1
|
Yang K, Takeuchi K, Wei F, Dubner R, Ren K. Activation of group I mGlu receptors contributes to facilitation of NMDA receptor membrane current in spinal dorsal horn neurons after hind paw inflammation in rats. Eur J Pharmacol 2011; 670:509-18. [PMID: 21951968 DOI: 10.1016/j.ejphar.2011.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/10/2011] [Accepted: 09/10/2011] [Indexed: 10/17/2022]
Abstract
The interaction between the group I metabotropic glutamate (mGlu) receptors and N-methyl-D-aspartate (NMDA) receptors plays a critical role in spinal hyperexcitability and hyperalgesia. The cellular mechanisms underlying this interaction remain unknown. Utilizing an ex vivo spinal slice preparation from young adult rats, we investigated the group I mGlu receptor modulation of NMDA receptor-mediated current in superficial dorsal horn neurons by patch clamp recording after complete Freund's adjuvant (CFA)-induced hind paw inflammation. We show that NMDA receptor-mediated dorsal root stimulation-evoked EPSC (eEPSC) and NMDA-induced current was enhanced in the inflamed rats, compared to naïve rats and this effect was attenuated by AIDA (1 mM), a group I mGlu receptor antagonist. There were also increases in the frequency and amplitude of miniature excitatory postsynaptic currents in the presence of tetrodotoxin, suggesting enhanced presynaptic glutamate release probability and postsynaptic membrane responsiveness in inflamed rats. DHPG (10 μM), a selective group I mGlu receptor agonist, further facilitated NMDA receptor-mediated eEPSC and NMDA-induced current in inflamed rats. The DHPG-produced facilitation of NMDA-induced current was blocked by intracellular dialysis of GDP-beta-S (1 mM), a G protein antagonist, and BAPTA (15 mM), an intracellular calcium chelating agent; and by pretreatment with U73,122 (10 μM), a PLC inhibitor, or 2-APB (100 μM), an IP₃-receptor antagonist. These findings support the hypothesis that signal transduction coupling between group I mGlu receptors and NMDA receptors underlies the activation of NMDA receptors in spinal hyperexcitability and hyperalgesia.
Collapse
Affiliation(s)
- Kun Yang
- Department of Neural and Pain Sciences, School of Dentistry and Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
2
|
Nandhu MS, Paul J, Kuruvila KP, Abraham PM, Antony S, Paulose CS. Glutamate and NMDA receptors activation leads to cerebellar dysfunction and impaired motor coordination in unilateral 6-hydroxydopamine lesioned Parkinson's rat: functional recovery with bone marrow cells, serotonin and GABA. Mol Cell Biochem 2011; 353:47-57. [PMID: 21384157 DOI: 10.1007/s11010-011-0773-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/24/2011] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative movement disorder characterised by a profound and selective loss of nigrostriatal dopaminergic neurons. In Parkinson's disease, degeneration of dopaminergic neurons involves motor structures including basal ganglia and cerebellum. Glutamate-mediated degeneration of the cerebellum contributes to motor dysfunction in Parkinson's disease. Targeting neurotransmitter system beyond the dopamine system is of important, both for the motor and for the nonmotor problems of Parkinson's disease. The aim of this study is to assess the glutamate and NMDA receptor functional regulation and motor performance of 6-hydroxydopamine-induced Parkinson's rat and the effects of serotonin (5-HT), gamma aminobutyric acid (GABA) and bone marrow cells supplementation infused intranigrally to substantia nigra individually and in combination. Scatchard analysis of total glutamate and NMDA receptor binding parameters showed a significant increase in B (max) (P < 0.001) in the cerebellum of 6-hydroxydopamine infused rat compared to control. Real-Time PCR amplification of NMDA2B, mGluR5, and bax were significantly (P < 0.001) upregulated in cerebellum of 6-hydroxydopamine infused rats compared to control. Activation of the glutamate and NMDA receptors gave rise to an increased cAMP and IP3 content in the cerebellum. Gene expression studies of GLAST and CREB showed a significant (P < 0.001) down regulation in 6-OHDA infused rats compared to control. Behavioural studies were carried out to confirm the biochemical and molecular studies. Serotonin and GABA along with bone marrow cells in combination showed reversal of glutamate receptors and motor abnormality shown in the Parkinson's rat model. The therapeutic significance in Parkinson's disease is of prominence.
Collapse
Affiliation(s)
- M S Nandhu
- Department of Biotechnology, Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | | | | | | | | | | |
Collapse
|
3
|
Longhi-Balbinot DT, Pietrovski EF, Gadotti VM, Martins DF, Facundo VA, Santos ARS. Spinal antinociception evoked by the triterpene 3β, 6β, 16β-trihydroxylup-20(29)-ene in mice: Evidence for the involvement of the glutamatergic system via NMDA and metabotropic glutamate receptors. Eur J Pharmacol 2009; 623:30-6. [DOI: 10.1016/j.ejphar.2009.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 08/31/2009] [Accepted: 09/08/2009] [Indexed: 01/05/2023]
|
4
|
Song JH, Park ES, Han SM, Han SR, Ahn DK, Youn DH. Signal transduction mechanisms underlying group I mGluR-mediated increase in frequency and amplitude of spontaneous EPSCs in the spinal trigeminal subnucleus oralis of the rat. Mol Pain 2009; 5:50. [PMID: 19725970 PMCID: PMC2743647 DOI: 10.1186/1744-8069-5-50] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/02/2009] [Indexed: 12/18/2022] Open
Abstract
Group I mGluRs (mGluR1 and 5) pre- and/or postsynaptically regulate synaptic transmission at glutamatergic synapses. By recording spontaneous EPSCs (sEPSCs) in the spinal trigeminal subnucleus oralis (Vo), we here investigated the regulation of glutamatergic transmission through the activation of group I mGluRs. Bath-applied DHPG (10 μM/5 min), activating the group I mGluRs, increased sEPSCs both in frequency and amplitude; particularly, the increased amplitude was long-lasting. The DHPG-induced increases of sEPSC frequency and amplitude were not NMDA receptor-dependent. The DHPG-induced increase in the frequency of sEPSCs, the presynaptic effect being further confirmed by the DHPG effect on paired-pulse ratio of trigeminal tract-evoked EPSCs, an index of presynaptic modulation, was significantly but partially reduced by blockades of voltage-dependent sodium channel, mGluR1 or mGluR5. Interestingly, PKC inhibition markedly enhanced the DHPG-induced increase of sEPSC frequency, which was mainly accomplished through mGluR1, indicating an inhibitory role of PKC. In contrast, the DHPG-induced increase of sEPSC amplitude was not affected by mGluR1 or mGluR5 antagonists although the long-lasting property of the increase was disappeared; however, the increase was completely inhibited by blocking both mGluR1 and mGluR5. Further study of signal transduction mechanisms revealed that PLC and CaMKII mediated the increases of sEPSC in both frequency and amplitude by DHPG, while IP3 receptor, NO and ERK only that of amplitude during DHPG application. Altogether, these results indicate that the activation of group I mGluRs and their signal transduction pathways differentially regulate glutamate release and synaptic responses in Vo, thereby contributing to the processing of somatosensory signals from orofacial region.
Collapse
Affiliation(s)
- Ji-Hyeon Song
- Department of Oral Physiology, School of Dentistry and Brain Korea 21, Brain Science and Engineering Institute, Kyungpook National University, 188-1 Samduk-2-ga, Chung-gu, Daegu 700-412, Korea.
| | | | | | | | | | | |
Collapse
|
5
|
Ferraguti F, Crepaldi L, Nicoletti F. Metabotropic glutamate 1 receptor: current concepts and perspectives. Pharmacol Rev 2009; 60:536-81. [PMID: 19112153 DOI: 10.1124/pr.108.000166] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Almost 25 years after the first report that glutamate can activate receptors coupled to heterotrimeric G-proteins, tremendous progress has been made in the field of metabotropic glutamate receptors. Now, eight members of this family of glutamate receptors, encoded by eight different genes that share distinctive structural features have been identified. The first cloned receptor, the metabotropic glutamate (mGlu) receptor mGlu1 has probably been the most extensively studied mGlu receptor, and in many respects it represents a prototypical subtype for this family of receptors. Its biochemical, anatomical, physiological, and pharmacological characteristics have been intensely investigated. Together with subtype 5, mGlu1 receptors constitute a subgroup of receptors that couple to phospholipase C and mobilize Ca(2+) from intracellular stores. Several alternatively spliced variants of mGlu1 receptors, which differ primarily in the length of their C-terminal domain and anatomical localization, have been reported. Use of a number of genetic approaches and the recent development of selective antagonists have provided a means for clarifying the role played by this receptor in a number of neuronal systems. In this article we discuss recent advancements in the pharmacology and concepts about the intracellular transduction and pathophysiological role of mGlu1 receptors and review earlier data in view of these novel findings. The impact that this new and better understanding of the specific role of these receptors may have on novel treatment strategies for a variety of neurological and psychiatric disorders is considered.
Collapse
Affiliation(s)
- Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr Strasse 1a, Innsbruck A-6020, Austria.
| | | | | |
Collapse
|
6
|
Banerjee B, Medda BK, Zheng Y, Miller H, Miranda A, Sengupta JN, Shaker R. Alterations in N-methyl-D-aspartate receptor subunits in primary sensory neurons following acid-induced esophagitis in cats. Am J Physiol Gastrointest Liver Physiol 2009; 296:G66-77. [PMID: 18974310 PMCID: PMC2636931 DOI: 10.1152/ajpgi.90419.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The excitatory amino acid glutamate plays an important role in the development of neuronal sensitization and the ionotropic N-methyl-d-aspartate receptor (NMDAR) is one of the major receptors involved. The objective of this study was to use a cat model of gastroesophageal reflux disease (GERD) to investigate the expression of the NR1 and NR2A subunits of NMDAR in the vagal and spinal afferent fibers innervating the esophagus. Two groups of cats (Acid-7D and PBS-7D) received 0.1 N HCl (pH 1.2) or 0.1 M PBS (pH 7.4) infusion in the esophagus (1 ml/min for 30 min/day for 7 days), respectively. NR1 splice variants (both NH(2) and COOH terminals) and NR2A in the thoracic dorsal root ganglia (DRGs), nodose ganglia (NGs), and esophagus were evaluated by RT-PCR, Western blot, and immunohistochemistry. Acid produced marked inflammation and a significant increase in eosinophil peroxidase and myeloperoxidase contents compared with PBS-infused esophagus. The NR1-4 splice variant gene exhibited a significant upregulation in DRGs and esophagus after acid infusion. In DRGs, NGs, and esophagus, acid infusion resulted in significant upregulation of NR1 and downregulation of NR2A subunit gene expression. A significant increase in NR1 polypeptide expression was observed in DRGs and NGs from Acid-7D compared with control. In conclusion, long-term acid infusion in the cat esophagus resulted in ulcerative esophagitis and differential expressions of NR1 and NR2A subunits. It is possible that these changes may in part contribute to esophageal hypersensitivity observed in reflux esophagitis.
