1
|
Pombal MA, Megías M, Lozano D, López JM. Neuromeric Distribution of Nicotinamide Adenine Dinucleotide Phosphate-Diaphorase Activity in the Adult Lamprey Brain. Front Neuroanat 2022; 16:826087. [PMID: 35197830 PMCID: PMC8859838 DOI: 10.3389/fnana.2022.826087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
This study reports for the first time the distribution and morphological characterization of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d; a reliable marker of nitric oxide synthase activity) positive elements in the central nervous system of the adult river lamprey (Lampetra fluviatilis) on the framework of the neuromeric model and compares their cytoarchitectonic organization with that of gnathostomes. Both NADPH-d exhibiting cells and fibers were observed in all major divisions of the lamprey brain as well as in the spinal cord. In the secondary prosencephalon, NADPH-d positive cells were observed in the mitral cell layer of the olfactory bulb, evaginated pallium, amygdala, dorsal striatum, septum, lateral preoptic nucleus, caudal paraventricular area, posterior entopeduncular nucleus, nucleus of the stria medullaris, hypothalamic periventricular organ and mamillary region sensu lato. In the lamprey diencephalon, NADPH-d labeled cells were observed in several nuclei of the prethalamus, epithalamus, pretectum, and the basal plate. Especially remarkable was the staining observed in the right habenula and several pretectal nuclei. NADPH-d positive cells were also observed in the following mesencephalic areas: optic tectum (two populations), torus semicircularis, nucleus M5 of Schöber, and a ventral tegmental periventricular nucleus. Five different cell populations were observed in the isthmic region, whereas the large sensory dorsal cells, some cells located in the interpeduncular nucleus, the motor nuclei of most cranial nerves, the solitary tract nucleus, some cells of the reticular nuclei, and small cerebrospinal fluid-contacting (CSF-c) cells were the most evident stained cells of the rhombencephalon proper. Finally, several NADPH-d positive cells were observed in the rostral part of the spinal cord, including the large sensory dorsal cells, numerous CSF-c cells, and some dorsal and lateral interneurons. NADPH-d positive fibers were observed in the olfactory pathways (primary olfactory fibers and stria medullaris), the fasciculus retroflexus, and the dorsal column tract. Our results on the distribution of NADPH-d positive elements in the brain of the adult lamprey L. fluviatilis are significantly different from those previously reported in larval lampreys and demonstrated that these animals possess a complex nitrergic system readily comparable to those of other vertebrates, although important specific differences also exist.
Collapse
Affiliation(s)
- Manuel A. Pombal
- Neurolam Group, Facultade de Bioloxía-IBIV, Departamento de Bioloxía Funcional e Ciencias da Saúde, Universidade de Vigo, Vigo, Spain
- *Correspondence: Manuel A. Pombal,
| | - Manuel Megías
- Neurolam Group, Facultade de Bioloxía-IBIV, Departamento de Bioloxía Funcional e Ciencias da Saúde, Universidade de Vigo, Vigo, Spain
| | - Daniel Lozano
- Department of Cellular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Jesús M. López
- Department of Cellular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Changes of the Expression of Neuronal NO-Synthase in Rat Sympathetic Ganglia during Ontogeny. Bull Exp Biol Med 2019; 168:76-78. [PMID: 31768775 DOI: 10.1007/s10517-019-04651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 10/25/2022]
Abstract
Expression of neuronal NO synthase in the sympathetic cranial cervical ganglion and stellate ganglion in rats during postnatal ontogeny was studied by immunohistochemistry and Western blotting. In the sympathetic ganglia, neuronal NO synthase-immunoreactive neurons were absent in all rats. In the stellate and cranial cervical ganglia, the expression of neuronal NO synthase and the density of immunoreactive fibers increased in early postnatal ontogeny from the moment of birth to the age of 30 days and then decreased. Thus, we observed heterochroneous expression of neuronal NOS in the preganglionic somata in the spinal cord and in the preganglionic fibers in the sympathetic ganglia during ontogeny.
Collapse
|
3
|
López JM, Morona R, González A. Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, Neoceratodus forsteri (Sarcopterygii: Dipnoi). J Comp Neurol 2019; 527:1771-1800. [PMID: 30689201 DOI: 10.1002/cne.24645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
The Australian lungfish Neoceratodus forsteri is the only extant species of the order Ceratodontiformes, which retained most of the primitive features of ancient lobe finned-fishes. Lungfishes are the closest living relatives of land vertebrates and their study is important for deducing the neural traits that were conserved, modified, or lost with the transition from fishes to land vertebrates. We have investigated the nitrergic system with neural nitric oxide synthase (NOS) immunohistochemistry and NADPH-diaphorase (NADPH-d) histochemistry, which yielded almost identical results except for the primary olfactory projections and the terminal and preoptic nerve fibers labeled only for NADPH-d. Combined immunohistochemistry was used for simultaneous detection of NOS with catecholaminergic, cholinergic, and serotonergic structures, aiming to establish accurately the localization of the nitrergic elements and to assess possible interactions between these neurotransmitter systems. The results demonstrated abundant nitrergic cells in the basal ganglia, amygdaloid complex, preoptic area, basal hypothalamus, mesencephalic tectum and tegmentum, laterodorsal tegmental nucleus, reticular formation, spinal cord, and retina. In addition, low numbers of nitrergic cells were observed in the olfactory bulb, all pallial divisions, lateral septum, suprachiasmatic nucleus, prethalamic and thalamic areas, posterior tubercle, pretectum, torus semicircularis, cerebellar nucleus, interpeduncular nucleus, the medial octavolateral nucleus, nucleus of the solitary tract, and the dorsal column nucleus. Colocalization of NOS and tyrosine hydroxylase was observed in numerous cells of the ventral tegmental area/substantia nigra complex. Comparison with other vertebrates, using a neuromeric analysis, reveals that the nitrergic system of Neoceratodus shares many neuroanatomical features with tetrapods and particularly with amphibians.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
4
|
The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the medulla oblongata, spinal cord, cranial and spinal nerves of frog, Microhyla ornata. J Chem Neuroanat 2017; 81:76-86. [DOI: 10.1016/j.jchemneu.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 11/22/2022]
|
5
|
Poon YY, Tsai CY, Cheng CD, Chang AYW, Chan SHH. Endogenous nitric oxide derived from NOS I or II in thoracic spinal cord exerts opposing tonic modulation on sympathetic vasomotor tone via disparate mechanisms in anesthetized rats. Am J Physiol Heart Circ Physiol 2016; 311:H555-62. [PMID: 27371683 DOI: 10.1152/ajpheart.00246.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022]
Abstract
The sympathetic preganglionic neurons (SPN) in the thoracic spinal cord regulate vasomotor tone via norepinephrine released from sympathetic terminals and adrenal medulla. We assessed the hypothesis that nitric oxide synthase I (NOS I)- and NOS II-derived nitric oxide (NO) in the thoracic spinal cord differentially modulate sympathetic outflow and that the adrenal medulla may be involved in those modulatory actions. In Sprague-Dawley rats, NOS I immunoreactivity was distributed primarily in the perikaryon, proximal dendrites, or axons of SPN, and small clusters of NOS II immunoreactivity impinged mainly on the circumference of SPN. Intrathecal administration of 7-nitroindazole (7-NI), a specific NOS I antagonist, into the thoracic spinal cord significantly reduced arterial pressure, heart rate, and basal or baroreflex-mediated sympathetic vasomotor tone. On the other hand, intrathecal application of S-methylisothiourea (SMT), a specific NOS II antagonist, elevated arterial pressure with a transient reduction of heart rate, induced a surge of plasma norepinephrine, and reduced baroreflex-mediated but not basal sympathetic vasomotor tone. Bilateral adrenalectomy significantly exacerbated the cardiovascular responses to 7-NI but antagonized those to SMT. We conclude that both NOS I and NOS II are present in the thoracic spinal cord and are tonically active under physiological conditions. Furthermore, the endogenous NO generated by NOS I-containing SPN exerts a tonic excitatory action on vasomotor tone mediated by norepinephrine released from the adrenal medulla and sympathetic nerve terminals. On the other hand, NO derived from NOS II exerts a tonic inhibitory action on sympathetic outflow from the SPN that targets primarily the blood vessels.
Collapse
Affiliation(s)
- Yan-Yuen Poon
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Chung-Dar Cheng
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China; and
| | - Alice Y W Chang
- Institute of Physiology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China;
| |
Collapse
|
6
|
López JM, Lozano D, Morona R, González A. Organization of the nitrergic neuronal system in the primitive bony fishes Polypterus senegalus and Erpetoichthys calabaricus (Actinopterygii: Cladistia). J Comp Neurol 2015; 524:1770-804. [PMID: 26517971 DOI: 10.1002/cne.23922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/22/2023]
Abstract
Cladistians are a group of basal actinopterygian fishes that constitute a good model for studying primitive brain features, most likely present in the ancestral bony fishes. The analysis of the nitrergic neurons (with the enzyme nitric oxide synthase; NOS) has helped in understanding important aspects of brain organization in all vertebrates studied. We investigated the nitrergic system of two cladistian species by means of specific antibodies against NOS and NADPH-diaphorase (NADPH-d) histochemistry, which, with the exception of the primary olfactory and terminal nerve fibers, labeled only for NADPH-d, yielded identical results. Double immunohistochemistry was conducted for simultaneous detection of NOS with tyrosine hydroxylase, choline acetyltransferase, calbindin, calretinin, and serotonin, to establish accurately the localization of the nitrergic neurons and fibers and to assess possible interactions between these neuroactive substances. The pattern of distribution in both species showed only subtle differences in the density of labeled cells. Distinct groups of NOS-immunoreactive cells were observed in pallial and subpallial areas, paraventricular region, tuberal and retromammillary hypothalamic areas, posterior tubercle, prethalamic and thalamic areas, optic tectum, torus semicircularis, mesencephalic tegmentum, interpeduncular nucleus, superior and middle reticular nuclei, magnocellular vestibular nucleus, solitary tract nucleus, nucleus medianus magnocellularis, the spinal cord and amacrine cells in the retina. Large neurons in cranial nerve sensory ganglia were also labeled. The comparison of these results with those from other vertebrates, using a neuromeric analysis, reveals a conserved pattern of organization of the nitrergic system from this primitive fish group to amniotes, including mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| |
Collapse
|
7
|
Abstract
Morphine has been widely used for the treatment of acute, chronic, and cancer pain and is considered the strongest analgesic in clinical care. Conversely, morphine-induced analgesia may be accompanied by several side effects. Animal studies have demonstrated that low doses of morphine administered intrathecally can produce reliable analgesia for thermal, mechanical, and chemical nociceptive stimulation. On the other hand, high doses of morphine administered intrathecally may induce spontaneous nociceptive responses such as scratching, biting, and licking in mice as well as agitation and vocalization in rats. In addition, similar nociceptive responses including hyperalgesia, allodynia, and myoclonus have been observed in humans following intrathecal or systemic administration of high-dose morphine. It has been suggested that the spontaneous nociceptive behaviors evoked by high-dose morphine may be mediated by a non-opioid mechanism that is not yet fully understood. This review describes the mechanisms of spontaneous nociceptive behaviors evoked by high-dose morphine focusing on the neurotransmitters/neuromodulators released from primary afferent fibers.
