1
|
Dhalla NS, Elimban V, Adameova AD. Role of Na +-K + ATPase Alterations in the Development of Heart Failure. Int J Mol Sci 2024; 25:10807. [PMID: 39409137 PMCID: PMC11476929 DOI: 10.3390/ijms251910807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Na+-K+ ATPase is an integral component of cardiac sarcolemma and consists of three major subunits, namely the α-subunit with three isoforms (α1, α2, and α3), β-subunit with two isoforms (β1 and β2) and γ-subunit (phospholemman). This enzyme has been demonstrated to transport three Na and two K ions to generate a trans-membrane gradient, maintain cation homeostasis in cardiomyocytes and participate in regulating contractile force development. Na+-K+ ATPase serves as a receptor for both exogenous and endogenous cardiotonic glycosides and steroids, and a signal transducer for modifying myocardial metabolism as well as cellular survival and death. In addition, Na+-K+ ATPase is regulated by different hormones through the phosphorylation/dephosphorylation of phospholemman, which is tightly bound to this enzyme. The activity of Na+-K+ ATPase has been reported to be increased, unaltered and depressed in failing hearts depending upon the type and stage of heart failure as well as the association/disassociation of phospholemman and binding with endogenous cardiotonic steroids, namely endogenous ouabain and marinobufagenin. Increased Na+-K+ ATPase activity in association with a depressed level of intracellular Na+ in failing hearts is considered to decrease intracellular Ca2+ and serve as an adaptive mechanism for maintaining cardiac function. The slight to moderate depression of Na+-K+ ATPase by cardiac glycosides in association with an increased level of Na+ in cardiomyocytes is known to produce beneficial effects in failing hearts. On the other hand, markedly reduced Na+-K+ ATPase activity associated with an increased level of intracellular Na+ in failing hearts has been demonstrated to result in an intracellular Ca2+ overload, the occurrence of cardiac arrhythmias and depression in cardiac function during the development of heart failure. Furthermore, the status of Na+-K+ ATPase activity in heart failure is determined by changes in isoform subunits of the enzyme, the development of oxidative stress, intracellular Ca2+-overload, protease activation, the activity of inflammatory cytokines and sarcolemmal lipid composition. Evidence has been presented to show that marked alterations in myocardial cations cannot be explained exclusively on the basis of sarcolemma alterations, as other Ca2+ channels, cation transporters and exchangers may be involved in this event. A marked reduction in Na+-K+ ATPase activity due to a shift in its isoform subunits in association with intracellular Ca2+-overload, cardiac energy depletion, increased membrane permeability, Ca2+-handling abnormalities and damage to myocardial ultrastructure appear to be involved in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Adriana Duris Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia;
| |
Collapse
|
2
|
Bovo E, Seflova J, Robia SL, Zima AV. Protein carbonylation causes sarcoplasmic reticulum Ca 2+ overload by increasing intracellular Na + level in ventricular myocytes. Pflugers Arch 2024; 476:1077-1086. [PMID: 38769127 DOI: 10.1007/s00424-024-02972-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes cause an abnormality in cardiac Ca2+ regulation that can lead to cardiomyopathies. In this study, we explored how the reactive α-dicarbonyl methylglyoxal (MGO) affects Ca2+ regulation in mouse ventricular myocytes. Analysis of intracellular Ca2+ dynamics revealed that MGO (200 μM) increases action potential (AP)-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load, with a limited effect on L-type Ca2+ channel-mediated Ca2+ transients and SERCA-mediated Ca2+ uptake. At the same time, MGO significantly slowed down cytosolic Ca2+ extrusion by Na+/Ca2+ exchanger (NCX). MGO also increased the frequency of Ca2+ waves during rest and these Ca2+ release events were abolished by an external solution with zero [Na+] and [Ca2+]. Adrenergic receptor activation with isoproterenol (10 nM) increased Ca2+ transients and SR Ca2+ load, but it also triggered spontaneous Ca2+ waves in 27% of studied cells. Pretreatment of myocytes with MGO increased the fraction of cells with Ca2+ waves during adrenergic receptor stimulation by 163%. Measurements of intracellular [Na+] revealed that MGO increases cytosolic [Na+] by 57% from the maximal effect produced by the Na+-K+ ATPase inhibitor ouabain (20 μM). This increase in cytosolic [Na+] was a result of activation of a tetrodotoxin-sensitive Na+ influx, but not an inhibition of Na+-K+ ATPase. An increase in cytosolic [Na+] after treating cells with ouabain produced similar effects on Ca2+ regulation as MGO. These results suggest that protein carbonylation can affect cardiac Ca2+ regulation by increasing cytosolic [Na+] via a tetrodotoxin-sensitive pathway. This, in turn, reduces Ca2+ extrusion by NCX, causing SR Ca2+ overload and spontaneous Ca2+ waves.
Collapse
Affiliation(s)
- Elisa Bovo
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL, 60153, USA
| | - Jaroslava Seflova
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL, 60153, USA
| | - Seth L Robia
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL, 60153, USA
| | - Aleksey V Zima
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Avenue, Maywood, IL, 60153, USA.
| |
Collapse
|
3
|
Vagin O, Tokhtaeva E, Larauche M, Davood J, Marcus EA. Helicobacter pylori-Induced Decrease in Membrane Expression of Na,K-ATPase Leads to Gastric Injury. Biomolecules 2024; 14:772. [PMID: 39062486 PMCID: PMC11274427 DOI: 10.3390/biom14070772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Helicobacter pylori is a highly prevalent human gastric pathogen that causes gastritis, ulcer disease, and gastric cancer. It is not yet fully understood how H. pylori injures the gastric epithelium. The Na,K-ATPase, an essential transporter found in virtually all mammalian cells, has been shown to be important for maintaining the barrier function of lung and kidney epithelia. H. pylori decreases levels of Na,K-ATPase in the plasma membrane of gastric epithelial cells, and the aim of this study was to demonstrate that this reduction led to gastric injury by impairing the epithelial barrier. Similar to H. pylori infection, the inhibition of Na,K-ATPase with ouabain decreased transepithelial electrical resistance and increased paracellular permeability in cell monolayers of human gastric cultured cells, 2D human gastric organoids, and gastric epithelium isolated from gerbils. Similar effects were caused by a partial shRNA silencing of Na,K-ATPase in human gastric organoids. Both H. pylori infection and ouabain exposure disrupted organization of adherens junctions in human gastric epithelia as demonstrated by E-cadherin immunofluorescence. Functional and structural impairment of epithelial integrity with a decrease in Na,K-ATPase amount or activity provides evidence that the H. pylori-induced downregulation of Na,K-ATPase plays a role in the complex mechanism of gastric disease induced by the bacteria.
Collapse
Affiliation(s)
- Olga Vagin
- Department of Pediatrics, DGSOM at UCLA, 10833 LeConte Ave., 12-383 MDCC, Los Angeles, CA 90095, USA; (O.V.); (E.T.)
- VA GLAHS 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, USA; (M.L.); (J.D.)
| | - Elmira Tokhtaeva
- Department of Pediatrics, DGSOM at UCLA, 10833 LeConte Ave., 12-383 MDCC, Los Angeles, CA 90095, USA; (O.V.); (E.T.)
- VA GLAHS 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, USA; (M.L.); (J.D.)
| | - Muriel Larauche
- VA GLAHS 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, USA; (M.L.); (J.D.)
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, DGSOM at UCLA, 650 Charles E Young Dr. S., CHS 43-276, Los Angeles, CA 90095, USA
| | - Joshua Davood
- VA GLAHS 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, USA; (M.L.); (J.D.)
- Department of Medicine, Vatche and Tamar Manoukian Division of Digestive Diseases, DGSOM at UCLA, 650 Charles E Young Dr. S., CHS 43-276, Los Angeles, CA 90095, USA
| | - Elizabeth A. Marcus
- Department of Pediatrics, DGSOM at UCLA, 10833 LeConte Ave., 12-383 MDCC, Los Angeles, CA 90095, USA; (O.V.); (E.T.)
- VA GLAHS 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, USA; (M.L.); (J.D.)
| |
Collapse
|
4
|
Hladky SB, Barrand MA. Alterations in brain fluid physiology during the early stages of development of ischaemic oedema. Fluids Barriers CNS 2024; 21:51. [PMID: 38858667 PMCID: PMC11163777 DOI: 10.1186/s12987-024-00534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/22/2024] [Indexed: 06/12/2024] Open
Abstract
Oedema occurs when higher than normal amounts of solutes and water accumulate in tissues. In brain parenchymal tissue, vasogenic oedema arises from changes in blood-brain barrier permeability, e.g. in peritumoral oedema. Cytotoxic oedema arises from excess accumulation of solutes within cells, e.g. ischaemic oedema following stroke. This type of oedema is initiated when blood flow in the affected core region falls sufficiently to deprive brain cells of the ATP needed to maintain ion gradients. As a consequence, there is: depolarization of neurons; neural uptake of Na+ and Cl- and loss of K+; neuronal swelling; astrocytic uptake of Na+, K+ and anions; swelling of astrocytes; and reduction in ISF volume by fluid uptake into neurons and astrocytes. There is increased parenchymal solute content due to metabolic osmolyte production and solute influx from CSF and blood. The greatly increased [K+]isf triggers spreading depolarizations into the surrounding penumbra increasing metabolic load leading to increased size of the ischaemic core. Water enters the parenchyma primarily from blood, some passing into astrocyte endfeet via AQP4. In the medium term, e.g. after three hours, NaCl permeability and swelling rate increase with partial opening of tight junctions between blood-brain barrier endothelial cells and opening of SUR1-TPRM4 channels. Swelling is then driven by a Donnan-like effect. Longer term, there is gross failure of the blood-brain barrier. Oedema resolution is slower than its formation. Fluids without colloid, e.g. infused mock CSF, can be reabsorbed across the blood-brain barrier by a Starling-like mechanism whereas infused serum with its colloids must be removed by even slower extravascular means. Large scale oedema can increase intracranial pressure (ICP) sufficiently to cause fatal brain herniation. The potentially lethal increase in ICP can be avoided by craniectomy or by aspiration of the osmotically active infarcted region. However, the only satisfactory treatment resulting in retention of function is restoration of blood flow, providing this can be achieved relatively quickly. One important objective of current research is to find treatments that increase the time during which reperfusion is successful. Questions still to be resolved are discussed.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1PD, UK.
| | - Margery A Barrand
- Department of Pharmacology, Tennis Court Rd., Cambridge, CB2 1PD, UK
| |
Collapse
|
5
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
6
|
Awda BJ, Mahoney IV, Pettitt M, Imran M, Katselis GS, Buhr MM. Existence and importance of Na +K +-ATPase in the plasma membrane of boar spermatozoa. Can J Physiol Pharmacol 2024; 102:254-269. [PMID: 38029410 DOI: 10.1139/cjpp-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Sodium-potassium-ATPase (Na+K+-ATPase), a target to treat congestive heart failure, is the only known receptor for cardiac glycosides implicated in intracellular signaling and additionally functions enzymatically in ion transport. Spermatozoa need transmembrane ion transport and signaling to fertilize, and Na+K+-ATPase is identified here for the first time in boar spermatozoa. Head plasma membrane (HPM) isolated from boar spermatozoa was confirmed pure by marker enzymes acid and alkaline phosphatase (218 ± 23% and 245 ± 38% enrichment, respectively, versus whole spermatozoa). Western immunoblotting detected α and β subunits (isoforms α1, α3, β1, β2, and β3) in different concentrations in whole spermatozoa and HPM. Immunofluorescence of intact sperm only detected α3 on the post-equatorial exterior membrane; methanol-permeabilized sperm also had α3 post-equatorially and other isoforms on the acrosomal ridge and cap. Mass spectrometry confirmed the presence of all isoforms in HPM. Incubating boar sperm in capacitating media to induce the physiological changes preceding fertilization significantly increased the percentage of capacitated sperm compared to 0 h control (33.0 ± 2.6% vs. 19.2 ± 2.6% capacitated sperm, respectively; p = 0.014) and altered the β2 immunofluorescence pattern. These results demonstrate the presence of Na+K+-ATPase in boar sperm HPM and that it changes during capacitation.
