1
|
Ahmed S, Rafi UM, Senthil Kumar R, Bhat AR, Berredjem M, Niranjan V, C L, Rahiman AK. Theoretical, antioxidant, antidiabetic and in silico molecular docking and pharmacokinetics studies of heteroleptic oxovanadium(IV) complexes of thiosemicarbazone-based ligands and diclofenac. J Biomol Struct Dyn 2024; 42:8407-8426. [PMID: 37599509 DOI: 10.1080/07391102.2023.2246565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
A series of new heteroleptic oxovanadium(IV) complexes with the general formula [VOL1-6(Dcf)] (1-6), where L1-6 = thiosemicarbazone (TSC)-based ligands and Dcf = diclofenac have been synthesized and characterized. The spectral studies along with the density functional theory calculations evidenced the distorted square-pyramidal geometry around oxovanadium(IV) ion through imine nitrogen and thione sulfur atoms of TSC moiety, and two asymmetric carboxylate oxygen atoms of diclofenac drug. The complexes were evaluated for in vitro antioxidant activity using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2'-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2) and superoxide radical scavenging assays with respect to the standard antioxidant drugs butylated hydroxyanisole (BHA) and rutin. The in vitro antidiabetic activity of the complexes was tested with enzymes such as α-amylase, α-glucosidase and glucose-6-phosphatase. The complexes containing methyl substituent showed higher activity than that containing the nitro substituent due to the electron-donating effect of methyl group. The in silico molecular docking studies of the oxovanadium(IV) complexes with α-amylase and α-glucosidase enzymes showed strong interaction via hydrogen bonding and hydrophobic interactions. The dynamic behavior of the proposed complexes was analyzed by molecular dynamics (MDs) simulations, which revealed the stability of docked structures with α-amylase and α-glucosidase enzymes. The in silico physicochemical and pharmacokinetics parameters, such as Lipinski's 'rule of five', Veber's rule and absorption, distribution, metabolism and excretion (ADME) properties predicted non-toxic, non-carcinogenic and safe oral administration of the synthesized complexes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Ummer Muhammed Rafi
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| | - Raju Senthil Kumar
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Elayampalayam, Tiruchengodu, India
| | - Ajmal Rashid Bhat
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry LCOA, Synthesis of Biomolecules and Molecular Modelling Group, Badji-Mokhtar-Annaba University, Annaba, Algeria
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Lavanya C
- Department of Biotechnology, RV College of Engineering, Bengaluru, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, India
| |
Collapse
|
2
|
Claxton DP, Overway EM, Oeser JK, O'Brien RM, Mchaourab HS. Biophysical and functional properties of purified glucose-6-phosphatase catalytic subunit 1. J Biol Chem 2021; 298:101520. [PMID: 34952005 PMCID: PMC8753184 DOI: 10.1016/j.jbc.2021.101520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Glucose-6-phosphatase catalytic subunit 1 (G6PC1) plays a critical role in hepatic glucose production during fasting by mediating the terminal step of the gluconeogenesis and glycogenolysis pathways. In concert with accessory transport proteins, this membrane-integrated enzyme catalyzes glucose production from glucose-6-phosphate (G6P) to support blood glucose homeostasis. Consistent with its metabolic function, dysregulation of G6PC1 gene expression contributes to diabetes, and mutations that impair phosphohydrolase activity form the clinical basis of glycogen storage disease type 1a. Despite its relevance to health and disease, a comprehensive view of G6PC1 structure and mechanism has been limited by the absence of expression and purification strategies that isolate the enzyme in a functional form. In this report, we apply a suite of biophysical and biochemical tools to fingerprint the in vitro attributes of catalytically active G6PC1 solubilized in lauryl maltose neopentyl glycol (LMNG) detergent micelles. When purified from Sf9 insect cell membranes, the glycosylated mouse ortholog (mG6PC1) recapitulated functional properties observed previously in intact hepatic microsomes and displayed the highest specific activity reported to date. Additionally, our results establish a direct correlation between the catalytic and structural stability of mG6PC1, which is underscored by the enhanced thermostability conferred by phosphatidylcholine and the cholesterol analog cholesteryl hemisuccinate. In contrast, the N96A variant, which blocks N-linked glycosylation, reduced thermostability. The methodologies described here overcome long-standing obstacles in the field and lay the necessary groundwork for a detailed analysis of the mechanistic structural biology of G6PC1 and its role in complex metabolic disorders.
Collapse
Affiliation(s)
- Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| | - Emily M Overway
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - James K Oeser
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Bharathi S, Mahendiran D, Senthil Kumar R, Kalilur Rahiman A. In Vitro Antioxidant and Insulin Mimetic Activities of Heteroleptic Oxovanadium(IV) Complexes with Thiosemicarbazones and Naproxen. ChemistrySelect 2020. [DOI: 10.1002/slct.202000911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sundaram Bharathi
- Post-Graduate and Research Department of ChemistryThe New College (Autonomous), University of Madras Chennai 600 014 India
| | - Dharmasivam Mahendiran
- Post-Graduate and Research Department of ChemistryThe New College (Autonomous), University of Madras Chennai 600 014 India
- Molecular Pharmacology and Pathology Program, Department of PathologyBosch Institute, University of Sydney NSW 2006 Australia
| | - Raju Senthil Kumar
- Department of Pharmaceutical ChemistrySwamy Vivekanandha College of Pharmacy, Elayampalayam Tiruchengodu 637 205 India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of ChemistryThe New College (Autonomous), University of Madras Chennai 600 014 India
| |
Collapse
|
4
|
Zhang S, Kim SM. Synthesis, characterization, antioxidant and anti‐diabetic activities of a novel protein–vanadium complex. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo‐Waste in Cold Region, College of Life Science and BiotechnologyHeilongjiang Bayi Agricultural University Daqing Heilongjiang Province 163319 PR China
- Department of Marine Food Science and TechnologyGangneung‐Wonju National University Gangneung Gangwon‐do 25457 Republic of Korea
| | - Sang Moo Kim
- Department of Marine Food Science and TechnologyGangneung‐Wonju National University Gangneung Gangwon‐do 25457 Republic of Korea
| |
Collapse
|
5
|
Levina A, Crans DC, Lay PA. Speciation of metal drugs, supplements and toxins in media and bodily fluids controls in vitro activities. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.01.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
6
|
Wang Z, Mick GJ, Xie R, Wang X, Xie X, Li G, McCormick KL. Cortisol promotes endoplasmic glucose production via pyridine nucleotide redox. J Endocrinol 2016; 229:25-36. [PMID: 26860459 DOI: 10.1530/joe-16-0006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 01/23/2023]
Abstract
Both increased adrenal and peripheral cortisol production, the latter governed by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), contribute to the maintenance of fasting blood glucose. In the endoplasmic reticulum (ER), the pyridine nucleotide redox state (NADP/NADPH) is dictated by the concentration of glucose-6-phosphate (G6P) and the coordinated activities of two enzymes, hexose-6-phosphate dehydrogenase (H6PDH) and 11β-HSD1. However, luminal G6P may similarly serve as a substrate for hepatic glucose-6-phophatase (G6Pase). A tacit belief is that the G6P pool in the ER is equally accessible to both H6PDH and G6Pase. Based on our inhibition studies and kinetic analysis in isolated rat liver microsomes, these two aforesaid luminal enzymes do share the G6P pool in the ER, but not equally. Based on the kinetic modeling of G6P flux, the ER transporter for G6P (T1) preferentially delivers this substrate to G6Pase; hence, the luminal enzymes do not share G6P equally. Moreover, cortisol, acting through 11β-HSD1, begets a more reduced pyridine redox ratio. By altering this luminal redox ratio, G6P flux through H6PDH is restrained, allowing more G6P for the competing enzyme G6Pase. And, at low G6P concentrations in the ER lumen, which occur during fasting, this acute cortisol-induced redox adjustment promotes glucose production. This reproducible cortisol-driven mechanism has been heretofore unrecognized.
