1
|
Application of neurotoxin- and pesticide-induced animal models of Parkinson's disease in the evaluation of new drug delivery systems. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:35-58. [PMID: 36651528 DOI: 10.2478/acph-2022-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neuro-degenerative disease after Alzheimer´s disease. It is characterized by motor symptoms such as akinesia, bradykinesia, tremor, rigidity, and postural abnormalities, due to the loss of nigral dopaminergic neurons and a decrease in the dopa-mine contents of the caudate-putamen structures. To this date, there is no cure for the disease and available treatments are aimed at controlling the symptoms. Therefore, there is an unmet need for new treatments for PD. In the past decades, animal models of PD have been proven to be valuable tools in elucidating the nature of the pathogenic processes involved in the disease, and in designing new pharmacological approaches. Here, we review the use of neurotoxin-induced and pesticide-induced animal models of PD, specifically those induced by rotenone, paraquat, maneb, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and 6-OHDA (6-hydroxydopamine), and their application in the development of new drug delivery systems for PD.
Collapse
|
2
|
Touchette JC, Breckenridge JM, Wilken GH, Macarthur H. Direct intranigral injection of dopaminochrome causes degeneration of dopamine neurons. Neurosci Lett 2015; 612:178-184. [PMID: 26704434 DOI: 10.1016/j.neulet.2015.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive neurodegeneration of nigrastriatal dopaminergic neurons leading to clinical motor dysfunctions. Many animal models of PD have been developed using exogenous neurotoxins and pesticides. Evidence strongly indicates that the dopaminergic neurons of the substantia nigra pars compacta (SNpc) are highly susceptible to neurodegeneration due to a number of factors including oxidative stress and mitochondrial dysfunction. Oxidation of DA to a potential endogenous neurotoxin, dopaminochrome (DAC), may be a potential contributor to the vulnerability of the nigrostriatal tract to oxidative insult. In this study, we show that DAC causes slow and progressive degeneration of dopaminergic neurons in contrast to 1-methyl-4-phenylpyridinium (MPP(+)), which induces rapid lesions of the region. The DAC model may be more reflective of early stresses that initiate the progressive neurodegenerative process of PD, and may prove a useful model for future neurodegenerative studies.
Collapse
Affiliation(s)
- Jillienne C Touchette
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Julie M Breckenridge
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Gerald H Wilken
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States
| | - Heather Macarthur
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S Grand Blvd, St. Louis, MO 63104, United States.
| |
Collapse
|
3
|
Masi A, Narducci R, Landucci E, Moroni F, Mannaioni G. MPP(+) -dependent inhibition of Ih reduces spontaneous activity and enhances EPSP summation in nigral dopamine neurons. Br J Pharmacol 2014; 169:130-42. [PMID: 23323755 DOI: 10.1111/bph.12104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/21/2012] [Accepted: 01/07/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE 1-Methyl-4-phenylpyridinium (MPP(+) ), a potent parkinsonizing agent in primates and rodents, is a blocker of mitochondrial complex I, therefore MPP(+) -induced parkinsonism is believed to depend largely on mitochondrial impairment. However, it has recently been proposed that other mechanisms may participate in MPP(+) -induced toxicity. We tackled this issue by probing the effects of an acute application of MPP(+) on substantia nigra pars compacta (SNc) dopamine (DA) neurons. EXPERIMENTAL APPROACH The effects of MPP(+) on SNc DA neurons in acute midbrain slices were investigated with electrophysiology techniques. KEY RESULTS MPP(+) (50 μM) was able to (i) hyperpolarize SNc DA neurons by ∼6 mV; (ii) cause an abrupt and marked (over 50%) reduction of the spontaneous activity; and (iii) inhibit the hyperpolarization-activated inward current (Ih ). MPP(+) shifted Ih activation curve towards negative potentials by ∼11 mV both in Wistar rats and in C57/BL6 mice. Inhibition was voltage- and concentration-dependent (Imax = 47%, IC50 = 7.74 μM). MPP(+) slowed Ih activation kinetics at all potentials. These effects were not dependent on (i) block of mitochondrial complex I/fall of ATP levels; (ii) activation of type 2 DA receptor; and (iii) alteration of cAMP metabolism. Finally, MPP(+) -dependent inhibition of Ih facilitated temporal summation of evoked EPSPs in SNc DA, but not in CA1 hippocampal neurons. CONCLUSION AND IMPLICATIONS Reduced functionality of Ih in SNc DA neurons, via increased responsiveness towards synaptic excitation, might play a role in MPP(+) -induced parkinsonism and, possibly, in the pathogenesis of human Parkinson's.
Collapse
Affiliation(s)
- A Masi
- Department of Neurosciences, Psychology, Drug Research and Child Health - Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.
| | | | | | | | | |
Collapse
|
4
|
Jenner P. Functional models of Parkinson's disease: a valuable tool in the development of novel therapies. Ann Neurol 2009; 64 Suppl 2:S16-29. [PMID: 19127585 DOI: 10.1002/ana.21489] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Functional models of Parkinson's disease (PD) have led to effective treatment for the motor symptoms. Toxin-based models, such as the 6-hydroxydopamine-lesioned rat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate, have resulted in novel dopaminergic therapies and new therapeutic strategies. They have also been used to study processes underlying motor complications, particularly dyskinesia, and for developing pharmacological approaches to dyskinesia avoidance and suppression. Symptomatic models of PD based on nigrostriatal degeneration have a high degree of predictability of clinical effect of dopaminergic drugs on motor symptoms in humans. However, the effects of nondopaminergic drugs in these models do not translate effectively into clinical efficacy. Newer experimental models of PD have attempted to reproduce the pathogenic process and to involve all areas of the brain pathologically affected in humans. In addition, models showing progressive neuronal death have been sought but so far unsuccessfully. Pathogenic modeling has been attempted using a range of toxins, as well as through the use of transgenic models of gene defects in familial PD and mutant rodent strains. However, there are still no accepted progressive models of PD that mimic the processes known to occur during cell death and that result in the motor deficits, pathology, biochemistry, and drug responsiveness as seen in humans. Nevertheless, functional models of PD have led to many advances in treating the motor symptoms of the disorder, and we have been fortunate to have them available. They are an important reason the treatment of PD is so much better compared with treatments for related illnesses.
Collapse
Affiliation(s)
- Peter Jenner
- Neurodegenerative Disease Research Centre, School of Health and Biomedical Sciences, King's College, London, United Kingdom.
| |
Collapse
|
5
|
Progress in Parkinson's disease—Where do we stand? Prog Neurobiol 2008; 85:376-92. [DOI: 10.1016/j.pneurobio.2008.05.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 02/26/2008] [Accepted: 05/30/2008] [Indexed: 12/21/2022]
|
6
|
|
7
|
Banerjee R, Sreetama S, Saravanan KS, Chandra G, Nath De S, Mohanakumar KP. Intrastriatal infusion of the Parkinsonian neurotoxin, MPP+, induces damage of striatal cell nuclei in Sprague–Dawley rats. J Chem Neuroanat 2006; 32:90-100. [PMID: 16822645 DOI: 10.1016/j.jchemneu.2006.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 05/21/2006] [Accepted: 05/22/2006] [Indexed: 11/22/2022]
Abstract
The potent Parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is known to destroy dopaminergic neurons of the basal ganglia. Its neurotoxically active metabolite, 1-methyl-4-phenyl pyridinium (MPP(+)), has been examined in the present study to verify whether administration of the neurotoxin that depletes about 70% of the striatal dopamine (DA) can cause damage to nuclear components of the cells at the terminal region, the striatum. Unilateral intrastriatal infusion of MPP(+) (100 and 200 nmol in 4 microl saline) caused a dose-dependent depletion of striatal DA (69 and 92%, respectively), as measured employing HPLC electrochemistry. It also resulted in the loss of tyrosine hydroxylase (TH) immunoreactivity in the striatum and in the perikarya at substantia nigra pars compacta (SNpc) and acetylcholinesterase histoenzymological staining in the striatum. Specific nuclear staining employing Hoechst 33342 and acridine orange revealed distorted and spindle shaped nuclei, and perinuclear positioning of nucleolus, respectively, for the former and latter dyes in several of the cell populations in the ipsilateral striatum compared to the contralateral side. Existence of a widened lateral ventricle at the side that received the neurotoxin, as well as denser cellular population, as compared to the contralateral side under transmission electron microscope evidenced general shrinkage of the striatum. Extensive damage of the nuclei was visible in the cell bodies in the treated side. These results demonstrate non-specific damage extending to the cellular groups including cholinergic neurons in addition to dopaminergic neurons in the striatum to intrastriatal administration of the Parkinsonian neurotoxin, MPP(+).
Collapse
Affiliation(s)
- Rebecca Banerjee
- Division of Clinical and Experimental Neuroscience, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | | | | | | |
Collapse
|
8
|
Schulz JB, Falkenburger BH. Neuronal pathology in Parkinson?s disease. Cell Tissue Res 2004; 318:135-47. [PMID: 15365812 DOI: 10.1007/s00441-004-0954-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2004] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra leading to the major clinical and pharmacological abnormalities of PD. In order to establish causal or protective treatments for PD, it is necessary to identify the cascade of deleterious events that lead to the dysfunction and death of dopaminergic neurons. Based on genetic, neuropathological, and biochemical data in patients and experimental animal models, dysfunction of the ubiquitin-proteasome pathway, protein aggregation, mitochondrial dysfunction, oxidative stress, activation of the c-Jun N-terminal kinase pathway, and inflammation have all been identified as important pathways leading to excitotoxic and apoptotic death of dopaminergic neurons. Toxin-based and genetically engineered animal models allow (1) the study of the significance of these aspects and their interaction with each other and (2) the development of causal treatments to stop disease progression.