Collapse
Affiliation(s)
- Banani Banerjee
- Division of Gastroenterology and Hepatology and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bidyut K. Medda
- Division of Gastroenterology and Hepatology and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yue Zheng
- Division of Gastroenterology and Hepatology and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Heather Miller
- Division of Gastroenterology and Hepatology and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Adrian Miranda
- Division of Gastroenterology and Hepatology and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jyoti N. Sengupta
- Division of Gastroenterology and Hepatology and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Reza Shaker
- Division of Gastroenterology and Hepatology and Division of Pediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
7
|
Galik J, Youn DH, Kolaj M, Randić M. Involvement of group I metabotropic glutamate receptors and glutamate transporters in the slow excitatory synaptic transmission in the spinal cord dorsal horn. Neuroscience 2008; 154:1372-87. [DOI: 10.1016/j.neuroscience.2008.04.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/24/2008] [Accepted: 04/27/2008] [Indexed: 01/17/2023]
|
8
|
Increased efficacy of micro-opioid agonist-induced antinociception by metabotropic glutamate receptor antagonists in C57BL/6 mice: comparison with (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid (LY235959). Psychopharmacology (Berl) 2008; 198:271-8. [PMID: 18392754 DOI: 10.1007/s00213-008-1130-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
RATIONALE Recent experimental data suggest that metabotropic glutamate receptor (mGluR) antagonists with selectivity for mGluR1 and mGluR2/3 enhance morphine-induced antinociception. OBJECTIVES The present study addressed the hypothesis that mGluR antagonists enhance opioid antinociception by increasing opioid efficacy. MATERIALS AND METHODS The antinociceptive effects of the partial mu-opioid receptor agonists buprenorphine and dezocine were first assessed in a hot-plate procedure under conditions of low (53 degrees C) and high (56 degrees C) stimulus intensity. Under conditions in which buprenorphine and dezocine produced submaximal antinociceptive effects, these drugs were assessed after pretreatment with the mGluR1 antagonist JNJ16259685, the mGluR5 antagonist MPEP, the mGluR2/3 antagonist LY341495, and for comparison, the N-methyl-D-aspartate (NMDA) receptor antagonist LY235959. RESULTS Buprenorphine (0.032-3.2 mg/kg) and dezocine (0.1-10 mg/kg) were fully efficacious at 53 degrees C and produced submaximal antinociceptive effects at 56 degrees C (i.e., their effects did not exceed 50% of the maximum possible effect). Pretreatment with JNJ16259685 (1.0-3.2 mg/kg), LY341495 (1.0-3.2 mg/kg), and LY235959 (0.32-1.0 mg/kg) enhanced the antinociceptive effects of buprenorphine and dezocine at 56 degrees C, as revealed by significant increases in the peak effects of both drugs to approximately 100% maximum possible effect. In contrast, pretreatment with MPEP (1.0-3.2 mg/kg) did not modulate the antinociceptive effects of buprenorphine and dezocine. CONCLUSIONS These results suggest that, similar to the NMDA receptor antagonist LY235959, the mGluR1 antagonist JNJ16259685 and the mGluR2/3 antagonist LY341495 increase the antinociceptive efficacy of buprenorphine and dezocine.
Collapse
|
9
|
Pitcher MH, Ribeiro-da-Silva A, Coderre TJ. Effects of inflammation on the ultrastructural localization of spinal cord dorsal horn group I metabotropic glutamate receptors. J Comp Neurol 2007; 505:412-23. [PMID: 17912745 DOI: 10.1002/cne.21506] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inflammatory pain is thought to induce functional plasticity of spinal dorsal horn neurons and may produce changes in glutamate receptor expression. Plasticity of group I metabotropic glutamate receptors (mGluR1 and mGluR5) is important in various neuronal systems, and these receptors are also known to modulate nociceptive neurotransmission in the spinal dorsal horn. The present study aimed at determining whether persistent inflammatory pain produces alterations in intracellular and plasma membrane-associated mGluR1alpha and mGluR5 in spinal cord dorsal horn. Persistent inflammation was induced in male Long Evans rats by a unilateral intraplantar injection of 100 muL of complete Freund's adjuvant (CFA). Three days after the CFA injection thermal withdrawal latencies were obtained prior to processing of transverse spinal cord sections for preembedding immunogold labeling after incubation in primary antibody for mGluR1alpha or mGluR5. Using electron microscopy, we quantified immunogold-labeled mGluR1alpha and mGluR5 profiles, located in lamina V and I-II, respectively, of both CFA-treated rats and untreated control rats. Compared to untreated rats, CFA-treated rats had a significant increase in the number of plasma membrane-associated mGluR5 immunogold-labeled particles in lamina I-II neurons of the spinal cord. Although no changes to mGluR1alpha expression were found in CFA-treated rats, plasma membrane-associated mGluR1alpha was significantly closer to the synapse. Therefore, in CFA-treated rats there was a specific increase in the ratio of plasma membrane-associated versus intracellular immunogold-labeled particles for mGluR5, and lateral movement of mGluR1alpha toward the synapse, indicating that peripheral inflammation-induced trafficking of group I mGluRs in spinal dorsal horn neurons may be an important factor in the development of plastic changes associated with inflammation-induced chronic pain.
Collapse
Affiliation(s)
- Mark H Pitcher
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
10
|
Fischer BD, Zimmerman EI, Picker MJ, Dykstra LA. Morphine in combination with metabotropic glutamate receptor antagonists on schedule-controlled responding and thermal nociception. J Pharmacol Exp Ther 2007; 324:732-9. [PMID: 17982001 DOI: 10.1124/jpet.107.131417] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined the interactive effects of morphine in combination with metabotropic glutamate (mGlu) receptor antagonists on schedule-controlled responding and thermal nociception. Drug interaction data were examined with isobolographic and dose-addition analysis. Morphine, the mGlu1 receptor antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone], the mGlu5 receptor antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine hydrochloride], and the mGlu2/3 receptor antagonist LY341495 [(2S)-2-amino-2-[(1S,2S-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid] all decreased rates of schedule-controlled responding. JNJ16259685/morphine, MPEP/morphine, and LY341495/morphine mixtures produced additive effects on this endpoint. Morphine also produced dose-dependent antinociception in the assay of thermal nociception, whereas JNJ16259685, MPEP, and LY341495 failed to produce an effect. In this assay, JNJ16259685 and LY341495 potentiated the antinociceptive effects of morphine, whereas MPEP/morphine mixtures produced additive effects. These results suggest that an mGlu1 and an mGlu2/3 receptor antagonist, but not an mGlu5 receptor antagonist, selectively enhance the antinociceptive effects of morphine. In addition, these data confirm that the behavioral effects of drug mixtures depend on the endpoint under study.
Collapse
Affiliation(s)
- Bradford D Fischer
- Department of Psychology, CB# 3270, Davie Hall, University of North Carolina, Chapel Hill, NC 27599-3270, USA.
| | | | | | | |
Collapse
|
11
|
Dunn JM, Inderwies BR, Licata SC, Pierce RC. Repeated administration of AMPA or a metabotropic glutamate receptor agonist into the rat ventral tegmental area augments the subsequent behavioral hyperactivity induced by cocaine. Psychopharmacology (Berl) 2005; 179:172-80. [PMID: 15580483 DOI: 10.1007/s00213-004-2054-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 09/22/2004] [Indexed: 11/30/2022]
Abstract
RATIONALE Glutamate receptors and their related second messengers in the ventral tegmental area (VTA) are known to play critical roles in the initiation of behavioral sensitization to cocaine. OBJECTIVES To evaluate the hypothesis that repeated intra-VTA microinjections of the ionotropic glutamate agonist, AMPA, or the metabotropic glutamate agonist, t-ACPD, augment the behavioral hyperactivity induced by a subsequent challenge injection of cocaine. In addition, the dependency of the t-ACPD effect on activation of the calcium/calmodulin-dependent kinases (CaM-Ks) was assessed. METHODS Male Sprague-Dawley rats received four once-daily microinjections of saline, AMPA, t-ACPD, or t-ACPD plus the CaM-KII inhibitor KN-93 directly into the VTA; locomotor activity was measured for 120 min after each of the daily treatments. One week after the 4 treatment days, all animals received a challenge injection of cocaine (15 mg/kg, IP) and behavioral activity was monitored for 120 min. RESULTS Intra-VTA administration of t-ACPD increased behavioral activity only on the first 2 treatment days, an effect that was blocked by pre-treatment with KN-93. Administration of AMPA into the VTA, in contrast, produced behavioral hyperactivity that sensitized over the 4 treatment days. Following the cocaine challenge injection, there was an augmentation of cocaine-induced behavioral hyperactivity in the groups pretreated with AMPA or t-ACPD but not in the animals administered t-ACPD plus KN-93. CONCLUSIONS These results indicate that repeated stimulation of AMPA or metabotropic glutamate receptors in the VTA mimics the initiation of behavioral sensitization to cocaine. The present findings also suggest that glutamate agonist-induced activation of CaM-KII in the VTA plays a critical role in the behavioral and neuronal plasticity induced by repeated cocaine injections.
Collapse
Affiliation(s)
- Justin M Dunn
- Laboratory of Neuropsychopharmacology, Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, Boston, MA, 02118, USA
| | | | | | | |
Collapse
|
12
|
Yap JJ, Covington HE, Gale MC, Datta R, Miczek KA. Behavioral sensitization due to social defeat stress in mice: antagonism at mGluR5 and NMDA receptors. Psychopharmacology (Berl) 2005; 179:230-9. [PMID: 15517195 DOI: 10.1007/s00213-004-2023-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Accepted: 08/31/2004] [Indexed: 11/29/2022]
Abstract
RATIONALE Repeated administration of psychostimulants progressively augments the behavioral response to and increases self-administration behavior of these drugs. Experience of repeated intermittent social defeat stress episodes also leads to a sensitized locomotor response following psychostimulant challenge. Both metabotropic and ionotropic glutamate receptors have been shown to be critical in the induction and expression of stimulant sensitization, but their role in sensitization due to social defeat stress remains unclear. OBJECTIVE We evaluated the role of mGluR5 and NMDA glutamate receptors in the development of amphetamine-induced and social defeat stress-induced sensitization, using the non-competitive mGluR5 antagonist, MPEP, and the non-competitive NMDA antagonist, dizocilpine (MK-801). METHODS In adult, male CFW mice, sensitization was induced by either ten daily injections of D-amphetamine (1 mg/kg) or ten daily brief episodes of social defeat. Mice were pretreated with MPEP (3 mg/kg or 10 mg/kg) or dizocilpine (0.1 mg/kg) prior to amphetamine injections. Mice subjected to social defeat were pretreated with MPEP (10 mg/kg) or dizocilpine (0.1 mg/kg). Ten days after induction, the expression of locomotor sensitization to amphetamine was determined. RESULTS The induction of sensitization due to social defeat stress was prevented by MPEP, yet MPEP did not inhibit the development of behavioral sensitization to amphetamine. Confirming and extending earlier results, dizocilpine pretreatment blocked both amphetamine-induced and stress-induced sensitization. CONCLUSIONS These data indicate that behavioral sensitization to social defeat stress is dependent on mGluR5 receptors, whereas low-dose amphetamine sensitization may not be.