Collapse
Affiliation(s)
- Zengmin Wang
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China Division of Pediatric EndocrinologyUniversity of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gail J Mick
- Division of Pediatric EndocrinologyUniversity of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rongrong Xie
- Division of Pediatric EndocrinologyUniversity of Alabama at Birmingham, Birmingham, Alabama, USA Department of EndocrinologyChildren's Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Xudong Wang
- Division of Pediatric EndocrinologyUniversity of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xuemei Xie
- Division of Pediatric EndocrinologyUniversity of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guimei Li
- Department of PediatricsShandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Kenneth L McCormick
- Division of Pediatric EndocrinologyUniversity of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Leblanc C, Vilter H, Fournier JB, Delage L, Potin P, Rebuffet E, Michel G, Solari P, Feiters M, Czjzek M. Vanadium haloperoxidases: From the discovery 30 years ago to X-ray crystallographic and V K-edge absorption spectroscopic studies. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.02.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Halevas E, Tsave O, Yavropoulou M, Hatzidimitriou A, Yovos J, Psycharis V, Gabriel C, Salifoglou A. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure–function correlations at the molecular level. J Inorg Biochem 2015; 147:99-115. [DOI: 10.1016/j.jinorgbio.2015.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 11/30/2022]
|
9
|
Abstract
Contemporary drug discovery leverages quantitative modeling and simulation with increasing emphasis, both to gain deeper knowledge of drug targets and mechanisms as well as improve predictions between preclinical models and clinical applications, such as first-in-human dose projections. Proliferation of novel biotherapeutic modalities increases the need for applied PK/PD modeling as a quantitative tool to advance new therapies. Of particular relevance is the understanding of exposure, target binding and associated pharmacology at the target site of interest. Bioanalytical methods are key to informing PK/PD models and require assessment of both PK and PD end points. Where targets are sequestered in tissues (noncirculating), the ability to quantitatively measure drug or biomarker in tissue compartments becomes particularly important. This perspective provides an overview of contemporary applications of quantitative bioanalysis in tissue compartments as applied to PK and PD assessments associated with novel biotherapeutics. Case studies and key references are provided.
Collapse
|
10
|
Wlcek K, Hofstetter L, Stieger B. Transport of estradiol-17β-glucuronide, estrone-3-sulfate and taurocholate across the endoplasmic reticulum membrane: evidence for different transport systems. Biochem Pharmacol 2014; 88:106-18. [PMID: 24406246 PMCID: PMC3969151 DOI: 10.1016/j.bcp.2013.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 11/06/2022]
Abstract
Important reactions of drug metabolism, including UGT mediated glucuronidation and steroidsulfatase mediated hydrolysis of sulfates, take place in the endoplasmic reticulum (ER) of hepatocytes. Consequently, UGT generated glucuronides, like estradiol-17β-glucuronide, have to be translocated back into the cytoplasm to reach their site of excretion. Also steroidsulfatase substrates, including estrone-3-sulfate, have to cross the ER membrane to reach their site of hydrolysis. Based on their physicochemical properties such compounds are not favored for passive diffusion and therefore likely necessitate transport system(s) to cross the ER membrane in either direction. The current study aims to investigate the transport of taurocholate, estradiol-17β-glucuronide, and estrone-3-sulfate in smooth (SER) and rough (RER) endoplasmic reticulum membrane vesicles isolated from Wistar and TR− rat liver. Time-dependent and bidirectional transport was demonstrated for taurocholate, showing higher uptake rates in SER than RER vesicles. For estradiol-17β-glucuronide a fast time-dependent efflux with similar efficiencies from SER and RER but no clear protein-mediated uptake was shown, indicating an asymmetric transport system for this substrate. Estrone-3-sulfate uptake was time-dependent and higher in SER than in RER vesicles. Inhibition of steroidsulfatase mediated estrone-3-sulfate hydrolysis decreased estrone-3-sulfate uptake but had no effect on taurocholate or estradiol-17β-glucuronide transport. Based on inhibition studies and transport characteristics, three different transport mechanisms are suggested to be involved in the transport of taurocholate, estrone-3-sulfate and estradiol-17β-glucuronide across the ER membrane.
Collapse
Affiliation(s)
- Katrin Wlcek
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Lia Hofstetter
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| |
Collapse
|
11
|
Pan CJ, Chen SY, Jun HS, Lin SR, Mansfield BC, Chou JY. SLC37A1 and SLC37A2 are phosphate-linked, glucose-6-phosphate antiporters. PLoS One 2011; 6:e23157. [PMID: 21949678 PMCID: PMC3176764 DOI: 10.1371/journal.pone.0023157] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/07/2011] [Indexed: 11/25/2022] Open
Abstract
Blood glucose homeostasis between meals depends upon production of glucose within the endoplasmic reticulum (ER) of the liver and kidney by hydrolysis of glucose-6-phosphate (G6P) into glucose and phosphate (Pi). This reaction depends on coupling the G6P transporter (G6PT) with glucose-6-phosphatase-α (G6Pase-α). Only one G6PT, also known as SLC37A4, has been characterized, and it acts as a Pi-linked G6P antiporter. The other three SLC37 family members, predicted to be sugar-phosphate:Pi exchangers, have not been characterized functionally. Using reconstituted proteoliposomes, we examine the antiporter activity of the other SLC37 members along with their ability to couple with G6Pase-α. G6PT- and mock-proteoliposomes are used as positive and negative controls, respectively. We show that SLC37A1 and SLC37A2 are ER-associated, Pi-linked antiporters, that can transport G6P. Unlike G6PT, neither is sensitive to chlorogenic acid, a competitive inhibitor of physiological ER G6P transport, and neither couples to G6Pase-α. We conclude that three of the four SLC37 family members are functional sugar-phosphate antiporters. However, only G6PT/SLC37A4 matches the characteristics of the physiological ER G6P transporter, suggesting the other SLC37 proteins have roles independent of blood glucose homeostasis.
Collapse
Affiliation(s)
- Chi-Jiunn Pan
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shih-Yin Chen
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hyun Sik Jun
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Su Ru Lin
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian C. Mansfield
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Janice Y. Chou
- Section on Cellular Differentiation, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hansen O. Vanadate and phosphotransferases with special emphasis on ouabain/na,k-atpase interaction. ACTA PHARMACOLOGICA ET TOXICOLOGICA 2009; 52 Suppl 1:1-19. [PMID: 6301215 DOI: 10.1111/j.1600-0773.1983.tb02475.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Chen SY, Pan CJ, Nandigama K, Mansfield BC, Ambudkar SV, Chou JY. The glucose-6-phosphate transporter is a phosphate-linked antiporter deficient in glycogen storage disease type Ib and Ic. FASEB J 2008; 22:2206-13. [PMID: 18337460 DOI: 10.1096/fj.07-104851] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glycogen storage disease type Ib (GSD-Ib) is caused by deficiencies in the glucose-6-phosphate (G6P) transporter (G6PT) that have been well characterized. Interestingly, deleterious mutations in the G6PT gene were identified in clinical cases of GSD type Ic (GSD-Ic) proposed to be deficient in an inorganic phosphate (P(i)) transporter. We hypothesized that G6PT is both the G6P and P(i) transporter. Using reconstituted proteoliposomes we show that both G6P and P(i) are efficiently taken up into P(i)-loaded G6PT-proteoliposomes. The G6P uptake activity decreases as the internal:external P(i) ratio decreases and the P(i) uptake activity decreases in the presence of external G6P. Moreover, G6P or P(i) uptake activity is not detectable in P(i)-loaded proteoliposomes containing the p.R28H G6PT null mutant. The G6PT-proteoliposome-mediated G6P or P(i) uptake is inhibited by cholorgenic acid and vanadate, both specific G6PT inhibitors. Glucose-6-phosphatase-alpha (G6Pase-alpha), which facilitates microsomal G6P uptake by G6PT, fails to stimulate G6P uptake in P(i)-loaded G6PT-proteoliposomes, suggesting that the G6Pase-alpha-mediated stimulation is caused by decreasing G6P and increasing P(i) concentrations in microsomes. Taken together, our results suggest that G6PT has a dual role as a G6P and a P(i) transporter and that GSD-Ib and GSD-Ic are deficient in the same G6PT gene.