Collapse
Affiliation(s)
- Chizuko Watanabe
- Department of Physiology and Anatomy, Tohoku Pharmaceutical University
| |
Collapse
|
8
|
Mahmoud MA, Fahmy GH, Moftah MZ, Sabry I. Distribution of nitric oxide-producing cells along spinal cord in urodeles. Front Cell Neurosci 2014; 8:299. [PMID: 25309330 PMCID: PMC4174862 DOI: 10.3389/fncel.2014.00299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 09/05/2014] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide is a unique neurotransmitter, which participates in many physiological and pathological processes in the organism. There are little data about the neuronal nitric oxide synthase immunoreactivity in the spinal cord of amphibians. In this respect, the present study aims to investigate the distribution of nitric oxide producing cells in the spinal cord of urodele and to find out the possibility of a functional locomotory role to this neurotransmitter. The results of the present study demonstrate a specific pattern of NADPH-d labeling in the selected amphibian model throughout the spinal cord length as NADPH-d-producing cells and fibers were present in almost all segments of the spinal cord of the salamander investigated. However, their number, cytological characteristics and labeling intensity varied significantly. It was noticed that the NO-producing cells (NO-PC) were accumulated in the ventral side of certain segments in the spinal cord corresponding to the brachial and sacral plexuses. In addition, the number of NO-PC was found to be increased also at the beginning of the tail and this could be due to the fact that salamanders are tetrapods having bimodal locomotion, namely swimming and walking.
Collapse
Affiliation(s)
- Mayada A Mahmoud
- Faculty of Medicine, Institut de Neurosciences des Systèmes, Unités Mixtes de Recherche Institut National de la Santé et de la Recherche Médicale 1106, Aix-Marseille University Marseille, France
| | - Gehan H Fahmy
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Marie Z Moftah
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| | - Ismail Sabry
- Zoology Department, Faculty of Science, Alexandria University Alexandria, Egypt
| |
Collapse
|
9
|
Hinova-Palova DV, Edelstein L, Landzhov B, Minkov M, Malinova L, Hristov S, Denaro FJ, Alexandrov A, Kiriakova T, Brainova I, Paloff A, Ovtscharoff W. Topographical distribution and morphology of NADPH-diaphorase-stained neurons in the human claustrum. Front Syst Neurosci 2014; 8:96. [PMID: 24904317 PMCID: PMC4034338 DOI: 10.3389/fnsys.2014.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022] Open
Abstract
We studied the topographical distribution and morphological characteristics of NADPH-diaphorase-positive neurons and fibers in the human claustrum. These neurons were seen to be heterogeneously distributed throughout the claustrum. Taking into account the size and shape of stained perikarya as well as dendritic and axonal characteristics, Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPHd)-positive neurons were categorized by diameter into three types: large, medium and small. Large neurons ranged from 25 to 35 μm in diameter and typically displayed elliptical or multipolar cell bodies. Medium neurons ranged from 20 to 25 μm in diameter and displayed multipolar, bipolar and irregular cell bodies. Small neurons ranged from 14 to 20 μm in diameter and most often displayed oval or elliptical cell bodies. Based on dendritic characteristics, these neurons were divided into spiny and aspiny subtypes. Our findings reveal two populations of NADPHd-positive neurons in the human claustrum-one comprised of large and medium cells consistent with a projection neuron phenotype, the other represented by small cells resembling the interneuron phenotype as defined by previous Golgi impregnation studies.
Collapse
Affiliation(s)
- Dimka V Hinova-Palova
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | | | - Boycho Landzhov
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | - Minko Minkov
- Department of Anatomy and Histology, Medical University Varna, Bulgaria
| | - Lina Malinova
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | - Stanislav Hristov
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Frank J Denaro
- Department of Biology, Morgan State University Baltimore, MD, USA
| | - Alexandar Alexandrov
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Teodora Kiriakova
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Ilina Brainova
- Department of Forensic Medicine and Deontology, Medical University Sofia, Bulgaria
| | - Adrian Paloff
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| | - Wladimir Ovtscharoff
- Department of Anatomy, Histology, and Embryology, Medical University Sofia, Bulgaria
| |
Collapse
|
10
|
Spinal neuronal NOS activation mediates intrathecal fentanyl preconditioning induced remote cardioprotection in rats. Int Immunopharmacol 2014; 19:127-31. [PMID: 24462544 DOI: 10.1016/j.intimp.2014.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/02/2014] [Accepted: 01/13/2014] [Indexed: 11/22/2022]
Abstract
Fentanyl has been widely used in anesthesia and analgesia, especially for cardiovascular surgeries. The aim of the study was to evaluate whether remote intrathecal fentanyl preconditioning (RFPC) provides cardioprotection and the role of spinal nitric oxide synthase (NOS) system in this effect. Fentanyl (0.3μg/kg) was administered intrathecally during RFPC by 3 cycles of 5-minute infusions interspersed with 5-minute infusion free periods. A non-specific nitric oxide synthase (NOS) inhibitor NG-nitro l-arginine methyl ester (l-NAME, 30nmol) and a selective nNOS inhibitor 7-nitroindazole (7-NI, 100nmol) were administered intrathecally 10min before RFPC, and were used to evaluate the involvement of the NOS system of the spinal cord. RFPC group markedly reduced the infarct size compared with control. However, the cardioprotection of RFPC could be abolished by pretreatment with l-NAME and 7-NI. RFPC merely increased the expression of nNOS and did not affect iNOS and eNOS expression. l-NAME reversed nNOS expression up-regulation induced by RFPC treatment. The present study demonstrated that RFPC effectively induced cardioprotection through activating the nNOS in the spinal cord.
Collapse
|
11
|
Bombardi C, Grandis A, Gardini A, Cozzi B. Nitrergic Neurons in the Spinal Cord of the Bottlenose Dolphin (Tursiops truncatus). Anat Rec (Hoboken) 2013; 296:1603-14. [DOI: 10.1002/ar.22766] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Science; University of Bologna; Via Tolara di Sopra, 50 40064 Ozzano dell'Emilia (BO) Italy
| | - Annamaria Grandis
- Department of Veterinary Medical Science; University of Bologna; Via Tolara di Sopra, 50 40064 Ozzano dell'Emilia (BO) Italy
| | - Anna Gardini
- Department of Veterinary Medical Science; University of Bologna; Via Tolara di Sopra, 50 40064 Ozzano dell'Emilia (BO) Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science; University of Padova; Viale dell'Università 16 35020 Legnaro (PD) Italy
| |
Collapse
|
12
|
Olson KR, Donald JA, Dombkowski RA, Perry SF. Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respir Physiol Neurobiol 2012; 184:117-29. [DOI: 10.1016/j.resp.2012.04.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 12/13/2022]
|
13
|
Jin Y, Kim J, Kwak J. Activation of the cGMP/Protein Kinase G Pathway by Nitric Oxide Can Decrease TRPV1 Activity in Cultured Rat Dorsal Root Ganglion Neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2012; 16:211-7. [PMID: 22802704 PMCID: PMC3394925 DOI: 10.4196/kjpp.2012.16.3.211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 11/25/2022]
Abstract
Recent studies have demonstrated that nitric oxide (NO) activates transient receptor potential vanilloid subtype 1 (TRPV1) via S-nitrosylation of the channel protein. NO also modulates various cellular functions via activation of the soluble guanylyl cyclase (sGC)/protein kinase G (PKG) pathway and the direct modification of proteins. Thus, in the present study, we investigated whether NO could indirectly modulate the activity of TRPV1 via a cGMP/PKG-dependent pathway in cultured rat dorsal root ganglion (DRG) neurons. NO donors, sodium nitroprusside (SNP) and S-nitro-N-acetylpenicillamine (SNAP), decreased capsaicin-evoked currents (Icap). NO scavengers, hemoglobin and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO), prevented the inhibitory effect of SNP on Icap. Membrane-permeable cGMP analogs, 8-bromoguanosine 3', 5'-cyclic monophosphate (8bromo-cGMP) and 8-(4chlorophenylthio)-guanosine 3',5'-cyclic monophosphate (8-pCPT-cGMP), and the guanylyl cyclase stimulator YC-1 mimicked the effect of SNP on Icap. The PKG inhibitor KT5823 prevented the inhibition of Icap by SNP. These results suggest that NO can downregulate the function of TRPV1 through activation of the cGMP/PKG pathway in peripheral sensory neurons.