Collapse
Affiliation(s)
- Jasmine J Yap
- Department of Psychology, Tufts University, Medford, Mass., USA
| | | | | | | | | |
Collapse
|
13
|
Soygüder Z. Multiple neurotransmitter receptors contribute to the spinal Fos expression. Brain Res 2005; 1033:202-9. [PMID: 15694925 DOI: 10.1016/j.brainres.2004.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2004] [Indexed: 10/25/2022]
Abstract
The aim of this study is to identify the receptors which could potentially mediate the activation of c-Fos. Therefore, the effects of neurotransmitter receptor agonists in the activation of c-Fos in spinal neurons were studied by intrathecal injection of excitatory amino acid (EAA) receptor agonists: N-Methyl-D-Aspartate (NMDA), (S)-alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic acid (AMPA), 2-Carboxyl-3-carboxymethyl-4-isopropenylpyMidine (Kainic acid, KA), (1S-3R)-1-Aminocyclopentane-1, 3-dicarboxylacid (ACPD), and substance-P receptor (neurokinin-1) agonist, [Sar9, Met (O2)11] SP (SarMet-SP). All drugs tested activated the production of c-Fos in spinal dorsal horn neurons. AMPA was found as the most potent agonist tested producing market production of c-Fos particularly in neurons of lamina II at doses of 10 pM per 10-microl injection. At this dose, other agonists were relatively ineffective. At higher doses, AMPA significantly increased the activated cells. NMDA significantly increased c-Fos production to a marked extent only at doses above 10 nM per 10-microl injection. KA and ACPD were least potent of the excitatory amino acid agonists. Injection of SarMet-SP at doses of 1 nM activated Fos selectively in neurons of lamina I. A dose-dependent increase in number of c-Fos-positive cells was observed for AMPA, KA, ACPD, and SarMet-SP, whereas NMDA gave a very strong expression after a high dose with no dose dependency. These finding suggest that multiple neurotransmitter receptors lead to c-Fos production in spinal neurons.
Collapse
Affiliation(s)
- Zafer Soygüder
- University of Yüzüncü Yil, Veterinary Faculty, Department of Anatomy, Van, Turkey.
| |
Collapse
|
14
|
Guo W, Wei F, Zou S, Robbins MT, Sugiyo S, Ikeda T, Tu JC, Worley PF, Dubner R, Ren K. Group I metabotropic glutamate receptor NMDA receptor coupling and signaling cascade mediate spinal dorsal horn NMDA receptor 2B tyrosine phosphorylation associated with inflammatory hyperalgesia. J Neurosci 2005; 24:9161-73. [PMID: 15483135 PMCID: PMC6730074 DOI: 10.1523/jneurosci.3422-04.2004] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hindpaw inflammation induces tyrosine phosphorylation (tyr-P) of the NMDA receptor (NMDAR) 2B (NR2B) subunit in the rat spinal dorsal horn that is closely related to the initiation and development of hyperalgesia. Here, we show that in rats with Freund's adjuvant-induced inflammation, the increased dorsal horn NR2B tyr-P is blocked by group I metabotropic glutamate receptor (mGluR) antagonists [7-(hydroxyimino)cyclopropa[b] chromen-1a-carboxylate ethyl ester (CPCCOEt) and 2-methyl-6-(phenylethynyl)-pyridine (MPEP), by the Src inhibitor CGP 77675, but not by the MAP kinase inhibitor 2'-amino-3'-methoxyflavone. Analysis of the calcium pathways shows that the in vivo NR2B tyr-P is blocked by an IP3 receptor antagonist 2-aminoethoxydiphenylborate (2APB) but not by antagonists of ionotropic glutamate receptors and voltage-dependent calcium channels, suggesting that the NR2B tyr-P is dependent on intracellular calcium release. In a dorsal horn slice preparation, the group I (dihydroxyphenylglycine), but not group II [(2R,4R)-4-aminopyrrolidine-2,3-dicarboxylate] and III [L-AP 4 (L-(+)-2-amino-4-phosphonobutyric acid)], mGluR agonists, an IP3 receptor (D-IP3) agonist, and a PKC (PMA) activator, induces NR2B tyr-P similar to that seen in vivo after inflammation. Coimmunoprecipitation indicates that Shank, a postsynaptic density protein associated with mGluRs, formed a complex involving PSD-95 (postsynaptic density-95), NR2B, and Src in the spinal dorsal horn. Double immunofluorescence studies indicated that NR1 is colocalized with mGluR5 in dorsal horn neurons. mGluR5 also coimmunoprecipitates with NR2B. Finally, intrathecal pretreatment of CPCCOEt, MPEP, and 2APB attenuates inflammatory hyperalgesia. Thus, inflammation and mGluR-induced NR2B tyr-P share similar mechanisms. The group ImGluR-NMDAR coupling cascade leads to phosphorylation of the NMDAR and appears necessary for the initiation of spinal dorsal horn sensitization and behavioral hyperalgesia after inflammation.
Collapse
Affiliation(s)
- Wei Guo
- Department of Biomedical Sciences, Dental School and Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gomes AR, Correia SS, Carvalho AL, Duarte CB. Regulation of AMPA receptor activity, synaptic targeting and recycling: role in synaptic plasticity. Neurochem Res 2003; 28:1459-73. [PMID: 14570391 DOI: 10.1023/a:1025610122776] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors for the neurotransmitter glutamate are oligomeric structures responsible for most fast excitatory responses in the central nervous system. The activity of AMPA receptors can be directly regulated by protein phosphorylation, which may also affect the interaction with intracellular proteins and, consequently, their recycling and localization to defined postsynaptic sites. This review focuses on recent advances in understanding the dynamic regulation of AMPA receptors, on a short- and long-term basis, and its implications in synaptic plasticity.
Collapse
Affiliation(s)
- André R Gomes
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | |
Collapse
|
16
|
Salt TE. Glutamate receptor functions in sensory relay in the thalamus. Philos Trans R Soc Lond B Biol Sci 2002; 357:1759-66. [PMID: 12626010 PMCID: PMC1693074 DOI: 10.1098/rstb.2002.1165] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is known that glutamate is a major excitatory transmitter of sensory and cortical afferents to the thalamus. These actions are mediated via several distinct receptors with postsynaptic excitatory effects predominantly mediated by ionotropic receptors of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate varieties (NMDA). However, there are also other kinds of glutamate receptor present in the thalamus, notably the metabotropic and kainate types, and these may have more complex or subtle roles in sensory transmission. This paper describes recent electrophysiological experiments done in vitro and in vivo which aim to determine how the metabotropic and kainate receptor types can influence transmission through the sensory thalamic relay. A particular focus will be how such mechanisms might operate under physiological conditions.
Collapse
Affiliation(s)
- T E Salt
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| |
Collapse
|
17
|
Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia. J Neurosci 2002. [PMID: 12122079 DOI: 10.1523/jneurosci.22-14-06208.2002] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study examined the levels of NMDA receptor NR2 subunit tyrosine phosphorylation in a rat model of inflammation and correlated it with the development of inflammation and hyperalgesia. Hindpaw inflammation and hyperalgesia were induced by intraplantar injection of complete Freund's adjuvant. Proteins from the spinal cord (L4-L5) were immunoprecipitated with anti-NR2A or anti-NR2B antibodies and used for subsequent analysis using 4G-10, a specific anti-phosphotyrosine antibody. Compared with naive rats, there was a rapid and prolonged increase in tyrosine phosphorylation of the NR2B, but not NR2A, subunit after inflammation. The increase in NR2B tyrosine phosphorylation was dependent on primary afferent drive because (1) the phosphorylation correlated with the temporal profile of inflammation and hyperalgesia, (2) shorter-duration noxious stimulation produced a rapid and shorter-lasting increase in phosphorylation, and (3) local anesthetic block of the injected paw reversibly blocked inflammation-induced NR2B tyrosine phosphorylation and delayed hyperalgesia. The increase in NR2B tyrosine phosphorylation was abolished by intrathecal pretreatment with genistein, a tyrosine kinase inhibitor; PP2, an Src family tyrosine kinase inhibitor; AIDA, a group I metabotropic glutamate receptor antagonist; L733,060, an NK1 tachykinin receptor antagonist, and chelerythrine, a protein kinase C inhibitor. In addition, intrathecal PP2 delayed the onset of mechanical hyperalgesia and allodynia. These findings correlate in vivo NMDA receptor tyrosine phosphorylation with the development and maintenance of inflammatory hyperalgesia and suggest that signal transduction upstream to NR2B tyrosine phosphorylation involves G-protein-coupled receptors and PKC and Src family protein tyrosine kinases.
Collapse
|
18
|
Dang K, Naeem S, Walker K, Bowery NG, Urban L. Interaction of group I mGlu and NMDA receptor agonists within the dorsal horn of the spinal cord of the juvenile rat. Br J Pharmacol 2002; 136:248-54. [PMID: 12010773 PMCID: PMC1573338 DOI: 10.1038/sj.bjp.0704698] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The modulatory effects of mGlu receptors on NMDA-induced potential changes in spinal motoneurones were studied in vitro. 2. Selective activation of mGlu5 receptors by 10 microM (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG; EC(50)=280 +/- 24 microM) did not produce any change in the ventral root potential. However, the same concentration of CHPG (10 min perfusion) significantly attenuated the NMDA-induced ventral root depolarization (VRD). The effect persisted for 10 min after washout. NMDA-induced responses returned to control in 30 min. Brief co-application of CHPG and NMDA did not alter the NMDA-induced response indicating lack of direct receptor interaction. 3. The attenuating effect of CHPG on the NMDA-induced VRD was inhibited by the mGluR5 receptor antagonist, 2-methyl-6-phenyl-ethynylpyridine (MPEP). 4. In the presence of CGP56433A, a GABA(B) receptor antagonist, the NMDA-induced VRD was unchanged. However, NMDA-induced responses were potentiated after 10 min co-application of CHPG and CGP56433A. 5. (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate ((2R,4R)-APDC), a group II mGlu receptor agonist did not attenuate the NMDA-induced response. 6. Under normal physiological conditions group I mGlu receptor agonists activate at least two populations of neurones: (1) GABA-ergic cells, which could release GABA and inhibit dorsal horn neurones, and (2) deep dorsal horn neurones/motoneurones which express NMDA receptors. Therefore, activation of mGlu5 receptors located on GABA-ergic interneurones could influence any direct potentiating interaction between mGlu5 and NMDA receptors in spinal cord and result in depression of the VRD. In the presence of a GABA(B) receptor antagonist, the direct synergistic interaction is unmasked. These data suggest that group I mGlu receptors provide a complex modulation of spinal synaptic processes.