Collapse
Affiliation(s)
- Shih-Yin Chen
- Section on Cellular Differentiation, Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | | | | | | | | | | |
Collapse
|
14
|
Srivastava AK. Section Review—Oncologic, Endocrine & Metabolic: Potential Use of Vanadium Compounds in the Treatment of Diabetes Mellitus. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.6.525] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Csala M, Margittai É, Senesi S, Gamberucci A, Bánhegyi G, Mandl J, Benedetti A. Inhibition of hepatic glucose 6-phosphatase system by the green tea flavanol epigallocatechin gallate. FEBS Lett 2007; 581:1693-8. [DOI: 10.1016/j.febslet.2007.03.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/10/2007] [Accepted: 03/21/2007] [Indexed: 01/16/2023]
|
16
|
Ting CH, Lin CW, Wen SL, Hsieh-Li HM, Li H. Stat5 constitutive activation rescues defects in spinal muscular atrophy. Hum Mol Genet 2007; 16:499-514. [PMID: 17220171 DOI: 10.1093/hmg/ddl482] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a motor neuron degeneration disorder for which there is currently no effective treatment. Here, we report three compounds (sodium vanadate, trichostatin A and aclarubicin) that effectively enhance SMN2 expression by inducing Stat5 activation in SMA-like mouse embryonic fibroblasts and human SMN2-transfected NSC34 cells. We found that Stat5 activation enhanced SMN2 promoter activity with increase in both full-length and deletion exon 7 SMN transcripts in SMN2-NSC34 cells. Knockdown of Stat5 expression disrupted the effects of sodium vanadate on SMN2 activation but did not influence SMN2 splicing, suggesting that Stat5 signaling is involved in SMN2 transcriptional regulation. In addition, constitutive activation of Stat5 mutant (Stat5A1*6) profoundly increased the number of nuclear gems in SMA-patient lymphocytes and reduced SMA-like motor neuron axon outgrowth defects. These results demonstrate that Stat5 signaling could be a possible pharmacological target for treating SMA.
Collapse
Affiliation(s)
- Chen-Hung Ting
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Westergaard N, Madsen P. Glucose-6-phosphatase inhibitors for the treatment of Type 2 diabetes. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.9.1429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Abstract
Compounds of the trace element vanadium exert various insulin-like effects in in vitro and in vivo systems. These include their ability to improve glucose homeostasis and insulin resistance in animal models of Type 1 and Type 2 diabetes mellitus. In addition to animal studies, several reports have documented improvements in liver and muscle insulin sensitivity in a limited number of patients with Type 2 diabetes. These effects are, however, not as dramatic as those observed in animal experiments, probably because lower doses of vanadium were used and the duration of therapy was short in human studies as compared with animal work. The ability of these compounds to stimulate glucose uptake, glycogen and lipid synthesis in muscle, adipose and hepatic tissues and to inhibit gluconeogenesis, and the activities of the gluconeogenic enzymes: phosphoenol pyruvate carboxykinase and glucose-6-phosphatase in the liver and kidney as well as lipolysis in fat cells contributes as potential mechanisms to their anti-diabetic insulin-like effects. At the cellular level, vanadium activates several key elements of the insulin signal transduction pathway, such as the tyrosine phosphorylation of insulin receptor substrate-1, and extracellular signal-regulated kinase 1 and 2, phosphatidylinositol 3-kinase and protein kinase B activation. These pathways are believed to mediate the metabolic actions of insulin. Because protein tyrosine phosphatases (PTPases) are considered to be negative regulators of the insulin-signalling pathway, it is suggested that vanadium can enhance insulin signalling and action by virtue of its capacity to inhibit PTPase activity and increase tyrosine phosphorylation of substrate proteins. There are some concerns about the potential toxicity of available inorganic vanadium salts at higher doses and during long-term therapy. Therefore, new organo-vanadium compounds with higher potency and less toxicity need to be evaluated for their efficacy as potential treatment of human diabetes.
Collapse
Affiliation(s)
- A K Srivastava
- Laboratory of Cell Signalling, Research Centre, Centre hospitalier de l'Université de Montréal, Hôtel-Dieu and Department of Medicine, Quebec, Canada.
| | | |
Collapse
|
19
|
Sil D, Tripathi BK, Srivastava AK, Ram VJ. Synthesis and glucose-6-phosphatase inhibitory activity of (thiouriedo)alkanoic acid esters. Bioorg Med Chem Lett 2004; 14:2571-4. [PMID: 15109654 DOI: 10.1016/j.bmcl.2004.02.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
A series of (3-pyridin-2-yl-thiouriedo)alkanoic acid esters (5a-j) have been synthesized by the reaction of pyridin-2-yl-dithiocarbamic acid methyl ester (2) and amino acid esters (4). Most of the synthesized compounds have been evaluated against glucose-6-phosphatase enzyme but only four compounds (5g-j) displayed significant inhibitory activity of the enzyme.
Collapse
|
20
|
Castro MC, Avecilla F, Geraldes CF, de Castro B, Rangel M. Study of the oxidation products of the VO(dmpp)2 complex in aqueous solution under aerobic conditions: comparison with the vanadate–dmpp system. Inorganica Chim Acta 2003. [DOI: 10.1016/s0020-1693(03)00473-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Ramachandran B, Kandaswamy M, Narayanan V, Subramanian S. Insulin mimetic effects of macrocyclic binuclear oxovanadium complexes on streptozotocin-induced experimental diabetes in rats. Diabetes Obes Metab 2003; 5:455-61. [PMID: 14617232 DOI: 10.1046/j.1463-1326.2003.00302.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM The vanadium complexes so far tested for their insulin mimetic effects are either mono- or binuclear and contain only acyclic ligands. The leaching or hydrolysis of vanadyl ions from these complexes is much easier, and hence they elicit side effects. In the present study, a new binuclear macrocyclic oxovanadium complex was synthesized, and its efficacy was studied on streptozotocin (STZ)-induced diabetic rats over a period of 30 days. METHODS The insulin mimetic effect of the complex was tested on the blood sugar level in the STZ-diabetic rats and on the activities of the carbohydrate-metabolizing enzymes present in the liver. RESULTS Administration of vanadium complex to STZ-induced diabetic rats decreased blood glucose levels from hyperglycaemic to normoglycaemic when compared to diabetic rats. The activity of carbohydrate-metabolizing enzymes such as hexokinase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen content were increased to near normal in vanadium complex-administered diabetic rats. The biochemical studies such as assay of blood urea and glutamate oxaloacetate transaminases revealed that the complex is not toxic to the system. CONCLUSION The nontoxic nature of this complex may be due to the presence of the vanadyl ions in an intact macrocyclic form. Further, the vanadyl ions present in the macrocyclic binuclear oxovanadium complex are very close to each other, and this may enhance the insulin mimetic activity by synergic effect.
Collapse
Affiliation(s)
- B Ramachandran
- Department of Biochemistry and Molecular Biology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
22
|
Abstract
The existence of glucose-6-phosphate transport across the liver microsomal membrane is still controversial. In this paper, we show that S3483, a chlorogenic acid derivative known to inhibit glucose-6-phosphatase in intact microsomes, caused the intravesicular accumulation of glucose-6-phosphate when the latter was produced by glucose-6-phosphatase from glucose and carbamoyl-phosphate. S3483 also inhibited the conversion of glucose-6-phosphate to 6-phosphogluconate occurring inside microsomes in the presence of electron acceptors (NADP or metyrapone). These data indicate that liver microsomal membranes contain a reversible glucose-6-phosphate transporter, which furnishes substrate not only to glucose-6-phosphatase, but also to hexose-6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Isabelle Gerin
- Laboratory of Physiological Chemistry, ICP and Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
23
|
Tanaka N, Dumay V, Liao Q, Lange AJ, Wever R. Bromoperoxidase activity of vanadate-substituted acid phosphatases from Shigella flexneri and Salmonella enterica ser. typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2162-7. [PMID: 11985594 DOI: 10.1046/j.1432-1033.2002.02871.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vanadium haloperoxidases and the bacterial class A nonspecific acid phosphatases have a conserved active site. It is shown that vanadate-substituted recombinant acid phosphatase from Shigella flexneri (PhoN-Sf) and Salmonella enterica ser. typhimurium (PhoN-Se) in the presence of H2O2 are able to oxidize bromide to hypobromous acid. Vanadate is essential for this activity. The kinetic parameters for the artificial bromoperoxidases have been determined. The Km value for H2O2 is about the same as that for the vanadium bromoperoxidases from the seaweed Ascophyllum nodosum. However, the Km value for Br- is about 10-20 times higher, and the turnover values of about 3.4 min-1 and 33 min-1 for PhoN-Sf and PhoN-Se, respectively, are much slower, than those of the native bromoperoxidase. Thus, despite the striking similarity in the active-site structures of the vanadium haloperoxidases and the acid phosphatase, the turnover frequency is low, and clearly the active site of acid phosphatases is not optimized for haloperoxidase activity. Like the native vanadium bromoperoxidase, the vanadate-substituted PhoN-Sf and PhoN-Se catalyse the enantioselective sulfoxidation of thioanisole.