Collapse
Affiliation(s)
- Jörg B Schulz
- Department of Neurodegeneration and Neurorestoration, DFG Research Center "Molecular Physiology of the Brain" and Center of Neurology, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | | |
Collapse
|
9
|
Ghorayeb I, Fernagut PO, Hervier L, Labattu B, Bioulac B, Tison F. A 'single toxin-double lesion' rat model of striatonigral degeneration by intrastriatal 1-methyl-4-phenylpyridinium ion injection: a motor behavioural analysis. Neuroscience 2003; 115:533-46. [PMID: 12421620 DOI: 10.1016/s0306-4522(02)00401-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous attempts to reproduce striatonigral degeneration, the core pathology underlying Parkinsonism in multiple system atrophy, have been impeded by interactions in the neurotoxins used to replicate striatal and nigral degeneration in rodents. To overcome these interactions, we have developed a new model of striatonigral degeneration which uses a single unilateral administration of 1-methyl-4-phenylpyridinium ion (MPP(+)) into the rat striatum. Spontaneous and drug-induced rotational behaviour, thigmotactic scanning, stepping adjusting steps and paw reaching deficits were compared in four groups of animals: group 1 (control), group 2 (20 microg quinolinic acid), group 3 (20 microg 6-hydroxydopamine), and group 4 (90 nmol MPP(+)). MPP(+) administration resulted in the absence of the amphetamine-induced ipsilateral bias observed in the 6-hydroxydopamine group and of the apomorphine-induced ipsilateral bias observed in the quinolinic acid group. There was no thigmotactic scanning asymmetry in the MPP(+)-injected rats compared to the quinolinic acid- and the 6-hydroxydopamine-injected rats. MPP(+) elicited a bilateral stepping adjustment deficit similar to that found in the quinolinic acid group when compared to controls. MPP(+) also elicited a more severe and significant contralateral deficit in paw reaching compared to controls, 6-hydroxydopamine and quinolinic acid groups. Histopathology revealed a significant reduction of the lesioned striatal surface (-47.53%) with neuronal loss and increased astrogliosis in the MPP(+) group grossly similar to that found in the quinolinic acid group. Contrary to the latter group, however, loss of intrastriatal and striatal-crossing fibre bundles was observed in the MPP(+) group as there was also some retrograde degeneration in the ipsilateral thalamic parafascicular nucleus. The mean loss of dopaminergic cells in the ipsilateral substantia nigra pars compacta in MPP(+) rats was less marked (-48.8%) than in the 6-hydroxydopamine rats (-63.6%) and was not significant in quinolinic acid rats (-5.2%). This study shows that a single unilateral intrastriatal administration of MPP(+) induces a unique motor behaviour resulting from both nigral and striatal degeneration, but also from possible extrastriatal damage. This 'single toxin-double lesion' paradigm may thus serve as a rat model of striatonigral degeneration.
Collapse
Affiliation(s)
- I Ghorayeb
- Laboratoire de Neurophysiologie, CNRS-UMR 5543, Université Victor Segalen-Bordeaux 2, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
10
|
Nakai M, Mori A, Watanabe A, Mitsumoto Y. 1-methyl-4-phenylpyridinium (MPP+) decreases mitochondrial oxidation-reduction (REDOX) activity and membrane potential (Deltapsi(m)) in rat striatum. Exp Neurol 2003; 179:103-10. [PMID: 12504872 DOI: 10.1006/exnr.2002.8056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction has long been implicated in the death of nigrostriatal dopaminergic neurons in Parkinson's disease (PD) and its experimental models. Here we further analyzed changes in the mitochondrial oxidation-reduction (REDOX) activity and membrane potential (Deltapsi(m)) of striatal synaptosomes after the infusion of 1-methyl-4-phenylpyridinium (MPP+) into rat striatum. MPP+ (40 nmol) treatment produced decreases in mitochondrial REDOX activity and Deltapsi(m) at 18 h, as measured by fluorometric analysis with both Alamar blue and JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide) dyes. At this time point, tyrosine hydroxylase (TH) and dopamine transporter (DAT) protein levels were not altered, but both decreased at 7 days after MPP+ (40 nmol) infusion. Both measures of mitochondrial dysfunction induced by MPP+ (40 nmol) at 18 h were attenuated, at least in part, by pretreatment with a selective dopamine uptake inhibitor GBR-12909 (1-(2-(bis(4-fluorophenyl)methoxy)ethyl)-4-(3-phenylpropyl) piperazine). In addition, GBR-12909 partially attenuated MPP+ (40 nmol)-caused a loss of striatal nerve terminal as indicated by decreases in TH and DAT immunoreactivities as well as dopamine and its metabolites levels. The present study indicates that decreases in mitochondrial REDOX activity and Deltapsi(m) may play a role in MPP+ -induced dopaminergic neurotoxicity, and further provides that improvement of mitochondrial dysfunction may be a better way to slow progressive dopaminergic neurodegeneration commonly associated with PD.
Collapse
Affiliation(s)
- Masami Nakai
- Research Unit for Neurological Diseases, Second Institute of New Drug Discovery, Otsuka Pharmaceutical Co., Ltd. Tokushima 771-0192, Japan
| | | | | | | |
Collapse
|
11
|
Usunoff KG, Itzev DE, Ovtscharoff WA, Marani E. Neuromelanin in the human brain: a review and atlas of pigmented cells in the substantia nigra. Arch Physiol Biochem 2002; 110:257-369. [PMID: 12516659 DOI: 10.1076/apab.110.4.257.11827] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- K G Usunoff
- Department of Anatomy and Histology, Medical University, Sofia, Bulgaria
| | | | | | | |
Collapse
|
12
|
Barc S, Page G, Barrier L, Huguet F, Fauconneau B. Progressive alteration of neuronal dopamine transporter activity in a rat injured by an intranigral injection of MPP+. Brain Res 2002; 941:72-81. [PMID: 12031549 DOI: 10.1016/s0006-8993(02)02567-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MPTP or its metabolite MPP+ are used to produce a Parkinsonism syndrome in a variety of animal species. The present study describes the effects of intranigral MPP+ administration either at 10 or 40 microg on the neuronal dopamine transporter (DAT) activity measured in rat striatal synaptosomes at different times after lesion. The 40 microg MPP+ injection induced a maximal toxic effect on day 7. However, 10 microg MPP+ progressively inhibited DA uptake on the injured side. V(max) decreased in a time-dependent manner and the lowest value was observed on day 21 after lesion. At this time, the K(m) value began to increase and was continuously accentuated until day 45 as compared to the contralateral side. Treatments either with the antioxidant alpha-tocopherol acetate or the MAO inhibitor pargyline, given daily for 7 days after lesion, partially prevented the 40 microg MPP(+)-induced inhibition of DA uptake. Conversely, both treatments given daily for 21 days after lesion completely prevented the alteration of DAT activity in the ipsilateral striatum induced by 10 microg MPP+. The absence of protection when both treatments were stopped 2 weeks before DA uptake measurements indicated that free radicals and DA oxidized products were continuously accumulated and gradually affected the functionality of the DAT. These results demonstrate that a rat intranigral lesion with 10 microg MPP+ led to a progressive impairment of DAT activity.
Collapse
Affiliation(s)
- Stéphanie Barc
- Groupe d'Etudes des Mécanismes Cellulaires de l'Ischémie (GEMCI), EA 1223, 34 rue du Jardin des Plantes, BP 199, 86005 Poitiers cedex, France.
| | | | | | | | | |
Collapse
|
13
|
Tomas-Camardiel M, Sanchez-Hidalgo MC, Sanchez del Pino MJ, Navarro A, Machado A, Cano J. Comparative study of the neuroprotective effect of dehydroepiandrosterone and 17beta-estradiol against 1-methyl-4-phenylpyridium toxicity on rat striatum. Neuroscience 2002; 109:569-84. [PMID: 11823067 DOI: 10.1016/s0306-4522(01)00502-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effects of dehydroepiandrosterone, estradiol and testosterone on 1-methyl-4-phenylpyridium (MPP+)-induced neurotoxicity of the nigrostriatal dopaminergic system were examined in rat. They were subjected to a unilateral intrastriatal infusion of the following treatment conditions: MPP+ alone or co-injection of MPP+ plus each hormone. Four days after injection, concentrations of dopamine and their metabolites were determined from the corpus striatum. To corroborate the neurochemical data an immunohistochemical analysis of tyrosine hydroxylase-immunoreactive fibers and acetylcholinesterase histochemistry in the striatum was performed. Moreover, we performed a dose-response study of the three hormones on the high-affinity dopamine transport system in rat striatal synaptosomes. Rats co-injected within the striatum with MPP+ and either dehydroepiandrosterone or estradiol had significantly greater concentrations of dopamine and less tyrosine hydroxylase-immunoreactive fibers and acetylcholinesterase fiber density loss compared with their respective controls. In addition, 4 days after injection, the brain was fixed and cut into coronal sections, and was immunostained with major histocompatibility complex class II antigens for activated microglia, and glial fibrillary acidic protein for activated astrocytes. Dehydroepiandrosterone also attenuated microglial cell activation. In contrast, testosterone showed reductions in dopamine concentrations similar to those obtained by MPP+. The protective effect of dehydroepiandrosterone against the MPP+ neurotoxic dopaminergic system may be produced by its partial prevention of MPP+ inhibition of NADH oxidase activity, whereas the estradiol may function as a neuroprotectant by reducing the uptake of MPP+ into dopaminergic neurons. Our findings we suggest indicate that dehydroepiandrosterone and estradiol by a non-genomic effect may have an important modulatory action, capable of attenuating degeneration within the striatum, and in this way serve as neuroprotectants of the nigrostriatal dopaminergic system.
Collapse
Affiliation(s)
- M Tomas-Camardiel
- Departmento de Bromatologia y Toxicologia, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Controversy over the etiology and pathogenesis of Parkinson's disease (PD) has continued for many years and while the details have changed, the uncertainty persists. Although heritability was most emphatically refuted a decade ago by many investigators, recent progress firmly indicates that genetic factors at least play a role, although probably to a variable degree from one individual to another. Evidence for a variety of other etiological factors is amassed from epidemiological studies, animal models, molecular and cellular biology. Genetic factors, infectious and immunological abnormalities, the effects of ageing, toxins (endogenous as well as exogenous) and other environmental factors may all contribute to the development of PD. Loss of nigral dopaminergic neurons may be mediated by varying combinations of oxidative free radical toxicity, impaired mitochondrial function, "weak excitotoxicity" and abnormal handling of cytoskeletal proteins, all of which may shift the balance regulating apoptotic cell death.
