ChAT activity. This finding suggests an increase of GABA input on the cholinergic somas of the medial septum and an uncompensated GABAergic interneuron activity in the hippocampus. In this study, we present an adaptive mechanism of homotypic compensatory metabolism by cholinergic somas, and a heterotypic response of the GABAergic septohippocampal projection system, which was elicited by AF64A administration.
Collapse
Affiliation(s)
- C A Ayala-Grosso
- Laboratory of Biochemistry, School of Pharmacy, Universidad Central de Venezuela, Caracas.
| | | |
Collapse
|
30
|
|
31
|
Borchelt DR, Wong PC, Sisodia SS, Price DL. Transgenic mouse models of Alzheimer's disease and amyotrophic lateral sclerosis. Brain Pathol 1998; 8:735-57. [PMID: 9804381 PMCID: PMC8098285 DOI: 10.1111/j.1750-3639.1998.tb00198.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Over the past several years, there has been enormous progress in generating transgenic mice that model aspects of human neurodegenerative diseases. These studies build upon the efforts of molecular geneticists who have identified a number of genes that, when mutated, cause familial forms of these diseases. In this review, we focus on the mutations that cause familial forms of Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), and transgenic mouse models that develop clinical and pathological abnormalities resembling those occurring in the human diseases.
Collapse
Affiliation(s)
- D R Borchelt
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
32
|
Abstract
Considering the mechanisms responsible for age- and Alzheimer's disease (AD)-related neuronal degeneration, little attention was paid to the opposing relationships between the energy-rich phosphates, mainly the availability of the adenosine triphosphate (ATP), and the activity of the glutamic acid decarboxylase (GAD), the rate-limiting enzyme synthesizing the gamma-amino butyric acid (GABA). Here, it is postulated that in all neuronal phenotypes the declining ATP-mediated negative control of GABA synthesis gradually declines and results in age- and AD-related increases of GABA synthesis. The Ca2+-independent carrier-mediated GABA release interferes with Ca2+-dependent exocytotic release of all transmitter-modulators, because the interstitial (ambient) GABA acts on axonal preterminal and terminal varicosities endowed with depolarizing GABA(A)-benzodiazepine receptors; this makes GABA the "executor" of virtually all age- and AD-related neurodegenerative processes. Such a role of GABA is diametrically opposite to that in the perinatal phase, when the carrier-mediated GABA release, acting on GABA(A)/chloride ionophore receptors, positively controls chemotactic migration of neuronal precursor cells, has trophic actions and initiates synaptogenesis, thereby enabling retrograde axonal transport of target produced factors that trigger differentiation of neuronal phenotypes. However, with advancing age, and prematurely in AD, the declining mitochondrial ATP synthesis unleashes GABA synthesis, and its carrier-mediated release blocks Ca2+-dependent exocytotic release of all transmitter-modulators, leading to dystrophy of chronically depolarized axon terminals and block of retrograde transport of target-produced trophins, causing "starvation" and death of neuronal somata. The above scenario is consistent with the following observations: 1) a 10-month daily administration to aging rats of the GABA-chloride ionophore antagonist, pentylenetetrazol, or of the BDZ antagonist, flumazenil (FL), each forestalls the age-related decline in cognitive functions and losses of hippocampal neurons; 2) the brains of aging rats, relative to young animals, and the postmortem brains of AD patients, relative to age-matched controls, show up to two-fold increases in GABA synthesis; 3) the aging humans and those showing symptoms of AD, as well as the aging nonhuman primates and rodents--all show in the forebrain dystrophic axonal varicosities, losses of transmitter vesicles, and swollen mitochondria. These markers, currently regarded as the earliest signs of aging and AD, can be reproduced in vitro cell cultures by 1 microM GABA; the development of these markers can be prevented by substituting Cl- with SO4(2-); 4) the extrasynaptic GABA suppresses the membrane Na+, K+-ATPase and ion pumping, while the resulting depolarization of soma-dendrites relieves the "protective" voltage-dependent Mg2+ control of the N-methyl-D-aspartate (NMDA) channels, thereby enabling Ca2+-dependent persistent toxic actions of the excitatory amino acids (EAA); and 5) in whole-cell patch-clamp recording from neurons of aging rats, relative to young rats, the application of 3 microM GABA, causes twofold increases in the whole-cell membrane Cl- conductances and a loss of the physiologically important neuronal ability to desensitize to repeated GABA applications. These age-related alterations in neuronal membrane functions are amplified by 150% in the presence of agonists of BDZ recognition sites located on GABA receptor. The GABA deafferentation hypothesis also accounts for the age- and AD-related degeneration in the forebrain ascending cholinergic, glutamatergic, and the ascending mesencephalic monoaminergic system, despite that the latter, to foster the distribution-utilization of locally produced trophins, evolved syncytium-like connectivities among neuronal somata, axon collaterals, and dendrites, to bidirectionally transport trophins. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- T J Marczynski
- Department of Pharmacology, College of Medicine, University of Illinois, Chicago 60612, USA.