Collapse
Affiliation(s)
- Yunju Jin
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | |
Collapse
|
14
|
Sardella T, Polgár E, Watanabe M, Todd A. A quantitative study of neuronal nitric oxide synthase expression in laminae I-III of the rat spinal dorsal horn. Neuroscience 2011; 192:708-20. [PMID: 21763759 PMCID: PMC3183229 DOI: 10.1016/j.neuroscience.2011.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 02/02/2023]
Abstract
Nitric oxide produced by neuronal nitric oxide synthase (nNOS) in the spinal cord is required for development of hyperalgesia in inflammatory and neuropathic pain states. nNOS is expressed by some dorsal horn neurons, and an early study that used a histochemical method to identify these cells suggested that they were mainly inhibitory interneurons. We have carried out a quantitative analysis of nNOS-immunoreactivity in laminae I-III of the rat dorsal horn, to determine the proportion of inhibitory and excitatory neurons and axonal boutons that express the protein. nNOS was present in ∼5% of neurons in laminae I and III, and 18% of those in lamina II. Although most cells with strong nNOS immunostaining were GABA-immunoreactive, two-thirds of the nNOS-positive cells in lamina II and half of those in lamina III were not GABAergic, and some of these expressed protein kinase Cγ (PKCγ). We estimate that nNOS is present in 17-19% of the inhibitory interneurons in laminae I-II, and 6% of those in lamina III. However, our results suggest that nNOS is also expressed at a relatively low level by a significant proportion (∼17%) of excitatory interneurons in lamina II. nNOS was seldom seen in boutons that contained vesicular glutamate transporter 2, which is expressed by excitatory interneurons, but was co-localised with the vesicular GABA transporter (VGAT, a marker for GABAergic and glycinergic axons). nNOS was detected in 13% of VGAT boutons in lamina I and in 7-8% of those in laminae II-III. However, it was only found in 2-4% of the VGAT boutons that were presynaptic to PKCγ-expressing interneurons in this region. These results indicate that nNOS is more widely expressed than previously thought, being present in both inhibitory and excitatory neurons. They provide further evidence that axons of neurochemically defined populations of inhibitory interneuron are selective in their post-synaptic targets.
Collapse
Affiliation(s)
- T.C.P. Sardella
- Institute of Neuroscience and Psychology, West Medical Building, University Avenue, University of Glasgow, Glasgow, G12 8QQ, UK
| | - E. Polgár
- Institute of Neuroscience and Psychology, West Medical Building, University Avenue, University of Glasgow, Glasgow, G12 8QQ, UK
| | - M. Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - A.J. Todd
- Institute of Neuroscience and Psychology, West Medical Building, University Avenue, University of Glasgow, Glasgow, G12 8QQ, UK
- Corresponding author. Tel: +44-141-330-5868; fax: +44-141-330-2868
| |
Collapse
|
15
|
Young CN, Fisher JP, Gallagher KM, Whaley-Connell A, Chaudhary K, Victor RG, Thomas GD, Fadel PJ. Inhibition of nitric oxide synthase evokes central sympatho-excitation in healthy humans. J Physiol 2009; 587:4977-86. [PMID: 19723781 DOI: 10.1113/jphysiol.2009.177204] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Animal studies have indicated that nitric oxide is a key signalling molecule involved in the tonic restraint of central sympathetic outflow from the brainstem. Extension of these findings to humans has been difficult because systemic infusion of nitric oxide synthase (NOS) inhibitors increases blood pressure due to inhibition of endothelial NOS, resulting in activation of the arterial baroreflex and subsequent inhibition of central sympathetic outflow. To overcome this confounding inhibitory influence of the baroreflex, in the current study we directly measured skin sympathetic nerve activity (SNA), which is not under baroreceptor control. Healthy, normotensive humans were studied before, during a 60 min intravenous infusion of the NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 4 mg kg(1)), and for 120 min following the infusion (i.e. 180 min total). Skin SNA and arterial blood pressure (BP) were continuously measured. BP was increased from baseline at the end of the l-NAME infusion (14 +/- 2 mmHg; P < 0.05) and remained significantly elevated for the remainder of the experiment (18 +/- 3 mmHg; P < 0.05). Similarly, systemic NOS inhibition produced time-dependent increases in skin SNA, such that skin SNA was elevated at the end of the l-NAME infusion (total activity, 200 +/- 22% baseline; P = 0.08) and was further increased at the end of the study protocol (total activity, 350 +/- 41% baseline; P < 0.05). Importantly, skin SNA remained unchanged during time and hypertensive (phenylephrine) control experiments. These findings indicate that pharmacological inhibition of NOS causes sympathetic activation and support a role of nitric oxide in central sympathetic control in humans.
Collapse
Affiliation(s)
- Colin N Young
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Akbari Z, Rohani MH, Behzadi G. NADPH-d/NOS reactivity in the lumbar dorsal horn of congenitally hypothyroid pups before and after formalin pain induction. Int J Dev Neurosci 2009; 27:779-87. [PMID: 19720128 DOI: 10.1016/j.ijdevneu.2009.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Revised: 06/22/2009] [Accepted: 08/24/2009] [Indexed: 11/16/2022] Open
Abstract
We have previously demonstrated that congenitally hypothyroid rat pups exhibit altered behavioral response to formalin pain induction during postnatal period. In the present study, using NADPH-diaphorase histochemistry and NOS immunostaining, we investigated the effect of congenital hypothyroidism on the NOS expression in spinal cord of intact neonates at postnatal days of 15 and 21. We also examined the effect of thyroid dysfunction on the NADPH-d/NOS expression in response to formalin nociception. Congenital hypothyroidism induced by propylthiouracil (PTU) treatment started from gestational day 16 and continued to postnatal day 15 or 21. Congenitally hypothyroid pups exhibited marked reduction in NADPH-d reactive cells (84% and 66% in P15 and P21, respectively; P<0.001) and NOS-ir cells (52% and 91% in P15 and P21, respectively; P<0.001) in superficial lumbar dorsal horn laminae (I-II) as compared to that of normal pups. Moreover, in congenitally hypothyroid pups the NADPH-d/NOS expression following hindpaw formalin injection did not change significantly. Our results demonstrate that congenital hypothyroidism affect developmental expression of NOS in spinal dorsal horn, which may in part explain the altered behavioral pain response as we previously reported in hypothyroid pups.
Collapse
Affiliation(s)
- Zahra Akbari
- Neuroscience Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
17
|
Hinrichs JM, Llewellyn-Smith IJ. Variability in the occurrence of nitric oxide synthase immunoreactivity in different populations of rat sympathetic preganglionic neurons. J Comp Neurol 2009; 514:492-506. [DOI: 10.1002/cne.22015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Teleantagonism: A pharmacodynamic property of the primary nociceptive neuron. Proc Natl Acad Sci U S A 2008; 105:19038-43. [PMID: 18799742 DOI: 10.1073/pnas.0807922105] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous work from our group showed that intrathecal (i.t.) administration of substances such as glutamate, NMDA, or PGE(2) induced sensitization of the primary nociceptive neuron (PNN hypernociception) that was inhibited by a distal intraplantar (i.pl.) injection of either morphine or dipyrone. This pharmacodynamic phenomenon is referred to in the present work as "teleantagonism". We previously observed that the antinociceptive effect of i.t. morphine could be blocked by injecting inhibitors of the NO signaling pathway in the paw (i.pl.), and this effect was used to explain the mechanism of opioid-induced peripheral analgesia by i.t. administration. The objective of the present investigation was to determine whether this teleantagonism phenomenon was specific to this biochemical pathway (NO) or was a general property of the PNNs. Teleantagonism was investigated by administering test substances to the two ends of the PNN (i.e., to distal and proximal terminals; i.pl. plus i.t. or i.t. plus i.pl. injections). We found teleantagonism when: (i) inhibitors of the NO signaling pathway were injected distally during the antinociception induced by opioid agonists; (ii) a nonselective COX inhibitor was tested against PNN sensitization by IL-1beta; (iii) selective opioid-receptor antagonists tested against antinociception induced by corresponding selective agonists. Although the dorsal root ganglion seems to be an important site for drug interactions, the teleantagonism phenomenon suggests that, in PNNs, a local sensitization spreads to the entire cell and constitutes an intriguing and not yet completely understood pharmacodynamic property of this group of neurons.
Collapse
|
19
|
Morita K, Kitayama T, Morioka N, Dohi T. Glycinergic mediation of tactile allodynia induced by platelet-activating factor (PAF) through glutamate-NO-cyclic GMP signalling in spinal cord in mice. Pain 2008; 138:525-536. [PMID: 18353555 DOI: 10.1016/j.pain.2008.01.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 01/24/2008] [Accepted: 01/25/2008] [Indexed: 01/21/2023]
Abstract
Our previous study showed that intrathecal (i.t.) injection of platelet-activating factor (PAF) induced tactile allodynia, suggesting that spinal PAF is a mediator of neuropathic pain. The present study further examined the spinal molecules participating in PAF-induced tactile allodynia in mice. I.t. injection of L-arginine, NO donor (5-amino-3-morpholinyl-1,2,3-oxadiazolium (SIN-1) or 3,3-bis(aminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC-18)) or cGMP analog (8-(4-chlorophenylthio)-guanosine 3',5'-cyclic monophosphate; pCPT-cGMP) induced tactile allodynia. PAF- and glutamate- but not SIN-1- or pCPT-cGMP-induced tactile allodynia was blocked by an NO synthase inhibitor. NO scavengers and guanylate cyclase inhibitors protected mice against the induction of allodynia by PAF, glutamate and SIN-1, but not by pCPT-cGMP. cGMP-dependent protein kinase (PKG) inhibitors blocked the allodynia induced by PAF, glutamate, SIN-1 and pCPT-cGMP. To identify signalling molecules through which PKG induces allodynia, glycine receptor alpha3 (GlyR alpha3) was knocked down by spinal transfection of siRNA for GlyR alpha3. A significant reduction of GlyR alpha3 expression in the spinal superficial layers of mice treated with GlyR alpha3 siRNA was confirmed by immunohistochemical and Western blotting analyses. Functional targeting of GlyR alpha3 was suggested by the loss of PGE(2)-induced thermal hyperalgesia and the enhancement of allodynia induced by bicuculline, a GABA(A) receptor antagonist in mice after GlyR alpha3 siRNA treatment. pCPT-cGMP, PAF, glutamate and SIN-1 all failed to induce allodynia after the knockdown of GlyR alpha3. These results suggest that the glutamate-NO-cGMP-PKG pathway in the spinal cord may be involved in the mechanism of PAF-induced tactile allodynia, and GlyR alpha3 could be a target molecule through which PKG induces allodynia.