Collapse
Affiliation(s)
- A J Stoessl
- Neurodegenerative Disorders Centre, Vancouver Hospital & Health Sciences Centre, British Columbia, Canada
| |
Collapse
|
15
|
Wright AM, Bempong J, Kirby ML, Barlow RL, Bloomquist JR. Effects of haloperidol metabolites on neurotransmitter uptake and release: possible role in neurotoxicity and tardive dyskinesia. Brain Res 1998; 788:215-22. [PMID: 9555021 DOI: 10.1016/s0006-8993(97)01551-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This research explored the effects of haloperidol (HP) metabolites on biogenic amine uptake and release, and compared them to those of MPTP and its toxic metabolite, MPP+. In synaptosome preparations from mouse striatum and cortex, the HP metabolites haloperidol pyridinium (HPP+), reduced haloperidol pyridinium (RHPP+), and haloperidol tetrahydropyridine (HPTP) inhibited the presynaptic uptake of dopamine and serotonin, with greater affinity for the serotonin transporter. HPP+ was the most potent inhibitor of dopamine uptake, and HPTP of serotonin uptake, both with IC50 values in the low micromolar range. RHPP+ was less active than the other metabolites, but was more active than the parent compound, HP. Inhibition of uptake was reversed when free drug was removed by centrifugation and then resuspension of the synaptosomes in fresh buffer, suggesting that inhibition of uptake was due to interaction with the transporters and was not due to irreversible cytotoxicity. HPP+ showed noncompetitive inhibition of both serotonin and dopamine uptake, suggesting that it has a relatively slow dissociation rate for its interaction with the transporter proteins. In experiments on amine release, HPP+ and HPTP were four-fold less potent than MPP+ for releasing preloaded dopamine from striatal synaptosomes, and only MPP+-dependent release was antagonized by the uptake blocker, mazindol. In contrast, RHPP+ displayed little ability to release either amine neurotransmitter. HPTP was about two-fold more potent than MPP+ for releasing serotonin from cortical synaptosomes, whereas HPP+ was less active than MPP+. The specific serotonin transport blocker fluoxetine was only able to antagonize release induced by MPP+. These results suggest that HP metabolites bind to the transporters for dopamine and serotonin, but are not transporter substrates. In contrast to their potent effects on amine release, HPP+ and HPTP were unable to release preloaded GABA from cortical synaptosomes. The implications of these results concerning a possible role of HP metabolites in the development of tardive dyskinesia are discussed.
Collapse
Affiliation(s)
- A M Wright
- Department of Entomology, Neurotoxicology Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
16
|
Castagnoli N, Rimoldi JM, Bloomquist J, Castagnoli KP. Potential metabolic bioactivation pathways involving cyclic tertiary amines and azaarenes. Chem Res Toxicol 1997; 10:924-40. [PMID: 9305573 DOI: 10.1021/tx970096j] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A major theme explored in this review is the MAO-and cytochrome P450-catalyzed alpha-carbon oxidations of selected cyclic tertiary amines to give iminium metabolites that undergo further chemical modifications to form known or potentially toxic products. The most dramatic illustration of this type of bioactivation process is the conversion of the parkinsonian-inducing neurotoxin MPTP (23) by brain MAO-B to the iminium (dihydropyridinium) metabolite 24 which is oxidized further to the pyridinium species MPP+ (25). The selective destruction of nigrostriatal neurons by MPP+ is dependent on a unique sequence of events (transport into the nerve terminals by the dopamine transporter, localization in the inner mitochondrial membrane by electromotive forces, and inhibition of complex I of the mitochondrial electron transport chain) that, fortunately, are unlikely to be encountered with many substances. A second example of a well-documented metabolic bioactivation sequence involves the highly toxic pyrrolizidine alkaloids (102). These compounds undergo cytochrome P450-catalyzed alpha-carbon oxidation which converts the 3-pyrrolinyl moiety present in the parent alkaloids into a pyrrolyl-containing metabolite (105). The presence of labile functional groups results in the spontaneous conversion of 105 to reactive electrophilic products (106 and 108) that undergo Michael addition reactions with nucleophiles on biomacromolecules leading to a variety of toxic outcomes. Less clearly defined are the potential contributions to neurodegenerative processes that may be mediated by low-level, long term exposure to less potent toxins. Examples of potential proneurotoxins are the endogenously formed tetrahydroisoquinolines (such as 40-50) and tetrahydro-beta-carbolines (such as 54) that may be biotransformed to neurotoxic isoquinolinium (such as 51) and beta-carbolinium (such as 52) species in the brain. A similar argument can be made for 4-piperidinols (compounds that are at the same oxidation state as the tetrahydropyridines) which may be metabolized via iminium intermediates to amino enols that spontaneously convert to dihydropyridinium species and hence to pyridinium metabolites (67-->68-->69-->70-->71, Scheme 10). This type of reaction sequence has been well documented with the parkinsonian-inducing neuroleptic agent haloperidol (72) which is metabolized in humans, baboons, and rodents to the pyridinium species HPP+ (75), a potent inhibitor of mitochondrial respiration. Finally, an appreciation of the alpha-carbon oxidations of fully reduced azacycles such as (S)-nicotine (61) and phencyclidine (82) to chemically reactive metabolites that form covalent adducts with proteins, including the enzymes that are responsible for their formation, may prove of toxicological importance when attempting to account for the effects of chronic abuse of these potent drugs.1
Collapse
Affiliation(s)
- N Castagnoli
- Department of Chemistry and Entomology, Virginia Tech, Blacksburg 24061-0212, USA.
| | | | | | | |
Collapse
|
17
|
Schwarting RK, Huston JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 1996; 49:215-66. [PMID: 8878304 DOI: 10.1016/s0301-0082(96)00015-9] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the primary approaches in experimental brain research is to investigate the effects of specific destruction of its parts. Here, several neurotoxins are available which can be used to eliminate neurons of a certain neurochemical type or family. With respect to the study of dopamine neurons in the brain, especially within the basal ganglia, the neurotoxin 6-hydroxydopamine (6-OHDA) provides an important tool. The most common version of lesion induced with this toxin is the unilateral lesion placed in the area of mesencephalic dopamine somata or their ascending fibers, which leads to a lateralized loss of striatal dopamine. This approach has contributed to neuroscientific knowledge at the basic and clinical levels, since it has been used to clarify the neuroanatomy, neurochemistry, and electrophysiology of mesencephalic dopamine neurons and their relationships with the basal ganglia. Furthermore, unilateral 6-OHDA lesions have been used to investigate the role of these dopamine neurons with respect to behavior, and to examine the brain's capacity to recover from or compensate for specific neurochemical depletions. Finally, in clinically-oriented research, the lesion has been used to model aspects of Parkinson's disease, a human neurodegenerative disease which is neuronally characterized by a severe loss of the meso-striatal dopamine neurons. In the present review, which is the first of two, the lesion's effects on physiological parameters are being dealt with, including histological manifestations, effects on dopaminergic measures, other neurotransmitters (e.g. GABA, acetylcholine, glutamate), neuromodulators (e.g. neuropeptides, neurotrophins), electrophysiological activity, and measures of energy consumption. The findings are being discussed especially in relation to time after lesion and in relation to lesion severeness, that is, the differential role of total versus partial depletions of dopamine and the possible mechanisms of compensation. Finally, the advantages and possible drawbacks of such a lateralized lesion model are discussed.
Collapse
Affiliation(s)
- R K Schwarting
- Institute of Physiological Psychology I, Heinrich-Heine University of Düsseldorf, Germany
| | | |
Collapse
|
18
|
Desai VG, Feuers RJ, Hart RW, Ali SF. MPP(+)-induced neurotoxicity in mouse is age-dependent: evidenced by the selective inhibition of complexes of electron transport. Brain Res 1996; 715:1-8. [PMID: 8739616 DOI: 10.1016/0006-8993(95)01255-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has been demonstrated to cause selective neurotoxicity by inhibiting complex I in mitochondria, through its toxic metabolite 1-methyl-4-phenylpyridine (MPP+) which is formed during the bioactivation of MPTP by monoamine oxidase B. In this report, we have evaluated the effect of MPP+ on the 4 mitochondrial respiratory chain complexes by incubating brain mitochondria of mice at 3 different age groups with MPP+ (200 microM) and monitoring enzyme activities of complexes I, II, III, and IV at 5, 10, 15, 30, 60, and 120 min. Complexes I, III, and IV showed significant inhibition within 15 min in all the age groups studied, followed by some recovery in enzyme activities upon further incubation for complexes I and IV. However, complex II was not affected by MPP+ at any age. Our data suggest that inhibition of complexes I, III, and IV by MPP+ efficiently restrict the transport of electrons down the respiratory chain which ultimately leads to decreased ATP production. This could further aggravate oxidative stress as ATP is required for the synthesis of glutathione (GSH), one of the important scavengers of free radicals. In this study, inhibition was more severe in mitochondrial preparations from older rather than younger mice. Additionally, young animals showed faster recovery following inhibition than old animals for complex I. Impaired respiratory chain function in older animals compared to younger ones supports the hypothesis of accumulation of age-related mitochondrial DNA mutations which partly encode for subunits of complexes I, III, and IV. From this study, it seems that inhibition of complexes I, III, and IV may be the underlying cause of neurotoxicity due to MPP+ which could be intensified by age-associated dysfunction of electron transport.