Collapse
Affiliation(s)
- Basim J Awda
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Ian V Mahoney
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
| | - Murray Pettitt
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Muhammad Imran
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - George S Katselis
- Department of Medicine, Division of Canadian Centre for Health and Safety in Agriculture, College of Medicine, University of Saskatchewan, Saskatoon, SK, S7N 2Z4, Canada
| | - Mary M Buhr
- Department of Animal and Poultry Science, University of Guelph, ON, N1G 2W1, Canada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
7
|
Bovo E, Seflova J, Robia SL, Zima AV. Protein carbonylation causes sarcoplasmic reticulum Ca2+ overload by increasing intracellular Na+ level in ventricular myocytes. RESEARCH SQUARE 2024:rs.3.rs-3991887. [PMID: 38464201 PMCID: PMC10925417 DOI: 10.21203/rs.3.rs-3991887/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Diabetes is commonly associated with an elevated level of reactive carbonyl species due to alteration of glucose and fatty acid metabolism. These metabolic changes cause an abnormality in cardiac Ca2+ regulation that can lead to cardiomyopathies. In this study, we explored how the reactive α-dicarbonyl methylglyoxal (MGO) affects Ca2+ regulation in mouse ventricular myocytes. Analysis of intracellular Ca2+ dynamics revealed that MGO (200 μM) increases action potential (AP)-induced Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ load, with a limited effect on L-type Ca2+ channel-mediated Ca2+ transients and SERCA-mediated Ca2+ uptake. At the same time, MGO significantly slowed down cytosolic Ca2+ extrusion by Na+/Ca2+ exchanger (NCX). MGO also increased the frequency of Ca2+ waves during rest and these Ca2+ release events were abolished by an external solution with zero [Na+] and [Ca2+]. Adrenergic receptor activation with isoproterenol (10 nM) increased Ca2+ transients and SR Ca2+ load, but it also triggered spontaneous Ca2+ waves in 27% of studied cells. Pretreatment of myocytes with MGO increased the fraction of cells with Ca2+ waves during adrenergic receptor stimulation by 163%. Measurements of intracellular [Na+] revealed that MGO increases cytosolic [Na+] by 57% from the maximal effect produced by the Na+-K+ ATPase inhibitor ouabain (20 μM). This increase in cytosolic [Na+] was a result of activation of a tetrodotoxin-sensitive Na+ influx, but not an inhibition of Na+-K+ ATPase. An increase in cytosolic [Na+] after treating cells with ouabain produced similar effects on Ca2+ regulation as MGO. These results suggest that protein carbonylation can affect cardiac Ca2+ regulation by increasing cytosolic [Na+] via a tetrodotoxin-sensitive pathway. This, in turn, reduces Ca2+ extrusion by NCX, causing SR Ca2+ overload and spontaneous Ca2+ waves.
Collapse
Affiliation(s)
- Elisa Bovo
- Loyola University Chicago, Stritch School of Medicine
| | | | - Seth L Robia
- Loyola University Chicago, Stritch School of Medicine
| | | |
Collapse
|
8
|
McKenna MJ, Renaud JM, Ørtenblad N, Overgaard K. A century of exercise physiology: effects of muscle contraction and exercise on skeletal muscle Na +,K +-ATPase, Na + and K + ions, and on plasma K + concentration-historical developments. Eur J Appl Physiol 2024; 124:681-751. [PMID: 38206444 PMCID: PMC10879387 DOI: 10.1007/s00421-023-05335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/27/2023] [Indexed: 01/12/2024]
Abstract
This historical review traces key discoveries regarding K+ and Na+ ions in skeletal muscle at rest and with exercise, including contents and concentrations, Na+,K+-ATPase (NKA) and exercise effects on plasma [K+] in humans. Following initial measures in 1896 of muscle contents in various species, including humans, electrical stimulation of animal muscle showed K+ loss and gains in Na+, Cl- and H20, then subsequently bidirectional muscle K+ and Na+ fluxes. After NKA discovery in 1957, methods were developed to quantify muscle NKA activity via rates of ATP hydrolysis, Na+/K+ radioisotope fluxes, [3H]-ouabain binding and phosphatase activity. Since then, it became clear that NKA plays a central role in Na+/K+ homeostasis and that NKA content and activity are regulated by muscle contractions and numerous hormones. During intense exercise in humans, muscle intracellular [K+] falls by 21 mM (range - 13 to - 39 mM), interstitial [K+] increases to 12-13 mM, and plasma [K+] rises to 6-8 mM, whilst post-exercise plasma [K+] falls rapidly, reflecting increased muscle NKA activity. Contractions were shown to increase NKA activity in proportion to activation frequency in animal intact muscle preparations. In human muscle, [3H]-ouabain-binding content fully quantifies NKA content, whilst the method mainly detects α2 isoforms in rats. Acute or chronic exercise affects human muscle K+, NKA content, activity, isoforms and phospholemman (FXYD1). Numerous hormones, pharmacological and dietary interventions, altered acid-base or redox states, exercise training and physical inactivity modulate plasma [K+] during exercise. Finally, historical research approaches largely excluded female participants and typically used very small sample sizes.
Collapse
Affiliation(s)
- Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia.
- College of Physical Education, Southwest University, Chongqing, China.
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China.
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Neuromuscular Research Center, University of Ottawa, Ottawa, ON, Canada
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Rose CR, Verkhratsky A. Sodium homeostasis and signalling: The core and the hub of astrocyte function. Cell Calcium 2024; 117:102817. [PMID: 37979342 DOI: 10.1016/j.ceca.2023.102817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
Neuronal activity and neurochemical stimulation trigger spatio-temporal changes in the cytoplasmic concentration of Na+ ions in astrocytes. These changes constitute the substrate for Na+ signalling and are fundamental for astrocytic excitability. Astrocytic Na+ signals are generated by Na+ influx through neurotransmitter transporters, with primary contribution of glutamate transporters, and through cationic channels; whereas recovery from Na+ transients is mediated mainly by the plasmalemmal Na+/K+ ATPase. Astrocytic Na+ signals regulate the activity of plasmalemmal transporters critical for homeostatic function of astrocytes, thus providing real-time coordination between neuronal activity and astrocytic support.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Alexej Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| |
Collapse
|
10
|
Cai L, Pessoa MT, Gao Y, Strause S, Banerjee M, Tian J, Xie Z, Pierre SV. The Na/K-ATPase α1/Src Signaling Axis Regulates Mitochondrial Metabolic Function and Redox Signaling in Human iPSC-Derived Cardiomyocytes. Biomedicines 2023; 11:3207. [PMID: 38137428 PMCID: PMC10740578 DOI: 10.3390/biomedicines11123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Na/K-ATPase (NKA)-mediated regulation of Src kinase, which involves defined amino acid sequences of the NKA α1 polypeptide, has emerged as a novel regulatory mechanism of mitochondrial function in metazoans. Mitochondrial metabolism ensures adequate myocardial performance and adaptation to physiological demand. It is also a critical cellular determinant of cardiac repair and remodeling. To assess the impact of the proposed NKA/Src regulatory axis on cardiac mitochondrial metabolic function, we used a gene targeting approach in human cardiac myocytes. Human induced pluripotent stem cells (hiPSC) expressing an Src-signaling null mutant (A420P) form of the NKA α1 polypeptide were generated using CRISPR/Cas9-mediated genome editing. Total cellular Na/K-ATPase activity remained unchanged in A420P compared to the wild type (WT) hiPSC, but baseline phosphorylation levels of Src and ERK1/2 were drastically reduced. Both WT and A420P mutant hiPSC readily differentiated into cardiac myocytes (iCM), as evidenced by marker gene expression, spontaneous cell contraction, and subcellular striations. Total NKA α1-3 protein expression was comparable in WT and A420P iCM. However, live cell metabolism assessed functionally by Seahorse extracellular flux analysis revealed significant reductions in both basal and maximal rates of mitochondrial respiration, spare respiratory capacity, ATP production, and coupling efficiency. A significant reduction in ROS production was detected by fluorescence imaging in live cells, and confirmed by decreased cellular protein carbonylation levels in A420P iCM. Taken together, these data provide genetic evidence for a role of NKA α1/Src in the tonic stimulation of basal mitochondrial metabolism and ROS production in human cardiac myocytes. This signaling axis in cardiac myocytes may provide a new approach to counteract mitochondrial dysfunction in cardiometabolic diseases.
Collapse
Affiliation(s)
- Liquan Cai
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Marco T. Pessoa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Yingnyu Gao
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Sidney Strause
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Moumita Banerjee
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Surgery, University of Kentucky, Lexington, KY 40536, USA
| | - Jiang Tian
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV 25703, USA; (L.C.); (M.T.P.); (Y.G.); (S.S.); (M.B.); (J.T.); (Z.X.)