Collapse
Affiliation(s)
- Katsuya Morita
- Department of Dental Pharmacology, Division of Integrated Medical Science, Hiroshima University Graduate School of Biomedical Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | |
Collapse
|
20
|
Ding JD, Weinberg RJ. Localization of soluble guanylyl cyclase in the superficial dorsal horn. J Comp Neurol 2006; 495:668-78. [PMID: 16506200 PMCID: PMC2597089 DOI: 10.1002/cne.20901] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) has been implicated in pain processing at the spinal level, but the mechanisms mediating its effects remain unclear. In the present work, we studied the organization of the major downstream effector of NO, soluble guanylyl cyclase (sGC), in the superficial dorsal horn of rat. Almost all neurokinin 1 (NK1) receptor-positive neurons in lamina I (a major source of ascending projections) were strongly immunopositive for sGC. Many local circuit neurons in laminae I-II also stained for sGC, but less intensely. Numerous fibers, presumably of unmyelinated primary afferent (C fiber) origin, stained for calcitonin gene-related peptide or isolectin B4, but none of these was immunopositive for sGC. These data, along with immunoelectron microscopy results, imply that unmyelinated primary afferent fibers terminating in the superficial dorsal horn lack sGC. Double labeling showed that neuronal nitric oxide synthase (nNOS) seldom colocalized with sGC, but nNOS-positive structures were frequently closely apposed to sGC-positive structures, suggesting that in the superficial dorsal horn NO acts mainly in a paracrine manner. Our data suggest that the NK1 receptor-positive projection neurons in lamina I are a major target of NO released in superficial dorsal horn. NO may also influence local circuit neurons, but it does not act on unmyelinated primary afferent terminals via sGC.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard J. Weinberg
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence to: Richard J. Weinberg, Department of Cell and Developmental Biology, University of North Carolina, CB7090, Chapel Hill, NC 27599; Phone: (919) 966−1277; Fax: (919) 966−1856; E-mail:
| |
Collapse
|
21
|
Kamei J, Tamura N, Saitoh A. Possible involvement of the spinal nitric oxide/cGMP pathway in vincristine-induced painful neuropathy in mice. Pain 2006; 117:112-20. [PMID: 16098672 DOI: 10.1016/j.pain.2005.05.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 05/09/2005] [Accepted: 05/27/2005] [Indexed: 11/21/2022]
Abstract
The mechanisms that underlie the development of vincristine-induced painful neuropathy are poorly understood. The nitric oxide (NO)-cGMP pathway has been reported to be involved in the spinal transmission of nociceptive information. In the present study, we examined whether alterations in spinal nociceptive processing via the NO-cGMP pathway contribute to vincristine-induced painful neuropathy in mice. Mice were intraperitoneally treated with vincristine at a dose of 0.05 mg/kg 1 day after the measurement of pre-drug latency in the tail-flick test, and then treated with a dose of 0.125 mg/kg twice a week for 6 weeks. In vincristine-treated mice, a significant decrease in tail-flick latencies developed at 4 weeks after treatment. Pretreatment with L-arginine (30-300 mg/kg, s.c.), a substrate of NO synthase (NOS), dose-dependently increased the tail-flick latencies in vincristine-treated mice. The L-arginine-induced increase in tail-flick latencies in vincristine-treated mice was completely reversed by i.t. pretreatment with NG-nitro-L-arginine methyl ester (L-NAME, 3-30 nmol), a NOS inhibitor. Furthermore, i.t. pretreatment with 8-bromoguanosine 3', 5'-cyclic monophosphate (8-Br-cGMP, 0.3-3.0 nmol), a membrane-permeable cGMP analog, dose-dependently increased the tail-flick latencies in vincristine-treated mice. The contents of NO metabolites, cGMP and protein levels of neuronal NOS in the spinal cord in vincristine-treated mice were significantly reduced compared to those in vehicle-treated naive mice. These results indicate that dysfunction of the L-arginine/NO/cGMP cascade in the spinal cord may trigger vincristine-induced thermal hyperalgesia in mice.
Collapse
Affiliation(s)
- Junzo Kamei
- Department of Pathophysiology and Therapeutics, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 4-41, Ebara 2-chome, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | |
Collapse
|
22
|
Keast JR. Plasticity of pelvic autonomic ganglia and urogenital innervation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:141-208. [PMID: 16487791 DOI: 10.1016/s0074-7696(06)48003-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pelvic ganglia contain a mixture of sympathetic and parasympathetic neurons and provide most of the motor innervation of the urogenital organs. They show a remarkable sensitivity to androgens and estrogens, which impacts on their development into sexually dimorphic structures and provide an array of mechanisms by which plasticity of these neurons can occur during puberty and adulthood. The structure of pelvic ganglia varies widely among species, ranging from rodents, which have a pair of large ganglia, to humans, in whom pelvic ganglion neurons are distributed in a large, complex plexus. This plexus is frequently injured during pelvic surgical procedures, yet strategies for its repair have yet to be developed. Advances in this area will come from a better understanding of the effects of injury on the cellular signaling process in pelvic neurons and also the role of neurotrophic factors during development, maintenance, and repair of these axons.
Collapse
Affiliation(s)
- Janet R Keast
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
23
|
Chung YH, Kim D, Lee KJ, Kim SS, Kim KY, Cho DY, Sohn DS, Lee WB. Immunohistochemical study on the distribution of neuronal nitric oxide synthase-immunoreactive neurons in the spinal cord of aged rat. J Mol Histol 2005; 36:325-9. [PMID: 16240168 DOI: 10.1007/s10735-005-9001-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Despite in vivo studies suggesting an important function for nitric oxide (NO) in the spinal cord in the transmission of pain signals, sympathetic nerve activity and presumably other spinal functions, changes of neuronal NO synthase (nNOS)-containing neurons with aging in the spinal cord has not been investigated. In the present study, we demonstrated for the first time that the number of nNOS-immunoreactive neurons was significantly decreased in the central autonomic nucleus and the superficial dorsal horn of spinal cord in aged rats. Morphologically, the number and length of dendritic branches also seemed to be decreased. Combined with our previous studies, age-related decreases in the number of nNOS-immunoreactive neurons in the central autonomic nucleus and the superficial dorsal horn might be associated with the abnormality of micturition function or pain perception encountered in the elderly. However, the mechanisms underlying the decreased immunoreactivity for nNOS, and the functional implications require elucidation.
Collapse
Affiliation(s)
- Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Dongjak-Gu, Seoul, 156-756, Korea,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Clemens S, Sawchuk MA, Hochman S. Reversal of the circadian expression of tyrosine-hydroxylase but not nitric oxide synthase levels in the spinal cord of dopamine D3 receptor knockout mice. Neuroscience 2005; 133:353-7. [PMID: 15878801 PMCID: PMC2705059 DOI: 10.1016/j.neuroscience.2005.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/04/2005] [Accepted: 03/08/2005] [Indexed: 11/26/2022]
Abstract
Circadian rhythms have been described for numerous transmitter synthesizing enzymes in the brain but rarely in spinal cord. We measured spinal tyrosine-hydroxylase (TH) and nitric oxide synthase (NOS) levels in the thoracic intermediolateral nucleus, the location of sympathetic preganglionic neurons, in male wild type (WT) and dopamine D(3) receptor knockout mice (D(3)KO). TH and NOS levels both displayed circadian patterns in WT and D(3)KO animals with overall reduced TH and increased NOS expression in the D(3)KO mice. The circadian pattern of NOS expression was similar in WT and D(3)KO mice. In contrast, TH expression was inverted in D(3)KO mice, with TH levels consistently lower than in WT throughout the day, but strongly increased temporarily 1 h prior to daylight. TH is the rate-limiting enzyme for the production of dopamine. Spinal dopamine dysfunction is implicated in a sleep disorder called restless legs syndrome (RLS). RLS follows a circadian rhythm and is relieved clinically by dopamine D(3) receptor agonists. Our observations of an altered circadian pattern in spinal dopamine synthesis in D(3)KO animals may provide insight into putative dopaminergic mechanisms contributing to RLS.
Collapse
Affiliation(s)
| | | | - S. Hochman
- Corresponding author. Tel: +1-404-727-3418; fax: +1-404-727-2648. E-mail address: (S. Hochman)
| |
Collapse
|
25
|
McNeill B, Perry SF. Nitric oxide and the control of catecholamine secretion in rainbow trout Oncorhynchus mykiss. ACTA ACUST UNITED AC 2005; 208:2421-31. [PMID: 15939781 DOI: 10.1242/jeb.01636] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An in situ saline-perfused posterior cardinal vein preparation was used to assess the role of nitric oxide (NO) in the regulation of basal and stimulus-evoked catecholamine secretion from rainbow trout Oncorhynchus mykiss chromaffin cells. Addition of the NO donor, sodium nitroprusside (SNP) to the inflowing perfusate abolished catecholamine secretion during electrical field stimulation, thereby establishing the potential for NO to act as a potent inhibitor of catecholamine release. A possible role for endogenously produced NO was established by demonstrating that stimulus-evoked (depolarizing levels of KCl or electrical field stimulation) catecholamine secretion was markedly stimulated in the presence of the nitric oxide synthase (NOS) inhibitors l-NAME and 7-NI. Although in vitro experiments demonstrated that catecholamine degradation was enhanced by NO in a dose-dependent manner, the dominant factor contributing to the reduction in catecholamine appearance in the perfusate was specific inhibition of catecholamine secretion. Subsequent experiments were performed to identify the NOS isoform(s) contributing to the inhibition of stimulus-evoked catecholamine secretion. Inducible NOS (iNOS; an enzyme that can be activated in the absence of Ca2+), although present in the vicinity of the chromaffin cells (based on mRNA measurements), does not appear to play a role because stimulus-evoked NO production was eliminated during perfusion with Ca2+-free saline. The potential involvement of endothelial NOS (eNOS) was revealed by showing that hypoxic perfusate evoked NO production and corresponded with an inhibition of stimulus-evoked catecholamine secretion; chemical removal of the endothelium (using saponin) prevented the production of NO during hypoxia. However, because removal of the endothelium did not affect NO production during electrical field stimulation, it would appear that the neuronal form of NOS (nNOS) is the key isoform modulating catecholamine secretion from trout chromaffin cells.