| |
Collapse
|
33
|
Mufson E, Jaffar S, Levey A. m2 muscarinic acetylcholine receptor-immunoreactive neurons are not reduced within the nucleus basalis in Alzheimer's disease: Relationship with cholinergic and galaninergic perikarya. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980316)392:3<313::aid-cne3>3.0.co;2-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Affiliation(s)
- M A Smith
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
35
|
Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M. Brain-derived neurotrophic factor is reduced in Alzheimer's disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:71-81. [PMID: 9387865 DOI: 10.1016/s0169-328x(97)00125-3] [Citation(s) in RCA: 453] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease may be due to a deficiency in neurotrophin protein or receptor expression. Consistent with this hypothesis, a reduction in BDNF mRNA expression has been observed in human post-mortem Alzheimer's disease hippocampi. To further investigate this observation, we examined whether the alteration in BDNF expression also occurred at the protein level in human post-mortem Alzheimer's disease hippocampi and temporal cortices using immunohistochemical techniques. We observed a reduction in the intensity and number of BDNF-immunoreactive cell bodies within both the Alzheimer's disease hippocampus and temporal cortex when compared to normal tissue. These results support and extend previous findings that BDNF mRNA is reduced in the human Alzheimer's disease hippocampus and temporal cortex, and suggest that a loss of BDNF may contribute to the progressive atrophy of neurons in Alzheimer's disease.
Collapse
Affiliation(s)
- B Connor
- Department of Pharmacology, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Nicotine is a very widely used drug of abuse, which exerts a number of neurovegetative, behavioural and psychological effects by interacting with neuronal nicotinic acetylcholine receptors (NAChRs). These receptors are distributed widely in human brain and ganglia, and form a family of ACh-gated ion channels of different subtypes, each of which has a specific pharmacology and physiology. As human NAChRs have been implicated in a number of human central nervous system disorders (including the neurodegenerative Alzheimer's disease, schizophrenia and epilepsy), they are suitable potential targets for rational drug therapy. Much of our current knowledge about the structure and function of NAChRs comes from studies carried out in other species, such as rodents and chicks, and information concerning human nicotinic receptors is still incomplete and scattered in the literature. Nevertheless, it is already evident that there are a number of differences in the anatomical distribution, physiology, pharmacology, and expression regulation of certain subtypes between the nicotinic systems of humans and other species. This review will attempt to survey the major achievements reached in the study of the structure and function of NAChRs by examining the molecular basis of their functional diversity viewed mainly from pharmacological and biochemical perspectives. It will also summarize our current knowledge concerning the structure and function of the NAChRs expressed by other species, and the newly discovered drugs used to classify their numerous subtypes. Finally, the role of NAChRs in behaviour and pathology will be considered.
Collapse
Affiliation(s)
- C Gotti
- Department of Medical Pharmacology, University of Milan, Italy
| | | | | |
Collapse
|
37
|
Otoguro K, Kuno F, Omura S. Arisugacins, selective acetylcholinesterase inhibitors of microbial origin. Pharmacol Ther 1997; 76:45-54. [PMID: 9535168 DOI: 10.1016/s0163-7258(97)00093-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthetic inhibitors of acetylcholinesterase (AChE) recently have attracted particular attention for treatment of Alzheimer's disease. By systematic screening of microbial metabolites, we were able to discover the new AChE inhibitors, named arisugacins A and B, from the culture broth of Penicillium sp. FO-4259. The structures of arisugacins are members of the meroterpenoid compounds. Arisugacin A is a potent and highly selective inhibitor of AChE but does not inhibit butyrylcholinesterase in vitro. Arisugacin A is a good candidate as an excellent potential drug for treatment of Alzheimer's disease. Also reviewed is the current status of development of antidementia drugs.