Collapse
Affiliation(s)
- Naoko Tanaka
- Institute for Molecular Chemistry, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Abstract
Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose.
Collapse
Affiliation(s)
- Emile van Schaftingen
- Laboratoire de Chimie Physiologique, UCL and ICP, Avenue Hippocrate 75, B-1200 Brussels, Belgium.
| | | |
Collapse
|
25
|
Westergaard N, Madsen P, Lundbeck JM, Jakobsen P, Varming A, Andersen B. Identification of two novel and potent competitive inhibitors of the glucose-6-phosphatase catalytic protein. Diabetes Obes Metab 2002; 4:96-105. [PMID: 11940106 DOI: 10.1046/j.1463-1326.2002.00179.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIM In this study, we show that inhibitors of the glucose-6-phosphatase (G-6-Pase) catalytic protein could be an alternative approach to the recent G-6-Pase T1-translocase inhibitors to target this enzyme for the treatment of type 2 diabetes. METHOD The active enantiomers of 4-methoxyphenyl-[4-(4-methoxyphenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-5-yl]methanone (Compound A-1) and 4-methoxyphenyl-[4-(4-trifluoromethoxyphenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-5-yl]methanone (Compound B-1) were characterized as inhibitors of the G-6-Pase catalytic protein using pig and rat liver microsomes and cultured rat hepatocytes. RESULTS Both compounds were found to be potent competitive inhibitors of the G-6-Pase catalytic protein obtained from pig and rat liver microsomes. The K(i) values (microM) were calculated to be 0.61 +/- 0.02 and 0.63 +/- 0.08 for compound A-1 and B-1 on intact pig microsomes, and 0.27 +/- 0.02 and 0.29 +/- 0.06 on disrupted pig microsomes. The corresponding values for rat liver microsomes were found to be 3.3 +/- 0.6 and 4.0 +/- 1.2 for compound A-1 and B-1 on intact microsomes, and 1.54 +/- 0.1 and 1.21 +/- 0.1 on disrupted microsomes. Compound A-1 was also able to inhibit pyrophosphatase activities from both intact and disrupted microsomes with equal potency (IC50; 0.43-0.55 microm). Using cultured rat hepatocytes and glycerol as the substrate, these compounds were able to prevent glucose production up to 60% with a concomitant increase in the G-6-P content (2.3-fold) using compound A-1. No increase in glycogen levels was seen. CONCLUSION These data demonstrated that these compounds were more potent inhibitors on G-6-Pase obtained from pig microsomes and were able to penetrate the microsomal membrane. The hepatocyte data further support the kinetic data, and are also consistent with the evoked mechanism of action.
Collapse
Affiliation(s)
- N Westergaard
- Department of Diabetes Biochemistry and Metabolism, Novo Nordisk A/S, DK-2760 Måløv, Denmark
| | | | | | | | | | | |
Collapse
|
26
|
Gerin I, Noël G, Van Schaftingen E. Novel arguments in favor of the substrate-transport model of glucose-6-phosphatase. Diabetes 2001; 50:1531-8. [PMID: 11423473 DOI: 10.2337/diabetes.50.7.1531] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this work was to discriminate between two models for glucose-6-phosphatase: one in which the enzyme has its catalytic site oriented toward the lumen of the endoplasmic reticulum, requiring transporters for glucose-6-phosphate, inorganic phosphate (Pi), and glucose (substrate-transport model), and a second one in which the hydrolysis of glucose-6-phosphate occurs inside the membrane (conformational model). We show that microsomes preloaded with yeast phosphoglucose isomerase catalyzed the detritiation of [2-(3)H]glucose-6-phosphate and that this reaction was inhibited by up to 90% by S3483, a compound known to inhibit glucose-6-phosphate hydrolysis in intact but not in detergent-treated microsomes. These results indicate that glucose-6-phosphate is transported to the lumen of the microsomes in an S3483-sensitive manner. Detritiation by intramicrosomal phosphoglucose isomerase was stimulated twofold by 1 mmol/l vanadate, a phosphatase inhibitor, indicating that glucose-6-phosphatase and the isomerase compete for the same intravesicular pool of glucose-6-phosphate. To investigate the site of release of Pi from glucose-6-phosphate, we incubated microsomes with Pb(2+), which forms an insoluble complex with Pi, preventing its rapid exit from the microsomes. Under these conditions, approximately 80% of the Pi that was formed after 5 min was intramicrosomal, compared with <10% in the absence of Pb(2+). We also show that, when incubated with glucose-6-phosphate and mannitol, glucose-6-phosphatase formed mannitol-1-phosphate and that this nonphysiological product was initially present within the microsomes before being released to the medium. These results indicate that the primary site of product release by glucose-6-phosphatase is the lumen of the endoplasmic reticulum.
Collapse
Affiliation(s)
- I Gerin
- Laboratory of Physiological Chemistry, ICP and Université Catholique de Louvain, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
27
|
Cam MC, Brownsey RW, McNeill JH. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol 2001. [PMID: 11077984 DOI: 10.1139/y00-053] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The demonstration that the trace element vanadium has insulin-like properties in isolated cells and tissues and in vivo has generated considerable enthusiasm for its potential therapeutic value in human diabetes. However, the mechanisms by which vanadium induces its metabolic effects in vivo remain poorly understood, and whether vanadium directly mimics or rather enhances insulin effects is considered in this review. It is clear that vanadium treatment results in the correction of several diabetes-related abnormalities in carbohydrate and lipid metabolism, and in gene expression. However, many of these in vivo insulin-like effects can be ascribed to the reversal of defects that are secondary to hyperglycemia. The observations that the glucose-lowering effect of vanadium depends on the presence of endogenous insulin whereas metabolic homeostasis in control animals appears not to be affected, suggest that vanadium does not act completely independently in vivo, but augments tissue sensitivity to low levels of plasma insulin. Another crucial consideration is one of dose-dependency in that insulin-like effects of vanadium in isolated cells are often demonstrated at high concentrations that are not normally achieved by chronic treatment in vivo and may induce toxic side effects. In addition, vanadium appears to be selective for specific actions of insulin in some tissues while failing to influence others. As the intracellular active forms of vanadium are not precisely defined, the site(s) of action of vanadium in metabolic and signal transduction pathways is still unknown. In this review, we therefore examine the evidence for and against the concept that vanadium is truly an insulin-mimetic agent at low concentrations in vivo. In considering the effects of vanadium on carbohydrate and lipid metabolism, we conclude that vanadium acts not globally, but selectively and by enhancing, rather than by mimicking the effects of insulin in vivo.
Collapse
Affiliation(s)
- M C Cam
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia,Vancouver, Canada
| | | | | |
Collapse
|
28
|
Abstract
Most neoplasms are dependent on glucose as their primary fuel, and their ambient glucose levels tend to be rather low owing to wasteful aerobic glycolysis and poor perfusion. Previous attempts to starve tumors by inducing hypoglycemia have foundered on the fact that the CNS and other tissues have high glucose requirements. Burt has proposed that, inasmuch as hypoglycemia-sensitive normal tissues can make efficient use of glycerol, whereas many or most cancers cannot, hypoglycemic cancer therapy may be feasible if glycerol is concurrently infused. Unfortunately, when Burt used 3-mercaptopicolinate to inhibit gluconeogenesis and thereby induce hypoglycemia in fasted tumor-bearing subjects, infused glycerol served as gluconeogenic substrate, raising the serum glucose level. Agents which inhibit gluconeogenesis more distally - namely at the level of glucose-6-phosphatase or of fructosediphosphatase - may prevent the gluconeogenic response to glycerol, making glycerol-rescued hypoglycemic therapy of cancer feasible. In fact, certain new drugs being developed for diabetes therapy - chlorogenic acid derivatives and 'compound A' - are potent inhibitors of glucose-6-phosphatase, and both AICA riboside and 2,5-anhydro-D-mannitol have potential as clinical inhibitors of fructosediphosphatase. Insulin also can inhibit gluconeogenesis, both proximally and distally, and can potentiate hypoglycemia by promoting muscle glucose uptake; thus, coinfusion of high-dose insulin and of glycerol may represent an alternative viable strategy. Further research along these lines may enable glycerol-rescued hypoglycemia to become a feasible cancer therapy that has particular value as a complement to antiangiogenic measures.