Collapse
Affiliation(s)
- B McNeill
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | | |
Collapse
|
26
|
Stornetta RL, Rosin DL, Simmons JR, McQuiston TJ, Vujovic N, Weston MC, Guyenet PG. Coexpression of vesicular glutamate transporter-3 and γ-aminobutyric acidergic markers in rat rostral medullary raphe and intermediolateral cell column. J Comp Neurol 2005; 492:477-94. [PMID: 16228993 DOI: 10.1002/cne.20742] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Markers of serotonergic, gamma-aminobutyric acid (GABA)-ergic (glutamic acid decarboxylase, 67 kDa isoform; GAD-67), and glutamatergic transmission (vesicular glutamate transporter 3; VGLUT3) have been detected in presumed sympathetic premotor neurons of the medullary raphe, a region that controls sympathetic tone to brown fat, skin blood vessels, and heart. In this study, the degree of coexpression of these markers was examined in raphe neurons by simultaneous histological detection of tryptophan hydroxylase (TrpOH) immunoreactivity with GAD-67 mRNA and VGLUT3 mRNA. Over half (52%) of the VGLUT3 mRNA-positive neurons expressed one or both of the other markers. The proportion of VGLUT3 neurons containing at least one of the other two markers was even higher (89%) for VGLUT3 spinally projecting neurons. VGLUT3 neurons containing markers for both serotonin and GABA were especially numerous (50-72%, depending on rostrocaudal level) within the marginal layer of raphe pallidus and the parapyramidal region. The dual GABAergic and glutamatergic nature of some bulbospinal raphe neurons was suggested by the presence of nerve terminals immunoreactive (ir) for both VGLUT3 and GABA in the intermediolateral cell column (IML) as detected by electron microscopy. VGLUT3-ir terminals formed approximately equal numbers of symmetric and asymmetric synapses onto presumed preganglionic neurons (nitric oxide synthase-ir profiles) or GABA-ir dendrites in IML, and terminals immunoreactive for both VGLUT3 and GABA always formed symmetric synapses. These data suggest that medullary raphe VGLUT3 neurons could inhibit sympathetic outflow and that their spinal targets include both preganglionic neurons and GABAergic interneurons.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Sival DA, van Weerden TW, Vles JSH, Timmer A, den Dunnen WFA, Staal-Schreinemachers AL, Hoving EW, Sollie KM, Kranen-Mastenbroek VJM, Sauer PJJ, Brouwer OF. Neonatal loss of motor function in human spina bifida aperta. Pediatrics 2004; 114:427-34. [PMID: 15286226 DOI: 10.1542/peds.114.2.427] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE In neonates with spina bifida aperta (SBA), leg movements innervated by spinal segments located caudal to the meningomyelocele are transiently present. This study in neonates with SBA aimed to determine whether the presence of leg movements indicates functional integrity of neuronal innervation and whether these leg movements disappear as a result of dysfunction of upper motor neurons (axons originating cranial to the meningomyelocele) and/or of lower motor neurons (located caudal to the meningomyelocele). METHODS Leg movements were investigated in neonates with SBA at postnatal day 1 (n = 18) and day 7 (n = 10). Upper and lower motor neuron dysfunction was assessed by neurologic examination (n = 18; disinhibition or inhibition of reflexes, respectively) and by electromyography (n = 12; absence or presence of denervation potentials, respectively). RESULTS Movements, related to spinal segments caudal to the meningomyelocele, were present in all neonates at postnatal day 1. At day 1, leg movements were associated with signs of both upper (10 of 18) and lower (17 of 18) motor neuron dysfunction caudal to the meningomyelocele. In 7 of 10 neonates restudied after the first postnatal week, leg movements had disappeared. The absence of leg movements coincided with loss of relevant reflexes, which had been present at day 1, indicating progression of lower motor neuron dysfunction. CONCLUSIONS We conclude that the presence of neonatal leg movements does not indicate integrity of functional lower motor neuron innervation by spinal segments caudal to the meningomyelocele. Present observations could explain why fetal surgery at the level of the meningomyelocele does not prevent loss of leg movements.
Collapse
Affiliation(s)
- Deborah A Sival
- Pediatric Neurology, Department of Pediatrics, University Hospital Groningen, PO Box 30.001, 9713 GZ Groningen, Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Watanabe C, Okuda K, Sakurada C, Ando R, Sakurada T, Sakurada S. Evidence that nitric oxide-glutamate cascade modulates spinal antinociceptive effect of morphine: a behavioural and microdialysis study in rats. Brain Res 2004; 990:77-86. [PMID: 14568332 DOI: 10.1016/s0006-8993(03)03440-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We evaluated the ability of spinally administered nitric oxide (NO) synthase inhibitor to modulate antinociceptive action of intrathecal (i.t.) morphine in rats by measuring the early and late phases of flinching and licking/biting in the formalin test. To determine the contribution of spinal NO and glutamate, we measured the release of NO metabolites (nitrite/nitrate) and glutamate from the spinal cord in rats, using a microdialysis probe placed in the lumbar space. The i.t. administration of NG-nitro L-arginine methyl ester (L-NAME) produced a dose-dependent reduction in the number of flinches during the late phase, whereas there were no significant alterations in the late phase licking/biting, and early phase flinching and licking/biting. Spinal administration of morphine at low doses produced a significant antinociceptive activity in the early and late phases of the flinching behaviour, whereas higher doses of morphine were required to obtain a significant effect in the licking/biting behaviour during both phases. Combination of L-NAME with morphine resulted in an enhanced reduction in the early and late phase flinching. Enhanced antinociceptive activity was observed in the late phase licking/biting by i.t. combined administration of L-NAME (400 nmol) and morphine (1.25 nmol). In the present study, we have confirmed our prior results that injection of formalin (5.0%) into the plantar surface of the paw evoked a biphasic spinal release of nitrite/nitrate and a transient release of glutamate. Formalin-evoked release of nitrite/nitrate and glutamate was also reduced markedly by i.t. combined administration of L-NAME and morphine. These behavioural and biochemical results suggest that i.t. administered L-NAME may enhance morphine-induced antinociception through an increased inhibition of nitrite/nitrate and glutamate releases evoked by formalin injection at the spinal cord level.
Collapse
Affiliation(s)
- Chizuko Watanabe
- Center for Laboratory Animal Science, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Xu M, Ng YK, Wong PTH. Visualization and distribution of neuronal nitric oxide synthase-containing neurons. Methods Enzymol 2003; 359:424-32. [PMID: 12481592 DOI: 10.1016/s0076-6879(02)59204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Mei Xu
- Department of Biology, Georgia State University, Atlanta, Georgia 30302, USA
| | | | | |
Collapse
|
30
|
García MDC, Celuch SM. Participation of nitric oxide and N-methyl-D-aspartic acid receptors in the pressor response to intrathecal injected noradrenaline at the spinal cord of the rat. Neurosci Lett 2002; 329:125-8. [PMID: 12165393 DOI: 10.1016/s0304-3940(02)00612-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In pentobarbital-anesthetized rats, intrathecal injection of noradrenaline (NA; 6, 18 and 60 nmol) induced a dose-dependent increase in the mean blood pressure. The pressor response to NA (18 nmol) was blocked by pretreatment with the selective antagonist for N-methyl-D-aspartic acid (NMDA) receptors, 2-amino-5-phosphonovaleric acid (30 nmol), but not by pretreatment with the selective antagonist for (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate receptors, 6,7-dinitroquinoxaline-2,3-dione (50 nmol). The pressor effect of NA was reduced after pretreatment with N(G)-nitro-L-arginine methyl ester (L-NAME, 1 micromol). The effect of L-NAME on the pressor response to NA was reverted by the precursor of nitric oxide (NO), L-arginine (5 micromol). The hypertension induced by NA was also reduced by the guanylate cyclase inhibitor methylene blue (0.3 micromol). These results suggest that spinal NMDA receptors and spinal NO are involved in the pressor response to NA.
Collapse
Affiliation(s)
- María del Carmen García
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
31
|
Ishikawa M, Sekizuka E, Krischek B, Sure U, Becker R, Bertalanffy H. Role of Nitric Oxide in the Regulation of Spinal Arteriolar Tone. Neurosurgery 2002. [DOI: 10.1227/00006123-200202000-00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Ishikawa M, Sekizuka E, Krischek B, Sure U, Becker R, Bertalanffy H. Role of nitric oxide in the regulation of spinal arteriolar tone. Neurosurgery 2002; 50:371-7; discussion 377-8. [PMID: 11844273 DOI: 10.1097/00006123-200202000-00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The important role played by nitric oxide (NO) in the maintenance of cerebral arterial tone, both in the resting state and after injury, has been demonstrated, but the role of NO in spinal arteries is unknown. The aim of this study was to verify, by topical application of a NO synthase inhibitor in vivo, the hypothesis that NO plays an important role in the maintenance of spinal arteriolar tone. METHODS Closed spinal windows were prepared at the C6 level, for observation of arteriolar reactivity. Male Wistar rats were divided into four groups in the resting state and three groups in the compressed state (which was produced by increasing the intrathecal window pressure). The control group underwent superfusion of artificial cerebrospinal fluid into the spinal window. The nitro-L-arginine-methyl ester (L-NAME) and nitro-D-arginine-methyl ester groups underwent superfusion of the NO synthase inhibitor L-NAME and its inactive enantiomer nitro-d-arginine-methyl ester, respectively. The L-NAME/S-nitroso-acetylpenicillamine (SNAP) group underwent mixed superfusion of L-NAME and the direct NO donor SNAP, for investigation of the effects of an exogenous NO donor. RESULTS In the resting state, the arterioles constricted significantly in the L-NAME group, compared with values before L-NAME superfusion and those for the other groups. In the L-NAME/SNAP group, the arterioles dilated significantly after SNAP superfusion, compared with values before superfusion and those for the other groups. In the compressed state, the arterioles dilated after compression in all three groups but the dilation was significantly attenuated in the L-NAME group, compared with values for the control and nitro-D-arginine-methyl ester groups. CONCLUSION It is suggested that NO plays an important role in the maintenance of spinal arteriolar tone in the resting and compressed states of the spinal cord.