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA
| |
Collapse
|
11
|
Baloglu E. HIF-2α Controls Expression and Intracellular Trafficking of the α2-Subunit of Na,K-ATPase in Hypoxic H9c2 Cardiomyocytes. Biomedicines 2023; 11:2879. [PMID: 38001879 PMCID: PMC10669276 DOI: 10.3390/biomedicines11112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/26/2023] Open
Abstract
The Na,K-ATPase (NKA) pump plays essential roles for optimal function of the heart. NKA activity decreases in necropsy materials from ischemic heart disease, heart failure and in experimental models. Cellular adaptation to hypoxia is regulated by hypoxia-induced transcription factors (HIF); we tested whether HIFs are involved in regulating the expression and intracellular dynamics of the α2-isoform of NKA (α2-NKA). HIF-1α and HIF-2α expression was suppressed in H9c2 cardiomyocytes by adenoviral infection, where cells were kept in 1% O2 for 24 h. The silencing efficiency of HIFs was tested on the mRNA and protein expression. We measured the mRNA expression of α2-NKA in HIF-silenced and hypoxia-exposed cells. The membrane and intracellular expression of α2-NKA was measured after labelling the cell surface with NHS-SS-biotin, immunoprecipitation and Western blotting. Hypoxia increased the mRNA expression of α2-NKA 5-fold compared to normoxic cells in an HIF-2α-sensitive manner. The plasma membrane expression of α2-NKA increased in hypoxia by 2-fold and was fully prevented by HIF-2α silencing. Intracellular expression of α2-NKA was not affected. These results showed for the first time that in hypoxic cardiomyocytes α2-NKA is transcriptionally and translationally regulated by HIF-2α. The molecular mechanism behind this regulation needs further investigation.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| |
Collapse
|
12
|
Retention of ion channel genes expression increases Japanese medaka survival during seawater reacclimation. J Comp Physiol B 2023; 193:81-93. [PMID: 36264377 DOI: 10.1007/s00360-022-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
Euryhaline teleosts exhibit varying acclimability to survive in environments that alternate between being hypotonic and hypertonic. Such ability is conferred by ion channels expressed by ionocytes, the ion-regulating cells in the gills or skin. However, switching between environments is physiologically challenging, because most channels can only perform unidirectional ion transportation. Coordination between acute responses, such as gene expression, and long-term responses, such as cell differentiation, is believed to strongly facilitate adaptability. Moreover, the pre-acclimation to half seawater salinity can improve the survivability of Japanese medaka (Oryzias latipes) during direct transfer to seawater; here, the ionocytes preserve hypertonic acclimability while performing hypotonic functions. Whether acclimability can be similarly induced in a closed species and their corresponding responses in terms of ion channel expression remain unclear. In the present study, Japanese medaka pre-acclimated in brackish water were noted to have higher survival rates while retaining higher expression of the three ion channel genes ATP1a1a.1, ATP1b1b, and SLC12a2a. This retention was maintained up to 2 weeks after the fish were transferred back into freshwater. Notably, this induced acclimability was not found in its close kin, Indian medaka (Oryzias dancena), the natural habitat of which is brackish water. In conclusion, Japanese medaka surpassed Indian medaka in seawater acclimability after experiencing exposure to brackish water, and this ability coincided with seawater-retention gene expression.
Collapse
|
13
|
Zou D, Wang Q, Chen T, Sang D, Yang T, Wang Y, Gao M, He F, Li Y, He L, Longzhu D. Bufadienolides originated from toad source and their anti-inflammatory activity. Front Pharmacol 2022; 13:1044027. [PMID: 36339575 PMCID: PMC9627299 DOI: 10.3389/fphar.2022.1044027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 03/03/2024] Open
Abstract
Bufadienolide, an essential member of the C-24 steroid family, is characterized by an α-pyrone positioned at C-17. As the predominantly active constituent in traditional Chinese medicine of Chansu, bufadienolide has been prescribed in the treatment of numerous ailments. It is a specifically potent inhibitor of Na+/K+ ATPase with excellent anti-inflammatory activity. However, the severe side effects triggered by unbiased inhibition of the whole-body cells distributed α1-subtype of Na+/K+ ATPase, restrict its future applicability. Thus, researchers have paved the road for the structural alteration of desirable bufadienolide derivatives with minimal adverse effects via biotransformation. In this review, we give priority to the present evidence for structural diversity, MS fragmentation principles, anti-inflammatory efficacy, and structure modification of bufadienolides derived from toads to offer a scientific foundation for future in-depth investigations and views.
Collapse
Affiliation(s)
- Denglang Zou
- School of Life Science, Qinghai Normal University, Xining, China
- College of Pharmacy, Jinan University, Guangzhou, China
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qiqi Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Tao Chen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Duocheng Sang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Tingqin Yang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Yuhan Wang
- School of Life Science, Qinghai Normal University, Xining, China
| | - Mengze Gao
- School of Life Science, Qinghai Normal University, Xining, China
| | - Fangfang He
- School of Life Science, Qinghai Normal University, Xining, China
| | - Yulin Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Liangliang He
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Duojie Longzhu
- School of Life Science, Qinghai Normal University, Xining, China
| |
Collapse
|
14
|
Schmid V, Wurzel A, Wetzel CH, Plössl K, Bruckmann A, Luckner P, Weber BHF, Friedrich U. Retinoschisin and novel Na/K-ATPase interaction partners Kv2.1 and Kv8.2 define a growing protein complex at the inner segments of mammalian photoreceptors. Cell Mol Life Sci 2022; 79:448. [PMID: 35876901 PMCID: PMC9314279 DOI: 10.1007/s00018-022-04409-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
The RS1 gene on Xp 22.13 encodes retinoschisin which is known to directly interact with the retinal Na/K-ATPase at the photoreceptor inner segments. Pathologic mutations in RS1 cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy in young males. To further delineate the retinoschisin-Na/K-ATPase complex, co-immunoprecipitation was performed with porcine and murine retinal lysates targeting the ATP1A3 subunit. This identified the voltage-gated potassium (Kv) channel subunits Kv2.1 and Kv8.2 as direct interaction partners of the retinal Na/K-ATPase. Colocalization of the individual components of the complex was demonstrated at the membrane of photoreceptor inner segments. We further show that retinoschisin-deficiency, a frequent consequence of molecular pathology in XLRS, causes mislocalization of the macromolecular complex during postnatal retinal development with a simultaneous reduction of Kv2.1 and Kv8.2 protein expression, while the level of retinal Na/K-ATPase expression remains unaffected. Patch-clamp analysis revealed no effect of retinoschisin-deficiency on Kv channel mediated potassium ion currents in vitro. Together, our data suggest that Kv2.1 and Kv8.2 together with retinoschisin and the retinal Na/K-ATPase are integral parts of a macromolecular complex at the photoreceptor inner segments. Defective compartmentalization of this complex due to retinoschisin-deficiency may be a crucial step in initial XLRS pathogenesis.
Collapse
Affiliation(s)
- Verena Schmid
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Alexander Wurzel
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Astrid Bruckmann
- Institute of Biochemistry, Genetics and Microbiology, Protein Mass Spectrometry Group, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Patricia Luckner
- Institute of Biochemistry, Genetics and Microbiology, Protein Mass Spectrometry Group, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
- Institute of Clinical Human Genetics, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
15
|
Sun J, Zheng Y, Chen Z, Wang Y. The role of Na + -K + -ATPase in the epileptic brain. CNS Neurosci Ther 2022; 28:1294-1302. [PMID: 35751846 PMCID: PMC9344081 DOI: 10.1111/cns.13893] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Na+-K+-ATPase, a P-type ATP-powered ion transporter on cell membrane, plays a vital role in cellular excitability. Cellular hyperexcitability, accompanied by hypersynchronous firing, is an important basis for seizures/epilepsy. An increasing number of studies point to a significant contribution of Na+-K+-ATPase to epilepsy, although discordant results exist. In this review, we comprehensively summarize the structure and physiological function of Na+-K+-ATPase in the central nervous system and critically evaluate the role of Na+-K+-ATPase in the epileptic brain. Importantly, we further provide perspectives on some possible research directions and discuss its potential as a therapeutic target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Jinyi Sun
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yang Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Wang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Shandell MA, Capatina AL, Lawrence SM, Brackenbury WJ, Lagos D. Inhibition of the Na +/K +-ATPase by cardiac glycosides suppresses expression of the IDO1 immune checkpoint in cancer cells by reducing STAT1 activation. J Biol Chem 2022; 298:101707. [PMID: 35150740 PMCID: PMC8902613 DOI: 10.1016/j.jbc.2022.101707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
Despite extensive basic and clinical research on immune checkpoint regulatory pathways, little is known about the effects of the ionic tumor microenvironment on immune checkpoint expression and function. Here we describe a mechanistic link between Na+/K+-ATPase (NKA) inhibition and activity of the immune checkpoint protein indoleamine-pyrrole 2',3'-dioxygenase 1 (IDO1). We found that IDO1 was necessary and sufficient for production of kynurenine, a downstream tryptophan metabolite, in cancer cells. We developed a spectrophotometric assay to screen a library of 31 model ion transport-targeting compounds for potential effects on IDO1 function in A549 lung and MDA-MB-231 breast cancer cells. This revealed that the cardiac glycosides ouabain and digoxin inhibited kynurenine production at concentrations that did not affect cell survival. NKA inhibition by ouabain and digoxin resulted in increased intracellular Na+ levels and downregulation of IDO1 mRNA and protein levels, which was consistent with the reduction in kynurenine levels. Knockdown of ATP1A1, the ɑ1 subunit of the NKA and target of cardiac glycosides, increased Na+ levels to a lesser extent than cardiac glycoside treatment and did not affect IDO1 expression. However, ATP1A1 knockdown significantly enhanced the effect of cardiac glycosides on IDO1 expression and kynurenine production. Mechanistically, we show that cardiac glycoside treatment resulted in curtailing the length of phosphorylation-mediated stabilization of STAT1, a transcriptional regulator of IDO1 expression, an effect enhanced by ATP1A1 knockdown. Our findings reveal cross talk between ionic modulation via cardiac glycosides and immune checkpoint protein expression in cancer cells with broad mechanistic and clinical implications.
Collapse
Affiliation(s)
- Mia A Shandell
- Department of Biology, University of York, York, United Kingdom; Hull York Medical School, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alina L Capatina
- Department of Biology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom
| | - Dimitris Lagos
- Hull York Medical School, University of York, York, United Kingdom; York Biomedical Research Institute, University of York, York, United Kingdom.
| |
Collapse
|
17
|
Na/K-ATPase Ion Transport and Receptor-Mediated Signaling Pathways. J Membr Biol 2021; 254:443-446. [PMID: 34724099 DOI: 10.1007/s00232-021-00207-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 10/19/2022]
|
18
|
Liu J, Tian J, Sodhi K, Shapiro JI. The Na/K-ATPase Signaling and SGLT2 Inhibitor-Mediated Cardiorenal Protection: A Crossed Road? J Membr Biol 2021; 254:513-529. [PMID: 34297135 PMCID: PMC8595165 DOI: 10.1007/s00232-021-00192-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
In different large-scale clinic outcome trials, sodium (Na+)/glucose co-transporter 2 (SGLT2) inhibitors showed profound cardiac- and renal-protective effects, making them revolutionary treatments for heart failure and kidney disease. Different theories are proposed according to the emerging protective effects other than the original purpose of glucose-lowering in diabetic patients. As the ATP-dependent primary ion transporter providing the Na+ gradient to drive other Na+-dependent transporters, the possible role of the sodium–potassium adenosine triphosphatase (Na/K-ATPase) as the primary ion transporter and its signaling function is not explored.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA.
| | - Jiang Tian
- Department of Biomedical Sciences, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Komal Sodhi
- Department of Surgery, JCE School of Medicine, Marshall University, Huntington, WV, USA
| | - Joseph I Shapiro
- Departments of Medicine, JCE School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
19
|
van Putten MJ, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021; 22:5679. [PMID: 34073593 PMCID: PMC8198632 DOI: 10.3390/ijms22115679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.