Collapse
Affiliation(s)
- M F McCarty
- Pantox Laboratories, San Diego, California 92109, USA
| |
Collapse
|
29
|
Renirie R, Hemrika W, Wever R. Peroxidase and phosphatase activity of active-site mutants of vanadium chloroperoxidase from the fungus Curvularia inaequalis. Implications for the catalytic mechanisms. J Biol Chem 2000; 275:11650-7. [PMID: 10766783 DOI: 10.1074/jbc.275.16.11650] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation studies were performed on active-site residues of vanadium chloroperoxidase from the fungus Curvularia inaequalis, an enzyme which exhibits both haloperoxidase and phosphatase activity and is related to glucose-6-phosphatase. The effects of mutation to alanine on haloperoxidase activity were studied for the proposed catalytic residue His-404 and for residue Asp-292, which is located close to the vanadate cofactor. The mutants were strongly impaired in their ability to oxidize chloride but still oxidized bromide, although they inactivate during turnover. The effects on the optical absorption spectrum of vanadium chloroperoxidase indicate that mutant H404A has a reduced affinity for the cofactor, whereas this affinity is unchanged in mutant D292A. The effect on the phosphatase activity of the apoenzyme was investigated for six mutants of putative catalytic residues. Effects of mutation of His-496, Arg-490, Arg-360, Lys-353, and His-404 to alanine are in line with their proposed roles in nucleophilic attack, transition-state stabilization, and leaving-group protonation. Asp-292 is excluded as the group that protonates the leaving group. A model based on the mutagenesis studies is presented and may serve as a template for glucose-6-phosphatase and other related phosphatases. Hydrolysis of a phospho-histidine intermediate is the rate-determining step in the phosphatase activity of apochloroperoxidase, as shown by burst kinetics.
Collapse
Affiliation(s)
- R Renirie
- E. C. Slater Institute, Biocentrum Amsterdam, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | |
Collapse
|
30
|
Mosseri R, Waner T, Shefi M, Shafrir E, Meyerovitch J. Gluconeogenesis in non-obese diabetic (NOD) mice: in vivo effects of vandadate treatment on hepatic glucose-6-phoshatase and phosphoenolpyruvate carboxykinase. Metabolism 2000; 49:321-5. [PMID: 10726908 DOI: 10.1016/s0026-0495(00)90132-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The contribution of gluconeogenesis to hyperglycemia in non-obese diabetic (NOD) mice has been investigated using oral vanadate administration. Vanadate compounds have been shown to mimic many actions of insulin; however, the exact mechanism is poorly understood. The aims of the present study were (1) to elucidate vanadate's action in vivo, and to assess the possibility that its glucose-reducing effect is dependent on the presence of a minimal concentration of insulin; and (2) to evaluate the effects of vanadate administration on the key hepatic gluconeogenesis enzymes, glucose-6-phosphatase (G-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK), as well as glucose-6-phosphate dehydrogenase (G-6-PDH). Vanadate caused a significant reduction in blood glucose but failed to normalize it, despite effective serum vanadate concentrations (26.2 +/- 1.6 micromol/L). Two weeks after initiation of treatment, blood glucose levels were 26.0 +/- 1.8, 21.7 +/- 3.0, 16.0 +/- 1.6, and 14.3 +/- 2.3 mmol/L in the control (C), insulin (I), vanadate (V), and combined vanadate and insulin (V + I) groups, respectively (P < .001). G-6-Pase activity was significantly reduced by vanadate (622 +/- 134 v365 +/- 83 nmol/min/mg protein in C vV, P < .05). PEPCK activity was also significantly reduced (844 +/- 370, 623 +/- 36, 337 +/- 43, and 317 +/- 75 nmol/min/mg in the C, I, V, and V + I groups, respectively, P < .001). No significant differences in the hepatic glycogen stores and G-6-PDH activity were noted between treatment groups. Our study suggests that the inhibition of hepatic G-6-Pase and PEPCK activity by vanadate plays an important role in reducing blood glucose levels in NOD mice.
Collapse
Affiliation(s)
- R Mosseri
- Department of Pediatrics, Schneider Children's Medical Center, Ragin Campus, Petah Tikva, Israel
| | | | | | | | | |
Collapse
|
31
|
van de Werve G, Lange A, Newgard C, Méchin MC, Li Y, Berteloot A. New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1533-49. [PMID: 10712583 DOI: 10.1046/j.1432-1327.2000.01160.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The operation of glucose 6-phosphatase (EC 3.1.3.9) (Glc6Pase) stems from the interaction of at least two highly hydrophobic proteins embedded in the ER membrane, a heavily glycosylated catalytic subunit of m 36 kDa (P36) and a 46-kDa putative glucose 6-phosphate (Glc6P) translocase (P46). Topology studies of P36 and P46 predict, respectively, nine and ten transmembrane domains with the N-terminal end of P36 oriented towards the lumen of the ER and both termini of P46 oriented towards the cytoplasm. P36 gene expression is increased by glucose, fructose 2,6-bisphosphate (Fru-2,6-P2) and free fatty acids, as well as by glucocorticoids and cyclic AMP; the latter are counteracted by insulin. P46 gene expression is affected by glucose, insulin and cyclic AMP in a manner similar to P36. Accordingly, several response elements for glucocorticoids, cyclic AMP and insulin regulated by hepatocyte nuclear factors were found in the Glc6Pase promoter. Mutations in P36 and P46 lead to glycogen storage disease (GSD) type-1a and type-1 non a (formerly 1b and 1c), respectively. Adenovirus-mediated overexpression of P36 in hepatocytes and in vivo impairs glycogen metabolism and glycolysis and increases glucose production; P36 overexpression in INS-1 cells results in decreased glycolysis and glucose-induced insulin secretion. The nature of the interaction between P36 and P46 in controling Glc6Pase activity remains to be defined. The latter might also have functions other than Glc6P transport that are related to Glc6P metabolism.
Collapse
Affiliation(s)
- G van de Werve
- Laboratoire d'Endocrinologie Métabolique, Centre de Recherche du CHUM,Montreal, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Westergaard N, Brand CL, Lewinsky RH, Andersen HS, Carr RD, Burchell A, Lundgren K. Peroxyvanadium compounds inhibit glucose-6-phosphatase activity and glucagon-stimulated hepatic glucose output in the rat in vivo. Arch Biochem Biophys 1999; 366:55-60. [PMID: 10334863 DOI: 10.1006/abbi.1999.1181] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present investigation was undertaken to characterize the direct inhibitory action of the peroxyvanadium compounds oxodiperoxo(1, 10-phenanthroline) vanadate(V) (bpV(phen)) and oxodiperoxo(pyridine-2-carboxylate) vanadate(V) (bpV(pic)) on pig microsomal glucose-6-phosphatase (G-6-Pase) activity and on glucagon stimulated hyperglycemia in vivo. Both bpV(phen) and bpV(pic) were found to be potent competitive inhibitors of G-6-Pase with Ki values of 0.96 and 0.42 microM (intact microsomes) and 0.50 and 0.21 microM (detergent-disrupted microsomes). The corresponding values for ortho-vanadate were 20.3 and 20.0 microM. Administration of bpV(phen) to postprandial rats did not affect the basal glucose level although a modest and dose-dependent increase in plasma lactate levels was seen. Injection of glucagon raised the plasma glucose level from 5.5 mM to about 7.5 mM in control animals and this increase could be prevented dose-dependently by bpV(phen). The inhibition of the glucagon-mediated blood glucose increase was accompanied by a dose-dependent increase in plasma lactate levels from 2 mM to about 11 mM. In conclusion, the finding that vanadate and bpV compounds are potent inhibitors of G-6-Pase suggests that the blood-glucose-lowering effect of these compounds which is seen in diabetic animals may be partly explained by a direct effect on this enzyme rather than, as presently thought, being the result of inhibition of phosphoprotein tyrosine phosphatases and thereby insulin receptor dephosphorylation.