Collapse
Affiliation(s)
- V G Desai
- Division of Genetic Toxicology, National Center for Toxicological Research/FDA, Jefferson, AR 72079-9502, USA
| | | | | | | |
Collapse
|
19
|
Neafsey EJ, Albores R, Gearhart D, Kindel G, Raikoff K, Tamayo F, Collins MA. Methyl-beta-carbolinium analogs of MPP+ cause nigrostriatal toxicity after substantia nigra injections in rats. Brain Res 1995; 675:279-88. [PMID: 7796140 DOI: 10.1016/0006-8993(95)00082-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Eleven beta-carbolinium compounds (beta C+s) and MPP+ were stereotaxically injected (40-200 nmol in 5 microliter of vehicle) unilaterally into the substantia nigra of anesthetized adult male Sprague-Dawley rats. The rats were sacrificed after three weeks. The ipsilateral striatum was analyzed for dopamine and DOPAC levels with HPLC. The brainstem injection site was fixed and cut coronally. The largest lesion area in each animal was measured using NIH IMAGE. Three beta C+s produced lesions whose mean areas were nearly as large as that produced by MPP+ (defined as 100%): 2,9-Me2-harman (94%), 2-Me-harmol (74%), and 2,9-Me2-norharman (57%). Three other compounds produced somewhat smaller lesions: 2-Me-harmaline (34%), 6-MeO-2-Me-harman (29%), and 2-Me-harmine (25%). The remaining compounds were ineffective (< or = 12%): norharman, 2-Me-norharman, 2-Me-harman, harmine, and 2-Me-6-MeO-harmalan. A 40 nmol dose of MPP+ reduced ipsilateral striatal dopamine to 0.6% of control. None of the beta C+s approached this, although several did significantly reduce striatal dopamine at doses of either 40 nmol (2,9-Me2-harman (37%), 2,9-Me2-norharman (42%), and 2-Me-harman (63%)) or 200 nmol (2-Me-harmaline (23%), norharman (63%), and 2-Me-norharman (64%)). There was a moderate negative correlation between lesion size and dopamine level (r = -0.65). There were also moderately strong correlation between lesion size and dopamine level (r = -0.65). There were also moderately strong correlations (r = 0.39-0.78) between the beta C+ nigral lesion area or striatal dopamine level potencies and their previously described IC50 values for inhibiting mitochondrial respiration or their toxicity to PC12 cells in culture. Interestingly, our correlation analysis revealed a remarkably strong correlation between beta C+ Ki MAO-A values and their toxicity to PC12 LDH release (r = -0.84) or PC12 protein loss (r = 0.79). Although beta C+s appear to be less specific toxins than MPP+, their levels in human substantia nigra are 8-20-fold higher than in cortex, making their role as relatively selective nigral toxins in Parkinson's disease plausible.
Collapse
Affiliation(s)
- E J Neafsey
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Espino A, Llorens J, Calopa M, Bartrons R, Rodriguez-Farré E, Ambrosio S. Cerebrospinal dopamine metabolites in rats after intrastriatal administration of 6-hydroxydopamine or 1-methyl-4-phenylpyridinium ion. Brain Res 1995; 669:19-25. [PMID: 7712161 DOI: 10.1016/0006-8993(94)01217-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dopamine (DA) and its main cerebral metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured in striatum and cerebrospinal fluid (CSF) from cisterna magna in rats bilaterally lesioned by intrastriatal administration of 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenylpyridinium ion (MPP+). 6-OHDA caused a progressive lesion in striatum that is only moderately reflected in the decrease in dopamine metabolite concentration in CSF. MPP+ caused an acute but less selective lesion in the dopamine striatal system, as indicated by a significant reduction in striatal GABA content, followed by a slow recovery in dopamine striatal metabolism and content. The locomotor activity was dramatically reduced in both groups 48 hours after the treatment but remained significantly decreased after two months only in 6-OHDA lesioned animals. A positive correlation was found between HVA CSF concentration and striatal DA content in MPP+ lesioned rats, but not in 6-OHDA lesioned rats. It is concluded that the concentration of dopamine metabolites in CSF can be altered only after a severe striatal lesion: reduction of striatal dopamine content below 50% of normal values and involvement of neuronal or non-neuronal elements other than the dopaminergic system, similarly to the lesions caused by MPP+. These results may partly explain why CSF dopamine metabolites concentrations were significantly decreased both in advanced stages of parkinsonism and in other neurodegenerative disorders.
Collapse
Affiliation(s)
- A Espino
- Unit of Biochemistry, University of Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Espino A, Tortosa A, Bendahan G, Bartrons R, Calopa M, Ferrer I, Ambrosio S. Stereotaxic administration of 1-methyl-4-phenylpyridinium ion (MPP+) decreases striatal fructose 2,6-bisphosphate in rats. J Neurochem 1994; 62:1913-20. [PMID: 8158139 DOI: 10.1046/j.1471-4159.1994.62051913.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The stereotaxic administration of 1-methyl-4-phenylpyridinium ion (MPP+) into the neostriatum of male rats caused a lesion that resulted in a large dose-dependent loss of striatal fructose 2,6-bisphosphate; initial values were restored 5 days after the treatment. This effect was not protected by systemic administration of MK-801 or by nitroarginine. The content of hexose 6-phosphates and ATP was also reduced by MPP+ treatment, whereas lactate was increased. Biochemical and histological results suggested that MPP+ caused a nonselective cell death, followed by a pronounced astroglial response, parallel to fructose 2,6-bisphosphate recovery. The stereotaxic administration of rotenone showed a different time effect on fructose 2,6-bisphosphate cerebral content, with a significantly faster recovery. These results indicate that cerebral fructose 2,6-bisphosphate may be a sensitive metabolite related to brain damage caused by potent neurotoxins such as MPP+. On the other hand, they show that MPP+ acts in the brain through a quick, strong cytotoxic mechanism, which probably involves mechanisms other than mitochondrial chain blockage.
Collapse
Affiliation(s)
- A Espino
- Unitat de Bioquímica, Universitat de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
Kitahama K, Maeda T, Denney RM, Jouvet M. Monoamine oxidase: distribution in the cat brain studied by enzyme- and immunohistochemistry: recent progress. Prog Neurobiol 1994; 42:53-78. [PMID: 7480787 DOI: 10.1016/0301-0082(94)90021-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Localization of MAO-containing neurons, fibers and glial cells has been described by recent progress in MAO histochemistry and immunohistochemistry. It does not necessarily correspond to those containing monoamines. MAO-A is demonstrated in many noradrenergic cells, but it is hardly detectable in DA cells. Increase of 5-HT and DA concentration after inhibition of MAO-A indicates the possible existence of MAO-A in such neuronal structures. MAO-A is also undetectable in neurons containing 5-HT, a good substrate for MAO-A. These neurons contain MAO-B. There still remain contradictions to be solved in future. MAO is present in astroglial cells, in which monoamines released in extracellular space may be degraded. In glial cells, MAO may also play a role to regulate concentration of telemethylhistamine and trace amines. Such cells appear to transform MPTP to MPP+, a neurotoxin for nigral DA neurons.
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, CNRS URA1195, INSERM U52, Faculté de Médecine, Université Claude Bernard, Lyon, France
| | | | | | | |
Collapse
|
23
|
Klaidman LK, Adams JD, Leung AC, Kim SS, Cadenas E. Redox cycling of MPP+: evidence for a new mechanism involving hydride transfer with xanthine oxidase, aldehyde dehydrogenase, and lipoamide dehydrogenase. Free Radic Biol Med 1993; 15:169-79. [PMID: 8397142 DOI: 10.1016/0891-5849(93)90056-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
MPP+ is redox active in the presence of cytochrome P450 reductase and induces the formation of O2.- and HO(.). In this study, we report the redox cycling capability of MPP+ with additional enzymes and with UV photolysis detected through ESR techniques. The treatment of MPP+ with UV light resulted in the production of HO. trapped as a spin adduct. Two of the enzymes examined in this study, xanthine oxidase and aldehyde dehydrogenase, produced O2.- in the presence of substrate. However, when MPP+ was added to the incubations, the radical trapped by DMPO was HO(.). This indicates that MPP+ redox cycles in the presence of these two enzymes or UV light, which produces HO.. Our data also suggest that MPP+ is reduced by lipoamide dehydrogenase. MPP+ stimulated the oxidation of reduced nicotinamide adenine dinucleotide (NADH) by the enzyme at concentrations between 2 mM and 8 mM of MPP+. Higher concentrations of MPP+ inhibited lipoamide dehydrogenase. MPP+ appears to be redox active with a number of redox enzymes. The mechanism involved may be hydride transfer from the enzymes to MPP+, rather than a direct single-electron reduction.
Collapse
Affiliation(s)
- L K Klaidman
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033
| | | | | | | | | |
Collapse
|
24
|
Srivastava R, Brouillet E, Beal MF, Storey E, Hyman BT. Blockade of 1-methyl-4-phenylpyridinium ion (MPP+) nigral toxicity in the rat by prior decortication or MK-801 treatment: a stereological estimate of neuronal loss. Neurobiol Aging 1993; 14:295-301. [PMID: 8103573 DOI: 10.1016/0197-4580(93)90114-q] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, (MPTP), produces a parkinsonian syndrome both in man and in experimental animals. Its toxicity is mediated by a metabolite, the 1-methyl-4-phenylpyridinium ion (MPP+). When injected into the striatum, MPP+ is accumulated by dopaminergic nerve terminals and retrogradely transported to the substantia nigra pars compacta (SNc) where it causes neuronal degeneration. MPP+ accumulates in mitochondria and blocks complex I of the electron transport chain. A proposed mechanism of neurotoxicity is excitotoxic neuronal degeneration induced by this energy depletion. We examined whether either prior decortication or administration of the N-methyl-D-aspartate (NMDA) receptor antagonist, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) could prevent or diminish the selective nigral neuronal degeneration that follows unilateral intrastriatal injection of MPP+. We quantified the extent of neuronal death in the SNc ipsilateral and contralateral to the injections on Nissl-stained sections with unbiased stereological techniques. One week after injection of MPP+, approximately 75% of the SNc neurons were lost on the side of the injection. The loss was a consequence of the reduction in both SNc volume and neuronal density. Both prior decortication or the administration of MK-801 for 2 days nearly completely prevented MPP(+)-induced neuronal loss in the ipsilateral SNc. These results are consistent with an NMDA receptor mediated excitotoxic mechanism for MPP(+)-induced nigral toxicity.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/analogs & derivatives
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/antagonists & inhibitors
- Animals
- Cell Count
- Cerebral Decortication
- Corpus Striatum
- Dizocilpine Maleate/administration & dosage
- Dizocilpine Maleate/pharmacology
- Dopamine Agents/administration & dosage
- Dopamine Agents/antagonists & inhibitors
- Dopamine Agents/toxicity
- Electron Transport/drug effects
- Injections
- Injections, Intraperitoneal
- MPTP Poisoning
- Male
- Microscopy
- N-Methylaspartate/administration & dosage
- N-Methylaspartate/pharmacology
- Nerve Degeneration/drug effects
- Neurons/drug effects
- Rats
- Rats, Sprague-Dawley
- Substantia Nigra/cytology
- Substantia Nigra/drug effects
Collapse
|
25
|
Abstract
The pyridine derivative 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is recognized as a crucial neurotoxin which destroys nigrostriatal dopamine cells, thereby inducing neurological signs relevant to idiopathic Parkinson's disease. In the present study, we have revealed MPTP neurotoxicity to cerebellar Purkinje cells in mice. Systemic MPTP injections to mice resulted in a substantial loss of Purkinje cells in a dose-dependent fashion. The MPTP-induced Purkinje cell loss occurred markedly in the crus I and II ansiform lobules and the paraflocculus. Such a neurotoxic effect was largely prevented by the monoamine oxidase B inhibitors pargyline and deprenyl, and the dopamine uptake inhibitors mazindol and benztropine.