Collapse
Affiliation(s)
- K Otoguro
- Research Center for Biological Function, The Kitasato Institute, Tokyo, Japan
| | | | | |
Collapse
|
38
|
Abstract
The past decade has witnessed an enormous increase in our knowledge of the variety and complexity of neuropathological and neurochemical changes in Alzheimer's disease. Although the disease is characterized by multiple deficits of neurotransmitters in the brain, this overview emphasizes the structural and neurochemical localization of the elements of the acetylcholine system (choline acetyltransferase, acetylcholinesterase, and muscarinic and nicotinic acetylcholine receptors) in the non-demented brain and in Alzheimer's disease brain samples. The results demonstrate a great variation in the distribution of acetylcholinesterase, choline acetyltransferase, and the nicotinic and muscarinic acetylcholine receptors in the different brain areas, nuclei and subnuclei. When stratification is present in certain brain regions (olfactory bulb, cortex, hippocampus, etc.), differences can be detected as regards the laminar distribution of the elements of the acetylcholine system. Alzheimer's disease involves a substantial loss of the elements of the cholinergic system. There is evidence that the most affected areas include the cortex, the entorhinal area, the hippocampus, the ventral striatum and the basal part of the forebrain. Other brain areas are less affected. The fact that the acetylcholine system, which plays a significant role in the memory function, is seriously impaired in Alzheimer's disease has accelerated work on the development of new drugs for treatment of the disease of the 20th century.
Collapse
Affiliation(s)
- P Kása
- Alzheimer's Disease Research Center, Albert Szent-Györgyi Medical University, Szeged, Hungary.
| | | | | |
Collapse
|
39
|
Mach RH, Voytko ML, Ehrenkaufer RL, Nader MA, Tobin JR, Efange SM, Parsons SM, Gage HD, Smith CR, Morton TE. Imaging of cholinergic terminals using the radiotracer [18F](+)-4-fluorobenzyltrozamicol: in vitro binding studies and positron emission tomography studies in nonhuman primates. Synapse 1997; 25:368-80. [PMID: 9097396 DOI: 10.1002/(sici)1098-2396(199704)25:4<368::aid-syn8>3.0.co;2-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of the present set of studies was to characterize the in vitro binding properties and in vivo tissue kinetics for the vesicular acetylcholine transporter (VAcChT) radiotracer, [18F](+)-4-fluorobenzyltrozamicol ([18F](+)-FBT). In vitro binding studies were conducted in order to determine the affinity of the (+)- and (-)-stereoisomers of FBT for the VAcChT as well as sigma (sigma 1 and sigma 2) receptors. (+)-FBT was found to have a high affinity (Ki = 0.22 nM) for the VAcChT and lower affinities for sigma 1 (21.6 nM) and sigma 2 (35.9 nM) receptors, whereas (-)-FBT had similar affinities for the VAcChT and sigma 1 receptors (approximately 20 nM) and a lower affinity for sigma 2 (110 nM) receptors. PET imaging studies were conducted in rhesus monkeys (n = 3) with [18F](+)-FBT. [18F](+)-FBT was found to have a high accumulation and slow rate of washout from the basal ganglia, which is consistent with the labeling of cholinergic interneurons in this brain region. [18F](+)-FBT also displayed reversible binding kinetics during the 3 h time course of PET and produced radiolabeled metabolites that did not cross the blood-brain barrier. The results from the current in vitro and in vivo studies indicate that [18F](+)-FBT is a promising ligand for studying cholinergic terminal density, with PET, via the VAcChT.