Collapse
Affiliation(s)
- Mami Ishikawa
- Department of Neurosurgery, Philipps University Hospital, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Weiss ML, Chowdhury SI, Patel KP, Kenney MJ, Huang J. Neural circuitry of the kidney: NO-containing neurons. Brain Res 2001; 919:269-82. [PMID: 11701139 DOI: 10.1016/s0006-8993(01)03030-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The neurons synthesizing nitric oxide (NO) that are part of the renal sympathetic pathways were located by double-staining for the neuronal isoform of nitric oxide synthase (nNOS) using immunocytochemistry to identify NO-synthesizing neurons and transneuronal tracing following infection of the left kidney with pseudorabies virus (PRV). Following kidney injection with PRV, the animals survived 4-day post-inoculation prior to sacrifice and tissue processing. PRV-infected neurons that double-stained for nNOS were found in the paraventricular hypothalamic nucleus (PVN), the raphe obscurus nucleus (ROb), the ventromedial medulla (VMM), the rostral ventrolateral medulla (rVLM) and the A5 cell group. In the thoracolumbar spinal cord, nNOS neurons co-localized with PRV-infected cells in the dorsal horn in laminae I, III-V ipsilateral to the injected kidney and in lamina X, the intermediolateral cell column, the lateral funiculus, the intercalated nucleus and the central autonomic area. We conclude that NO synthesizing cells may significantly affect renal autonomic pathways in the rat by interacting with the renal sensory and sympathomotor circuitry at multiple sites.
Collapse
Affiliation(s)
- M L Weiss
- Departments of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5602, USA.
| | | | | | | | | |
Collapse
|
34
|
Varathan V, Shigenaga Y, Takemura M. Nitric oxide synthase/nicotinamide adenine dinucleotide phosphate-diaphorase in the brainstem trigeminal nuclei after transection of the masseteric nerve in rats. J Neurosci Res 2001; 66:428-38. [PMID: 11746360 DOI: 10.1002/jnr.1235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this study, the responses of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) and neuronal nitric oxide synthase (nNOS) activities were quantitatively analyzed at different times in both ipsilateral and contralateral sides of trigeminal nuclei, after unilateral trigeminal muscle nerve transection, in Sprague Dawley rats. In the control animals, both NADPH-d- and nNOS-positive neurons were constitutively distributed in the rostrolateral solitary tract nucleus, dorsomedial part of trigeminal nucleus oralis (Vo/Sn), and superficial layers (VcI/II) of the trigeminal nucleus caudalis (Vc). NADPH-d-positive neurons appeared in the trigeminal mesencephalic nucleus ipsilaterally at 5 days (mean +/- SEM: 30.5 +/- 5.6) and were maintained until 8 weeks (33 +/- 10.6) after the denervation. In the trigeminal motor nucleus, NADPH-d-positive neurons appeared transiently and bilaterally, peaking at 1 week (663.5 +/- 156.2, ipsilateral side; 687.5 +/- 118.6, contralateral side) after unilateral denervation of the masseteric nerve. In both Vo/Sn and Vc, the number of NADPH-d-positive neurons in the control animals showed a decrease at 3 days but significantly increased from 5 days to 1 week and gradually fell to the control values by 8 weeks after the denervation. There were no significant differences observed between the two sides in either Vo/Sn or Vc. nNOS-positive neurons were similarly distributed and the numbers of labeled neurons were similar to those of NADPH-d-positive neurons after the denervation, although the changes were delayed by approximately 1 week. In conclusion, after unilateral nerve transection, the peak NADPH-d activity occurs 1 week prior to nNOS activity.
Collapse
Affiliation(s)
- V Varathan
- Department of Oral Radiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | |
Collapse
|
35
|
Wu J, Fang L, Lin Q, Willis WD. Nitric oxide synthase in spinal cord central sensitization following intradermal injection of capsaicin. Pain 2001; 94:47-58. [PMID: 11576744 DOI: 10.1016/s0304-3959(01)00340-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is believed to be an important messenger molecule in signal transduction pathways that enhance nociceptive transmission in the central nervous system (CNS). The role of nitric oxide synthase (NOS) I and II, which synthesize NO, in central sensitization induced by an intradermal capsaicin injection was investigated. To elucidate whether changes in NOS I and NOS II activities caused by capsaicin injection contribute to behavioral changes, responses to von Frey filaments with two different innocuous bending forces applied on the rat foot were tested. The allodynic responses induced by capsaicin injection in the foot were partially reversed by the administration of either the selective NOS I inhibitor, 7-nitroindazole (7-NINA), or the selective NOS II inhibitor, 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT). To confirm changes at the level of single nociceptive neurons, extracellular recordings were made from rat dorsal horn neurons. The electrophysiological results showed that increased responses to noxious and innocuous stimuli caused by capsaicin injection were blocked by either 7-NINA or AMT delivered through a microdialysis fiber inserted through the dorsal horn. Finally, the expression of both NOS I and NOS II in the spinal cord as demonstrated by Western blots was increased by 20 min following intradermal capsaicin injection in the rat foot. These results suggest that both NOS I and NOS II are upregulated following intradermal capsaicin injection and that both cause NO release that contributes to the secondary hyperalgesia and allodynia following this noxious chemical stimulus.
Collapse
Affiliation(s)
- J Wu
- Department of Anatomy and Neurosciences, Marine Biomedical Institute, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1069, USA
| | | | | | | |
Collapse
|
36
|
Manjarrez E, Rocha T, Rojas-Piloni G, Méndez I, Flores A. Nitric oxide modulates spontaneous cord dorsum potentials in the cat spinal cord. Neurosci Lett 2001; 309:5-8. [PMID: 11489533 DOI: 10.1016/s0304-3940(01)02004-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A previous study has shown that lumbar spontaneous cord dorsum potentials (CDPs) are produced by background activity of a neuronal ensemble located in the dorsal horn. Here, the effects produced by intravenous application of the nitric oxide synthase inhibitor L-N(G)-nitro arginine (L-NOARG, 100 microg/kg) and of the nitric oxide donor 3-morpholinosydnonimine hydrochloride (SIN-1, 500 microg/kg) on spontaneous CDPs were examined. Experiments were performed on pentobarbitally anesthetized, paralyzed and spinalized cats. The amplitude of spontaneous CDPs increased after L-NOARG, however, decreased after SIN-1. These observations suggest that electrical activity of dorsal horn neurones generating spontaneous CDPs is dependent on nitric oxide production.
Collapse
Affiliation(s)
- E Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | | | | |
Collapse
|
37
|
Quinson N, Robbins HL, Clark MJ, Furness JB. Locations and innervation of cell bodies of sympathetic neurons projecting to the gastrointestinal tract in the rat. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2001; 64:281-94. [PMID: 11575424 DOI: 10.1679/aohc.64.281] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The locations of cell bodies of sympathetic neurons projecting to the stomach, the duodenum, the ileum, the colon, the spleen and the pancreas have been studied using retrograde tracing. Projections arose from both pre- and paravertebral ganglia. In the rat, the prevertebral ganglia are the paired coeliac ganglia lying caudo-lateral to the root of the coeliac artery, paired splanchnic ganglia in the abdominal segments of the greater splanchnic nerves, unpaired superior mesenteric and inter-renal ganglia and the inferior mesenteric ganglia. The projections from the prevertebral sympathetic ganglia to the different parts of the gut were organised somatotopically. The most rostral ganglia (splanchnic, coeliac, and superior mesenteric ganglia) contained neurons innervating all regions of the gastrointestinal tract, the pancreas and the spleen. The inter-renal and inferior mesenteric ganglia, located more caudally, contained neurons innervating the distal part of the gut (distal ileum and colon). The innervation of the spleen and the pancreas came from the closest ganglia (sympathetic chains, splanchnic and coeliac ganglia). This organotopic organisation was not found in the sympathetic chain ganglia; the innervation of all organs came predominantly from the lower part of the thoracic chains. A large proportion of the retrogradely labelled nerve cells in the splanchnic ganglia received nitric oxide synthase immunoreactive innervation probably from the spinal cord. In the other prevertebral ganglia, most of the neurons received nitric oxide synthase immunoreactive innervation and/or bombesin immunoreactive innervation. This leads to the conclusion that, in these ganglia, many neurons receive projections from the gastrointestinal tract in addition to the spinal cord.