Collapse
Affiliation(s)
- N Westergaard
- Department of Diabetes Biochemistry and Metabolism, Department of Medicinal Chemistry Research, Novo Nordisk A/S, Novo Nordisk Park, Mâlov, DK-2760, Denmark.
| | | | | | | | | | | | | |
Collapse
|
33
|
Clottes E, Burchell A. Three thiol groups are important for the activity of the liver microsomal glucose-6-phosphatase system. Unusual behavior of one thiol located in the glucose-6-phosphate translocase. J Biol Chem 1998; 273:19391-7. [PMID: 9677356 DOI: 10.1074/jbc.273.31.19391] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver microsomal glucose-6-phosphatase (Glc-6-Pase) is a multicomponent system involving both substrate and product carriers and a catalytic subunit. We have investigated the inhibitory effect of N-ethylmaleimide (NEM), a rather specific sulfhydryl reagent, on rat liver Glc-6-Pase activity. Three thiol groups are important for Glc-6-Pase system activity. Two of them are located in the glucose-6-phosphate (Glc-6-P) translocase, and one is located in the catalytic subunit. The other transporters (phosphate and glucose) are not affected by NEM treatment. The NEM alkylation of the catalytic subunit sulfhydryl residue is prevented by preincubating the disrupted microsomes with saturating concentrations of substrate or product. This suggests either that the modified cysteine is located in the protein active site or that substrate binding hides the thiol group via a conformational change in the enzyme structure. Two other thiols important for the Glc-6-Pase system activity are located in the Glc-6-P translocase and are more reactive than the one located in the catalytic subunit. The study of the NEM inhibition of the translocase has provided evidence of the existence of two distinct areas in the protein that can behave independently, with conformational changes occurring during Glc-6-P binding to the transporter. The recent cloning of a human putative Glc-6-P carrier exhibiting homologies with bacterial phosphoester transporters, such as Escherichia coli UhpT (a Glc-6-P translocase), is compatible with the fact that two cysteine residues are important for the bacterial Glc-6-P transport.
Collapse
Affiliation(s)
- E Clottes
- Department of Obstetrics and Gynaecology, Ninewells Hospital and Medical School, Dundee University, Dundee, DD1 9SY, Scotland
| | | |
Collapse
|
34
|
Foster JD, Young SE, Brandt TD, Nordlie RC. Tungstate: a potent inhibitor of multifunctional glucose-6-phosphatase. Arch Biochem Biophys 1998; 354:125-32. [PMID: 9633606 DOI: 10.1006/abbi.1998.0695] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin-like action of tungstate in diabetic rats (A. Barberà et al., 1994, J. Biol. Chem. 269, 20047-20053) prompted us to examine the effects of tungstate on the glucose-6-phosphatase system. Our results indicate that tungstate is a potent inhibitor of glucose-6-phosphatase, with a Ki in the 10-25 microM range determined with native microsomes and in the 1-7 microM range determined with detergent-treated microsomes. With both preparations, simple linear competitive inhibition was observed versus glucose 6-phosphate (glucose-6-P) as substrate with the glucose-6-P phosphohydrolase activity of the enzyme. Tungstate was a simple linear competitive inhibitor versus carbamyl phosphate (carbamyl-P) and a linear noncompetitive inhibitor versus glucose with the carbamyl-P:glucose phosphotransferase activity of the glucose-6-phosphatase system. These findings, in addition to the observation that tungstate protected the enzyme against thermal inactivation, indicate that tungstate binds with high affinity and competes at the active site of the enzyme where the substrates glucose-6-P and carbamyl-P bind prior to catalysis. Our results suggest that potent inhibition of glucose-6-P hydrolysis by tungstate is likely responsible, at least in part, for the normalization of glycemia and the rebound in hepatic glucose-6-P levels observed in earlier studies in which tungstate exhibited insulin-like action in diabetic rats.
Collapse
Affiliation(s)
- J D Foster
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine and Health Sciences, Grand Forks 58203, USA
| | | | | | | |
Collapse
|
35
|
Tang S, Lu B, Fantus IG. Stimulation of 125I-transferrin binding and 59Fe uptake in rat adipocytes by vanadate: treatment time determines apparent tissue sensitivity. Metabolism 1998; 47:630-6. [PMID: 9627358 DOI: 10.1016/s0026-0495(98)90022-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vanadium compounds have been documented to stimulate a number of insulin biological effects in vitro and in vivo. We previously demonstrated stimulation of glucose transport and insulin-like growth factor-II (IGF-II) binding in rat adipocytes. These actions are associated with translocation of glucose transporters and IGF-II receptors from an intracellular compartment to the plasma membrane. The transferrin receptor is also recruited to the plasma membrane in response to insulin. Freshly isolated rat adipocytes were incubated with vanadate and insulin at 37 degrees C, and after treating the cells with KCN to inhibit further receptor movement, diferric 125I-transferrin binding was assayed. Vanadate stimulated a dose- and time-dependent increase in 125I-transferrin binding, reaching maximum (approximately threefold) stimulation at 1 mmol/L after a 4-hour incubation. This was equivalent to the maximum insulin effect that was obtained with 10(-8) mol/L after 30 minutes. A similar degree of stimulation was achieved with 0.1 mmol/L vanadate after 8 hours of exposure. Dose-response data showed that the apparent sensitivity to vanadate was time-dependent and increased with the duration of exposure (EC50: 30 minutes, 1 mmol/L; 3 hours, 0.35 mmol/L). Scatchard analysis of 125I-transferrin binding showed that both insulin and vanadate increased receptor binding capacity with no effect on receptor affinity. Total cellular transferrin receptor content measured by immunoblotting with monoclonal anti-transferrin receptor antibody (OX-26) was not altered by insulin or vanadate, consistent with receptor translocation. Assessment of 59Fe uptake from 59Fe-labeled diferric transferrin showed that vanadate augmented 59Fe uptake in a dose-dependent manner to an extent similar to insulin, demonstrating the functional activity of the receptors (percent of control: 10(-8) mol/L insulin, 175% +/- 23.8%, P < .02; 0.3 mmol/L vanadate, 188% +/- 17.3%, P < .01). We conclude that vanadate mimics insulin to augment cell surface transferrin receptors and increase Fe uptake in rat adipocytes. The time-dependent apparent increase in sensitivity is consistent with the effectiveness of very low concentrations of vanadate in vivo after several days of administration, and suggests a requirement for vanadate entry into cells to mediate this biological response.
Collapse
Affiliation(s)
- S Tang
- Department of Medicine, Mount Sinai Hospital, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
36
|
Khan A, Ling ZC, Pukk K, Herling AW, Landau BR, Efendic S. Effects of 3-mercaptopicolinic acid and a derivative of chlorogenic acid (S-3483) on hepatic and islet glucose-6-phosphatase activity. Eur J Pharmacol 1998; 349:325-31. [PMID: 9671114 DOI: 10.1016/s0014-2999(98)00188-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glucose-6-phosphatase activity was measured in hepatic microsomes and in pancreatic islets from ob/ob mice. In hepatic microsomes vanadate, phlorizin, 3-mercaptopicolinic acid and a derivative of chlorogenic acid (S-3483) inhibited the translocase activity of the enzyme, vanadate in addition inhibited hydrolase activity. In islets, vanadate inhibited both components of the enzyme, phlorizin inhibited only hydrolase activity while 3-mercaptopicolinic acid and compound S-3483 were without effect. Similarly, when islets were incubated with 3H2O and unlabeled glucose, the incorporation of 3H into medium glucose was inhibited by vanadate and phlorizin, but not by 3-mercaptopicolinic acid and S-3483. These findings suggest that, as with glucokinase, different isoenzymes of glucose-6-phosphatase are present in islets and liver.