Collapse
Affiliation(s)
- K Dang
- Novartis Institute for Medical Sciences, 5 Gower Place, London WC1E 6BN, U.K
- The Medical School, University of Birmingham, Birmingham B15 2TT, U.K
| | - S Naeem
- Novartis Institute for Medical Sciences, 5 Gower Place, London WC1E 6BN, U.K
| | - K Walker
- Novartis Institute for Medical Sciences, 5 Gower Place, London WC1E 6BN, U.K
| | - N G Bowery
- The Medical School, University of Birmingham, Birmingham B15 2TT, U.K
| | - L Urban
- Novartis Institute for Medical Sciences, 5 Gower Place, London WC1E 6BN, U.K
- Author for correspondence:
| |
Collapse
|
19
|
Zhang L, Lu Y, Chen Y, Westlund KN. Group I metabotropic glutamate receptor antagonists block secondary thermal hyperalgesia in rats with knee joint inflammation. J Pharmacol Exp Ther 2002; 300:149-56. [PMID: 11752110 DOI: 10.1124/jpet.300.1.149] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of ionotropic glutamate receptors has been shown previously to be essential for the development of secondary thermal hyperalgesia. The present study assessed involvement of group I metabotropic glutamate receptors (mGlu) in both the induction and maintenance phases of secondary thermal hyperalgesia initiated by knee joint inflammation in rats. The dose dependence of each drug in antagonism of thermal hypersensitivity was demonstrated in pre- and post-treatment paradigms. Knee joint inflammation was induced by injection of kaolin and carrageenan. Four hours later the paw withdrawal latencies were significantly shorter than baseline values. Rats were pretreated by spinal microdialysis infusion of group I mGlu receptor antagonists, LY393053 [(+/-)-2-amino-2-(3-cis and trans-carboxycyclobutyl-3-(9-thioxanthyl)propionic acid], LY367385 [(S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid], or AIDA [(R,S)-1-aminoindan-1,5-dicarboxylic acid/UPF 523] before knee joint injection. The paw withdrawal latencies measured 4 h after the injection were significantly longer in the presence of group I mGlu receptor antagonists than those of the artificial cerebrospinal fluid-treated arthritic control group. Post-treatment with the group I mGlu receptor antagonists LY367385 and AIDA allowed significant recovery of the paw withdrawal latencies after the onset of the knee joint inflammation. The knee joint inflammation itself was not affected by either treatment. The results of the present study indicate that secondary thermal hyperalgesia can be effectively attenuated during both the development and maintenance phases of acute knee joint inflammation by spinal application of specific group I mGlu receptor antagonists.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Anatomy and Neurosciences, University of Texas Medical Branch, Galveston, Texas 77555-1043, USA
| | | | | | | |
Collapse
|
20
|
|
21
|
Yashpal K, Fisher K, Chabot JG, Coderre TJ. Differential effects of NMDA and group I mGluR antagonists on both nociception and spinal cord protein kinase C translocation in the formalin test and a model of neuropathic pain in rats. Pain 2001; 94:17-29. [PMID: 11576741 DOI: 10.1016/s0304-3959(01)00337-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Coincident with nociception, both noxious chemical stimulation of the hind paw and chronic constriction injury (CCI) of the sciatic nerve produce an increase in protein kinase C (PKC) translocation in the spinal cord of rats. Noxious stimulus-induced PKC translocation likely depends on glutamate activity at either N-methyl-D-aspartate (NMDA) receptors or group I metabotropic glutamate receptors (mGluR1/5) in the spinal cord dorsal horn. This study compares nociceptive responses to, and the alterations in membrane-associated PKC, induced by noxious chemical stimulation of the hindpaw and CCI of the sciatic nerve, as well as their modulation by both NMDA and mGluR1/5 receptor antagonists. Three groups of rats were given a single intrathecal (i.t.) injection of either vehicle, dizocilpine maleate (MK-801, 60 nmol), an NMDA receptor antagonist, or (S)-4-carboxyphenylglycine (S)-4CPG, (150 nmol), an mGluR1/5 antagonist, 10 min prior to a 50 microl of 2.5% formalin injection into the ventral surface of one hind paw. Another three groups of rats were given twice daily injections of either vehicle, MK-801 (30 nmol) or (S)-4CPG (90 nmol) i.t. for 5 days starting 30 min before CCI or sham injury of the sciatic nerve. Nociceptive responses were assessed for a 60 min period after the formalin injection in the first three groups, and tests of mechanical and cold allodynia were performed on days 4, 8, 12 and 16 after CCI for the latter three groups. Furthermore, changes in the levels of membrane-associated PKC, as assayed by quantitative autoradiography of the specific binding of [3H]-phorbol 12,13-dibutyrate ([3H]-PDBu) in the dorsal horn of the lumbar spinal cord sections, were assessed in formalin-injected rats (at 5, 25 and 60 min) and in neuropathic rats 5 days after CCI, treated (as above) with vehicle, MK-801 or (S)-4CPG. The results indicate that i.t. treatment with MK-801 significantly reduced nociceptive scores in the formalin test and also produced a significant suppression of formalin-induced increases in [3H]-PDBu binding in laminae I-II, III-VI and X of the lumbar spinal cord. In contrast, i.t. treatment with (S)-4CPG failed to significantly affect either nociceptive behaviours in the formalin test or formalin-induced increases in [3H]-PDBu binding in laminae I-II and III-VI of the lumbar spinal cord. On the other hand, i.t. treatment with either MK-801 or (S)-4CPG produced a significant reduction in mechanical and cold hypersensitivity, as well as [3H]-PDBu binding in laminae I-II and III-VI of the lumbar spinal cord, after CCI. These results suggest that while NMDA, but not mGluR1/5, receptors are involved in translocation of PKC and nociception in a model of persistent acute pain, both types of receptors influence the translocation of PKC in dorsal horn and mechanical and cold allodynia in a model of chronic neuropathic pain.
Collapse
Affiliation(s)
- Kiran Yashpal
- Pain Mechanisms Laboratory, Clinical Research Institute of Montreal, McGill University, Montreal, Quebec, Canada H3G 1Y6 Department of Anesthesia, McGill University, Montreal, Quebec, Canada H3G 1Y6 Department of Psychology, McGill University, Montreal, Quebec, Canada H3G 1Y6 Douglas Hospital Research Centre, Verdun, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
22
|
Zhou S, Komak S, Du J, Carlton SM. Metabotropic glutamate 1alpha receptors on peripheral primary afferent fibers: their role in nociception. Brain Res 2001; 913:18-26. [PMID: 11532243 DOI: 10.1016/s0006-8993(01)02747-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Several lines of evidence indicate that Group I metabotropic glutamate (mGlu) 1alpha receptors are involved in the processing of nociceptive information in the spinal cord. The goals of the present study are to document the role of mGlu1alpha receptors in peripheral nociception. To accomplish this we investigate the presence of mGlu1alpha receptors on peripheral primary afferent fibers and determine the behavioral effects of (S)-3,5-dihydroxyphenylglycine (S-DHPG), which is an mGlu1/5 receptor agonist and (RS)-1-aminoindan-1, 5-dicarboxylic acid (AIDA), a selective mGluR1alpha antagonist, on mechanical and thermal sensitivity and formalin-induced nociceptive behaviors. The anatomical studies at the electron microscopic level demonstrate that 32.4+/-2.9% of the unmyelinated axons and 21.6+/-4.7% of the myelinated axons are positively immunostained for mGlu1alpha receptors. Intraplantar injection of 0.1 or 1 mM S-DHPG results in a significant increase in mechanical sensitivity that persists for more than 60 min and this effect is blocked by co-injection of S-DHPG with 1 mM AIDA. Intraplantar injection of 40 microM AIDA+2% formalin significantly attenuates phase 2 lifting/licking and flinching behavior and this AIDA-induced effect is blocked with co-injection of 1 microM S-DHPG. In behavioral tests, intraplantar S-DHPG (0.1, 1.0, 10 mM) does not change tail flick latencies or paw withdrawal latencies to heat stimulation. These data indicate that mGlu1alpha receptors are present on peripheral cutaneous axons and activation of peripheral mGlu1alpha receptors contributes to mechanical allodynia and inflammatory pain but not thermal hyperalgesia.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Drug Interactions/physiology
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/ultrastructure
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Immunohistochemistry
- Indans/pharmacology
- Inflammation/metabolism
- Male
- Microscopy, Electron
- Nerve Fibers/drug effects
- Nerve Fibers/metabolism
- Nerve Fibers/ultrastructure
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/ultrastructure
- Nociceptors/drug effects
- Nociceptors/metabolism
- Nociceptors/ultrastructure
- Pain/metabolism
- Pain Measurement/drug effects
- Physical Stimulation
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/metabolism
- Resorcinols/pharmacology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Skin/innervation
- Thermosensing/drug effects
- Thermosensing/physiology
Collapse
Affiliation(s)
- S Zhou
- Department of Anatomy and Neurosciences, Marine Biomedical Institute, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA
| | | | | | | |
Collapse
|
23
|
Mills CD, Fullwood SD, Hulsebosch CE. Changes in metabotropic glutamate receptor expression following spinal cord injury. Exp Neurol 2001; 170:244-57. [PMID: 11476590 DOI: 10.1006/exnr.2001.7721] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spinal cord injury (SCI) initiates biochemical events that lead to an increase in extracellular excitatory amino acid concentrations, resulting in glutamate receptor-mediated excitotoxic events. These receptors include the three groups of metabotropic glutamate receptors (mGluRs). Group I mGluR activation can initiate a number of intracellular pathways that increase neuronal excitability. Group II and III mGluRs may function as autoreceptors to modulate neurotransmission. Thus, all three groups may contribute to the mechanisms of central sensitization and chronic central pain. To begin evaluating mGluRs in SCI, we quantified the changes in mGluR expression after SCI in control (naive), sham, and impact injured adult male Sprague-Dawley rats (200-250 g). SCI was produced at spinal segment T10 with a New York University impactor (12.5-mm drop, 10-g rod of 2-mm diameter). Expression levels were determined by Western blot and immunohistochemistry analyses at the epicenter of injury, as well as segments rostral and caudal. The group I subtype mGluR1 was increased over control levels in segments rostral and caudal by postsurgical day (PSD) 7 and remained elevated through PSD 60. The group I subtype mGluR5 was unchanged in all segments rostral and caudal to the injury at every time point measured. Group II mGluRs were decreased compared to control levels from PSD 7 through PSD 60 in all segments. These results suggest that different subtypes of mGluRs have different spatial and temporal expression patterns following SCI. The expression changes in mGluRs parallel the development of mechanical allodynia and thermal hyperalgesia following SCI; therefore, understanding the expression of mGluRs after SCI may give insight into mechanisms underlying the development of chronic central pain.