Collapse
Affiliation(s)
- N Quinson
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | |
Collapse
|
38
|
Abstract
The biochemistry and physiology of L-arginine have to be reconsidered in the light of the recent discovery that the amino acid is the only substrate of all isoforms of nitric oxide synthase (NOS). Generation of nitric oxide, NO, a versatile molecule in signaling processes and unspecific immune defense, is intertwined with synthesis, catabolism and transport of arginine which thus ultimately participates in the regulation of a fine-tuned balance between normal and pathophysiological consequences of NO production. The complex composition of the brain at the cellular level is reflected in a complex differential distribution of the enzymes of arginine metabolism. Argininosuccinate synthetase (ASS) and argininosuccinate lyase which together can recycle the NOS coproduct L-citrulline to L-arginine are expressed constitutively in neurons, but hardly colocalize with each other or with NOS in the same neuron. Therefore, trafficking of citrulline and arginine between neurons necessitates transport capacities in these cells which are fulfilled by well-described carriers for cationic and neutral amino acids. The mechanism of intercellular exchange of argininosuccinate, a prerequisite also for its proposed function as a neuromodulator, remains to be elucidated. In cultured astrocytes transcription and protein expression of arginine transport system y(+) and of ASS are upregulated concomittantly with immunostimulant-mediated induction of NOS-2. In vivo ASS-immunoreactivity was found in microglial cells in a rat model of brain inflammation and in neurons and glial cells in the brains of Alzheimer patients. Any attempt to estimate the contributions of arginine transport and synthesis to substrate supply for NOS has to consider competition for arginine between NOS and arginase, the latter enzyme being expressed as mitochondrial isoform II in nervous tissue. Generation of NOS inhibitors agmatine and methylarginines is documented for the nervous system. Suboptimal supply of NOS with arginine leads to production of detrimental peroxynitrite which may result in neuronal cell death. Data have been gathered recently which point to a particular role of astrocytes in neural arginine metabolism. Arginine appears to be accumulated in astroglial cells and can be released after stimulation with a variety of signals. It is proposed that an intercellular citrulline-NO cycle is operating in brain with astrocytes storing arginine for the benefit of neighbouring cells in need of the amino acid for a proper synthesis of NO.
Collapse
Affiliation(s)
- H Wiesinger
- Physiologisch-Chemisches Institut der Universität, Hoppe-Seyler-Strasse 4, D-72076, Tübingen, Germany.
| |
Collapse
|
39
|
Retrograde carbon monoxide is required for induction of long-term potentiation in rat superior cervical ganglion. J Neurosci 2001. [PMID: 11331380 DOI: 10.1523/jneurosci.21-10-03515.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Carbon monoxide (CO), produced in the body by the enzyme heme oxygenase (HO), has been suggested as a retrograde synaptic messenger with a prominent role in the long-term potentiation (LTP) of certain areas of the brain. LTP of sympathetic ganglia is 5-HT(3) receptor-dependent and has been shown to require nitric oxide for the maintenance, but not for the induction, phase. We investigated the possibility of CO being required for the induction of ganglionic LTP. Pretreatment of rat isolated superior cervical ganglia with oxyhemoglobin (25-100 microm) completely blocked LTP. In the same ganglia, prolonged washout of oxyhemoglobin did not uncover any potentiation of the compound action potential. Oxyhemoglobin had no significant effect on the maintenance phase in ganglia with established LTP. Pretreatment of ganglia with the HO inhibitor zinc protoporphyrin-IX (ZnPP) (10 microm) completely and irreversibly prevented the expression of tetanus-evoked LTP. However, in the same ganglia, after superfusion of CO in the presence of ZnPP, tetanic stimulation readily evoked LTP. No effect was seen on the maintenance phase when ZnPP was superfused on ganglia with established LTP. Pretreatment of ganglia with the 5-HT(3) receptor antagonist ondansetron (0.4 microm) alone completely and irreversibly blocked LTP. However, in the presence of CO, ondansetron did not block LTP. These results suggest that activation of 5-HT(3) receptors may be involved in the production of CO. The results also suggest that CO, probably originating outside the presynaptic nerve terminal, is involved in the induction of LTP.
Collapse
|
40
|
Holmberg K, Steinbusch HM, de Vente J, Hökfelt T. Distribution of cGMP in guinea pig autonomic ganglia after stimulation with sodium nitroprusside. Auton Neurosci 2001; 89:7-15. [PMID: 11474649 DOI: 10.1016/s1566-0702(01)00242-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nitric oxide (NO) is an intercellular messenger molecule in the nervous system and exerts its action in many regions by generating cyclic GMP (cGMP) via soluble guanylyl cyclase. In this study, on the male guinea pig, we have analyzed the localization of cGMP in some autonomic ganglia with immunohistochemistry after stimulation with sodium nitroprusside (SNP) as NO donor, and made correlations with the NO synthesizing enzyme NO synthase (NOS), tyrosine hydroxylase (TH) and some neuropeptides. The putative target neurons for NO were examined in the anterior pelvic ganglia (APGs), as well as some pre- and paravertebral sympathetic ganglia. The results show that cGMP-like immunoreactivity (LI) in the APG was in most cases observed in the TH-positive, NOS-negative neuron population after SNP stimulation, whereas the NOS-expressing cholinergic population mostly lacked detectable cGMP-LI. In the pre- and paravertebral ganglia, SNP stimulation increased cGMP levels to a much lesser extent than in the APGs. cGMP was also observed in blood vessels, in the ganglion capsule, and in some cases. possibly in satellite cells. We propose, as one alternative, that there is a functional, intraganglionic regulatory loop between the parasympathetic and sympathetic divisions of the APG, using the NO/cGMP pathway.
Collapse
Affiliation(s)
- K Holmberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
41
|
Okuda K, Sakurada C, Takahashi M, Yamada T, Sakurada T. Characterization of nociceptive responses and spinal releases of nitric oxide metabolites and glutamate evoked by different concentrations of formalin in rats. Pain 2001; 92:107-15. [PMID: 11323132 DOI: 10.1016/s0304-3959(00)00476-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A comparison was made of spontaneous nociceptive behaviors elicited by subcutaneous injection of formalin (0.5-10.0%) into the plantar or dorsal surface of the right hindpaw in rats. In the present study, we also examined the effect of paw formalin injection on the release of nitric oxide (NO) metabolites (nitrite/nitrate) and glutamate from the spinal cord in anesthetized rats using a dialysis probe placed in the lumbar subarachnoid space. Two distinct quantifiable behaviors indicative of pain were identified by formalin injected into both regions of the paw. There were no significant alterations in the number of flinches during the early and late phases induced by different regions of formalin injection. However, the early phase licking/biting activity evoked by formalin injection into the plantar surface of the paw was significantly higher than that evoked by formalin injected into the dorsal region. The maximum effect in the early and late phases was produced by 5.0% formalin injection into the dorsal and plantar paw. At a higher concentration (10.0%) of formalin, nociceptive behavioral responses were decreased except for the late phase flinching when injected into the dorsal paw. Injections of formalin (5.0%) into both regions of the paw evoked a biphasic spinal release of nitrite/nitrate with a significant increase during the early phase (0-10 min) and the late phase (30-80 or 90 min). A higher concentration of formalin (10.0%) failed to produce a clear-cut release of nitrite/nitrate. A significant increase of glutamate was observed in the 0-10 min samples obtained after injection of formalin (5.0%) into the plantar and dorsal surface of the paw, whereas 0.5 and 10.0% formalin induced no substantial release. These results suggest that 5.0% formalin should be used when studying antinociceptive activity of NO- and N-methyl-D-aspartate-related compounds in the formalin test in rats. Formalin injection into the plantar surface of the paw might prove to be useful for evoking the licking/biting response, particularly in the early phase.
Collapse
Affiliation(s)
- K Okuda
- Fifth Department of Internal Medicine, Fukuoka University, 7-45-1, Nanakuma, Johnan-ku, 814-0180, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
42
|
Abstract
Low intrathecal (i.t.) doses of the nitric oxide (NO)-donor 3-morpholinosydnonimine (SIN-1) (0.1-2.0 microg/10 microl) reduced, while higher doses had no effect (5 or 100 microg/10 microl) or increased (10 and 20 microg/10 microl) the mechanical allodynia induced by chronic ligature of the sciatic nerve in rats. SIN-1 (0.1-100 microg/10 microl; i.t.) produced only antinociceptive effect in the rat tail flick test. The inhibitor of guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (4 microg/10 microl; i.t.), abolished the antinociceptive effects of SIN-1 in both tests and reduced the effect of high doses of SIN-1 in neuropathic rats. Hemoglobin (100 microg/10 microl; i.t.), a NO scavenger, inhibited the effect of low dose of SIN-1 and reduced the effect of high dose of SIN-1 in neuropathic rats. 8-Bromo-cGMP (125-500 microg/10 microl; i.t.), reduced the mechanical allodynia in neuropathic rats. The NO-synthase inhibitors, NG-nitro-L-arginine (L-NOARG) and NG-monomethyl-L-arginine (L-NMMA) (75-300 microg/10 microl; i.t.) reduced the mechanical allodynia evoked by nerve injury and increased the tail-flick latency, respectively. These effects were reduced and inhibited, respectively, by previous i.t. ODQ. The effect of L-NOARG was enhanced in a non-significant manner by hemoglobin. These results indicate that SIN-1 and NO-synthase inhibitors reduce pain through a spinal mechanism that involves activation of guanylate cyclase. The effects of SIN-1 vary depending on the dose and pain model utilized, but its most sensitive effect seems to be antinociception. However, high doses of the NO-donor can intensify ongoing pain.
Collapse
Affiliation(s)
- A M Sousa
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, USP, Av. Bandeirantes 3900, 149049-900, SP, Ribeirão Preto, Brazil
| | | |
Collapse
|
43
|
Nazli M, Hismiogullari ES, Thippeswamy T, Morris R. How central is nitric oxide (NO) to the activation of c-fos in spinal neurones following noxious peripheral stimulation in the rat? Brain Res 2001; 888:172-175. [PMID: 11146065 DOI: 10.1016/s0006-8993(00)03099-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intrathecal application of high doses of NO-donor compounds in the anaesthetised rat was not found to cause any induction of c-fos in spinal neurones. Furthermore, intrathecal injection of a NO-synthase (NOS) blocking drug did not alter the numbers of c-fos positive neurones induced by noxious stimulation. Additionally very little colocalization between NOS and c-fos following noxious stimulation was found. Collectively these data give no support for a role for NO in the noxiously evoked induction of c-fos.
Collapse
Affiliation(s)
- M Nazli
- Department of Veterinary Anatomy, University of Kafkas, Kars, Turkey
| | | | | | | |
Collapse
|
44
|
Abstract
Nitric oxide (NO) is an endogenous gas that serves as a biologic messenger in many physiologic processes including neurotransmission, blood-pressure control, the immune system's ability to kill tumor cells, and wound healing. NO is produced after oxidation of L-arginine by a family of nitric oxide synthase (NOS) enzymes. Two of the NOS enzymes are present continuously and are thereby termed constitutive NOS. One of the enzymes, inducible NOS, is not typically expressed in resting cells and is induced by various substances including endotoxin, some cytokines, and microbial products. Thus, NO often has paradoxical activities. When NO is over- or underproduced, it can result in potentiation of disease states with disastrous results. This review discusses the biochemistry of NO, its functions in normal and disease states, and therapy for modulating NO production in disease states.