Collapse
Affiliation(s)
- A Khan
- Department of Molecular Medicine, Endocrine and Diabetes Unit, Karolinska Hospital, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
37
|
Arion WJ, Canfield WK, Ramos FC, Su ML, Burger HJ, Hemmerle H, Schubert G, Below P, Herling AW. Chlorogenic acid analogue S 3483: a potent competitive inhibitor of the hepatic and renal glucose-6-phosphatase systems. Arch Biochem Biophys 1998; 351:279-85. [PMID: 9514661 DOI: 10.1006/abbi.1997.0563] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
S 3483, a synthetic derivative of chlorogenic acid (CHL), was found to be a reversible, linear competitive inhibitor of the glucose-6-phosphatase (Glc-6-Pase) system in rat renal microsomes and rat and human liver microsomes. The Ki for S 3483 in rat liver microsomes (129 nM) is three orders of magnitude smaller than the Ki for CHL. S 3483 up to 100 microM had no effect on the Glc-6-Pase enzyme activity or on the system inorganic pyrophosphatase activity (i.e., on T2, the Pi/inorganic pyrophosphate transporter). Thus, like CHL, S 3483 appears to be a site-specific inhibitor of T1, the Glc-6-P transporter of renal and liver microsomes. The potency of S 3483 was unaffected when the ratio Vmax(T1):Vmax(enzyme) was altered over a 10-fold range by applying enzyme inhibition and selective inactivation of T1. The absence of T1-imposed rate restrictions on the potency of reversible T1 inhibitors contrasts markedly with the response of reversible Glc-6-Pase enzyme inhibitors, whose potency declines sharply as T1 becomes more rate controlling. The potency of S 3483, but not of CHL, decreased as the microsomal protein concentration in the assay medium was increased. This effect suggests that as the protein concentration was raised the concentration of T1 in the assay medium approached the order of magnitude of the Ki for S 3483. Thus, the microsomal content of T1 is likely to be on the order of 100 pmol/mg protein. S 3483 is the most potent inhibitor of the Glc-6-Pase system reported to date. It and other tight-binding inhibitors of T1 will provide useful new tools for investigating the molecular structure and physiology/pathology of the Glc-6-Pase system.
Collapse
Affiliation(s)
- W J Arion
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pan CJ, Lei KJ, Annabi B, Hemrika W, Chou JY. Transmembrane topology of glucose-6-phosphatase. J Biol Chem 1998; 273:6144-8. [PMID: 9497333 DOI: 10.1074/jbc.273.11.6144] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deficiency of microsomal glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis, causes glycogen storage disease type 1a, an autosomal recessive disorder. Characterization of the transmembrane topology of G6Pase should facilitate the identification of amino acid residues contributing to the active site and broaden our understanding of the effects of mutations that cause glycogen storage disease type 1a. Using N- and C-terminal tagged G6Pase, we show that in intact microsomes, the N terminus is resistant to protease digestion, whereas the C terminus is sensitive to such treatment. Our results demonstrate that G6Pase possesses an odd number of transmembrane helices, with its N and C termini facing the endoplasmic reticulum lumen and the cytoplasm, respectively. During catalysis, a phosphoryl-enzyme intermediate is formed, and the phosphoryl acceptor in G6Pase is a His residue. Sequence alignment suggests that mammalian G6Pases, lipid phosphatases, acid phosphatases, and a vanadium-containing chloroperoxidase (whose tertiary structure is known) share a conserved phosphatase motif. Active-site alignment of the vanadium-containing chloroperoxidase and G6Pases predicts that Arg-83, His-119, and His-176 in G6Pase contribute to the active site and that His-176 is the residue that covalently binds the phosphoryl moiety during catalysis. This alignment also predicts that Arg-83, His-119, and His-176 reside on the same side of the endoplasmic reticulum membrane, which is supported by the recently predicted nine-transmembrane helical model for G6Pase. We have previously shown that Arg-83 is involved in positioning the phosphate during catalysis and that His-119 is essential for G6Pase activity. Here we demonstrate that substitution of His-176 with structurally similar or dissimilar amino acids inactivates the enzyme, suggesting that His-176 could be the phosphoryl acceptor in G6Pase during catalysis.
Collapse
Affiliation(s)
- C J Pan
- Heritable Disorders Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
39
|
Bánhegyi G, Marcolongo P, Fulceri R, Hinds C, Burchell A, Benedetti A. Demonstration of a metabolically active glucose-6-phosphate pool in the lumen of liver microsomal vesicles. J Biol Chem 1997; 272:13584-90. [PMID: 9153206 DOI: 10.1074/jbc.272.21.13584] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glucose-6-phosphate transport was investigated in rat or human liver microsomal vesicles using rapid filtration and light-scattering methods. Upon addition of glucose-6-phosphate, rat liver microsomes accumulated the radioactive tracer, reaching a steady-state level of uptake. In this phase, the majority of the accumulated tracer was glucose, but a significant intraluminal glucose-6-phosphate pool could also be observed. The extent of the intravesicular glucose pool was proportional with glucose-6-phosphatase activity. The relative size of the intravesicular glucose-6-phosphate pool (irrespective of the concentration of the extravesicular concentration of added glucose-6-phosphate) expressed as the apparent intravesicular space of the hexose phosphate was inversely dependent on glucose-6-phosphatase activity. The increase of hydrolysis by elevating the extravesicular glucose-6-phosphate concentration or temperature resulted in lower apparent intravesicular glucose-6-phosphate spaces and, thus, in a higher transmembrane gradient of glucose-6-phosphate concentrations. In contrast, inhibition of glucose-6-phosphate hydrolysis by vanadate, inactivation of glucose-6-phosphatase by acidic pH, or genetically determined low or absent glucose-6-phosphatase activity in human hepatic microsomes of patients suffering from glycogen storage disease type 1a led to relatively high intravesicular glucose-6-phosphate levels. Glucose-6-phosphate transport investigated by light-scattering technique resulted in similar traces in control and vanadate-treated rat microsomes as well as in microsomes from human patients with glycogen storage disease type 1a. It is concluded that liver microsomes take up glucose-6-phosphate, constituting a pool directly accessible to intraluminal glucose-6-phosphatase activity. In addition, normal glucose-6-phosphate uptake can take place in the absence of the glucose-6-phosphatase enzyme protein, confirming the existence of separate transport proteins.
Collapse
Affiliation(s)
- G Bánhegyi
- Institute of General Pathology, University of Siena, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Hemrika W, Renirie R, Dekker HL, Barnett P, Wever R. From phosphatases to vanadium peroxidases: a similar architecture of the active site. Proc Natl Acad Sci U S A 1997; 94:2145-9. [PMID: 9122162 PMCID: PMC20055 DOI: 10.1073/pnas.94.6.2145] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We show here that the amino acid residues contributing to the active sites of the vanadate containing haloperoxidases are conserved within three families of acid phosphatases; this suggests that the active sites of these enzymes are very similar. This is confirmed by activity measurements showing that apochloroperoxidase exhibits phosphatase activity. These observations not only reveal interesting evolutionary relationships between these groups of enzymes but may also have important implications for the research on acid phosphatases, especially glucose-6-phosphatase-the enzyme affected in von Gierke disease-of which the predicted membrane topology may have to be reconsidered.
Collapse
Affiliation(s)
- W Hemrika
- E. C. Slater Institute, Plantage Muidergracht, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Abstract
We have identified a novel, conserved phosphatase sequence motif, KXXXXXXRP-(X12-54)-PSGH-(X31-54)-SRXXXXX HXXXD, that is shared among several lipid phosphatases, the mammalian glucose-6-phosphatases, and a collection of bacterial nonspecific acid phosphatases. This sequence was also found in the vanadium-containing chloroperoxidase of Curvularia inaequalis. Several lines of evidence support this phosphatase motif identification. Crystal structure data on chloroperoxidase revealed that all three domains are in close proximity and several of the conserved residues are involved in the binding of the cofactor, vanadate, a compound structurally similar to phosphate. Structure-function analysis of the human glucose-6-phosphatase has shown that two of the conserved residues (the first domain arginine and the central domain histidine) are essential for enzyme activity. This conserved sequence motif was used to identify nine additional putative phosphatases from sequence databases, one of which has been determined to be a lipid phosphatase in yeast.