Collapse
Affiliation(s)
- M Takada
- Department of Anatomy and Cell Biology, University of Toronto, Ont., Canada
| | | | | |
Collapse
|
26
|
Storey E, Hyman BT, Jenkins B, Brouillet E, Miller JM, Rosen BR, Beal MF. 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J Neurochem 1992; 58:1975-8. [PMID: 1560246 DOI: 10.1111/j.1471-4159.1992.tb10080.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of 1-methyl-4-phenylpyridinium (MPP+) were studied in rat striatum. Using freeze-clamp, microwave, and water-suppressed proton chemical shift magnetic resonance imaging techniques, MPP+ resulted in marked increases in lactate and a depletion of ATP for up to 48 h after the injections. MPP+ produced dose-dependent depletions of dopamine, serotonin, gamma-aminobutyric acid, and substance P that were partially blocked at 1 week by prior decortication or completely blocked by MK-801 at 24 h. The lesions showed relative sparing of somatostatin-neuropeptide Y neurons, consistent with N-methyl-D-aspartate (NMDA) excitotoxicity. MPP+ produces impairment of oxidative phosphorylation in vivo, which may result in membrane depolarization with persistent activation of NMDA receptors and excitotoxic neuronal degeneration. An impairment of energy metabolism may therefore underlie slow excitotoxic neuronal death in neurodegenerative diseases.
Collapse
Affiliation(s)
- E Storey
- Neurochemistry Laboratory, Massachusetts General Hospital, Boston 02114
| | | | | | | | | | | | | |
Collapse
|
27
|
Gerlach M, Riederer P, Przuntek H, Youdim MB. MPTP mechanisms of neurotoxicity and their implications for Parkinson's disease. Eur J Pharmacol 1991; 208:273-86. [PMID: 1815982 DOI: 10.1016/0922-4106(91)90073-q] [Citation(s) in RCA: 238] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) gives rise to motor deficits in humans and other primates which closely resemble those seen in patients with Parkinson's disease. These deficits are associated with a relatively selective loss of cells in the pars compacta of the substantia nigra and severe reductions in the concentrations of dopamine, noradrenaline and serotonin in the striatum. Similarly, in mice of various different strains the administration of MPTP also induces a marked loss of dopaminergic cells with severe depletion of biogenic amines, but higher doses of MPTP are required to produce these effects in mice than in primates. This review summarises advances made in understanding the biochemical events which underlie the remarkable neurotoxic action of MPTP. Major steps in the expression of neurotoxicity involve the conversion of MPTP to the toxic agent 1-methyl-4-phenylpyridinium ion (MPP+) by type B monoamine oxidase (MAO-B) in the glia, specific uptake of MPP+ into the nigro-striatal dopaminergic neurones, the intraneuronal accumulation of MPP+, and the neurotoxic action of MPP+. This is exerted mainly through the inhibition of the enzymes of the respiratory chain (Complex I), the disturbance of Ca2+ homeostasis, and possibly by the formation of free radicals. The relevance of the MPTP model to idiopathic Parkinson's disease is discussed.
Collapse
Affiliation(s)
- M Gerlach
- Department of Psychiatry, University of Würzburg, F.R.G
| | | | | | | |
Collapse
|
28
|
Takada M, Campbell KJ, Hattori T. Regional localization of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) uptake: mismatch between its uptake and neurotoxic sites. Neurosci Lett 1991; 133:137-40. [PMID: 1665214 DOI: 10.1016/0304-3940(91)90076-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Three to 24 h following intraventricular injections of radioactive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into the rat, accumulations of radiolabel were widely detected, in varying degree, over neuronal perikarya in motor-related structures below the midbrain. Pretreatment with the monoamine oxidase B inhibitor pargyline largely eliminated the perikaryal radiolabeling in the substantia nigra, dorsal raphe and cerebellum, leaving that in the other regions intact. These results indicate that there exists a certain mismatch between MPTP uptake and neurotoxic sites, and that invulnerable cells can accumulate MPTP without being converted to its major active metabolite 1-methyl-4-phenylpyridine (MPP+).
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- Animals
- Brain/anatomy & histology
- Brain/drug effects
- Brain/metabolism
- Injections, Intraventricular
- Male
- Mesencephalon/anatomy & histology
- Mesencephalon/metabolism
- Motor Neurons/drug effects
- Motor Neurons/metabolism
- Pargyline/pharmacology
- Pyridinium Compounds/metabolism
- Rats
- Rats, Inbred Strains
- Receptors, Cholinergic/drug effects
- Receptors, Cholinergic/metabolism
Collapse
Affiliation(s)
- M Takada
- Department of Anatomy, University of Toronto, Ont., Canada
| | | | | |
Collapse
|
29
|
Santiago M, Westerink BH, Rollema H. Responsiveness of striatal dopamine release in awake animals after chronic 1-methyl-4-phenylpyridinium ion-induced lesions of the substantia nigra. J Neurochem 1991; 56:1336-42. [PMID: 2002346 DOI: 10.1111/j.1471-4159.1991.tb11430.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Extracellular concentrations of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid were measured by microdialysis in rat striatum 1 month after a unilateral infusion via a dialysis probe of a high concentration (10 mM) of 1-methyl-4-phenylpyridinium ion (MPP+) into the substantia nigra. The basal extracellular DA concentration at the lesioned side was about 20% of the concentration at the nonlesioned side. However, basal DOPAC dialysate levels from the lesioned striatum represented only 2.4% of those from the contralateral side. Intrastriatal infusion with nomifensine increased the dialysate content of DA about twofold and eightfold at the lesioned and nonlesioned sides, respectively. Co-infusion of nomifensine with (-)-sulpiride caused an additional pronounced rise of the DA output on top of the nomifensine-induced increase at the nonlesioned side, whereas no effect was observed at the lesioned side. Finally, MPP+ (10 mM) was infused for 45 min into both striata. The increase in the dialysate content of DA in response to MPP+ (considered as an index of the total striatal DA content) from the lesioned side was only 0.6% of the MPP(+)-induced DA increase from the nonlesioned side. A strong compensatory response to increased extracellular dopamine was observed in the ipsilateral striatum. This effect was achieved by a severe suppression of reuptake mechanisms, as well as of the autoreceptor feedback response. It is concluded that infusion of MPP+ into the substantia nigra can be used as a chronic biochemical model for clinically manifest parkinsonism.
Collapse
Affiliation(s)
- M Santiago
- Department of Medicinal Chemistry, University Centre for Pharmacy, Groningen, The Netherlands
| | | | | |
Collapse
|
30
|
Singh MP, Wang FJ, Hoppel CL, Sayre LM. Inhibition of mitochondrial respiration by neutral, monocationic, and dicationic bis-pyridines related to the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium cation (MPP+). Arch Biochem Biophys 1991; 286:138-46. [PMID: 1897943 DOI: 10.1016/0003-9861(91)90019-f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cytotoxic effect of the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) is believed to be associated with a compromise in cellular energy arising as a consequence of its persistent inhibition of mitochondrial respiration. MPP+ is a rather weak inhibitor of electron transport, but it undergoes passive accumulation inside actively respiring mitochondria in response to the transmembrane electrochemical potential gradient. In order to test the prediction that dicationic analogs of MPP+ might be concentrated to a much greater extent and thereby exert especially potent inhibition of respiration on the intact organelle, we synthesized four differently spaced bis-pyridines, each in neutral, monocationic, and dicationic forms, and evaluated their inhibitory activities in intact mitochondria and in electron transport particles (ETP). Compared to the neutrals, the monocations and especially the dications exhibit reduced inhibition in ETP, but the inhibition in mitochondria is enhanced selectively for the cationic inhibitors presumably on account of their accumulation in the mitochondrial matrix. This enhancement is limited by the relatively poor ability of the cationic bis-pyridines to enter mitochondria, as judged from experiments which evaluated the rate of onset of inhibition (without preincubation), in the absence and presence of tetraphenylborate (TPB-). The dications appear to be transported less well than the monocations, and only the most lipophilic dication exhibited a substantially greater accumulation-dependent enhancement of inhibitory activity on mitochondria than did the corresponding monocation. The compounds studied here constitute a novel class of respiratory chain probes which may be useful for a variety of studies on mitochondria.