Collapse
Affiliation(s)
- Michel J.A.M. van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
20
|
Díaz-García CM, Meyer DJ, Nathwani N, Rahman M, Martínez-François JR, Yellen G. The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle. eLife 2021; 10:e64821. [PMID: 33555254 PMCID: PMC7870136 DOI: 10.7554/elife.64821] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
When neurons engage in intense periods of activity, the consequent increase in energy demand can be met by the coordinated activation of glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. However, the trigger for glycolytic activation is unknown and the role for Ca2+ in the mitochondrial responses has been debated. Using genetically encoded fluorescent biosensors and NAD(P)H autofluorescence imaging in acute hippocampal slices, here we find that Ca2+ uptake into the mitochondria is responsible for the buildup of mitochondrial NADH, probably through Ca2+ activation of dehydrogenases in the TCA cycle. In the cytosol, we do not observe a role for the Ca2+/calmodulin signaling pathway, or AMPK, in mediating the rise in glycolytic NADH in response to acute stimulation. Aerobic glycolysis in neurons is triggered mainly by the energy demand resulting from either Na+ or Ca2+ extrusion, and in mouse dentate granule cells, Ca2+ creates the majority of this demand.
Collapse
Affiliation(s)
| | - Dylan J Meyer
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Nidhi Nathwani
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mahia Rahman
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | | | - Gary Yellen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
21
|
Song Q, Zhang Y, Bai H, Zhong L, Li X, Zhao W, Chang G, Chen G. Mineral Element Deposition and Gene Expression across Different Tissues of Cherry Valley Ducks. Animals (Basel) 2021; 11:238. [PMID: 33477854 PMCID: PMC7832843 DOI: 10.3390/ani11010238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 01/14/2023] Open
Abstract
This study was conducted to investigate the deposition of several mineral elements and the mRNA levels of mineral-related genes across different tissues of cherry valley ducks. The contents of magnesium (Mg), potassium (K), zinc (Zn), and selenium (Se) in ducks' breast muscle, thigh muscle, liver, skin, and tibia at the age of 0, 21, 35, 49, and 63 days, respectively, were measured using an atomic fluorescence spectrophotometer, while the mRNA levels of mineral-related genes were detected by qRT-PCR. The results revealed that the dynamics of Mg and K were generally similar in each tissue, with a significant positive correlation (p < 0.05). In the breast muscle, thigh muscle, and liver, the contents of almost all mineral elements reached their peak values (p < 0.05) at the age of 49 to 63 days. Interestingly, the expression of most mineral-related genes was the highest at birth (p < 0.05). In addition, there was a significant negative correlation between the expression of ATP1A1 and the deposition of K (r = -0.957, p < 0.05), and a similar result was found for the expression of ATP8 and the deposition of Zn (r = -0.905, p < 0.05). Taken together, Mg and K could be used as joint indicators for the precise breeding of the high-quality strain of cherry valley ducks, while the age of 49 to 63 days could be used as the reference for the best marketing age. In addition, ATP1A1 and ATP8 could be used as the key genes to detect K and Zn, respectively. Hence, the findings of this study can be used to improve the production and breeding efficiency of high-quality meat ducks.
Collapse
Affiliation(s)
| | | | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Q.S.); (Y.Z.); (L.Z.); (X.L.); (W.Z.); (G.C.)
| | | | | | | | | | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Q.S.); (Y.Z.); (L.Z.); (X.L.); (W.Z.); (G.C.)
| |
Collapse
|
22
|
Mammals to membranes: A reductionist story. Comp Biochem Physiol B Biochem Mol Biol 2020; 253:110552. [PMID: 33359769 DOI: 10.1016/j.cbpb.2020.110552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023]
Abstract
This is the story of a series of reductionist studies that started with an attempt to explain what underpins the high-level of aerobic metabolism in mammals (i.e. associated with the evolution of endothermy) and almost forty years later had led to investigations into the role of membrane lipids in determining metabolism. Initial studies showed that the increase in aerobic metabolism in mammals was driven by a combination of increases in mitochondrial volume and membrane densities, organ size and changes in the molecular activity of enzymes. The increase in the capacity to produce energy was matched by an increase in energy use, notably driven by increases in H+, Na+ and K+ fluxes. In the case of increased Na+ flux, it was found this was matched by increases in Na+-dependent metabolism at the tissue level and increases in enzyme activity at a cellular level but not by an increase in the number of sodium pumps. To maintain Na+ gradient across cell membranes, increased Na+ flux is not controlled by an increase in sodium pump number but rather by an increase in sodium pump molecular activity (i.e. an increase the substrate turnover rate of each sodium pump) in tissues of endotherms. This increase in molecular activity is coupled to an increase in the level of highly unsaturated polyunsaturated fatty acids (PUFA) in membranes, a mechanism similar to that used by ectotherms to ameliorate decreasing activities of metabolic processes in the cold. Determination of how changes in membrane fatty acid composition can change the activities of proteins in membranes will be the next step in this story.
Collapse
|
23
|
Effects of seawater acclimation on two Na +/K +-ATPase α-subunit isoforms in the gills of the marble goby, Oxyeleotris marmorata. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110853. [PMID: 33249144 DOI: 10.1016/j.cbpa.2020.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 11/23/2022]
Abstract
The marble goby, Oxyeleotris marmorata, is a freshwater teleost, but can acclimate progressively to survive in seawater (salinity 30). As an obligatory air-breather, it can also survive long periods of emersion. Two isoforms of Na+/K+-ATPase (nka) α-subunit, nkaα1 and nkaα3, but not nkaα2, had been cloned from the gills of O. marmorata. The cDNA sequence of nkaα1 consisted of 3069 nucleotides, coding for 1023 amino acids (112.5 kDa), whereas nkaα3 consisted of 2976 nucleotides, coding for 992 amino acids (109.5 kDa). As only one form of branchial Nkaα1 was identified using molecular cloning in this study, O. marmorata lacks specific freshwater- and seawater-type Nkaα isoforms as demonstrated by some other euryhaline fish species. The nkaα1 transcript level was about 2.5-fold higher than that of nkaα3 in the gills of freshwater O. marmorata. During exposure to seawater, the branchial transcript level of nkaα1 increased significantly on day 1 (~3.3-fold) and day 6 (~2.6-fold). By contrast, the branchial transcript level of nkaα3 increased significantly on day 1 (~2.6-fold), but not on day 6, of seawater exposure. Six days of exposure to seawater also led to significant increases in protein abundances of Nkaα1 (~6.9-fold) and Nkaα3 (~2.8-fold) in the gills of O. marmorata. Hence, the mRNA and protein expressions of both nkaα1/Nkaα1 and nkaα3/Nkaα3 were up-regulated in O. marmorata during seawater acclimation. This could explain why Vmax increases but Km for Na+ and K+ remain unchanged in Nka extracted from the gills of O. marmorata acclimated to seawater as reported previously.
Collapse
|
24
|
Else PL. Postnatal development in the rat: Changes in Na+ flux, sodium pump molecular activity and membrane lipid composition. Mech Dev 2020; 162:103610. [DOI: 10.1016/j.mod.2020.103610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/11/2020] [Accepted: 04/24/2020] [Indexed: 11/25/2022]
|
25
|
Marcus EA, Tokhtaeva E, Jimenez JL, Wen Y, Naini BV, Heard AN, Kim S, Capri J, Cohn W, Whitelegge JP, Vagin O. Helicobacter pylori infection impairs chaperone-assisted maturation of Na-K-ATPase in gastric epithelium. Am J Physiol Gastrointest Liver Physiol 2020; 318:G931-G945. [PMID: 32174134 PMCID: PMC7272721 DOI: 10.1152/ajpgi.00266.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori infection always induces gastritis, which may progress to ulcer disease or cancer. The mechanisms underlying mucosal injury by the bacteria are incompletely understood. Here, we identify a novel pathway for H. pylori-induced gastric injury, the impairment of maturation of the essential transport enzyme and cell adhesion molecule, Na-K-ATPase. Na-K-ATPase comprises α- and β-subunits that assemble in the endoplasmic reticulum (ER) before trafficking to the plasma membrane. Attachment of H. pylori to gastric epithelial cells increased Na-K-ATPase ubiquitylation, decreased its surface and total levels, and impaired ion balance. H. pylori did not alter degradation of plasmalemma-resident Na-K-ATPase subunits or their mRNA levels. Infection decreased association of α- and β-subunits with ER chaperone BiP and impaired assembly of α/β-heterodimers, as was revealed by quantitative mass spectrometry and immunoblotting of immunoprecipitated complexes. The total level of BiP was not altered, and the decrease in interaction with BiP was not observed for other BiP client proteins. The H. pylori-induced decrease in Na-K-ATPase was prevented by BiP overexpression, stopping protein synthesis, or inhibiting proteasomal, but not lysosomal, protein degradation. The results indicate that H. pylori impairs chaperone-assisted maturation of newly made Na-K-ATPase subunits in the ER independently of a generalized ER stress and induces their ubiquitylation and proteasomal degradation. The decrease in Na-K-ATPase levels is also seen in vivo in the stomachs of gerbils and chronically infected children. Further understanding of H. pylori-induced Na-K-ATPase degradation will provide insights for protection against advanced disease.NEW & NOTEWORTHY This work provides evidence that Helicobacter pylori decreases levels of Na-K-ATPase, a vital transport enzyme, in gastric epithelia, both in acutely infected cultured cells and in chronically infected patients and animals. The bacteria interfere with BiP-assisted folding of newly-made Na-K-ATPase subunits in the endoplasmic reticulum, accelerating their ubiquitylation and proteasomal degradation and decreasing efficiency of the assembly of native enzyme. Decreased Na-K-ATPase expression contributes to H. pylori-induced gastric injury.