Collapse
Affiliation(s)
- C D Mills
- The Department of Anatomy and Neuroscience, The University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1043, USA
| | | | | |
Collapse
|
24
|
Grassi S, Pettorossi VE. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices. Prog Neurobiol 2001; 64:527-53. [PMID: 11311461 DOI: 10.1016/s0301-0082(00)00070-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular potentiation. Finally the fifth part suggests the possible functional significance of different action times of the two retrograde messengers and metabotropic glutamate receptors, which are involved in mediating the presynaptic mechanism sustaining vestibular long-term potentiation.
Collapse
Affiliation(s)
- S Grassi
- Dipartimento di Medicina Interna, Sezione di Fisiologia Umana, Università di Perugia, I-06100, Perugia, Italy.
| | | |
Collapse
|
25
|
Allen JW, Vicini S, Faden AI. Exacerbation of neuronal cell death by activation of group I metabotropic glutamate receptors: role of NMDA receptors and arachidonic acid release. Exp Neurol 2001; 169:449-60. [PMID: 11358458 DOI: 10.1006/exnr.2001.7672] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both ionotropic and metabotropic glutamate receptors have been implicated in the pathogenesis of neuronal injury. Activation of group I metabotropic glutamate receptors (mGluR) exacerbates neuronal cell death, whereas inhibition is neuroprotective. However, the mechanisms involved remain unknown. Activation of group I mGluR modulates multiple signal transduction pathways including stimulation of phosphoinositide hydrolysis, potentiation of NMDA receptor activity, and release of arachidonic acid. Here we demonstrate that whereas activation of group I mGluR by (S)-3,5-dihydroxyphenylglycine (DHPG) potentiates NMDA-induced currents and intracellular calcium increases in rat cortical neuronal cultures, partial effects of group I mGluR activation or inhibition on neuronal injury induced by oxygen-glucose deprivation remain despite NMDA receptor blockade. DHPG stimulation also increases basal arachidonic acid release from rat neuronal-glial cultures and potentiates injury-induced arachidonic acid release in these cultures. Thus, activation of group I mGluR may exacerbate neuronal injury through multiple mechanisms, which include positive modulation of NMDA receptors and enhanced release of arachidonic acid.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arachidonic Acid/metabolism
- Calcium/metabolism
- Cell Death/drug effects
- Cell Hypoxia/physiology
- Cells, Cultured
- Cerebral Cortex/cytology
- Cerebral Cortex/physiology
- Coculture Techniques
- Dizocilpine Maleate/pharmacology
- Embryo, Mammalian
- Gene Expression Regulation
- Glucose/metabolism
- Kinetics
- Methoxyhydroxyphenylglycol/analogs & derivatives
- Methoxyhydroxyphenylglycol/pharmacology
- N-Methylaspartate/pharmacology
- Neuroglia/cytology
- Neuroglia/drug effects
- Neuroglia/physiology
- Neurons/cytology
- Neurons/drug effects
- Neurons/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
Collapse
Affiliation(s)
- J W Allen
- Institute for Cognitive and Computational Sciences, Department of Neuroscience, Georgetown University, 3970 Reservoir Road NW, Washington, DC 20007, USA
| | | | | |
Collapse
|
26
|
Andresen MC, Doyle MW, Jin YH, Bailey TW. Cellular mechanisms of baroreceptor integration at the nucleus tractus solitarius. Ann N Y Acad Sci 2001; 940:132-41. [PMID: 11458672 DOI: 10.1111/j.1749-6632.2001.tb03672.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The autonomic nervous system makes important contributions to the homeostatic regulation of the heart and blood vessels through arterial baroreflexes, and yet our understanding of the central nervous system mechanisms is limited. The sensory synapse of baroreceptors in the nucleus tractus solitarius (NTS) is unique because its participation is obligatory in the baroreflex. Here we describe experiments targeting this synapse to provide greater understanding of the cellular mechanisms at the earliest stages of the baroreflex. Our approach utilizes electrophysiology, pharmacology, and anatomical tracers to identify and evaluate key elements of the sensory information processing in NTS.
Collapse
Affiliation(s)
- M C Andresen
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA.
| | | | | | | |
Collapse
|
27
|
Zhuo M. Silent glutamatergic synapses and long-term facilitation in spinal dorsal horn neurons. PROGRESS IN BRAIN RESEARCH 2001; 129:101-13. [PMID: 11098684 DOI: 10.1016/s0079-6123(00)29008-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- M Zhuo
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Salt TE, Binns KE. Contributions of mGlu1 and mGlu5 receptors to interactions with N-methyl-D-aspartate receptor-mediated responses and nociceptive sensory responses of rat thalamic neurons. Neuroscience 2001; 100:375-80. [PMID: 11008175 DOI: 10.1016/s0306-4522(00)00265-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nociceptive responses of rat ventrobasal thalamus neurons can be reduced by N-methyl-D-aspartate antagonists and by selective metabotropic glutamate receptor mGlu1 antagonists. The recent development of the mGlu5-selective antagonist 6-methyl-2-(phenylethynyl)-pyridine now allows the direct probing of the possible involvement of mGlu5 receptors in thalamic nociceptive responses. Extracellular recordings were made from single neurons in the ventrobasal thalamus and immediately overlying dorsal thalamic nuclei of adult urethane-anaesthetized rats using multi-barrel electrodes. Responses of neurons to iontophoretic applications of the mGlu5-selective agonist (R,S)-2-chloro-5-hydroxyphenylglycine were selectively reduced during continuous iontophoretic applications of 6-methyl-2-(phenylethynyl)-pyridine. Similar applications of 6-methyl-2-(phenylethynyl)-pyridine reduced neuronal responses to noxious thermal stimuli to 53+/-9.5% of control responses. Co- application by iontophoresis of N-methyl-D-aspartate and metabotropic glutamate receptor agonists resulted in a mutual potentiation of excitatory responses. This effect could be reduced by either 6-methyl-2-(phenylethynyl)-pyridine or the mGlu1 antagonist LY367385. These results, taken together with previous data, suggest that acute thalamic nociceptive responses are mediated by a combination of mGlu1, mGlu5 and N-methyl-D-aspartate receptor activation, and that co-activation of these receptors produces a synergistic excitatory effect. Thus blockade of any of these receptor types would have a profound effect on the overall nociceptive response.
Collapse
Affiliation(s)
- T E Salt
- Institute of Ophthalmology, University College London, 11-43 Bath Street, EC1V 9EL, London, UK.
| | | |
Collapse
|
29
|
Gerber G, Youn DH, Hsu CH, Isaev D, Randić M. Spinal dorsal horn synaptic plasticity: involvement of group I metabotropic glutamate receptors. PROGRESS IN BRAIN RESEARCH 2001; 129:115-34. [PMID: 11098685 DOI: 10.1016/s0079-6123(00)29009-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- G Gerber
- Department of Biomedical Sciences, Iowa State University, Ames 50011-1250, USA
| | | | | | | | | |
Collapse
|
30
|
Walker K, Bowes M, Panesar M, Davis A, Gentry C, Kesingland A, Gasparini F, Spooren W, Stoehr N, Pagano A, Flor PJ, Vranesic I, Lingenhoehl K, Johnson EC, Varney M, Urban L, Kuhn R. Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive function. I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain. Neuropharmacology 2001; 40:1-9. [PMID: 11077065 DOI: 10.1016/s0028-3908(00)00113-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The excitatory neurotransmitter, glutamate, is particularly important in the transmission of pain information in the nervous system through the activation of ionotropic and metabotropic glutamate receptors. A potent, subtype-selective antagonist of the metabotropic glutamate-5 (mGlu5) receptor, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), has now been discovered that has effective anti-hyperalgesic effects in models of inflammatory pain. MPEP did not affect rotarod locomotor performance, or normal responses to noxious mechanical or thermal stimulation in naïve rats. However, in models of inflammatory pain, systemic administration of MPEP produced effective reversal of mechanical hyperalgesia without affecting inflammatory oedema. In contrast to the non-steroidal anti-inflammatory drugs, indomethacin and diclofenac, the maximal anti-hyperalgesic effects of orally administered MPEP were observed without acute erosion of the gastric mucosa. In contrast to its effects in models of inflammatory pain, MPEP did not produce significant reversal of mechanical hyperalgesia in a rat model of neuropathic pain.
Collapse
Affiliation(s)
- K Walker
- Nervous System Research, Novartis Pharma AG, CH-4002, Basle, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Attucci S, Carlà V, Mannaioni G, Moroni F. Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges. Br J Pharmacol 2001; 132:799-806. [PMID: 11181420 PMCID: PMC1572635 DOI: 10.1038/sj.bjp.0703904] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2000] [Revised: 12/08/2000] [Accepted: 12/13/2000] [Indexed: 11/09/2022] Open
Abstract
1. We measured the effects of agonists and antagonists of metabotropic glutamate (mGlu) receptors (types 1 and 5) on NMDA-induced depolarization of mouse cortical wedges in order to characterize the mGlu receptor type responsible for modulating NMDA responses. We also characterized a number of mGlu receptor agents by measuring [3H]-inositol phosphate (IP) formation in cortical slices and in BHK cells expressing either mGlu 1 or mGlu 5 receptors. 2. (S)-3,5-dihydroxyphenylglycine (DHPG), an agonist of both mGlu 1 and mGlu 5 receptors, at concentrations ranging from 1-10 microM, enhanced up to 105+/-15% the NMDA-induced depolarization. Larger concentrations (100-300 microM) of the compound were inactive in this test. When evaluated on [3H]-IP synthesis in cortical slices or in cells expressing either mGlu 1 or mGlu 5 receptors, DHPG responses (1-300 microM) increased in a concentration-dependent manner. 3. (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) and (S:)-(+)-2-(3'-carboxybicyclo[1.1.1]pentyl)-glycine (CBPG), had partial agonist activity on mGlu 5 receptors, with maximal effects reaching approximately 50% that of the full agonists. These compounds, however, enhanced NMDA-evoked currents with maximal effects not different from those induced by DHPG. Thus the enhancement of [3H]-IP synthesis and the potentiation of NMDA currents were not directly related. 4. 2-methyl-6-(phenylethynyl)-pyridine (MPEP, 1-10 microM), a selective mGlu 5 receptor antagonist, reduced DHPG effects on NMDA currents. 7-(hydroxyimino)cyclopropan[b]-chromen-1a-carboxylic acid ethylester (CPCCOEt, 30 microM), a preferential mGlu 1 receptor antagonist, did not reduce NMDA currents. 5. These results show that mGlu 5 receptor agonists enhance while mGlu 5 receptor antagonists reduce NMDA currents. Thus the use of mGlu 5 receptor agents may be suggested in a number of pathologies related to altered NMDA receptor function.