Collapse
Affiliation(s)
- M P Singh
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | | | | | | |
Collapse
|
31
|
Kitahama K, Denney RM, Maeda T, Jouvet M. Distribution of type B monoamine oxidase immunoreactivity in the cat brain with reference to enzyme histochemistry. Neuroscience 1991; 44:185-204. [PMID: 1770996 DOI: 10.1016/0306-4522(91)90260-u] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We studied the detailed distributions and morphology of structures immunoreactive to type B monoamine oxidase, and compared them with those stained by monoamine oxidase enzyme histochemistry in the brain of cats treated with or without colchicine. By means of the indirect immunohistochemical method in conjunction with type B monoamine oxidase monoclonal antibody, we demonstrated type B monoamine oxidase immunoreactivity in neuronal cell bodies, fibers and astroglial cells in the cat brain. As expected, the distribution of type B monoamine oxidase-immunoreactive cell bodies overlapped that of serotonin-containing ones in the lower brainstem and midbrain, as well as that of histaminergic ones in the posterior hypothalamus. We found novel cell groups containing type B monoamine oxidase in the areas described below. Intense type B monoamine oxidase-immunopositive and enzymatically active neurons, corresponding to liquor-contact ones, were discovered in the wall of the central canal of the spinomedullary junction. Weak immunoreactivity was identified in neurons of the dorsal motor nucleus of the vagus, parvocellular reticular formation and locus coeruleus complex, which have been reported to contain type A monoamine oxidase enzymatic activity. Type B monoamine oxidase-immunostaining in these structures was enhanced by treatment with colchicine. In addition, lightly immunostained cells were distinguished in the caudal portion of the hypothalamic arcuate nucleus, area of tuber cinereum, retrochiasmatic area, and rostral portion of the paraventricular thalamic nucleus after colchicine treatment. These cells also displayed monoamine oxidase activity; however, it was difficult to enzymatically characterize their nature due to its weak activity and sensitivity to inhibitors of both A and B. Distinct type B monoamine oxidase-immunoreactive fibers and terminal-like dots were abundant in the whole brain, particularly in the central gray, dorsal pontine tegmentum, interpeduncular and pontine nuclei, nucleus of the solitary tract and dorsal motor nucleus of vagus, where dense innervations of serotonergic fibers have been reported. Their immunoreactive density increased after colchicine treatment, but monoamine oxidase enzymatic reaction did not. An intense immunoreactivity could be seen in many glial cells in parts of the brain including myelinated axon pathways. The densest accumulation of such labeled glial cells was found in the central gray, inferior olive, medial geniculate body, substantia nigra, ventral tegmental area of Tsai, retrorubral area, hypothalamus, thalamus and bed nucleus of the stria terminalis. In contrast, the striatum contained less numerous type B monoamine oxidase-immunoreactive and enzymatically active astroglial cells in comparison with the other structures.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Kitahama
- Département de Médecine Expérimentale, CNRS UA1195, INSERM U52, Faculté de Médecine, Lyon, France
| | | | | | | |
Collapse
|
32
|
Lesioning of Rat Nigrostriatal Dopamine Pathway with 1-Methyl-4-phenylpyridinium Ion (MPP+). ACTA ACUST UNITED AC 1991. [DOI: 10.1016/b978-0-12-185263-4.50006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Abstract
This review summarizes advances in our understanding of the biochemical events which underlie the remarkable neurotoxic action of MPTP (1-methyl-4-phenyl-1-1,2,3,6-tetrahydropyridine) and the parkinsonian symptoms it causes in primates. The initial biochemical event is a two-step oxidation by monoamine oxidase B in glial cells to MPP+ (1-methyl-4-phenylpyridinium). A large number of MPTP analogs substituted in the aromatic (but not in the pyridine) ring are also oxidized by monoamine oxidase A or B, is in some cases faster than any previously recognized substrate. Alkyl substitution at the 2'-position changes MPTP, a predominantly B type substrate, to an A substrate. Following concentration in the dopamine neurons by the synaptic system, which has a high affinity for the carrier, MPP+ and its positively charged neurotoxic analogs are further concentrated by the electrical gradient of the inner membrane and then more slowly penetrate the hydrophobic reaction site on NADH dehydrogenase. Both of the latter events are accelerated by the tetraphenylboron anion, which forms ion pairs with MPP+ and its analogs. Mitochondrial damage is now widely accepted as the primary cause of the MPTP induced death of the nigrostriatal cells. The molecular target of MPP+, its neurotoxic product, is NADH dehydrogenase. Recent experiments suggest that the binding site is at or near the combining site of the classical respiratory inhibitors, rotenone and piericidin A.
Collapse
Affiliation(s)
- T P Singer
- Department of Biochemistry-Biophysics, University of California, San Francisco 94143
| | | |
Collapse
|
34
|
Sayre LM, Singh MP, Arora PK, Wang F, McPeak RJ, Hoppel CL. Inhibition of mitochondrial respiration by analogues of the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium: structural requirements for accumulation-dependent enhanced inhibitory potency on intact mitochondria. Arch Biochem Biophys 1990; 280:274-83. [PMID: 2369119 DOI: 10.1016/0003-9861(90)90330-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Analogues of 1-methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, were evaluated for inhibition of respiration in intact mitochondria (Mw) and in electron transport particles (ETP). MPP+ exhibits relatively weak inhibitory activity in ETP, but potent inhibition in Mw occurs on account of its energy-dependent accumulation inside mitochondria. The permeant anion tetraphenylborate potentiates the inhibition in both Mw and ETP. Replacement of the 4-phenyl ring of MPP+ by a variety of aromatic and nonaromatic rings, and of the N-methylpyridinium group by other cationic aromatic heterocycles, preserves the inhibitory patterns seen for MPP+. The general observation of enhanced inhibitory potency in Mw for all these permanently charged cations is consistent with our contention that energy-dependent accumulation inside mitochondria represents a passive Nernstian concentration in response to the transmembrane electrochemical gradient. Nonetheless, the magnitude of the inhibitory potentiation seen in Mw relative to ETP varies widely with structure. In particular, less lipophilic analogues, especially those bearing a localized, rather than resonance-stabilized, permanent positive charge, exhibit similar inhibitory activity to MPP+ in ETP, but the inhibition in Mw is not comparably enhanced. For these same analogues, the inhibitory activity in ETP is only weakly potentiated by tetraphenylborate. Since succinate was found to completely reverse the respiratory inhibition in Mw induced by all types of MPP+ analogues investigated, a common site 1 inhibition appears to be involved; thus the different inhibitory patterns observed must be due to structural factors governing membrane transport and distribution properties.
Collapse
Affiliation(s)
- L M Sayre
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a potent neurotoxin which destroys nigrostriatal dopamine neurons, resulting in irreversible idiopathic parkinsonism. MPTP displays dopaminergic neurotoxicity to humans, monkeys, cats and rodents. The oxidative conversion of MPTP to 1-methyl-4-phenylpyridine (MPP+) is responsible for the generation of its neurotoxicity. This metabolism is mediated by the action of monoamine oxidase B, which in the substantia nigra pars compacta (SNc) is localized specifically in astroglia. Employing various combinations of intra-SNc injections of MPTP and the astroglia-specific toxin, L-alpha-aminoadipic acid (L-alpha-AA), we examined the effects of selective astroglial ablation on MPTP-induced nigrostriatal neuronal death in the rat. Varying nigrostriatal cell loss was assessed primarily by the aid of fluorescent retrograde axonal tracing. Treatment with MPTP alone caused tremendous nigrostriatal cell loss, while intra-SNc co-injections of MPTP and L-alpha-AA produced protection against MPTP neurotoxicity in a dose-dependent fashion. Similar effects of L-alpha-AA occurred in the SNc pretreated with the gliotoxin just prior to or 1 day before MPTP administration. However, this preventive action by L-alpha-AA was considerably reduced 3 days after its intra-SNc injection. Interestingly, 7 days following L-alpha-AA pretreatment, nigrostriatal cell loss was even enhanced rather than attenuated by MPTP administered into the SNc. Thus, our data provide clear morphological evidence for the critical importance of the presence of astroglia in the onset of MPTP neurotoxicity.
Collapse
Affiliation(s)
- M Takada
- Department of Anatomy, University of Toronto, Ont., Canada
| | | | | |
Collapse
|
36
|
Astroglial ablation by the glutamate analogue gliotoxin α-aminoadipic acid prevents l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced nigrostriatal neuronal death. Amino Acids 1990. [DOI: 10.1007/978-94-011-2262-7_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Arora PK, Riachi NJ, Fiedler GC, Singh MP, Abdallah F, Harik SI, Sayre LM. Structure-neurotoxicity trends of analogues of 1-methyl-4-phenylpyridinium (MPP+), the cytotoxic metabolite of the dopaminergic neurotoxin MPTP. Life Sci 1990; 46:379-90. [PMID: 2304377 DOI: 10.1016/0024-3205(90)90018-m] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) derives from its metabolism to 1-methyl-4-phenyl-pyridinium cation (MPP+), which is then selectively accumulated in dopaminergic neurons. In an effort to assess the structural requirements governing MPP+ cytotoxicity, we evaluated dopaminergic toxicity of MPP+ analogues 3 weeks after their microinfusion into rat substantia nigra. We also evaluated the substrate suitability of MPP+ analogues for high-affinity dopamine uptake in striatal synaptosomes by measuring their ability to induce specific dopamine release. The intranigral neurotoxicity of MPP+ analogues in vivo correlates mainly with their in vitro inhibitory activity on mitochondrial respiration, consistent with a compromise in cellular energy production as the principal mechanism of MPTP-induced cell death. This study extends the structure-neurotoxicity data base beyond that obtainable using MPTP analogues, since many of these are not metabolized to pyridinium compounds. Such information is crucial to assess which possible endogenous or exogenous compounds may exert MPTP/MPP(+)-like toxicity.
Collapse
Affiliation(s)
- P K Arora
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | | | | | | | |
Collapse
|
38
|
Rollema H, Alexander GM, Grothusen JR, Matos FF, Castagnoli N. Comparison of the effects of intracerebrally administered MPP+ (1-methyl-4-phenylpyridinium) in three species: microdialysis of dopamine and metabolites in mouse, rat and monkey striatum. Neurosci Lett 1989; 106:275-81. [PMID: 2601882 DOI: 10.1016/0304-3940(89)90176-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intracerebral microdialysis in 3 awake species allowed the measurement of the basal output of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindole-acetic acid (5-HIAA) from rat and mouse striatum and monkey caudate in vivo. The DOPAC/HVA ratios in dialysates from mouse and rat striatum were about 1 and 2 respectively, but only 0.09 in monkey caudate dialysates. The extracellular levels of the metabolites correlated well with reported tissue levels, while extracellular DA levels were 3 orders of magnitude lower than tissue concentrations. The effects of the intracerebrally administered dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+) were essentially similar in the 3 species. In all cases an immediate, massive release of DA was accompanied by a pronounced decrease in the output of the metabolites. Basal DA release was no longer detectable 5-12 h after MPP+ administration and a second MPP+ perfusion failed to increase the release of DA.