Collapse
Affiliation(s)
- Elizabeth A Marcus
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Elmira Tokhtaeva
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Jossue L Jimenez
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Yi Wen
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Bita V Naini
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Ashley N Heard
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Samuel Kim
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| | - Joseph Capri
- Pasarow Mass Spectrometry Laboratory, The Neuropsychiatric Insititute-Semel Institute, University of California, Los Angeles, California
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Neuropsychiatric Insititute-Semel Institute, University of California, Los Angeles, California
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Neuropsychiatric Insititute-Semel Institute, University of California, Los Angeles, California
| | - Olga Vagin
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
- Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California
| |
Collapse
|
26
|
Leu WJ, Wang CT, Hsu JL, Chen IS, Chang HS, Guh JH. Ascleposide, a natural cardenolide, induces anticancer signaling in human castration-resistant prostatic cancer through Na + /K + -ATPase internalization and tubulin acetylation. Prostate 2020; 80:305-318. [PMID: 31905252 DOI: 10.1002/pros.23944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cardiac glycosides, which inhibit Na+ /K+ -ATPase, display inotropic effects for the treatment of congestive heart failure and cardiac arrhythmia. Recent studies have suggested signaling downstream of Na+ /K+ -ATPase action in the regulation of cell proliferation and apoptosis and have revealed the anticancer activity of cardiac glycosides. The study aims to characterize the anticancer potential of ascleposide, a natural cardenolide, and to uncover its primary target and underlying mechanism against human castration-resistant prostate cancer (CRPC). METHODS Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay, carboxyfluorescein succinimidyl ester staining assay and clonogenic examination. Flow cytometric analysis was used to detect the distribution of cell cycle phase, mitochondrial membrane potential, intracellular Na+ and Ca2+ levels, and reactive oxygen species production. Protein expression was examined using Western blot analysis. Endocytosis of Na+ /K+ -ATPase was determined using confocal immunofluorescence microscopic examination. RESULTS Ascleposide induced an increase of intracellular Na+ and a potent antiproliferative effect. It also induced a decrease of G1 phase distribution while an increase in both G2/M and apoptotic sub-G1 phases, and downregulated several cell cycle regulator proteins, including cyclins, Cdk, p21, and p27 Cip/Kip proteins, Rb and c-Myc. Ascleposide decreased the expression of antiapoptotic Bcl-2 members (eg, Bcl-2 and Mcl-1) but upregulated proapoptotic member (eg, Bak), leading to a significant loss of mitochondrial membrane potential and activation of both caspase-9 and caspase-3. Ascleposide also dramatically induced tubulin acetylation, leading to inhibition of the catalytic activity of Na+ /K+ -ATPase. Notably, extracellular high K+ (16 mM) significantly blunted ascleposide-mediated effects. Furthermore, ascleposide induced a p38 MAPK-dependent endocytosis of Na+ /K+ -ATPase and downregulated the protein expression of Na+ /K+ -ATPase α1 subunit. CONCLUSION Ascleposide displays antiproliferative and apoptotic activities dependent on the inhibition of Na+ /K+ -ATPase pumping activity through p38 MAPK-mediated endocytosis of Na+ /K+ -ATPase and downregulation of α1 subunit, which in turn cause tubulin acetylation and cell cycle arrest. Cell apoptosis is ultimately triggered by the activation of caspase cascade attributed to mitochondrial damage through the downregulation of Bcl-2 and Mcl-1 protein expressions while upregulation of Bak protein levels. The data also suggest the potential of ascleposide in anti-CRPC development.
Collapse
Affiliation(s)
- Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Ching-Ting Wang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Ih-Sheng Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung, Taiwan, Kaohsiung, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung, Taiwan, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
27
|
Witowski J, Breborowicz A, Topley N, Martis L, Knapowski J, Oreopoulos DG. Insulin Stimulates the Activity of Na+/K+-Atpase in Human Peritoneal Mesothelial Cells. Perit Dial Int 2020. [DOI: 10.1177/089686089701700215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ObjectiveTo assess the effect of insulin on the Na+/ K+-ATPase expression and activity in human peritoneal mesothelial cells (HPMC).MethodsHPMC were isolated from the omental tissue of non-uremic patients, grown to confluence and rendered quiescent by serum deprivation for 24 hours. The activity of Na+/K+-ATPase was determined by measuring the ouabain-sensitive86Rb uptake. To assess whether the effect of insulin was related to changes in [Na+]i the sodium influx was measured with 22Na and the activity of Na+/K+ -A TPase was assessed in the presence of amiloride. Expression of Na+/K+ -A TPaseα1’ α2 and β1-subunit mRNAs was determined by RT/PCR.ResultsExposure of HPMC to insulin resulted in a time and dose-dependent increase in the Na+/K+-ATPase activity. After 60 minutes the ouabain-sensitive 86Rb up take (cpm/104 cells) was increased from 6650±796 in control cells to 9763±1212 in HPMC exposed to 100 mU/ mL insulin (1.5-fold increase; n=4, P<0.05). In addition, incubation of HPMC with 100 mU/mL insulin resulted in a time-dependent increase in the 22Na influx. Pre-exposure of HPMC to 1 mM amiloride reduced the activity of Na+/K+-A TPase but did not block the stimulatory effect of insulin. RT/PCR analysis revealed that HPMC constitutively expressed α1 and β1-subunit mRNAs while the α2-subunit mRNA was barely detectable. Exposure of HPMC to insulin for up to 24 hours was not associated with any changes in the expression of either α1’ α2 or B1-subunit.ConclusionInsulin stimulates the Na+/K+-ATPase activity in HPMC in a time and dose-dependent manner. This effect appears to mediated by an increase in [Na+]i and is not related to alterations in Na+/K+-ATPase subunit mRNAs expression.
Collapse
Affiliation(s)
- Janusz Witowski
- Department of Pathophysiology, University Medical School, Poznan, Poland
- Institute of Nephrology, University of Wales College of Medicine, Royal Infirmary, Cardiff, Wales
| | | | - Nicholas Topley
- Institute of Nephrology, University of Wales College of Medicine, Royal Infirmary, Cardiff, Wales
| | - Leo Martis
- Baxter Healthcare Corporation, McGaw Park, Illinois, U.S.A
| | - Jan Knapowski
- Department of Pathophysiology, University Medical School, Poznan, Poland
| | | |
Collapse
|
28
|
Wotton CA, Cross CD, Bekar LK. Serotonin, norepinephrine, and acetylcholine differentially affect astrocytic potassium clearance to modulate somatosensory signaling in male mice. J Neurosci Res 2020; 98:964-977. [PMID: 32067254 DOI: 10.1002/jnr.24597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 11/07/2022]
Abstract
Changes in extracellular potassium ([K+ ]e ) modulate neuronal networks via changes in membrane potential, voltage-gated channel activity, and alteration to transmission at the synapse. Given the limited extracellular space in the central nervous system, potassium clearance is crucial. As activity-induced potassium transients are rapidly managed by astrocytic Kir4.1 and astrocyte-specific Na+ /K+ -ATPase, any neurotransmitter/neuromodulator that can regulate their function may have indirect influence on network activity. Neuromodulators differentially affect cortical/thalamic networks to align sensory processing with differing behavioral states. Given serotonin (5HT), norepinephrine (NE), and acetylcholine (ACh) differentially affect spike frequency adaptation and signal fidelity ("signal-to-noise") in somatosensory cortex, we hypothesize that [K+ ]e may be differentially regulated by the different neuromodulators to exert their individual effects on network function. This study aimed to compare effects of individually applied 5HT, NE, and ACh on regulating [K+ ]e in connection to effects on cortical-evoked response amplitude and adaptation in male mice. Using extracellular field and K+ ion-selective recordings of somatosensory stimulation, we found that differential effects of 5HT, NE, and ACh on [K+ ]e regulation mirrored differential effects on amplitude and adaptation. 5HT effects on transient K+ recovery, adaptation, and field post-synaptic potential amplitude were disrupted by barium (200 µM), whereas NE and ACh effects were disrupted by ouabain (1 µM) or iodoacetate (100 µM). Considering the impact [K+ ]e can have on many network functions; it seems highly efficient that neuromodulators regulate [K+ ]e to exert their many effects. This study provides functional significance for astrocyte-mediated buffering of [K+ ]e in neuromodulator-mediated shaping of cortical network activity.
Collapse
Affiliation(s)
- Caitlin A Wotton
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cassidy D Cross
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
29
|
Chew SF, Tan SZL, Ip SCY, Pang CZ, Hiong KC, Ip YK. The Non-ureogenic Stinging Catfish, Heteropneustes fossilis, Actively Excretes Ammonia With the Help of Na +/K +-ATPase When Exposed to Environmental Ammonia. Front Physiol 2020; 10:1615. [PMID: 32038295 PMCID: PMC6987325 DOI: 10.3389/fphys.2019.01615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/23/2019] [Indexed: 11/25/2022] Open
Abstract
The stinging catfish, Heteropneustes fossilis, can tolerate high concentrations of environmental ammonia. Previously, it was regarded as ureogenic, having a functional ornithine-urea cycle (OUC) that could be up-regulated during ammonia-loading. However, contradictory results indicated that increased urea synthesis and switching to ureotelism could not explain its high ammonia tolerance. Hence, we re-examined the effects of exposure to 30 mmol l–1 NH4Cl on its ammonia and urea excretion rates, and its tissue ammonia and urea concentrations. Our results confirmed that H. fossilis did not increase urea excretion or accumulation during 6 days of ammonia exposure, and lacked detectable carbamoyl phosphate synthetase I or III activity in its liver. However, we discovered that it could actively excrete ammonia during exposure to 8 mmol l–1 NH4Cl. As active ammonia excretion is known to involve Na+/K+-ATPase (Nka) indirectly in several ammonia-tolerant fishes, we also cloned various nkaα-subunit isoforms from the gills of H. fossilis, and determined the effects of ammonia exposure on their branchial transcripts levels and protein abundances. Results obtained revealed the presence of five nkaα-subunit isoforms, with nkaα1b having the highest transcript level. Exposure to 30 mmol l–1 NH4Cl led to significant increases in the transcript levels of nkaα1b (on day 6) and nkaα1c1 (on day 1 and 3) as compared with the control. In addition, the protein abundances of Nkaα1c1, Nkaα1c2, and total NKAα increased significantly on day 6. Therefore, the high environmental ammonia tolerance of H. fossilis is attributable partly to its ability to actively excrete ammonia with the aid of Nka.
Collapse
Affiliation(s)
- Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Stephanie Z L Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sabrina C Y Ip
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Caryn Z Pang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Amazu C, Ferreira JJ, Santi CM, England SK. Sodium channels and transporters in the myometrium. CURRENT OPINION IN PHYSIOLOGY 2020; 13:141-144. [PMID: 39036486 PMCID: PMC11259238 DOI: 10.1016/j.cophys.2019.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In excitable cells such as neurons and cardiomyocytes, sodium influx across the plasma membrane contributes to the resting membrane potential, and sodium is the key ion for generating action potentials. In myometrial smooth muscle cells, however, the functions of sodium influx have not been fully elucidated. This review briefly discusses the contribution of Na+ pumps to myometrial excitability but given the brevity of this article, we focus on the evidence that sodium influx through various types of channels may play numerous roles in controlling myometrial excitability.
Collapse
Affiliation(s)
- Chinwendu Amazu
- Department of Obstetrics and Gynecology, Washington University School of Medicine. St Louis. MO
| | - Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University School of Medicine. St Louis. MO
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University School of Medicine. St Louis. MO
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine. St Louis. MO
| |
Collapse
|
31
|
Pavlovic D. Endogenous cardiotonic steroids and cardiovascular disease, where to next? Cell Calcium 2019; 86:102156. [PMID: 31896530 PMCID: PMC7031694 DOI: 10.1016/j.ceca.2019.102156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 11/18/2022]
Abstract
Ever since British Physician William Withering first described the use of foxglove extract for treatment of patients with congestive heart failure in 1785, cardiotonic steroids have been used clinically to treat heart failure and more recently atrial fibrillation. Due to their ability to bind and inhibit the ubiquitous transport enzyme sodium potassium pump, thus regulating intracellular Na+ concentration in every living cell, they are also an essential tool for research into the sodium potassium pump structure and function. Exogenous CTS have been clearly demonstrated to affect cardiovascular system through modulation of vagal tone, cardiac contraction (via ionic changes) and altered natriuresis. Reports of a number of endogenous CTS, since the 1980s, have intensified research into their physiologic and pathophysiologic roles and opened up novel therapeutic targets. Substantive evidence pointing to the role of endogenous ouabain and marinobufagenin, the two most prominent CTS, in development of cardiovascular disease has accumulated. Nevertheless, their presence, structure, biosynthesis pathways and even mechanism of action remain unclear or controversial. In this review the current state-of-the-art, the controversies and the remaining questions surrounding the role of endogenous cardiotonic steroids in health and disease are discussed.