Collapse
Affiliation(s)
- S Attucci
- Department of Preclinical and Clinical Pharmacology, University of Florence Viale Pieraccini 6, Firenze, Italy
| | - V Carlà
- Department of Preclinical and Clinical Pharmacology, University of Florence Viale Pieraccini 6, Firenze, Italy
| | - G Mannaioni
- Department of Preclinical and Clinical Pharmacology, University of Florence Viale Pieraccini 6, Firenze, Italy
| | - F Moroni
- Department of Preclinical and Clinical Pharmacology, University of Florence Viale Pieraccini 6, Firenze, Italy
| |
Collapse
|
32
|
Zhong J, Gerber G, Kojić L, Randić M. Dual modulation of excitatory synaptic transmission by agonists at group I metabotropic glutamate receptors in the rat spinal dorsal horn. Brain Res 2000; 887:359-77. [PMID: 11134626 DOI: 10.1016/s0006-8993(00)03066-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of group I metabotropic glutamate (mGlu) receptors on excitatory transmission in the rat dorsal horn, but mostly substantia gelatinosa, neurons were investigated using conventional intracellular recording in slices. The broad spectrum mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S, 3R-ACPD), the group I mGlu receptor selective agonist (S)-3, 5-dihydroxyphenylglycine (DHPG), and the selective mGlu subtype 5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), all induce long-lasting depression of A primary afferent fibers-mediated monosynaptic excitatory postsynaptic potential (EPSP), and long-lasting potentiation of polysynaptic EPSP, and EPSP in cells receiving C-afferent fiber input. The DHPG potentiation of polysynaptic EPSP was partially or fully reversed by (S)-4-carboxyphenylglycine (S-4CPG), the mGlu subtype 1 preferring antagonist. 2-Methyl-6-(phenylethynyl)-pyridine, the potent and selective mGlu subtype 5 antagonist, partially reversed the CHPG potentiation of polysynaptic EPSP. The effects of DHPG on monosynaptic and polysynaptic EPSPs were reduced, or abolished, by the N-methyl-D-aspartate (NMDA) receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (AP5). A clear and pronounced facilitation of the expression of DHPG- and CHPG-induced enhancement of polysynaptic EPSP, and EPSP evoked at C-fiber strength, was seen in the absence of gamma-aminobutyric acid subtype A receptor- and glycine-mediated synaptic inhibition. Besides dual modulation of excitatory synaptic transmission, DHPG induces depression of inhibitory postsynaptic potentials evoked by primary afferent stimulation in dorsal horn neurons. In addition, group I mGlu receptor agonists produced a direct persistent excitatory postsynaptic effect consisting of a slow membrane depolarization, an increase in input resistance, and an intense neuronal discharge. Cyclothiazide and (S)-4-CPG, the mGlu receptor subtype 1 preferring antagonists, significantly attenuated the DHPG-induced depolarization. These results demonstrate that the pharmacological activation of group I metabotropic glutamate receptors induces long-term depression (LTD) and long-term potentiation (LTP) of synaptic transmission in the spinal dorsal horn. These types of long-term synaptic plasticity may play a functional role in the generation of post-injury hypersensitivity (LTP) or antinociception (LTD).
Collapse
Affiliation(s)
- J Zhong
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
33
|
Ruscheweyh R, Sandkühler J. Differential actions of spinal analgesics on mono-versus polysynaptic Adelta-fibre-evoked field potentials in superficial spinal dorsal horn in vitro. Pain 2000; 88:97-108. [PMID: 11098104 DOI: 10.1016/s0304-3959(00)00325-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Processing of nociceptive information can be modulated at various levels in spinal cord that may range from changes of neurotransmitter release from primary afferent Adelta- or C-fibres to excitability changes of spinal interneurones or motoneurones. The site and mechanism of action of spinal analgesics has been assessed with a number of in vivo and in vitro methods with sometimes conflicting results. Here, we have used transverse spinal cord slices with attached dorsal roots to simultaneously record mono- and polysynaptic Adelta-fibre-evoked field potentials in superficial spinal dorsal horn. Two classical spinal analgesics, morphine and clonidine, and the metabotropic glutamate receptor agonist (IS,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD) differentially affected mono- and polysynaptic Adelta-fibre-evoked transmission in spinal dorsal horn. Polysynaptic responses were dose-dependently inhibited while the monosynaptic response remained unaffected. These results suggest that spinal analgesics may preferentially affect polysynaptic but not monosynaptic Adelta-fibre-evoked responses in superficial spinal dorsal horn.
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | | |
Collapse
|
34
|
Chen J, Heinke B, Sandkühler J. Activation of group I metabotropic glutamate receptors induces long-term depression at sensory synapses in superficial spinal dorsal horn. Neuropharmacology 2000; 39:2231-43. [PMID: 10974307 DOI: 10.1016/s0028-3908(00)00084-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Low-frequency stimulation of primary afferent Adelta-fibers can induce long-term depression of synaptic transmission in rat superficial spinal dorsal horn. Here, we have identified another form of long-term depression in superficial spinal dorsal horn neurons that is induced by specific group I but not group II metabotropic glutamate receptor (mGluR) agonists. Synaptic strength between Adelta-fibers and dorsal horn neurons was examined by intracellular recordings in a spinal cord-dorsal root slice preparation from young rat. In the presence of bicuculline and strychnine, bath application of (1S,3R)-1-aminocyclopentane-1, 3-dicarboxylic acid ((1S,3R)-ACPD) or the specific group I mGluR agonist (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG) but not the specific group II mGluR agonist (2S,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG-IV) for 20 min produced an acute and a long-term depression of synaptic strength. Bath application of the N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonovaleric acid did not affect these depressions by (1S,3R)-ACPD. After pre-incubation of slices with pertussis toxin, a G-protein inhibitor, (1S,3R)-ACPD still induced acute and long-term depressions. The phospholipase C inhibitor U73122 stereoselectively blocked the induction of long-term depression without affecting acute synaptic inhibition. This study demonstrates that, in the spinal cord, direct activation of group I mGluRs that are coupled to phospholipase C through pertussis toxin-insensitive G-proteins induces a long-term depression of synaptic strength. This may be relevant to the processing of sensory information in the spinal cord, including nociception.
Collapse
Affiliation(s)
- J Chen
- Institute of Physiology and Pathophysiology, University of Heidelberg, 69120, Heidelberg, Germany
| | | | | |
Collapse
|
35
|
Chen J, Sandkühler J. Induction of homosynaptic long-term depression at spinal synapses of sensory a delta-fibers requires activation of metabotropic glutamate receptors. Neuroscience 2000; 98:141-8. [PMID: 10858620 DOI: 10.1016/s0306-4522(00)00080-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synaptic strength between primary afferent Adelta-fibers, many of which convey pain-related information, and second order neurons in the spinal dorsal horn can be depressed for prolonged periods of time in a use- and N-methyl-D-aspartate receptor-dependent fashion. Here, we have used a transverse spinal cord slice-dorsal root preparation of young rat to characterize the nature of this form of long-term depression and the role of metabotropic glutamate receptors. Dorsal roots were bisected and intracellular recordings were made from lamina II neurons with independent excitatory synaptic inputs from both dorsal root halves. Conditioning stimulation of one dorsal root half (1 Hz, 900 pulses) induced long-term depression that was specific for the stimulated pathway, i. e. homosynaptic in nature. The induction of long-term depression was prevented by non-selective group I and group II mGluR antagonist (S)-alpha-methyl-4-carboxyphenylglycine, by selective group I receptor antagonist (S)-4-carboxyphenylglycine and by selective group II mGluR antagonist (RS)-alpha-methylserine-O-phosphate monophenyl ester. Group III mGluR antagonist (RS)-alpha-methylserine-O-phosphate was ineffective. Short-term depression was not affected by any of these antagonists.Thus, a homosynaptic form of long-term depression exists at putative nociceptive synapses in the spinal dorsal horn and its induction requires the activation of both group I and II metabotropic glutamate receptors.
Collapse
Affiliation(s)
- J Chen
- Institut für Physiologie und Pathophysiologie, Universität Heidelberg, Im Neuenheimer Feld 326, D-69120, Heidelberg, Germany
| | | |
Collapse
|
36
|
Alvarez FJ, Villalba RM, Carr PA, Grandes P, Somohano PM. Differential distribution of metabotropic glutamate receptors 1a, 1b, and 5 in the rat spinal cord. J Comp Neurol 2000; 422:464-87. [PMID: 10861520 DOI: 10.1002/1096-9861(20000703)422:3<464::aid-cne11>3.0.co;2-#] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) modulate somatosensory, autonomic, and motor functions at spinal levels. mGluR postsynaptic actions over spinal neurons display the pharmacologic characteristics of type I mGluRs; however, the spinal distribution of type I mGluR isoforms remains poorly defined. In this study, the authors describe a differential distribution of immunoreactivity to various type I mGluR isoforms (mGluR1a, mGluR5a,b, and mGluR1b) that suggests a correlation between specific isoforms and particular aspects of spinal cord function. Two different antisera raised against mGluR5a,b detected intense immunoreactivity within nociceptive afferent terminal fields (laminae I and II) and also in autonomic regions (parasympathetic and sympathetic). In contrast, two of three anti-mGluR1a antibodies did not immunostain lamina I or II. Laminae I and II immunostaining by a third anti-mGluR1a antibody was competed by a peptide sequence obtained from a homologous region in mGluR5, suggesting possible cross reactivity in fixed tissue. Autonomic neurons did not express mGluR1a immunoreactivity. All anti-mGluR1a antibodies strongly and specifically immunolabeled dendritic and somatic membranes of neurons in the deep dorsal horn (lamina III-V) and the ventral horn (lamina VI-IX). Somatic motoneurons expressed mGluR1a immunoreactivity but little or no mGluR5 immunoreactivity. Phrenic and pudendal motoneurons expressed the highest level of mGluR1a immunoreactivity in the spinal cord. Intense mGluR1b immunoreactivity was restricted to a few scattered neurons and a prominent group of neurons in lamina X. Lamina II neurons expressed low levels of mGluR1b immunoreactivity. Ultrastructurally, type I mGluR immunoreactivity was found mostly at extrasynaptic sites on the plasma membrane, but it was also found perisynaptically, in the body of the postsynaptic regions or in relation to intracytoplasmic structures.