Collapse
Affiliation(s)
- H Rollema
- Division of Toxicology, School of Pharmacy, University of California, San Francisco 94143
| | | | | | | | | |
Collapse
|
39
|
Danias P, Nicklas WJ, Ofori S, Shen J, Mytilineou C. Mesencephalic dopamine neurons become less sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity during development in vitro. J Neurochem 1989; 53:1149-55. [PMID: 2788714 DOI: 10.1111/j.1471-4159.1989.tb07408.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The in vitro development of monoamine oxidase (MAO) activity and [3H]dopamine (DA) uptake capacity of dissociated cell cultures from rat embryo mesencephalon were correlated with the potency of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP+) neurotoxicity. Specific activities of both MAO-A and MAO-B increased during in vitro development of the cultures, with MAO-B activity increasing 20-fold between the first and fourth week. Similarly, [3H]DA accumulation increased 2.6-fold between the first and third week in vitro, when it reached a plateau. Unexpectedly, the toxicities of MPTP and MPP+ were substantially decreased in the older cultures. Exposure to MPTP reduced [3H]DA accumulation per culture by 77% in 1-week-old cultures and by 36% in 4-week-old cultures. Similarly, damage caused by MPPT was reduced from 84% of control in the first week to 34% of control in the fourth week. The attenuation of neurotoxicity was not due to an increase in storage of MPP+ in the synaptic vesicles of DA neurons, nor to a change in the distribution of MPP+ between dopaminergic and other cellular components of the cultures. The damage to DA neurons caused by the mitochondrial toxin, rotenone, also showed a similar reduction in the older cultures. These observations coupled with an increase in lactate formation and glucose consumption during the in vitro development of the cultures suggest a shift toward increased glycolysis and decreased dependence on aerobic metabolism. This would render the cells more resistant to the inhibition of mitochondrial function by MPP+.
Collapse
Affiliation(s)
- P Danias
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029
| | | | | | | | | |
Collapse
|
40
|
Sayre LM. Biochemical mechanism of action of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Lett 1989; 48:121-49. [PMID: 2672418 DOI: 10.1016/0378-4274(89)90168-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The various biochemical mechanisms considered to explain the selective dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) are reviewed. MPTP is metabolized by monoamine oxidase in the brain, ultimately yielding 1-methyl-4-phenylpyridinium cation (MPP+), which is accumulated in dopamine cells by the high-affinity dopamine uptake pump. Cell death appears to reflect a compromise in energy production arising as a result of the Nernstian concentration of MPP+ inside mitochondria and persistent inhibition of Site 1 of the respiratory chain. The structural features underlying each biochemical step involved in the expression of neurotoxicity are described, and the implications of the MPTP phenomenon to efforts aimed at elucidating the pathogenesis of idiopathic parkinsonism are discussed.
Collapse
Affiliation(s)
- L M Sayre
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
41
|
Johnson EA, Wu EY, Rollema H, Booth RG, Trevor AJ, Castagnoli N. 1-methyl-4-phenylpyridinium (MPP+) analogs: in vivo neurotoxicity and inhibition of striatal synaptosomal dopamine uptake. Eur J Pharmacol 1989; 166:65-74. [PMID: 2806366 DOI: 10.1016/0014-2999(89)90684-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The ability of various 1-methyl-4-phenylpyridinium (MPP+) analogs to inhibit the uptake of tritium labeled dopamine and MPP+ by synaptosomes prepared from neostriata of male C57 Black mice was measured and compared with their dopaminergic neurotoxic potential which was estimated by an in vivo intracerebral microdialysis technique. The correlation observed between these two properties suggests that nerve terminal uptake is an important step in the expression of the nigrostriatal toxicity of structural analogs of MPP+. The uptake inhibition and neurotoxic properties of this series of compounds appear to be highly structurally sensitive and suggest that few nitrogenous bases will be potent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-type neurotoxins.
Collapse
Affiliation(s)
- E A Johnson
- Department of Pharmaceutical Chemistry, University of California, San Francisco
| | | | | | | | | | | |
Collapse
|
42
|
Sayre LM, Wang F, Hoppel CL. Tetraphenylborate potentiates the respiratory inhibition by the dopaminergic neurotoxin MPP+ in both electron transport particles and intact mitochondria. Biochem Biophys Res Commun 1989; 161:809-18. [PMID: 2786720 DOI: 10.1016/0006-291x(89)92672-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The cytotoxicity of 1-methyl-4-phenylpyridinium (MPP+) is believed to arise as a consequence of its time- and energy-dependent accumulation inside mitochondria, followed by inhibition of electron transport at Complex I of the respiratory chain. Consistent with our proposal that the accumulation of MPP+ represents a passive Nernstian transport into mitochondria in response to the transmembrane electrochemical potential gradient, tetraphenylborate (TPB-) was found to accelerate the onset of the respiratory inhibition by MPP+ on intact mitochondria. Moreover, the ultimate level of inhibition reached was unexpectedly also increased. The latter is now explained by our finding that TPB- elicits a 12-fold enhancement of MPP+ inhibition of respiration in electron transport particles. It is suggested that TPB- facilitates access of MPP+ to its intramembrane site of inhibitory action in Complex I.
Collapse
Affiliation(s)
- L M Sayre
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | | | | |
Collapse
|
43
|
Ballarin M, Reiriz J, Ambrosio S, Camps M, Blesa R, Mahy N. Acute effects of 1-methyl-1,4-phenylpyridinium ion (MPP+) on purine metabolism in rat striatum studied in vivo using the microdialysis technique. Brain Res 1989; 483:184-7. [PMID: 2784990 DOI: 10.1016/0006-8993(89)90052-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to obtain further insight into the interactions between the purinergic and dopaminergic pathways in the striatum, we studied both metabolisms simultaneously, using a microdialysis technique in 1-methyl-1,4-phenylpyridinium ion (MPP+) unilaterally-denervated conscious rats. In these rats the contralateral side was used as control. The perfusates were collected every 20-25 min using 4 mm dialysis probes, implanted in each striatum, and assayed for dopamine and purine metabolites. After MPP+ administration, all adenosine metabolites - with the exception of uric acid - and dopamine levels were significantly increased in the extracellular medium. However, the time-course change in dopamine level did not correlate with the adenosine and inosine time-courses, suggesting a different mechanism of liberation in response to MPP+ administration.
Collapse
Affiliation(s)
- M Ballarin
- Dep. de Ciencies Fisiológiques, Humanes i de la Nutrició, Fac. de Medicina, Universitat de Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Zigmond MJ, Stricker EM. Animal models of parkinsonism using selective neurotoxins: clinical and basic implications. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1989; 31:1-79. [PMID: 2689379 DOI: 10.1016/s0074-7742(08)60277-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M J Zigmond
- Department of Behavioral Neuroscience, University of Pittsburgh, Pennsylvania 15260
| | | |
Collapse
|
45
|
Hollinden GE, Sanchez-Ramos JR, Sick TJ, Rosenthal M. MPP+-induced increases in extracellular potassium ion activity in rat striatal slices suggest that consequences of MPP+ neurotoxicity are spread beyond dopaminergic terminals. Brain Res 1988; 475:283-90. [PMID: 3265070 DOI: 10.1016/0006-8993(88)90616-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) produces symptoms similar to idiopathic Parkinson's disease in primates. A metabolite of MPTP, MPP+ (1-methyl-4-phenylpyridinium), is actively accumulated by dopaminergic (DA) terminals and selectively destroys nigrostriatal DA neurons. The mechanism of this effect remains unknown but reports that MPP+ inhibits electron transport in isolated mitochondria and increases oxidation of cytochrome b in striatal slices suggest that depression of ATP production is involved. To relate metabolic effects of MPP+ with tissue electrophysiology, extracellular potassium ion activity [K+]o was measured by microelectrodes simultaneous to optical monitoring of reduction/oxidation (redox) activity of cytochrome b during superfusion of MPP+ onto rat striatal and hippocampal slices. MPP+ increased oxidation of cytochrome b and increased [K+]o in slices of striatum. These increases were greater than expected from a selective effect of MPP+ on DA terminals which likely comprise no more than 3% of the total striatal mass. These effects of MPP+ were slowed by a dopamine uptake inhibitor (mazindol) and did not occur in hippocampal slices. These findings indicate that MPP+ influences ion transport as well as metabolic activity and that these actions require the presence of functioning DA terminals. However, the large amplitudes of the MPP+-induced changes suggest that consequences of MPP+-neurotoxicity are not ultimately confined to DA terminals. Two hypothesis are proposed: that energy failure in DA terminals results in leakage of neurotoxic substances or metabolites altering membrane conductance properties of adjacent cells and thereby placing additional demand upon ion transport pumps and mitochondrial oxidative phosphorylation; or that there is secondary uptake of MPP+ leading to mitochondrial inhibition in cells neighboring DA terminals.