Collapse
Affiliation(s)
- Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
32
|
Gerkau NJ, Rakers C, Durry S, Petzold GC, Rose CR. Reverse NCX Attenuates Cellular Sodium Loading in Metabolically Compromised Cortex. Cereb Cortex 2019; 28:4264-4280. [PMID: 29136153 DOI: 10.1093/cercor/bhx280] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023] Open
Abstract
In core regions of ischemic stroke, disruption of blood flow causes breakdown of ionic gradients and, ultimately, calcium overload and cell death. In the surrounding penumbra, cells may recover upon reperfusion, but recovery is hampered by additional metabolic demands imposed by peri-infarct depolarizations (PIDs). There is evidence that sodium influx drives PIDs, but no data exist on PID-related sodium accumulations in vivo. Here, we found that PIDs in mouse neocortex are associated with propagating sodium elevations in neurons and astrocytes. Similar transient sodium elevations were induced in acute tissue slices by brief chemical ischemia. Blocking NMDA-receptors dampened sodium and accompanying calcium loads of neurons in tissue slices, while inhibiting glutamate transport diminished sodium influx into astrocytes, but amplified neuronal sodium loads. In both cell types, inhibition of sodium/calcium exchange (NCX) increased sodium transients. Blocking NCX also significantly reduced calcium transients, a result confirmed in vivo. Our study provides the first quantitative data on sodium elevations in peri-infarct regions in vivo. They suggest that sodium influx drives reversal of NCX, triggering a massive secondary calcium elevation while promoting export of sodium. Reported neuroprotective effects of NCX activity in stroke models might thus be related to its dampening of ischemia-induced sodium loading.
Collapse
Affiliation(s)
- Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany
| | - Simone Durry
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 27, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, Bonn, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| |
Collapse
|
33
|
Meyer J, Untiet V, Fahlke C, Gensch T, Rose CR. Quantitative determination of cellular [Na +] by fluorescence lifetime imaging with CoroNaGreen. J Gen Physiol 2019; 151:1319-1331. [PMID: 31597684 PMCID: PMC6829561 DOI: 10.1085/jgp.201912404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
Meyer et al. establish the suitability of the sodium-sensitive indicator dye CoroNaGreen for fluorescence lifetime imaging inside cells. This approach represents a valuable tool for quantitative and dynamic determination of intracellular sodium concentrations independent of dye concentration. Fluorescence lifetime imaging microscopy (FLIM) with fluorescent ion sensors enables the measurement of ion concentrations based on the detection of photon emission events after brief excitation with a pulsed laser source. In contrast to intensity-based imaging, it is independent of dye concentration, photobleaching, or focus drift and has thus been successfully employed for quantitative analysis of, e.g., calcium levels in different cell types and cellular microdomains. Here, we tested the suitability of CoroNaGreen for FLIM-based determination of sodium concentration ([Na+]) inside cells. In vitro measurements confirmed that fluorescence lifetimes of CoroNaGreen (CoroNaFL) increased with increasing [Na+]. Moreover, CoroNaFL was largely independent of changes in potassium concentration or viscosity. Changes in pH slightly affected FL in the acidic range (pH ≤ 5.5). For intracellular determination of [Na+], HEK293T cells were loaded with the membrane-permeable form of CoroNaGreen. Fluorescence decay curves of CoroNaGreen, derived from time-correlated single-photon counting, were approximated by a bi-exponential decay. In situ calibrations revealed a sigmoidal dependence of CoroNaFL on [Na+] between 0 and 150 mM, exhibiting an apparent Kd of ∼80 mM. Based on these calibrations, a [Na+] of 17.6 mM was determined in the cytosol. Cellular nuclei showed a significantly lower [Na+] of 13.0 mM, whereas [Na+] in perinuclear regions was significantly higher (26.5 mM). Metabolic inhibition or blocking the Na+/K+-ATPase by removal of extracellular K+ caused significant [Na+] increases in all cellular subcompartments. Using an alternative approach for data analysis (“Ratio FLIM”) increased the temporal resolution and revealed a sequential response to K+ removal, with cytosolic [Na+] increasing first, followed by the nucleus and finally the perinuclear regions. Taken together, our results show that CoroNaGreen is suitable for dynamic, FLIM-based determination of intracellular [Na+]. This approach thus represents a valuable tool for quantitative determination of [Na+] and changes thereof in different subcellular compartments.
Collapse
Affiliation(s)
- Jan Meyer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Verena Untiet
- Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Gensch
- Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
34
|
Smolyaninova LV, Shiyan AA, Kapilevich LV, Lopachev AV, Fedorova TN, Klementieva TS, Moskovtsev AA, Kubatiev AA, Orlov SN. Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: Role of α3- and α1-Na+,K+-ATPase-mediated signaling. PLoS One 2019; 14:e0222767. [PMID: 31557202 PMCID: PMC6762055 DOI: 10.1371/journal.pone.0222767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
It was shown previously that inhibition of the ubiquitous α1 isoform of Na+,K+-ATPase by ouabain sharply affects gene expression profile via elevation of intracellular [Na+]i/[K+]i ratio. Unlike other cells, neurons are abundant in the α3 isoform of Na+,K+-ATPase, whose affinity in rodents to ouabain is 104-fold higher compared to the α1 isoform. With these sharp differences in mind, we compared transcriptomic changes in rat cerebellum granule cells triggered by inhibition of α1- and α3-Na+,K+-ATPase isoforms. Inhibition of α1- and α3-Na+,K+-ATPase isoforms by 1 mM ouabain resulted in dissipation of transmembrane Na+ and K+ gradients and differential expression of 994 transcripts, whereas selective inhibition of α3-Na+,K+-ATPase isoform by 100 nM ouabain affected expression of 144 transcripts without any impact on the [Na+]i/[K+]i ratio. The list of genes whose expression was affected by 1 mM ouabain by more than 2-fold was abundant in intermediates of intracellular signaling and transcription regulators, including augmented content of Npas4, Fos, Junb, Atf3, and Klf4 mRNAs, whose upregulated expression was demonstrated in neurons subjected to electrical and glutamatergic stimulation. The role [Na+]i/[K+]i-mediated signaling in transcriptomic changes involved in memory formation and storage should be examined further.
Collapse
Affiliation(s)
- Larisa V. Smolyaninova
- Department of Biomembranes, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Department of Sports Tourism Sports Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
- * E-mail: (LVS); (SNO)
| | - Alexandra A. Shiyan
- Department of Biomembranes, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Leonid V. Kapilevich
- Department of Sports Tourism Sports Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Alexander V. Lopachev
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Moscow, Russia
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Moscow, Russia
| | - Tatiana S. Klementieva
- Department of Molecular and Cell Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aleksey A. Moskovtsev
- Department of Molecular and Cell Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan A. Kubatiev
- Department of Molecular and Cell Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Sergei N. Orlov
- Department of Biomembranes, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Department of Sports Tourism Sports Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
- Central Research Laboratory, Siberian Medical State University, Tomsk, Russia
- * E-mail: (LVS); (SNO)
| |
Collapse
|
35
|
Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: Role of α3- and α1-Na+,K+-ATPase-mediated signaling. PLoS One 2019. [DOI: 10.1371/journal.pone.0222767
expr 919876128 + 853282961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
36
|
A Model for the Homotypic Interaction between Na +,K +-ATPase β 1 Subunits Reveals the Role of Extracellular Residues 221-229 in Its Ig-Like Domain. Int J Mol Sci 2019; 20:ijms20184538. [PMID: 31540261 PMCID: PMC6770782 DOI: 10.3390/ijms20184538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
The Na+, K+-ATPase transports Na+ and K+ across the membrane of all animal cells. In addition to its ion transporting function, the Na+, K+-ATPase acts as a homotypic epithelial cell adhesion molecule via its β1 subunit. The extracellular region of the Na+, K+-ATPase β1 subunit includes a single globular immunoglobulin-like domain. We performed Molecular Dynamics simulations of the ectodomain of the β1 subunit and a refined protein-protein docking prediction. Our results show that the β1 subunit Ig-like domain maintains an independent structure and dimerizes in an antiparallel fashion. Analysis of the putative interface identified segment Lys221-Tyr229. We generated triple mutations on YFP-β1 subunit fusion proteins to assess the contribution of these residues. CHO fibroblasts transfected with mutant β1 subunits showed a significantly decreased cell-cell adhesion. Association of β1 subunits in vitro was also reduced, as determined by pull-down assays. Altogether, we conclude that two Na+, K+-ATPase molecules recognize each other by a large interface spanning residues 221–229 and 198–207 on their β1 subunits.
Collapse
|
37
|
Mack AA, Gao Y, Ratajczak MZ, Kakar S, El-Mallakh RS. Review of animal models of bipolar disorder that alter ion regulation. Neurosci Biobehav Rev 2019; 107:208-214. [PMID: 31521699 DOI: 10.1016/j.neubiorev.2019.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Accurate modeling of psychiatric disorders in animals is essential for advancement in our understanding and treatment of the severe mental illnesses. Of the multiple models available for bipolar illness, the ones that disrupt ion flux are currently the only ones that meet the three criteria for validity: face validity, construct validity, and predictive validity. METHODS A directed review was performed to evaluate animal models for mania in which ion dysregulation was the key intervention. RESULTS Three models are identified. All focus on disruption of the sodium potassium pump. One is pharmacologic and requires surgical insertion of an intracerebroventricular (ICV) cannula and subsequent administration of ouabain. Two are genetic and are based on heterozygote knockout (KO) of the alpha2 or alpha3 subunits of the sodium pump. Alpha2 KOs are believed to have altered glial function, and they do not appear to have a full array of manic symptoms. Alpha3 KOs appear to be the best characterized animal model for bipolar disorder currently available. CONCLUSION Animal models that disrupt ion regulation are more inclined to model both mania and depression; and are thus the most promising models available. However, other models are important for demonstrating mechanisms in important pathophysiologic aspect of bipolar disorder.