Collapse
Affiliation(s)
- R H Mach
- Department of Radiology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Swaab D. Chapter II Neurobiology and neuropathology of the human hypothalamus. HANDBOOK OF CHEMICAL NEUROANATOMY 1997. [DOI: 10.1016/s0924-8196(97)80004-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Calaminici M, Abdulla FA, Sinden JD, Stephenson JD. Plastic changes in the cholinergic innervation of the rat cerebral cortex after unilateral lesion of the nucleus basalis with alpha-amino-3-OH-4-isoxozole propionic acid (AMPA): effects of basal forebrain transplants into neocortex. Brain Res Bull 1997; 42:79-93. [PMID: 8971411 DOI: 10.1016/s0361-9230(96)00212-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Unilateral AMPA lesions of the nucleus basalis magnocellularis (nbm) produced a nearly complete loss of cholinergic markers in the ipsilateral frontal and parietal cortices with no recovery at 6 months. The loss was associated with compensatory increases in AChE-positive fibre density in the contralateral cortex, in ipsilateral cortical regions not receiving their cholinergic innervation from the nbm and in the size of cholinergic magnocellular neurones in the contralateral nbm. The hypertrophy and increase in AChE-positive fibre density were apparent at 4-6 weeks after lesion and increased with time. Cholinergic transplants to cholinergically deafferented cortex prevented development of the compensatory increases in AChE-positive fibre density and restored AChE-positive fibre density and ChAT activity to control levels in ipsilateral cholinergically deafferented regions, partially after 6-8 weeks and completely after 6 months. In contrast, when cholinergic grafts were placed into unlesioned cortex, axonal outgrowth was localized to the vicinity of the transplant and did not develop with time. These results support the concept that vacant synapses promote and direct axonal outgrowth from transplanted neurones and that grafted cholinergic neurones integrate into the lesioned forebrain cholinergic projections system and prevent the lesion-induced changes in AChE-positive fibre density and ChAT activity.
Collapse
Affiliation(s)
- M Calaminici
- Department of Neuroscience, Institute of Psychiatry, London, UK
| | | | | | | |
Collapse
|
42
|
Kuhl DE, Minoshima S, Fessler JA, Frey KA, Foster NL, Ficaro EP, Wieland DM, Koeppe RA. In vivo mapping of cholinergic terminals in normal aging, Alzheimer's disease, and Parkinson's disease. Ann Neurol 1996; 40:399-410. [PMID: 8797529 DOI: 10.1002/ana.410400309] [Citation(s) in RCA: 255] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To map presynaptic cholinergic terminal densities in normal aging (n = 36), Alzheimer's disease (AD) (n = 22), and Parkinson's disease (PD) (n = 15), we performed single-photon emission computed tomography using [123I]iodobenzovesamicol (IBVM), an in vivo marker of the vesicular acetylcholine transporter. We used coregistered positron emission tomography with [18F]fluorodeoxyglucose for metabolic assessment and coregistered magnetic resonance imaging for atrophy assessment. In controls (age, 22-91 years), cortical IBVM binding declined only 3.7% per decade. In AD, cortical binding correlated inversely with dementia severity. In mild dementia, binding differed according to age of onset, but metabolism did not. With an onset age of less than 65 years, binding was reduced severely throughout the entire cerebral cortex and hippocampus (about 30%), but with an onset age of 65 years or more, binding reductions were restricted to temporal cortex and hippocampus. In PD without dementia, binding was reduced only in parietal and occipital cortex, but demented PD subjects had extensive cortical binding decreases similar to early-onset AD. We conclude that cholinergic neuron integrity can be monitored in living AD and PD patients, and that it is not so devastated in vivo as suggested by postmortem choline acetyltransferase activity (50-80%).