Collapse
Affiliation(s)
- G E Hollinden
- Department of Neurology, University of Miami School of Medicine, FL 33101
| | | | | | | |
Collapse
|
46
|
Beresford IJ, Davenport AP, Sirinathsinghji DJ, Hall MD, Hill RG, Hughes J. Experimental hemiparkinsonism in the rat following chronic unilateral infusion of MPP+ into the nigrostriatal dopamine pathway--II. Differential localization of dopamine and cholecystokinin receptors. Neuroscience 1988; 27:129-43. [PMID: 3264392 DOI: 10.1016/0306-4522(88)90224-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The autoradiographical localization of dopamine D1, D2 and cholecystokinin receptors has been investigated in rat brain 6 months following unilateral infusion of 1-methyl-4-phenyl pyridinium ion (MPP+) (10 micrograms/day for 7 days) into the nigrostriatal dopamine pathway. Treatment with 1-methyl-4-phenyl pyridinium ion produced a marked depletion of dopamine cell bodies in the substantia nigra together with greater than 95% loss of tyrosine hydroxylase immunoreactivity in the striatum. Measurement of specific [3H]spiperone binding to D2 receptors indicated a 38% increase (P less than 0.01) in the maximal binding capacity of [3H]spiperone to striatal membrane homogenates and a 13% increase (P less than 0.05) in specific [3H]spiperone binding to striatal tissue sections, verifying striatal D2 receptor denervation supersensitivity. In contrast, MPP+ lesion of the nigrostriatal tract had no effect on the autoradiographical localization of striatal D1 or cholecystokinin receptors. In addition, there was a 38% loss (P less than 0.05) of D2 receptor binding sites in the substantia nigra pars compacta, whilst D1 receptors remained unchanged. Similar changes in dopamine and cholecystokinin receptor number were found following 6-hydroxydopamine lesion of the nigrostriatal dopamine pathway. These results provide further evidence that 1-methyl-4-phenyl pyridinium ion treatment in rats produces extensive destruction of the dopaminergic nigrostriatal tract and supports the differential anatomical localization of striatal and nigral D1, D2 and cholecystokinin receptors.
Collapse
Affiliation(s)
- I J Beresford
- Parke-Davis Research Unit, Addenbrookes Hospital Site, Cambridge, U.K
| | | | | | | | | | | |
Collapse
|
47
|
Sirinathsinghji DJ, Heavens RP, Richards SJ, Beresford IJ, Hall MD. Experimental hemiparkinsonism in the rat following chronic unilateral infusion of MPP+ into the nigrostriatal dopamine pathway--I. Behavioural, neurochemical and histological characterization of the lesion. Neuroscience 1988; 27:117-28. [PMID: 3264391 DOI: 10.1016/0306-4522(88)90223-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1-Methyl-4-phenylpyridinium ion (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, has been chronically infused (10 micrograms/24 h for 7 days) via osmotic minipumps into the left median forebrain bundle of the rat in order to determine whether it can induce permanent damage to the nigrostriatal dopamine system. Its effects were assessed over a period of 6 months post lesion. Four to 5 days following minipump implantation, all MPP+-treated animals displayed spontaneous ipsilateral postural bias indicating a marked imbalance in striatal dopamine and degeneration of the ipsilateral nigrostriatal dopamine pathway. After 3-5 weeks, MPP+-infused animals showed dose-related ipsilateral and contralateral circling in response to methamphetamine (1-5 mg/kg i.p.) and apomorphine (0.05-0.25 mg/kg s.c.) respectively. In vivo, using bilateral monitoring of striatal dopamine in MPP+-infused animals at 2 and 4 months by push-pull perfusion, both basal and methamphetamine- (2.5 mg/kg i.p.) stimulated release of dopamine was undetectable in the ipsilateral striatum, indicating a complete loss of dopamine terminals. In contrast, in the contralateral striatum of these animals and in striata of saline-infused animals, there were 4-5-fold increases in dopamine release in response to methamphetamine. Six months after lesion, animals infused with MPP+ continue to exhibit robust rotational behaviour in response to methamphetamine and apomorphine. In the ipsilateral striatum of the MPP+-infused animals the tissue concentrations of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, were all undetectable; however, the levels of noradrenaline, serotonin and its metabolite, 5-hydroxyindoleacetic acid, were not significantly different from control values. In contrast to the striatum, MPP+ had no significant effect on the levels of dopamine and its metabolites in the ipsilateral nucleus accumbens; in addition, the levels of noradrenaline and serotonin and its metabolite were comparable to control levels. Histological examination revealed a marked loss of cells and severe gliosis in the substantia nigra pars compacta of MPP+-infused animals. The present results provide evidence that direct infusion of MPP+ into the medial forebrain bundle of the rat can lead to a complete loss of dopamine neurons in the pars compacta of the substantia nigra with ensuing behavioural, neurochemical and biochemical changes characteristic of the lesion.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D J Sirinathsinghji
- Department of Neuroendocrinology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, U.K
| | | | | | | | | |
Collapse
|
48
|
Fuller RW, Hemrick-Luecke SK, Robertson DW. Comparison of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+) effects on mouse heart norepinephrine. Biochem Pharmacol 1988; 37:3343-7. [PMID: 3135812 DOI: 10.1016/0006-2952(88)90648-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
MPP+ (1-methyl-4-phenylpyridinium) mimicked MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in producing marked, dose-related depletion of cardiac norepinephrine after a single oral or subcutaneous dose in mice. MPP+ was approximately 4-fold more potent than MPTP in depleting norepinephrine, but the onset of depletion was not faster for MPP+ than for MPTP. The time courses of the effects of both compounds were similar to that for 6-hydroxydopamine, with maximum depletion occurring at 1 day, partial recovery at 2 and 4 days, and full recovery of norepinephrine concentrations at 1 week. Desipramine, over a dose range that completely prevented the depletion of cardiac norepinephrine by 6-hydroxydopamine at 24 hr, did not prevent cardiac norepinephrine depletion by either MPP+ or MPTP. In a short duration experiment, one or two doses of desipramine also failed to prevent heart norepinephrine depletion by MPP+ or by MPTP, although a slight antagonism was found. EXP 561 (4-phenylbicyclo[2,2,2]octan-1-amine hydrochloride monohydrate), another uptake inhibitor with possibly longer duration of action, also did not protect against norepinephrine depletion by a single dose of MPP+ or MPTP at a dose that prevented norepinephrine depletion by 6-hydroxydopamine. In mice given four daily doses of MPTP, EXP 561 prevented the depletion of norepinephrine in the frontal cortex and of dopamine in the striatum but not the depletion of norepinephrine in heart or spleen. Thus, both MPTP and MPP+ deplete norepinephrine in mouse heart, and this effect of the two compounds is resistant to antagonism by uptake inhibitors that antagonize the effects of MPTP on brain catecholamines.
Collapse
Affiliation(s)
- R W Fuller
- Lilly Research Laboratories, Eli Lilly & Co., Lilly Corporate Center, Indianapolis, IN 46285
| | | | | |
Collapse
|
49
|
Rollema H, de Vries JB, Damsma G, Westerink BH, Kranenborg GL, Kuhr WG, Horn AS. The use of in vivo brain dialysis of dopamine, acetylcholine, amino acids and lactic acid in studies on the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicology 1988; 49:503-11. [PMID: 3259743 DOI: 10.1016/0300-483x(88)90036-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The use of intracerebral brain dialysis in freely moving rats in neurochemical and neurotoxicological research is discussed and exemplified by studies on the neurotoxin MPTP. Intrastriatal administration of its toxic metabolite MPP+, via the dialysis tube, induced massive changes in the release of neurotransmitters and metabolites. Release enhancing effects could not be repeated by a second MPP+ perfusion and decreases in neurotransmitter or metabolite output were persistent. This indicates that MPP+ has irreversible, toxic effects on various neuortransmitter systems. The MPP+-induced release of DA has been characterized by studying the effect of pretreatment with various drugs, as well by comparison of the time courses of MPP+-induced DA release with those of amphetamine-induced DA release and of MPP+-induced lactate overflow.
Collapse
Affiliation(s)
- H Rollema
- Department of Medicinal Chemistry, State University Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Sirinathsinghji DJ, Heavens RP, McBride CS. Dopamine-releasing action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridine (MPP+) in the neostriatum of the rat as demonstrated in vivo by the push-pull perfusion technique: dependence on sodium but not calcium ions. Brain Res 1988; 443:101-16. [PMID: 3258784 DOI: 10.1016/0006-8993(88)91603-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study examined the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolite, 1-methyl-4-phenylpyridine (MPP+) on the levels of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in push-pull perfusates of the striatum in chloral hydrate-anaesthetized rats. In control animals the levels of DA and DOPAC remained stable for at least 6 h and responded rapidly to a depolarizing stimulus of 25 mM K+. This K+-induced DA release was Ca2+-dependent since no stimulation was observed when the striatal sites were perfused with high K+ in a Ca2+-free medium containing 2 mM EGTA thus verifying that the striatal sites were functionally active. MPTP (0.025 and 0.05 microgram/microliter) stimulated DA release and inhibited DOPAC output in a dose-related manner. MPP+ (0.01, 0.025 and 0.05 microgram/microliter) produced a more robust dose-dependent increase in DA levels in the perfusates; however, the level of suppression of DOPAC was similar to that in response to MPTP. The effect of MPP+ on DA release was attenuated by 10(-6) M benztropine, the DA re-uptake blocker and completely inhibited by 10 micrograms/kg i.p. benztropine and 10(-4) M ouabain, the Na+, K+-ATPase (Na pump) inhibitor. However, although these substances prevented the MPP+-induced release of DA, the levels of DOPAC in the perfusates did not recover and remained completely suppressed suggesting that MPP+ may inhibit extraneuronal rather than intraneuronal monoamine oxidase (MAO). Perfusion of the striatal sites with a Ca2+-free medium containing 2 mM EGTA did not prevent the MPP+-induced DA release indicating that MPP+ does not release DA from the striatal DA terminals by the Ca2+-dependent process of exocytosis. The responses of DA and DOPAC to 25 mM K+ were markedly suppressed in animals treated with MPTP and MPP+, these effects being most severe with the highest dose of MPP+. Moreover, this suppression of the K+-induced responses persisted in animals perfused with MPP+ in the presence of benztropine or ouabain, thus suggesting that MPP+ may have potent deleterious membrane effects. These studies have provided the first direct in vivo demonstration of the action of MPTP and MPP+ and the neuropharmacological basis of this action on DA metabolism in the rat striatum. The results show that the elevated levels of DA in the striatal perfusates are due to a direct action of MPTP and MPP+ on the nigrostriatal DA terminals and cannot be fully accounted for solely by their inhibition of MAO activity and/or inhibition of DA re-uptake.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D J Sirinathsinghji
- Department of Neuroendocrinology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, U.K
| | | | | |
Collapse
|