Collapse
Affiliation(s)
- F J Alvarez
- Department of Anatomy, Wright State University, Dayton, Ohio 45435, USA.
| | | | | | | | | |
Collapse
|
37
|
Chen Y, Bacon G, Sher E, Clark BP, Kallman MJ, Wright RA, Johnson BG, Schoepp DD, Kingston AE. Evaluation of the activity of a novel metabotropic glutamate receptor antagonist (+/-)-2-amino-2-(3-cis and trans-carboxycyclobutyl-3-(9-thioxanthyl)propionic acid) in the in vitro neonatal spinal cord and in an in vivo pain model. Neuroscience 2000; 95:787-93. [PMID: 10670446 DOI: 10.1016/s0306-4522(99)00496-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cyclobutylglycine (+/-)-2-amino-2-(3-cis and trans-carboxycyclobutyl-3-(9-thioxanthyl)propionic acid) (LY393053) has been identified as a functionally potent metabotropic glutamate receptor antagonist. It is most potent on the two group I metabotropic glutamate receptors, 1alpha and 5alpha, with IC50 values of 1.0+/-0.4 microM and 1.6+/-1.4 microM, respectively. In this study, LY393053 has also been evaluated electrophysiologically on native group I metabotropic glutamate receptors in an in vitro spinal cord preparation as well as behaviourally, in a mouse model of visceral pain. LY393053 dose-dependently antagonised group I agonist, (RS)-3, 5-dihydroxyphenylglycine, or a broad-spectrum agonist (1S,3R)-amino-1,3-cyclopentanedicarboxylic acid-induced depolarisation of spinal motoneurons. The apparent Kd values were estimated to be 0.3 microM against (RS)-3, 5-dihydroxyphenylglycine-induced depolarisation and 0.5 microM against (1S,3R)-amino-1,3-cyclopentanedicarboxylic acid-induced depolarisation, respectively. On the other hand, the dorsal root-ventral root potential elicited at 8 x threshold was depressed by LY393053 with IC50 values of 9.0+/-0.7 microM and 12.7+/-1.7 microM on monosynaptic and polysynaptic responses, respectively. When investigated using the mouse acetic acid writhing test, LY393053 showed significant analgesic effects at doses of 1-10 mg/kg intraperitoneally. An ED50 value of 6.0 mg/kg was obtained in this test. By revealing a potent effect of LY393053 in antagonising the native group I metabotropic receptor-mediated responses in the spinal cord in rodents, and an antinociceptive efficacy in a mouse visceral pain model, these results, therefore, provide additional evidence in support of the analgesic potential of metabotropic glutamate receptor antagonists.
Collapse
Affiliation(s)
- Y Chen
- Eli Lilly & Co, Windlesham, Surrey, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang LP, Chen Y, Clark BP, Sher E, Westlund KN. The Role of Type 1 Metabotropic Glutamate Receptors in the Generation of Dorsal Root Reflexes Induced by Acute Arthritis or the Spinal Infusion of 4-Aminopyridine in the Anesthetized Rat. THE JOURNAL OF PAIN 2000; 1:151-161. [PMID: 20882110 DOI: 10.1016/s1526-5900(00)90100-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Antidromically propagated action potentials can be recorded in the proximal end of the severed medial articular nerve (MAN) on mechanical stimulation of an inflamed knee in rats and are referred to as dorsal root reflex (DRR) activity. The absence of DRR activity in normal rats suggests that the activity could be the result of hyperexcitability of spinal neurons induced by inflammation. In this study, the role of spinal type 1 metabotropic glutamate (mGlu(1)) receptors in the generation of DRR activity in the MAN during acute knee inflammation was investigated. Four hours after an injection of a mixture of kaolin and carrageenan (k/c) into a knee joint, DRR activity could be evoked in the ipsilateral MAN by mechanical stimulation of the inflamed limb. Spinal application of a selective mGlu(1) receptor antagonist, [RS]-1-Aminoindan-1,5-dicarboxylic acid/UPF 523 (AIDA), or a potent, but less specific mGlu(1) receptor antagonist, LY393053, both depressed the DRR activity significantly. AIDA and LY39053 had no effect on recordings in the MAN from noninflamed control animals. However, spinal administration of AIDA did suppress DRR activity generated by infusion of 4-aminopyridine (4-AP), a K(+) channel blocker, into the dorsal horn of noninflamed animals. These observations suggest that mGlu(1) receptors support the generation of DRR activity in the MAN following sensitization of spinal cord neurons.
Collapse
Affiliation(s)
- Li Ping Zhang
- Department of Anatomy and Neuroscience, Marine Biomedical Institute, The University of Texas Medical Branch at Galveston, Galveston, TX; and Eli Lilly and Co, Windlesham, Surrey, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Russo RE, Hounsgaard J. Dynamics of intrinsic electrophysiological properties in spinal cord neurones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 72:329-65. [PMID: 10605293 DOI: 10.1016/s0079-6107(99)00011-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The spinal cord is engaged in a wide variety of functions including generation of motor acts, coding of sensory information and autonomic control. The intrinsic electrophysiological properties of spinal neurones represent a fundamental building block of the spinal circuits executing these tasks. The intrinsic response properties of spinal neurones--determined by the particular set and distribution of voltage sensitive channels and their dynamic non-linear interactions--show a high degree of functional specialisation as reflected by the differences of intrinsic response patterns in different cell types. Specialised, cell specific electrophysiological phenotypes gradually differentiate during development and are continuously adjusted in the adult animal by metabotropic synaptic interactions and activity-dependent plasticity to meet a broad range of functional demands.
Collapse
Affiliation(s)
- R E Russo
- Unidad Asociada Neurofisiología, Instituto de Investigaciones Biológicas Clemente Estable, Facultad de Ciencias, Montevideo, Uruguay.
| | | |
Collapse
|
40
|
Ugolini A, Corsi M, Bordi F. Potentiation of NMDA and AMPA responses by the specific mGluR5 agonist CHPG in spinal cord motoneurons. Neuropharmacology 1999; 38:1569-76. [PMID: 10530818 DOI: 10.1016/s0028-3908(99)00095-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The specific metabotropic glutamate receptor (mGluR)5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) is able to potentiate NMDA and AMPA responses recorded from ventral roots of the isolated hemisected baby rat spinal cord. Previously we have demonstrated that activation of group I mGluRs (mGluR1 and mGluR5) with the broad spectrum mGluR agonist 1S,3R-1-amino-1,3-cyclopentanedicarboxylate (ACPD) produced potentiation of ionotropic glutamate responses. In contrast to ACPD-induced potentiation, however, no evidence for an involvement of protein kinase C (PKC) is found in the CHPG-induced potentiation of both NMDA and AMPA depolarization because the PKC blockers chelerythrine chloride or calphostin C did not antagonize this effect. Moreover, in the absence of Ca2+ in the perfusing medium or depleting intracellular Ca2+ stores with thapsigargin or dantrolene did not modify the CHPG-induced enhancement of NMDA depolarizations. Phorbol-12,13-diacetate (PDA), on the other hand, was able to attenuate this effect, which was reversed by chelerythrine chloride. These results suggest that both mGluR5 and mGluR1 may act to enhance ionotropic glutamate responses but the two types of mGluRs may have different intracellular mechanisms of action.
Collapse
Affiliation(s)
- A Ugolini
- Pharmacology Department, GlaxoWellcome Medicines Research Centre, Verona, Italy
| | | | | |
Collapse
|
41
|
Abstract
Glutamate is the major excitatory neurotransmitter in the brain and plays a unique role in a variety of central nervous system (CNS) functions. The discovery of the metabotropic receptors (mGluRs), a family of G-protein coupled receptors than can be activated by glutamate, has led to an impressive number of studies in recent years aimed at understanding their biochemical, physiological and pharmacological characteristics. The eight mGluRs now known are divided into three groups according to their sequence homology, signal transduction mechanisms, and agonist selectivity. Group I mGluRs include mGluR1 and mGluR5, which are linked to the activation of phospholipase C; Groups II and III include all others and are negatively coupled to adenylyl cyclases. The availability in recent years of agents selective for Group I mGluRs has made possible the study of the physiological roles of these receptors in the CNS. In addition to mediating glutamatergic neurotransmission, Group I mGluRs can modulate other neurotransmitter receptors, including GABA and the ionotropic glutamate receptors. Group I mGluRs are involved in many CNS functions and may participate in a variety of disorders such as pain, epilepsy, ischemia, and chronic neurodegenerative diseases. This class of receptor may provide important pharmacological therapeutic targets and elucidating its functions will be relevant to develop new treatments for neurological and psychiatric disorders in which glutamatergic neurotransmission is abnormally regulated. In this review anatomical, physiological and pharmacological results are presented with a special emphasis on the role of Group I mGluRs in functional and pathological processes.
Collapse
Affiliation(s)
- F Bordi
- Pharmacology Department, GlaxoWellcome Medicine Research Centre, Verona, Italy.
| | | |
Collapse
|
42
|
|
43
|
Neugebauer V, Chen PS, Willis WD. Role of metabotropic glutamate receptor subtype mGluR1 in brief nociception and central sensitization of primate STT cells. J Neurophysiol 1999; 82:272-82. [PMID: 10400956 DOI: 10.1152/jn.1999.82.1.272] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G-protein coupled metabotropic glutamate receptors (mGluRs) are important modulators of synaptic transmission in the mammalian CNS and have been implicated in various forms of neuroplasticity and nervous system disorders. Increasing evidence also suggests an involvement of mGluRs in nociception and pain behavior although the contribution of individual mGluR subtypes is not yet clear. Subtypes mGluR1 and mGluR5 are classified as group I mGluRs and share the ability to stimulate phosphoinositide hydrolysis and activate protein kinase C. The present study examined the role of group I mGluRs in nociceptive processing and capsaicin-induced central sensitization of primate spinothalamic tract (STT) cells in vivo. In 10 anesthetized male monkeys (Macaca fascicularis) extracellular recordings were made from 20 STT cells in the lumbar dorsal horn. Responses to brief (15 s) cutaneous stimuli of innocuous (BRUSH) and barely and substantially noxious (PRESS and PINCH, respectively) intensity were recorded before, during, and after the infusion of group I mGluR agonists and antagonists into the dorsal horn by microdialysis. Cumulative concentration-response relationships were obtained by applying different concentrations for at least 20 min each (at 5 microl/min). The actual concentrations reached in the tissue are 2-3 orders of magnitude lower than those in the microdialysis fibers (values in this paper refer to the latter). The group I antagonists were also applied at 10-25 min after capsaicin injection. S-DHPG, a group I agonist at both mGluR1 and mGluR5, potentiated the responses to innocuous and noxious stimuli (BRUSH > PRESS > PINCH) at low concentrations (10-100 microM; n = 5) but had inhibitory effects at higher concentrations (1-10 mM; n = 5). The mGluR5 agonist CHPG (1 microM-100 mM; n = 5) did not potentiate but inhibited all responses (10-100 mM; n = 5). AIDA (1 microM-100 mM), a mGluR1-selective antagonist, dose-dependently depressed the responses to PINCH and PRESS but not to BRUSH (n = 6). The group I (mGluR1 > mGluR5) antagonist CPCCOEt (1 microM-100 mM) had similar effects (n = 6). Intradermal injections of capsaicin sensitized the STT cells to cutaneous mechanical stimuli. The enhancement of the responses by capsaicin resembled the potentiation by the group I mGluR agonist S-DHPG (BRUSH > PRESS > PINCH). CPCCOEt (1 mM) reversed the capsaicin-induced sensitization when given as posttreatment (n = 5). After washout of CPCCOEt, the sensitization resumed. Similarly, AIDA (1 mM; n = 7) reversed the capsaicin-induced sensitization and also blocked the potentiation by S-DHPG (n = 5). These data suggest that the mGluR1 subtype is activated endogenously during brief high-intensity cutaneous stimuli (PRESS, PINCH) and is critically involved in capsaicin-induced central sensitization.