Collapse
Affiliation(s)
- D E Kuhl
- University of Michigan Hospitals, Division of Nuclear Medicine, Ann Arbor 48109-0028, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Voytko ML. Cognitive functions of the basal forebrain cholinergic system in monkeys: memory or attention? Behav Brain Res 1996; 75:13-25. [PMID: 8800650 DOI: 10.1016/0166-4328(95)00143-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cholinergic hypothesis of memory dysfunction originally proposed that dysfunction of cholinergic neurons in the basal forebrain cholinergic system (BFCS) may be responsible for the memory deficits associated with aging and Alzheimer's disease (AD). This hypothesis directed focus on the BFCS in experimental animal models of AD. In contrast to numerous studies in rodents, fewer investigations have been conducted in monkeys with BFCS lesions. The medical septal nucleus/nucleus of the diagonal band of Broca (MS/NDBB) and the nucleus basalis of Meynert (NBM) may be involved in different cognitive functions in monkeys. Although few investigations have specifically addressed the issue of cognitive functions of the MS/NDBB in monkeys, there is some indication that these regions may be important for memory. In contrast, lesions of the NBM do not consistently disrupt mnemonic functions in monkeys. Recent electrophysiological and lesion studies of monkeys indicate that the NBM may play a more important role in attention functions, impairments of which are an early and significant feature of patients with AD.
Collapse
Affiliation(s)
- M L Voytko
- Department of Comparative Medicine, Bowman Gray School of Medicine, Winston-Salem, NC 27157-1040, USA.
| |
Collapse
|
44
|
Meier-Ruge W, Bertoni-Freddari C. The significance of glucose turnover in the brain in the pathogenetic mechanisms of Alzheimer's disease. Rev Neurosci 1996; 7:1-19. [PMID: 8736675 DOI: 10.1515/revneuro.1996.7.1.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This paper presents a comprehensive survey of the pathogenesis and pathophysiology of Alzheimer's disease (AD). Two mechanisms are of etiological importance in the development of a degenerative dementing brain disease: 1. Lesions in the mitochondrial genome that are caused by free radicals. Primary degenerative AD is characterized by a tendency to acquire random lesions within mitochondrial DNA that are produced by free radicals. The consequence of these lesions is a decrease in glucose turnover and a decline in oxidative phosphorylation. Point mutations on chromosome 21 are hypothesized to increase the susceptibility of mitochondrial DNA to lesions created by free radicals. 2. Ischemic brain lesions as well as traumatic brain damage cause an increase in the release of excitotoxic amino acids (glutamate, aspartate, etc.). These neurotransmitters increase CA(+2) influx into the nerve cell and significantly lower energy production. From a pathogenetic point of view, AD is characterized by a decrease in glucose turnover in the brain. The progression of AD can be monitored by F18- deoxyglucose PET studies. This technique also allows the recognition of patients who are prone to develop AD. The actual development of a cognitive deficit is a threshold phenomenon that occurs if glucose turnover in the hippocampus or temporoparietal cortex drops below a critical level of about 40% of the level of age-matched controls. The low glucose turnover in AD causes a cholinergic deficit by decreasing the synthesis of AcCoA, which is used by choline acetyltransferase in the acetylation of choline to acetylcholine. The decrease in glucose turnover also reduces oxidative phosphorylation. The resulting decrease in ATP triggers the hyperphosphorylation of tau protein by activating protein kinase 40erk. The hyperphosphorylation leads to the development of paired helical filaments. The generation of beta amyloid and the loss of neuronal synapses are also caused by a decrease in oxidative phosphorylation, since beta amyloid precursor proteins are not inserted into the membranes of nerve cells in the absence of a sufficient amount of ATP. This results in the generation of intact beta amyloid molecules and leads to amyloidosis in the brains of patients with Alzheimer's disease.
Collapse
Affiliation(s)
- W Meier-Ruge
- Department of Pathology, University Medical School Basel, Switzerland
| | | |
Collapse
|
45
|
Siman R, Greenberg BD. Alzheimer’s Disease. Neurotherapeutics 1996. [DOI: 10.1007/978-1-59259-466-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Wiley RG, Berbos TG, Deckwerth TL, Johnson EM, Lappi DA. Destruction of the cholinergic basal forebrain using immunotoxin to rat NGF receptor: modeling the cholinergic degeneration of Alzheimer's disease. J Neurol Sci 1995; 128:157-66. [PMID: 7738592 DOI: 10.1016/0022-510x(94)00226-e] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Degeneration of cholinergic neurons in the basal forebrain (CBF) is a prominent neuropathological feature of Alzheimer's disease and is thought responsible for some cognitive deficits seen in patients. An animal model of pure CBF degeneration would be valuable for analysis of the function of these neurons and testing therapeutic strategies. CBF neurons express receptors for nerve growth factor. In order to selectively destroy these neurons, we developed an immunotoxin using monoclonal antibody (192 IgG) to rat NGF receptor (p75NGFr) armed with the ribosome inactivating protein, saporin. In vitro 192-saporin was highly toxic to neurons expressing p75NGFr. Intraventricular injections of 192-saporin destroyed the CBF and impaired passive avoidance learning. These results indicate that 192-saporin treated rats can be used to model a key feature of Alzheimer's disease and that anti-neuronal immunotoxins are a powerful approach to selective neural lesioning.