Collapse
Affiliation(s)
- Aaron A Mack
- University of Louisville School of Medicine, Department of Psychiatry and Behavioral Medicine, Louisville, KY, USA.
| | - Yonglin Gao
- University of Louisville School of Medicine, Department of Psychiatry and Behavioral Medicine, Louisville, KY, USA
| | - Mariusz Z Ratajczak
- University of Louisville School of Medicine, Department of Medicine, Louisville, KY, USA
| | - Sham Kakar
- University of Louisville School of Medicine, Department of Physiology, Louisville, KY, USA
| | - Rif S El-Mallakh
- University of Louisville School of Medicine, Department of Psychiatry and Behavioral Medicine, Louisville, KY, USA
| |
Collapse
|
38
|
Upmanyu N, Dietze R, Bulldan A, Scheiner-Bobis G. Cardiotonic steroid ouabain stimulates steroidogenesis in Leydig cells via the α3 isoform of the sodium pump. J Steroid Biochem Mol Biol 2019; 191:105372. [PMID: 31042565 DOI: 10.1016/j.jsbmb.2019.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/29/2019] [Accepted: 04/26/2019] [Indexed: 11/28/2022]
Abstract
Cardiotonic steroids such as ouabain are potent inhibitors of the sodium pump and have been widely used for centuries in the treatment of congestive heart failure. In recent decades, however, they have also been identified as hormone-like molecules that trigger signaling cascades of physiological relevance by using the various sodium pump α subunit isoforms as receptors. The murine Leydig cell line MLTC-1 expresses both the ubiquitous, relatively ouabain-insensitive α1 isoform of the sodium pump and the ouabain-sensitive α3 isoform that is normally found in neuronal cells. The physiological relevance of the simultaneous presence of the two isoforms in Leydig cells has not been previously addressed. MLTC-1 Leydig cells contain lipid droplets (LDs) and are capable of progesterone biosynthesis when stimulated by luteinizing hormone (LH). When exposed to low nanomolar concentrations of ouabain, they respond with stimulation of Erk1/2, CREB, and ATF-1 phosphorylation, LD enlargement, and perilipin2 mobilization to the LDs. As a result, progesterone biosynthesis is augmented. Abrogation of α3 isoform expression by siRNA prevents all of the above responses, indicating that it is the hormone/receptor-like interaction of ouabain exclusively with this isoform that triggers the signaling events that normally occur when LH binds to its receptor. Considering that ouabain is produced endogenously and is found in seminal fluid, one can speculate that effects of this substance on germ and somatic cells of the testis might play a role in male reproductive physiology.
Collapse
Affiliation(s)
- Neha Upmanyu
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Raimund Dietze
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Ahmed Bulldan
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institut für Veterinär-Physiologie und -Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Giessen, Giessen, Germany.
| |
Collapse
|
39
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium-and Potassium-Activated Adenosine Triphosphatase (Na +, K +-ATPase) Enzyme Activity: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1427. [PMID: 31010095 PMCID: PMC6518254 DOI: 10.3390/ijerph16081427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
In this study, several lines of evidence are provided to show that Na + , K + -ATPase activity exerts vital roles in normal brain development and function and that loss of enzyme activity is implicated in neurodevelopmental, neuropsychiatric and neurodegenerative disorders, as well as increased risk of cancer, metabolic, pulmonary and cardiovascular disease. Evidence is presented to show that fluoride (F) inhibits Na + , K + -ATPase activity by altering biological pathways through modifying the expression of genes and the activity of glycolytic enzymes, metalloenzymes, hormones, proteins, neuropeptides and cytokines, as well as biological interface interactions that rely on the bioavailability of chemical elements magnesium and manganese to modulate ATP and Na + , K + -ATPase enzyme activity. Taken together, the findings of this study provide unprecedented insights into the molecular mechanisms and biological pathways by which F inhibits Na + , K + -ATPase activity and contributes to the etiology and pathophysiology of diseases associated with impairment of this essential enzyme. Moreover, the findings of this study further suggest that there are windows of susceptibility over the life course where chronic F exposure in pregnancy and early infancy may impair Na + , K + -ATPase activity with both short- and long-term implications for disease and inequalities in health. These findings would warrant considerable attention and potential intervention, not to mention additional research on the potential effects of F intake in contributing to chronic disease.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, P72 YF10 Bandon, Co. Cork, Ireland.
| |
Collapse
|
40
|
Differential expression patterns of sodium potassium ATPase alpha and beta subunit isoforms in mouse brain during postnatal development. Neurochem Int 2019; 128:163-174. [PMID: 31009649 DOI: 10.1016/j.neuint.2019.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 11/21/2022]
Abstract
The sodium potassium ATPase (Na+/K+ ATPase) is essential for the maintenance of a low intracellular Na+ and a high intracellular K+ concentration. Loss of function of the Na+/K+ ATPase due to mutations in Na+/K+ ATPase genes, anoxic conditions, depletion of ATP or inhibition of the Na+/K+ ATPase function using cardiac glycosides such as digitalis, causes a depolarization of the resting membrane potential. While in non-excitable cells, the uptake of glucose and amino acids is decreased if the function of the Na+/K+ ATPase is compromised, in excitable cells the symptoms range from local hyper-excitability to inactivating depolarization. Although several studies have demonstrated the differential expression of the various Na+/K+ ATPase alpha and beta isoforms in the brain tissue of rodents, their expression profile during development has yet to be thoroughly investigated. An immunohistochemical analysis of postnatal day 19 mouse brain showed ubiquitous expression of Na+/K+ ATPase isoforms α1, β1 and β2 in both neurons and glial cells, whereas α2 was expressed mostly in glial cells and the α3 and β3 isoforms were expressed in neurons. Furthermore, we examined potential changes in the relative expression of the different Na+/K+ ATPase isoforms in different brain areas of postnatal day 6 and in adult 9 months old animals using immunoblot analysis. Our results show a significant up-regulation of the α1 isoform in cortex, hippocampus and cerebellum, whereas, the α2 isoform was significantly up-regulated in midbrain. The β3 isoform showed a significant up-regulation in all brain areas investigated. The up-regulation of the α3 isoform matched that of the β2 isoform which were both significantly up-regulated in cortex, hippocampus and midbrain, suggesting that the increased maturation of the neuronal network is accompanied by an increase in expression of α3/β2 complexes in these brain structures.
Collapse
|
41
|
Smolyaninova LV, Shiyan AA, Kapilevich LV, Lopachev AV, Fedorova TN, Klementieva TS, Moskovtsev AA, Kubatiev AA, Orlov SN. Transcriptomic changes triggered by ouabain in rat cerebellum granule cells: Role of α3- and α1-Na+,K+-ATPase-mediated signaling. PLoS One 2019; 14:e0222767. [PMID: 31557202 PMCID: PMC6762055 DOI: 10.1371/journal.pone.0222767&set/a 820829471+911750583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
It was shown previously that inhibition of the ubiquitous α1 isoform of Na+,K+-ATPase by ouabain sharply affects gene expression profile via elevation of intracellular [Na+]i/[K+]i ratio. Unlike other cells, neurons are abundant in the α3 isoform of Na+,K+-ATPase, whose affinity in rodents to ouabain is 104-fold higher compared to the α1 isoform. With these sharp differences in mind, we compared transcriptomic changes in rat cerebellum granule cells triggered by inhibition of α1- and α3-Na+,K+-ATPase isoforms. Inhibition of α1- and α3-Na+,K+-ATPase isoforms by 1 mM ouabain resulted in dissipation of transmembrane Na+ and K+ gradients and differential expression of 994 transcripts, whereas selective inhibition of α3-Na+,K+-ATPase isoform by 100 nM ouabain affected expression of 144 transcripts without any impact on the [Na+]i/[K+]i ratio. The list of genes whose expression was affected by 1 mM ouabain by more than 2-fold was abundant in intermediates of intracellular signaling and transcription regulators, including augmented content of Npas4, Fos, Junb, Atf3, and Klf4 mRNAs, whose upregulated expression was demonstrated in neurons subjected to electrical and glutamatergic stimulation. The role [Na+]i/[K+]i-mediated signaling in transcriptomic changes involved in memory formation and storage should be examined further.
Collapse
Affiliation(s)
- Larisa V. Smolyaninova
- Department of Biomembranes, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Department of Sports Tourism Sports Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
- * E-mail: (LVS); (SNO)
| | - Alexandra A. Shiyan
- Department of Biomembranes, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Leonid V. Kapilevich
- Department of Sports Tourism Sports Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
| | - Alexander V. Lopachev
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Moscow, Russia
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, Moscow, Russia
| | - Tatiana S. Klementieva
- Department of Molecular and Cell Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aleksey A. Moskovtsev
- Department of Molecular and Cell Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aslan A. Kubatiev
- Department of Molecular and Cell Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Sergei N. Orlov
- Department of Biomembranes, Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Department of Sports Tourism Sports Physiology and Medicine, National Research Tomsk State University, Tomsk, Russia
- Central Research Laboratory, Siberian Medical State University, Tomsk, Russia
- * E-mail: (LVS); (SNO)
| |
Collapse
|
42
|
Lerchundi R, Kafitz KW, Winkler U, Färfers M, Hirrlinger J, Rose CR. FRET-based imaging of intracellular ATP in organotypic brain slices. J Neurosci Res 2018; 97:933-945. [PMID: 30506574 DOI: 10.1002/jnr.24361] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
Abstract
Active neurons require a substantial amount of adenosine triphosphate (ATP) to re-establish ion gradients degraded by ion flux across their plasma membranes. Despite this fact, neurons, in contrast to astrocytes, do not contain any significant stores of energy substrates. Recent work has provided evidence for a neuro-metabolic coupling between both cell types, in which increased glycolysis and lactate production in astrocytes support neuronal metabolism. Here, we established the cell type-specific expression of the Förster resonance energy transfer (FRET) based nanosensor ATeam1.03YEMK ("Ateam") for dynamic measurement of changes in intracellular ATP levels in organotypic brain tissue slices. To this end, adeno-associated viral vectors coding for Ateam, driven by either the synapsin- or glial fibrillary acidic protein (GFAP) promoter were employed for specific transduction of neurons or astrocytes, respectively. Chemical ischemia, induced by perfusion of tissue slices with metabolic inhibitors of cellular glycolysis and mitochondrial respiration, resulted in a rapid decrease in the cellular Ateam signal to a new, low level, indicating nominal depletion of intracellular ATP. Increasing the extracellular potassium concentration to 8 mM, thereby mimicking the release of potassium from active neurons, did not alter ATP levels in neurons. It, however, caused in an increase in ATP levels in astrocytes, a result which was confirmed in acutely isolated tissue slices. In summary, our results demonstrate that organotypic cultured slices are a reliable tool for FRET-based dynamic imaging of ATP in neurons and astrocytes. They moreover provide evidence for an increased ATP synthesis in astrocytes, but not neurons, during periods of elevated extracellular potassium concentrations.