Collapse
Affiliation(s)
- L M Howe
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, Texas A & M University, College Station 77843-4474, USA
| | | |
Collapse
|
45
|
Abstract
The present study used nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry to identify populations of neurons containing nitric oxide synthase and to describe their putative migration during development of the human spinal cord. As early as week 6 (W6) of gestation, diaphorase expression was observed in sympathetic preganglionic neurons (SPNs) and interneurons of the ventral horn. As development proceeded, the SPNs translocated dorsally to form the intermediolateral nucleus, and the interneurons remained scattered throughout the ventral horn. In addition to the dorsal translocation of SPNs, a unique dorsomedially directed migratory pathway was observed. At later stages of development, other groups of SPNs were identified laterally in the lateral funiculus and medially in the intercalated and central autonomic regions. In addition, two "U-shaped" groups of diaphorase-labeled cells were identified around the ventral ventricular zone at W7. Cells of these groups appeared to translocate dorsally over the next weeks and presumably give rise to interneurons within the deep dorsal horn and surrounding the central canal. Furthermore, during W7-14 of gestation, the deep dorsal horn contained a number of diaphorase-positive cells, whereas the superficial dorsal horn was relatively free of staining. These data demonstrate that nitric oxide is present very early in human spinal cord development and that two unique cell migrations initially observed in rodents have now been identified in humans. Furthermore, nitric oxide may be expressed in some populations of neurons as they migrate to their final positions, suggesting that this molecule may play a role in neuronal development.
Collapse
Affiliation(s)
- J A Foster
- Department of Physiological Science, UCLA, Los Angeles, California 90095-1527, USA
| | | |
Collapse
|
46
|
Foster JA, Phelps PE. NADPH-diaphorase reveals presumptive sympathetic primary afferents in the developing human spinal cord. Auton Neurosci 2000; 84:111-7. [PMID: 11109996 DOI: 10.1016/s1566-0702(00)00189-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Numerous studies have elucidated two visceral afferent pathways in the spinal cord of mammals, the lateral collateral pathway (LCP) and the medial collateral pathway (MCP). The present study utilized NADPH-diaphorase histochemistry to visualize afferent pathways in the developing human thoracolumbar spinal cord. Diaphorase-positive fiber bundles, strikingly similar to the previously defined LCP and MCP, were observed coursing along the lateral and medial aspects of the dorsal horn to the base of the dorsal horn, the intermediate gray, and/or the dorsal commissure. Furthermore, some axons forming the MCP crossed in the dorsal commissure to the contralateral side of the spinal cord. In addition, axons projecting in the LCP often appeared to terminate within clusters of diaphorase-labeled sympathetic preganglionic neurons, supporting the concept that monosynaptic connections may exist between primary afferents and autonomic motor neurons. Thus, nitric oxide may be involved in both afferent and efferent neurons in reflex pathways of the human sympathetic nervous system.
Collapse
Affiliation(s)
- J A Foster
- Department of Physiological Science, UCLA, Los Angeles, CA 90095-1527, USA
| | | |
Collapse
|
47
|
Nazli M, Morris R. Comparison of localization of the neurokinin 1 receptor and nitric oxide synthase with calbindin D labelling in the rat spinal cord. Anat Histol Embryol 2000; 29:141-3. [PMID: 10916875 DOI: 10.1046/j.1439-0264.2000.00243.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A comparison of the localization of the neurokinin 1 (NK1) receptor and nitric oxide synthase with calbindin D labelling in the lumbar spinal cord was carried out in the rat using immunocytochemistry. Considerable regional variations were observed. Application of the antibody to calbindin D resulted in dense staining in laminae I and II and light staining in the other laminae. Occasional scattered cells were seen in the deep laminae and in the lamina X, the ventral horn and the lateral spinal nucleus. The results indicate that neurones expressing calbindin D, NK1 receptor and NOS are three separate populations in the dorsal horn of the lumbar spinal cord.
Collapse
Affiliation(s)
- M Nazli
- Department of Histology-Embryology, Faculty of Veterinary Medicine, University of Kafkas, Kars, Turkey.
| | | |
Collapse
|
48
|
Mu�oz M, Mar�n O, Gonz�lez A. Localization of NADPH diaphorase/nitric oxide synthase and choline acetyltransferase in the spinal cord of the frog,Rana perezi. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000417)419:4<451::aid-cne4>3.0.co;2-m] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
Garry MG, Walton LP, Davis MA. Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from the spinal cord is mediated by nitric oxide but not by cyclic GMP. Brain Res 2000; 861:208-19. [PMID: 10760483 DOI: 10.1016/s0006-8993(99)02448-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent data support a role for nitric oxide (NO) in pain processing at the level of the spinal cord, possibly via regulation of neuropeptide release. The goal of this study was to determine whether capsaicin, which selectively activates primary afferent neurons and evokes neuropeptide release, acts in an NO-dependent manner. Our results indicate that capsaicin (1 microM)-evoked release of immunoreactive calcitonin gene-related peptide (iCGRP) is significantly reduced in the presence of the NO synthase inhibitor, L-NAME (10-400 nM; F(3,45)=68.38; P<0.001) and, the selective nNOS inhibitor, 3-bromo-7-nitroindazole (170-680 nM; F(5,48)=56.2; P<0. 01). D-NAME (200 nM) had no effect on capsaicin-evoked iCGRP release. Hemoglobin (an extracellular scavenger of NO; 3 mg/ml) significantly reduced the effect of capsaicin on the release of iCGRP (F(1,8)=9.12; P<0.05). The NOS substrate, L-arginine, effectively reversed the inhibitory effect of 3-bromo-7-nitroindazole on capsaicin-evoked iCGRP release. To determine whether the NO-mediated release was NMDA-driven, we superfused spinal cord slices with competitive and non-competitive NMDA antagonists in the presence and absence of capsaicin. MK-801 (0. 1-10 microM; F(4,33)=8.49; P<0.0001) and AP-5 (0.01-10 microM; F(4, 38)=3.34; P<0.05) reduced capsaicin-evoked iCGRP release. CNQX, an AMPA/kainate antagonist (10 nM-10 microM), significantly decreased capsaicin-evoked release of iCGRP (F(6,42)=8.76; P<0.01) in a dose-dependent fashion. Additionally, our results demonstrate that while capsaicin-evoked release is significantly reduced in the presence of LY-83583 (10 microM; F(2,18)=3.46; P<0.01; a cyclic GMP lowering agent), there is no effect of ODQ (a potent and selective inhibitor of guanylate cyclase). Moreover, the application of a cell permeable analog of cyclic GMP (8-bromo-cGMP; 0.01-1000 microM) is without effect on both basal and evoked iCGRP release. Finally, we observed no colocalization of immunoreactive neuronal NOS (nNOS) with CGRP in the dorsal horn. In summary, these data indicate that capsaicin evokes the release of iCGRP, in part, via the production of NO which enters the extracellular space prior to having an effect. Moreover, iCGRP and nNOS are produced in distinct populations of neurons within the dorsal horn. We conclude that capsaicin-evoked release involves the activation of the NMDA receptor but is also modified by the activation of AMPA or kainate receptors. Finally, these data suggest that while capsaicin-evoked iCGRP release is modified by NO, this release does not require the activation of guanylate cyclase and subsequent production of cyclic GMP.
Collapse
Affiliation(s)
- M G Garry
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9174, USA.
| | | | | |
Collapse
|
50
|
Vles JS, de Louw AJ, Steinbusch H, Markerink-van Ittersum M, Steinbusch HW, Blanco CE, Axer H, Troost J, de Vente J. Localization and age-related changes of nitric oxide- and ANP-mediated cyclic-GMP synthesis in rat cervical spinal cord: an immunocytochemical study. Brain Res 2000; 857:219-34. [PMID: 10700571 DOI: 10.1016/s0006-8993(99)02434-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An immunocytochemical technique was used to study the localization and developmental aspects of cyclic GMP (cGMP)-synthesizing structures in the cervical spinal cord of 2-week and 3-month-old Lewis rats in response to the nitric oxide (NO) donor sodium nitroprusside (SNP) and/or atrial natriuretic peptide (ANP). By using cell-specific markers, the cell structures involved were investigated. To visualize cGMP, a combined technique of low- and high-power magnification, using a confocal laser scanning microscope was used. NOS-mediated cGMP synthesis was observed in the cervical spinal cord in laminae I, II and III in 14-day-old rats, which activity was mainly absent at the age of 3 months. The involvement of NO in the NMDA-mediated increase in cGMP immunostaining (cGMP-IS) was demonstrated by the absence of cGMP-IS in slices incubated in the presence of NMDA together with the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). This NO-mediated effect of NMDA on cGMP-IS was completely absent in the 3-month-old rats. ANP-mediated cGMP synthesis resulted in an increase in cGMP in laminae I and II, which was generally similar at both ages. Astrocytes in both white and gray matter were found to be cGMP-IS in the basal, NO- and ANP-stimulated conditions. Using confocal laser microscopy, NO-mediated cGMP synthesis was observed in large cholinergic terminals nearby motor neurons in the ventral horn. An extensive colocalization between NO-stimulated cGMP synthesis and parvalbumin-positive (GABAergic) neurons and fibers was observed in all laminae. In the ANP-stimulated condition, a colocalization with parvalbumin structures was found in laminae II and III. No NO- or ANP-mediated cGMP synthesis was found in fibers immunopositive for the presynaptic glutamate transporter, serotonin, or tyrosine hydroxylase.
Collapse
Affiliation(s)
- J S Vles
- Department of Neurology, University Hospital Maastricht, P.O. Box 5800, 6202 AZ, Maastricht, Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|