Collapse
MESH Headings
- Alzheimer Disease
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/toxicity
- Avoidance Learning/physiology
- Basal Ganglia/drug effects
- Basal Ganglia/pathology
- Basal Ganglia/physiopathology
- Behavior, Animal/physiology
- Cell Count
- Cells, Cultured
- Cholinergic Fibers/drug effects
- Cholinergic Fibers/pathology
- Disease Models, Animal
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/drug effects
- Humans
- Immunoconjugates
- Immunoglobulin G/immunology
- Immunotoxins/administration & dosage
- Immunotoxins/toxicity
- Injections, Intraventricular
- Learning Disabilities/chemically induced
- Male
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/immunology
- N-Glycosyl Hydrolases
- Neurons/drug effects
- Plant Proteins/administration & dosage
- Plant Proteins/toxicity
- Rats
- Rats, Sprague-Dawley
- Receptor, Nerve Growth Factor
- Receptors, Nerve Growth Factor/drug effects
- Receptors, Nerve Growth Factor/immunology
- Ribosome Inactivating Proteins, Type 1
- Saporins
- Septum Pellucidum/drug effects
- Septum Pellucidum/pathology
- Septum Pellucidum/physiopathology
- Substantia Innominata/drug effects
- Substantia Innominata/pathology
- Substantia Innominata/physiopathology
Collapse
Affiliation(s)
- R G Wiley
- Laboratory of Experimental Neurology, DVAMC, Nashville, TN 37212-2637, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Nerve growth factor (NGF) is a well-characterized protein that exerts pharmacological effects on a group of cholinergic neurons known to atrophy in Alzheimer's disease (AD). Considerable evidence from animal studies suggests that NGF may be useful in reversing, halting, or at least slowing the progression of AD-related cholinergic basal forebrain atrophy, perhaps even attenuating the cognitive deficit associated with the disorder. However, many questions remain concerning the role of NGF in AD. Levels of the low-affinity receptor for NGF appear to be at least stable in AD basal forebrain, and the recent finding of AD-related increases in cortical NGF brings into question whether endogenous NGF levels are related to the observed cholinergic atrophy and whether additional NGF will be useful in treating this disorder. Evidence regarding the localization of NGF within the central nervous system and its presumed role in maintaining basal forebrain cholinergic neurons is summarized, followed by a synopsis of the relevant aspects of AD neuropathology. The available data regarding levels of NGF and its receptor in the AD brain, as well as potential roles for NGF in the pathogenesis and treatment of AD, are also reviewed. NGF and its low affinity receptor are abundantly present within the AD brain, although this does not rule out an NGF-related mechanism in the degeneration of basal forebrain neurons, nor does it eliminate the possibility that exogenous NGF may be successfully used to treat AD. Further studies of the degree and distribution of NGF within the human brain in normal aging and in AD, and of the possible relationship between target NGF levels and the status of basal forebrain neurons in vivo, are necessary before engaging in clinical trials.