Collapse
Affiliation(s)
- Rodrigo Lerchundi
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl W Kafitz
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Marcel Färfers
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Christine R Rose
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
43
|
Novaes LS, dos Santos NB, Dragunas G, Perfetto JG, Leza JC, Scavone C, Munhoz CD. Repeated Restraint Stress Decreases Na,K-ATPase Activity via Oxidative and Nitrosative Damage in the Frontal Cortex of Rats. Neuroscience 2018; 393:273-283. [PMID: 30316912 DOI: 10.1016/j.neuroscience.2018.09.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 12/23/2022]
|
44
|
Zhang D, Liu J, Qi T, Ge B, Liu Q, Jiang S, Zhang H, Wang Z, Ding G, Tang B. Comparative transcriptome analysis of Eriocheir japonica sinensis response to environmental salinity. PLoS One 2018; 13:e0203280. [PMID: 30192896 PMCID: PMC6128516 DOI: 10.1371/journal.pone.0203280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/19/2018] [Indexed: 11/18/2022] Open
Abstract
Chinese mitten crabs (Eriocheir japonica sinensis) are catadromous, spending most of their lives in fresh water, but moving to a mixed salt-fresh water environment for reproduction. The characteristics of this life history might imply a rapidly evolutionary transition model for adaptation to marine from freshwater habitats. In this study, transcriptome-wide identification and differential expression on Chinese mitten crab groups were analysed. Results showed: clean reads that were obtained totalled 93,833,096 (47,440,998 in Group EF, the reference, and 46,392,098 in Group ES, the experimental) and 14.08G (7.12G in Group EF 6.96G in Group ES); there were 11,667 unigenes (15.29%) annotated, and they were located to 230 known KEGG pathways in five major categories; in differential expression analysis, most of the top 20 up-regulated pathways were connected to the immune system, disease, and signal transduction, while most of the top 20 down-regulated pathways were related to the metabolism system; meanwhile, 8 representative osmoregulation-related genes (14-3-3 epsilon, Cu2+ transport ATPase, Na+/K+ ATPase, Ca2+ transporting ATPase, V-ATPase subunit A, Putative arsenite-translocating ATPase, and Cation transport ATPase, Na+/K+ symporter) showed up-regulation, and 1 osmoregulation-related gene (V-ATPase subunit H) showed down-regulation. V-ATPase subunit H was very sensitive to the transition of habitats. These results were consistent with the tests of qRT-PCR. The present study has provided a foundation to further understand the molecular mechanism in response to salinity changing in water.
Collapse
Affiliation(s)
- Daizhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, China
| | - Jun Liu
- Key Laboratory of Biotechnology in Lianyungang Normal College, Lianyungang, China
| | - Tingting Qi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, China
| | - Baoming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, China
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, China
| | - Senhao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, China
| | - Huabin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, China
| | - Ge Ding
- Chemical and Biological Engineering College, Yancheng Institute of Technology, Yancheng, China
- * E-mail: (GD); (BT)
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng, China
- * E-mail: (GD); (BT)
| |
Collapse
|
45
|
Zhang D, Qi T, Liu J, Liu Q, Jiang S, Zhang H, Wang Z, Ding G, Tang B. Adaptively differential expression analysis in gill of Chinese mitten crabs (Eriocheir japonica sinensis) associated with salinity changes. Int J Biol Macromol 2018; 120:2242-2246. [PMID: 30189276 DOI: 10.1016/j.ijbiomac.2018.08.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/22/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022]
Abstract
Desalination of marine species has become an important development direction for aquaculture in China and other countries. However, that how to regulate the salt balance to adapt to new freshwater habitats is a serious challenge for marine species in desalination of aquaculture. In the study, Chinese mitten crabs (Eriocheir japonica sinensis) was selected to analyse the adaptively differential expression in salinity changes for their novel characteristics of life history. The results showed that gill was the most relevant tissue in osmoregulation that was validated by biomarkers (Na+/K+-ATP, V-type H+-ATPase) with qPCR. Na+/K+-ATPase is a primary transporter and maintains the body fluid osmolality by actively pumping Na+ to the hemolymph, and V-type H+-ATPase is responsible for acid-base balance and nitrogen excretion. So both transcriptome data and qPCR results showed the significantly differential expression of Na+/K+-ATPase and V-type H+-ATPase in gills. Moreover, NAK-α had the most significantly differential expression level in salinity change, and other genes such as GST, HSP90, S27, UBE, VATB also revealed significantly up-regulation. They are considered the key enzymes during the transition from a marine environment to land. Present results have provided a foundation to further understand the molecular adaptive mechanism in desalination of marine species.
Collapse
Affiliation(s)
- Daizhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224007, China
| | - Tingting Qi
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224007, China
| | - Jun Liu
- Key Laboratory of Biotechnology in Lianyungang Normal College, Lianyungang 222006, China
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224007, China
| | - Senhao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224007, China
| | - Huabin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224007, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224007, China
| | - Ge Ding
- Chemical and Biological Engineering College, Yancheng Institute of Technology, Yancheng 224003, China.
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224007, China.
| |
Collapse
|
46
|
Dobretsov M, Hayar A, Kockara NT, Kozhemyakin M, Light KE, Patyal P, Pierce DR, Wight PA. A Transgenic Mouse Model to Selectively Identify α 3 Na,K-ATPase Expressing Cells in the Nervous System. Neuroscience 2018; 398:274-294. [PMID: 30031123 DOI: 10.1016/j.neuroscience.2018.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 10/28/2022]
Abstract
The α3 Na+,K+-ATPase (α3NKA) is one of four known α isoforms of the mammalian transporter. A deficiency in α3NKA is linked to severe movement control disorders. Understanding the pathogenesis of these disorders is limited by an incomplete knowledge of α3NKA expression in the brain as well as the challenges associated with identifying living cells that express the isoform for subsequent electrophysiological studies. To address this problem, transgenic mice were generated on the C57BL/6 genetic background, which utilize the mouse α3 subunit gene (Atp1a3) promoter to drive the expression of ZsGreen1 fluorescent protein. Consistent with published results on α3NKA distribution, a ZsGreen1 signal was detected in the brain, but not in the liver, with Atp1a3-ZsGreen1 transgenic mice. The intensity of ZsGreen1 fluorescence in neuronal cell bodies varied considerably in the brain, being highest in the brainstem, deep cerebellar and select thalamic nuclei, and relatively weak in cortical regions. Fluorescence was not detected in astrocytes or white matter areas. ZsGreen1-positive neurons were readily observed in fresh (unfixed) brain sections, which were amenable to patch-clamp recordings. Thus, the α3NKA-ZsGreen1 mouse model provides a powerful tool for studying the distribution and functional properties of α3NKA-expressing neurons in the brain.
Collapse
Affiliation(s)
- Maxim Dobretsov
- Department of Anesthesiology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States.
| | - Abdallah Hayar
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Neriman T Kockara
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Maxim Kozhemyakin
- Department of Neurology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Kim E Light
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Pankaj Patyal
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Dwight R Pierce
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States
| | - Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR, United States.
| |
Collapse
|
47
|
Ding B, Walton JP, Zhu X, Frisina RD. Age-related changes in Na, K-ATPase expression, subunit isoform selection and assembly in the stria vascularis lateral wall of mouse cochlea. Hear Res 2018; 367:59-73. [PMID: 30029086 DOI: 10.1016/j.heares.2018.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022]
Abstract
Due to the critical role of cochlear ion channels for hearing, the focus of the present study was to examine age-related changes of Na, K-ATPase (NKA) subunits in the lateral wall of mouse cochlea. We combined qRT-PCR, western blot and immunocytochemistry methodologies in order to determine gene and protein expression levels in the lateral wall of young and aged CBA/CaJ mice. Of the seven NKA subunits, only the mRNA expressions of α1, β1 and β2 subunit isoforms were detected in the lateral wall of CBA/CaJ mice. Aging was accompanied by dys-regulation of gene and protein expression of all three subunits detected. Hematoxylin and eosin (H&E) staining revealed atrophy of the cochlear stria vascularis (SV). The SV atrophy rate (20%) was much less than the ∼80% decline in expression of all three NKA isoforms, indicating lateral wall atrophy and NKA dys-regulation are independent factors and that there is a combination of changes involving the morphology of SV and NKA expression in the aging cochlea which may concomitantly affect cochlear function. Immunoprecipitation assays showed that the α1-β1 heterodimer is the selective preferential heterodimer over the α1-β2 heterodimer in cochlea lateral wall. Interestingly, in vitro pathway experiments utilizing cultured mouse cochlear marginal cells from the SV (SV-K1 cells) indicated that decreased mRNA and protein expressions of α1, β1 and β2 subunit isoforms are not associated with reduction of NKA activity following in vitro application of ouabain, but ouabain did disrupt the α1-β1 heterodimer interaction. Lastly, the association between the α1 and β1 subunit isoforms was present in the cochlear lateral wall of young adult mice, but this interaction could not be detected in old mice. Taken together, these data suggest that in the young adult mouse there is a specific, functional selection and assembly of NKA subunit isoforms in the SV lateral wall, which is disrupted and dys-regulated with age. Interventions for this age-linked ion channel disruption may have the potential to help diagnose, prevent, or treat age-related hearing loss.
Collapse
Affiliation(s)
- Bo Ding
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.
| | - Xiaoxia Zhu
- Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Robert D Frisina
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| |
Collapse
|
48
|
Mechanism of noradrenaline-induced α1-adrenoceptor mediated regulation of Na-K ATPase subunit expression in Neuro-2a cells. Brain Res Bull 2018; 139:157-166. [DOI: 10.1016/j.brainresbull.2018.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/08/2018] [Accepted: 02/20/2018] [Indexed: 01/15/2023]
|
49
|
Lopachev AV, Lopacheva OM, Nikiforova KA, Filimonov IS, Fedorova TN, Akkuratov EE. Comparative Action of Cardiotonic Steroids on Intracellular Processes in Rat Cortical Neurons. BIOCHEMISTRY (MOSCOW) 2018; 83:140-151. [DOI: 10.1134/s0006297918020062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Hu Y, Wang Z, Ge N, Huang T, Zhang M, Wang H. Sodium pump alpha-2 subunit (ATP1A2) alleviates cardiomyocyte anoxia-reoxygenation injury via inhibition of endoplasmic reticulum stress-related apoptosis. Can J Physiol Pharmacol 2018; 96:515-520. [PMID: 29394489 DOI: 10.1139/cjpp-2017-0349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have found decreased functional capacity of the sodium pump (Na+-K+-ATPase) alpha and beta subunits and recovery of Na+-K+-ATPase activity significantly decreased myocyte apoptosis in myocardial ischemia-reperfusion (I/R) injury. However, the potential role of the Na+-K+-ATPase α-2 subunit (ATP1A2) in cardiomyocyte anoxia-reoxygenation (A/R) injury has not been elucidated. Rat myocardial cells were subjected to siRNA transfection followed by A/R injury. Apoptosis and expression of endoplasmic reticulum (ER) stress proteins CHOP, GRP78, and caspase-12 were detected in 4 groups of cells: ATP1A2 siRNA + A/R, control siRNA + A/R, control, and A/R injury model. We found that apoptosis was significantly elevated in the ATP1A2 siRNA + A/R group as compared with control siRNA + A/R, control, and A/R injury model groups (p < 0.05, p < 0.01, and p < 0.05). Furthermore, expression of CHOP, GRP78, and caspase-12 were significantly elevated in the ATP1A2 siRNA + A/R group as compared with control siRNA + A/R, control, and A/R injury model groups (p < 0.05, p < 0.01, and p < 0.05). Our findings suggest that cardiomyocyte ATP1A2 is a target of A/R injury, and its cardioprotective function may be mediated via inhibiting the ER-stress-related apoptosis.
Collapse
Affiliation(s)
- Yulong Hu
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zheng Wang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Nannan Ge
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Ting Huang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Mingchao Zhang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hegui Wang
- Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China.,Department of Cardiology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|