Collapse
Affiliation(s)
- V Neugebauer
- Department of Anatomy and Neurosciences and Marine Biomedical Institute, The University of Texas Medical Branch, Galveston, Texas 77555-1069, USA
| | | | | |
Collapse
|
44
|
Holohean AM, Hackman JC, Davidoff RA. Mechanisms involved in the metabotropic glutamate receptor-enhancement of NMDA-mediated motoneurone responses in frog spinal cord. Br J Pharmacol 1999; 126:333-41. [PMID: 10051153 PMCID: PMC1565774 DOI: 10.1038/sj.bjp.0702263] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The metabotropic glutamate receptor (mGluR) agonist trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid (trans-ACPD) (10-100 microM) depolarized isolated frog spinal cord motoneurones, a process sensitive to kynurenate (1.0 mM) and tetrodotoxin (TTX) (0.783 microM). 2. In the presence of NMDA open channel blockers [Mg2+; (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK801); 3,5-dimethyl-1-adamantanamine hydrochloride (memantine)] and TTX, trans-ACPD significantly potentiated NMDA-induced motoneurone depolarizations, but not alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA)- or kainate-induced depolarizations. 3. NMDA potentiation was blocked by (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG) (240 microM), but not by alpha-methyl-(2S,3S,4S)-alpha-(carboxycyclopropyl)-glycine (MCCG) (290 microM) or by alpha-methyl-(S)-2-amino-4-phosphonobutyrate (L-MAP4) (250 microM), and was mimicked by 3,5-dihydroxyphenylglycine (DHPG) (30 microM), but not by L(+)-2-amino-4-phosphonobutyrate (L-AP4) (100 microM). Therefore, trans-ACPD's facilitatory effects appear to involve group I mGluRs. 4. Potentiation was prevented by the G-protein decoupling agent pertussis toxin (3-6 ng ml(-1), 36 h preincubation). The protein kinase C inhibitors staurosporine (2.0 microM) and N-(2-aminoethyl)-5-isoquinolinesulphonamide HCI (H9) (77 microM) did not significantly reduce enhanced NMDA responses. Protein kinase C activation with phorbol-12-myristate 13-acetate (5.0 microM) had no effect. 5. Intracellular Ca2+ depletion with thapsigargin (0.1 microM) (which inhibits Ca2+/ATPase), 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetracetic acid acetyl methyl ester (BAPTA-AM) (50 microM) (which buffers elevations of [Ca2+]i), and bathing spinal cords in nominally Ca2+-free medium all reduced trans-ACPD's effects. 6. The calmodulin antagonists N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W7) (100 microM) and chlorpromazine (100 microM) diminished the potentiation. 7. In summary, group I mGluRs selectively facilitate NMDA-depolarization of frog motoneurones via a G-protein, a rise in [Ca2+]i from the presumed generation of phosphoinositides, binding of Ca2+ to calmodulin, and lessening of the Mg2+-produced channel block of the NMDA receptor.
Collapse
Affiliation(s)
- Alice M Holohean
- Neurophysiology Laboratory, Veterans Affairs Medical Center, PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
- Department of Neurology (D4-5), PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
| | - John C Hackman
- Neurophysiology Laboratory, Veterans Affairs Medical Center, PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
- Spinal Cord Pharmacology Laboratory, Veterans Affairs Medical Center, PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
- Department of Neurology (D4-5), PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
| | - Robert A Davidoff
- Neurophysiology Laboratory, Veterans Affairs Medical Center, PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
- Department of Neurology (D4-5), PO Box 016960, University of Miami School of Medicine, Miami, Florida 33101, U.S.A
- Author for correspondence: .
| |
Collapse
|
45
|
Anwyl R. Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:83-120. [PMID: 9974152 DOI: 10.1016/s0165-0173(98)00050-2] [Citation(s) in RCA: 657] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Electrophysiological research on mGluRs is now very extensive, and it is clear that activation of mGluRs results in a large number of diverse cellular actions. Studies of mGluRs and on ionic channels has clearly demonstrated that mGluR activation has a widespread and potent inhibitory action on both voltage-gated Ca2+ channels and K+ channels. Inhibition of N-type Ca2+ channels, and inhibition of Ca(++)-dependent K+ current, IAHP, and IM being particularly prominent. Potentiation of activation of both Ca2+ and K+ channels has also been observed, although less prominently than inhibition, but mGluR-mediated activation of non-selective cationic channels is widespread. In a small number of studies, generation of an mGluR-mediated slow excitatory postsynaptic potential has been demonstrated as a consequence of the effect of mGluR activation on ion channels, such as activation of a non-selective cationic channels. Although certain mGluR-modulation of channels is a consequence of direct G-protein-linked action, for example, inhibition of Ca2+ channels, many other effects occur as a result of activation of intracellular messenger pathways, but at present, little progress has been made on the identification of the messengers. The field of study of the involvement of mGluRs in synaptic plasticity is very large. Evidence for the involvement of mGluRs in one form of LTD induction in the cerebellum and hippocampus is now particularly impressive. However, the role of mGluRs in LTP induction continues to be a source of dispute, and resolution of the question of the exact involvement of mGluRs in the induction of LTP will have to await the production of more selective ligands and of selective gene knockouts.
Collapse
Affiliation(s)
- R Anwyl
- Department of Physiology, Trinity College, Dublin, Ireland.
| |
Collapse
|
46
|
Antisense ablation of type I metabotropic glutamate receptor mGluR1 inhibits spinal nociceptive transmission. J Neurosci 1998. [PMID: 9822771 DOI: 10.1523/jneurosci.18-23-10180.1998] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrophysiological and behavioral studies point to a role of group I metabotropic glutamate receptors (mGluR1 and mGluR5) in mediating spinal nociceptive responses in rats. However, antagonists with a high degree of specificity for each of these sites are not yet available. We, therefore, examined the effects of antisense deletion of spinal mGluR1 expression in assays of behavioral analgesia and of electrophysiological responses of dorsal horn neurons. Rats treated with an mGluR1 antisense oligonucleotide reagent, delivered continuously to the intrathecal space of the lumbar spinal cord, developed marked analgesia as measured by an increase in the latency to tail-flick (55 degreesC) over a period of 4-7 d. This correlated with a selective reduction in mGluR1, but not mGluR5, immunoreactivity in the superficial dorsal horn compared with untreated control rats, in parallel with a significant reduction in the proportion of neurons activated by the mGluR group I agonist 3, 5-dihydroxyphenylglycine (DHPG), whereas the proportion of cells excited by the mGluR5 agonist, trans-azetidine-2,4-dicarboxylic acid (t-ADA) remained unaffected. In contrast, rats treated with mGluR1 sense or mismatch probes showed none of these changes compared with untreated, control rats. Furthermore, multireceptive dorsal horn neurons in mGluR1 antisense-treated rats were strongly excited by innocuous stimuli to their peripheral receptive fields, but showed severe reductions in their sustained excitatory responses to the selective C-fiber activator mustard oil and in responses to DHPG.
Collapse
|
47
|
Zahn PK, Brennan TJ. Intrathecal Metabotropic Glutamate Receptor Antagonists Do Not Decrease Mechanical Hyperalgesia in a Rat Model of Postoperative Pain. Anesth Analg 1998. [DOI: 10.1213/00000539-199812000-00026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Intrathecal Metabotropic Glutamate Receptor Antagonists Do Not Decrease Mechanical Hyperalgesia in a Rat Model of Postoperative Pain. Anesth Analg 1998. [DOI: 10.1097/00000539-199812000-00026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Wang XF, Daw NW, Jin X. The effect of ACPD on the responses to NMDA and AMPA varies with layer in slices of rat visual cortex. Brain Res 1998; 812:186-92. [PMID: 9813318 DOI: 10.1016/s0006-8993(98)01000-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of 1S,3R-aminocyclopentane dicarboxylic acid (ACPD) was measured on cells from various layers in slices of the rat visual cortex using whole-cell recording techniques. The position of the recorded cell was estimated by distance from pia to the layer VI/white matter boundary, and verified in 34/97 cells by staining with biocytin. Potentiation or depression of the responses to NMDA and AMPA by the metabotropic glutamate agonist ACPD was examined by iontophoresis of the drugs close to the cell body. Iontophoresis of ACPD had different effects in different layers. In layer VI, ACPD produced a substantial depolarization, which augmented the responses to NMDA and AMPA. In layer V, ACPD did not produce a significant depolarization, but potentiated the response to NMDA and AMPA. In layer IV, ACPD produced a small hyperpolarization, and depressed the response to NMDA. In layers II and III, the results were small and variable. Most recordings from stained cells were from pyramidal cells. Where recordings from non-pyramidal cells were obtained (3/34), results were the same as from pyramidal cells in the same layer. The same results were obtained when tetrodotoxin was in the bath solution. We conclude that the potentiation or depression of the response to NMDA and AMPA by ACPD varies with layer in rat visual cortex.
Collapse
Affiliation(s)
- X F Wang
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06520-8061, USA
| | | | | |
Collapse
|
50
|
Stanfa LC, Dickenson AH. Inflammation alters the effects of mGlu receptor agonists on spinal nociceptive neurones. Eur J Pharmacol 1998; 347:165-72. [PMID: 9653877 DOI: 10.1016/s0014-2999(98)00098-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several types of metabotropic glutamate receptor are known to be located in the spinal cord. This study examined the effects of the metabotropic glutamate receptor agonists (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD), (S)-3,5-dihydroxyphenylglycine ((S)-3,5-DHPG) and (1S,3S)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3S)-ACPD) on the electrically evoked responses of dorsal horn neurones recorded in normal animals and in animals 3 h after the induction of carrageenan inflammation. The group I and II agonist (1S,3R)-ACPD produced facilitations of the noxious evoked neuronal responses in normal animals, but inhibited these responses following carrageenan inflammation. The group II agonist (1S,3S)-ACPD also produced inhibitions in the carrageenan animals, in contrast to the mixed effects seen in normal animals. The group I agonist (S)-3,5-DHPG produced mixed effects (inhibitions and facilitations) in both normal and carrageenan animals. This in vivo study shows that the effects of metabotropic glutamate receptor agonists are more complex than in vitro studies have suggested to date.
Collapse
Affiliation(s)
- L C Stanfa
- Dept. of Pharmacology, University College, London, UK.
| | | |
Collapse
|