Collapse
Affiliation(s)
- S A Scott
- Department of Neurosurgery, University of Cincinnati, Ohio 45267-0515
| | | |
Collapse
|
48
|
Liberini P, Pioro EP, Maysinger D, Cuello AC. Neocortical infarction in subhuman primates leads to restricted morphological damage of the cholinergic neurons in the nucleus basalis of Meynert. Brain Res 1994; 648:1-8. [PMID: 7922512 DOI: 10.1016/0006-8993(94)91897-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of the present study was to investigate the long-term effect of cortical infarction on the subhuman primate (Cercopithecus aethiops) basal forebrain. The lesion, carried out by cauterizing the pial blood vessels supplying the left fronto-parieto-temporal neocortex, induced retrograde degenerative processes within the ipsilateral nucleus basalis of Meynert. The morphometrical analysis revealed that significant shrinkage of cholinergic neurons and loss of neuritic processes were localized within the intermediate regions of the nucleus basalis. The average cross-sectional areas of choline acetyltransferase-immunoreactive neurons in the intermedio-ventral (Ch4iv) and intermedio-dorsal (Ch4id) nucleus basalis were decreased to 62.5 +/- 9.5 and 58.0 +/- 8.6%, respectively, of the sham-operated values. Although an apparent loss of Nissl-stained magnocellular neurons in Ch4iv and Ch4id was found by applying a quantitative analysis based on a perikaryal-size criterion, data obtained by the quantification of immunostained material failed to reveal any significant decrease of cholinergic cell density. Results are discussed in view of future application of this ischemic model to study processes of retrograde degeneration following cortical target removal and to assess potential neurotrophic and neuroprotective properties of pharmacologic agents.
Collapse
Affiliation(s)
- P Liberini
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Que., Canada
| | | | | | | |
Collapse
|
49
|
Bilkei-Gorzó A. Effect of chronic treatment with aluminum compound on rat brain choline acetyltransferase activity. PHARMACOLOGY & TOXICOLOGY 1994; 74:359-60. [PMID: 7937570 DOI: 10.1111/j.1600-0773.1994.tb01373.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A Bilkei-Gorzó
- ALKALOIDA Chemical Works, Biological Research Department, Budapest, Hungary
| |
Collapse
|
50
|
Koliatsos VE, Price DL, Gouras GK, Cayouette MH, Burton LE, Winslow JW. Highly selective effects of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 on intact and injured basal forebrain magnocellular neurons. J Comp Neurol 1994; 343:247-62. [PMID: 8027442 DOI: 10.1002/cne.903430206] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cholinergic neurons of the basal nucleus complex (BNC) respond to nerve growth factor (NGF), the first member of a polypeptide gene family that also includes brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5). NGF, BDNF, and NT-3 are enriched in hippocampus. In addition, NGF and, more recently, BDNF have been shown to stimulate the cholinergic differentiation and enhance the survival of BNC cells in vitro. The present investigation was designed to test, in a comparative fashion, the in vivo effects of human recombinant NGF, BDNF, and NT-3 with confirmed activities in vitro on cholinergic and gamma-aminobutyric acid (GABA)-ergic BNC neurons. The specific questions asked were whether and, to what extent, biologically active recombinant neurotrophins stimulate the transmitter phenotypes of intact cholinergic and GABAergic neurons of the BNC, and whether, and to what extent, recombinant neurotrophins protect the transmitter phenotypes of axotomized cholinergic and GABAergic neurons of the BNC following complete transections of the fimbria-fornix (measured by ChAT enzyme activity and ChAT immunoreactivity and ChAT, p75NGFR, and GAD mRNA hybridization). Our results confirm the profound stimulatory and protective effects of recombinant NGF on the transmitter phenotype of cholinergic BNC neurons at the mRNA and protein levels. The effect of NGF on injured cholinergic neurons of the BNC is very specific and saturated at a dose of 20 micrograms/2 weeks. BDNF appeared to increase moderately p75NGFR expression in both intact and axotomized cholinergic neurons and to exert minor effects on some cholinergic markers (e.g., ChAT immunoreactivity). NT-3 had no effects on cholinergic neurons or the BNC. Moreover, NGF, BDNF, and NT-3 had no influence on GABAergic BNC neurons. Taken together, these results indicate that, despite their significant sequence homologies and their shared abundance in target fields of BNC neurons, NGF, BDNF, and NT-3 show striking differences in their efficacies as cholinergic trophic factors. GABAergic neurons of the BNC are resistant to neurotrophins. The results of the present investigation establish that NGF excels among neurotrophins as a trophic factor for intact and injured basal forebrain cholinergic neurons.
Collapse
Affiliation(s)
- V E Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2196
| | | | | | | | | | | |
Collapse
|