Collapse
Affiliation(s)
- J Stukey
- Department of Biology, Hope College, Holland, Michigan 49422, USA.
| | | |
Collapse
|
42
|
Sekar N, Li J, Shechter Y. Vanadium salts as insulin substitutes: mechanisms of action, a scientific and therapeutic tool in diabetes mellitus research. Crit Rev Biochem Mol Biol 1996; 31:339-59. [PMID: 8994801 DOI: 10.3109/10409239609108721] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vanadium and its compounds exhibit a wide variety of insulin-like effects. In this review, these effects are discussed with respect to the treatment of type I and type II diabetes in animal models, in vitro actions, antineoplastic role, treatment of IDDM and NIDDM patients, toxicity, and the possible mechanism(s) involved. Newly established CytPTK plays a major role in the bioresponses of vanadium. It has a molecular weight of approximately 53 kDa and is active in the presence of Co2+ rather than Mn2+. Among the protein-tyrosine kinase blockers, staurosporine is found to be a potent inhibitor of CytPTK but a poor inhibitor of InsRTK. Vanadium inhibits PTPase activity, and this in turn enhances the activity of protein tyrosine kinases. Our data show that inhibition of PTPase and protein tyrosine kinase activation has a major role in the therapeutic efficacy of vanadium in treating diabetes mellitus.
Collapse
Affiliation(s)
- N Sekar
- Department of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
43
|
Lei KJ, Chen H, Pan CJ, Ward JM, Mosinger B, Lee EJ, Westphal H, Mansfield BC, Chou JY. Glucose-6-phosphatase dependent substrate transport in the glycogen storage disease type-1a mouse. Nat Genet 1996; 13:203-9. [PMID: 8640227 DOI: 10.1038/ng0696-203] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Glycogen storage disease type 1a (GSD-1a) is caused by a deficiency in microsomal glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. A G6Pase knockout mouse which mimics the pathophysiology of human GSD-1a patients was created to understand the pathogenesis of this disorder, to delineate the mechanisms of G6Pase catalysis, and to develop future therapeutic approaches. By examining G6Pase in the liver and kidney, the primary gluconeogenic tissues, we demonstrate that glucose-6-P transport and hydrolysis are performed by separate proteins which are tightly coupled. We propose a modified translocase catalytic unit model for G6Pase catalysis.
Collapse
Affiliation(s)
- K J Lei
- Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nelson CA, Wang JQ, Leav I, Crane PD. The interaction among glucose transport, hexokinase, and glucose-6-phosphatase with respect to 3H-2-deoxyglucose retention in murine tumor models. Nucl Med Biol 1996; 23:533-41. [PMID: 8832712 DOI: 10.1016/0969-8051(96)00037-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of new diagnostic/therapeutic modalities for cancer requires a specific understanding of how tumors differ from normal tissues. Though the key components involved in the selective accumulation of 2-deoxy-D-glucose (2-DG) analogs in tumors are known, the relative importance of each is controversial. For this reason glucose transport protein (GLUT) density, hexokinase/glucose-6-phosphatase (GP) activity, and 2-DG biodistribution were measured together in four tumor models and normal murine tissues. Direct binding studies with 3H-cytochalasin B showed that GLUT density was elevated 20-fold in LX-1 tumors. Immunohistochemically in all tumors, the expression of GLUT-1 was highest in the necrotic/ perinecrotic foci and similar in cells not adjacent to necrotic foci. As the retention of 3H-2-DG was similar in all tumors, these data suggest that the GLUT-1 in perinecrotic tumor cells were not rate limiting for 3H-2-DG uptake. Kidney, liver, and lung had high GP activity and rapid clearance of 3H-2-DG. Sodium orthovanadate (5 mumol), a GP inhibitor, increased the concentration of 3H-2-DG in these tissues, suggesting that GP is a rate-limiting enzyme for 3H-2-DG clearance. All tumor homogenates had low GP activity, and hexokinase activity was not elevated compared to normal tissues. Thus, in the tumors studied, the selective accumulation of 3H-2-DG consistently occurred in the absence of significant GP activity without the marked overexpression of hexokinase or GLUT.
Collapse
Affiliation(s)
- C A Nelson
- Du Pont Merck Pharmaceutical Company, Radiopharmaceutical Division, Billerica, MA 01862, USA
| | | | | | | |
Collapse
|
45
|
Fantus IG, Deragon G, Lai R, Tang S. Modulation of insulin action by vanadate: evidence of a role for phosphotyrosine phosphatase activity to alter cellular signaling. Mol Cell Biochem 1995; 153:103-12. [PMID: 8927024 DOI: 10.1007/bf01075924] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED A number of vanadium compounds (vanadate, vanadyl sulfate, metavanadate) have insulin-mimicking actions both in vitro and in vivo. They have multiple biological effects in cultured cells and interact directly with various enzymes. The inhibitory action on phosphoprotein tyrosine phosphatases (PTPs) and enhancement of cellular tyrosine phosphorylation appear to be the most relevant to explain the ability to mimic insulin. We demonstrated that in rat adipocytes both acute insulin effects, e.g. stimulation of IGF-II and transferrin binding and a chronic effect, insulin receptor downregulation, were stimulated by vanadate. Vanadate also enhanced insulin binding, particularly at very low insulin concentrations, associated with increased receptor affinity. This resulted in increased adipocyte insulin sensitivity. Finally vanadate augmented the extent of activation of the insulin receptor kinase by submaximal insulin concentrations. This was associated with a prolongation of the insulin biological response, lipogenesis, after removal of hormone. IN CONCLUSION in rat adipocytes vanadate promotes insulin action by three mechanisms, 1) a direct insulin-mimetic action, 2) an enhancement of insulin sensitivity and 3) a prolongation of insulin biological response. These data suggest that PTP inhibitors have potential as useful therapeutic agents in insulin-resistant and relatively insulin-deficient forms of diabetes mellitus.
Collapse
Affiliation(s)
- I G Fantus
- Department of Medicine, Mount Sinai Hospital, Toronto, Canada
| | | | | | | |
Collapse
|
46
|
Pandey SK, Chiasson JL, Srivastava AK. Vanadium salts stimulate mitogen-activated protein (MAP) kinases and ribosomal S6 kinases. Mol Cell Biochem 1995; 153:69-78. [PMID: 8927050 DOI: 10.1007/bf01075920] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Effect of several vanadium salts, sodium orthovanadate, vanadyl sulfate and sodium metavanadate on protein tyrosine phosphorylation and serine/threonine kinases in chinese hamster ovary (CHO) cells overexpressing a normal human insulin receptor was examined. All the compounds stimulated protein tyrosine phosphorylation of two major proteins with molecular masses of 42 kDa (p42) and 44 kDa (p44). The phosphorylation of p42 and p44 was associated with an activation of mitogen activated protein (MAP) kinase as well as increased protein tyrosine phosphorylation of p42mapk and p44mapk. Vanadium salts also activated the 90 kDa ribosomal s6 kinase (p90rsk) and 70 kDa ribosomal s6 kinase (p70s6k). Among the three vanadium salts tested, vanadyl sulfate appeared to be slightly more potent than others in stimulating MAP kinases and p70s6k activity. It is suggested that vanadium-induced activation of MAP kinases and ribosomal s6 kinases may be one of the mechanisms by which insulin like effects of this trace element are mediated.
Collapse
Affiliation(s)
- S K Pandey
- Centre de Recherche/Hotel-Dieu de Montreal Hospital, Quebec, Canada
| | | | | |
Collapse
|
47
|
St-Denis JF, Berteloot A, Vidal H, Annabi B, van de Werve G. Glucose transport and glucose 6-phosphate hydrolysis in intact rat liver microsomes. J Biol Chem 1995; 270:21092-21097. [PMID: 7673139 DOI: 10.1074/jbc.270.36.21092] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
Glucose transport was investigated in rat liver microsomes in relation to glucose 6-phosphatase (Glu-6-Pase) activity using a fast sampling, rapid filtration apparatus. 1) The rapid phase in tracer uptake and the burst phase in glucose 6-phosphate (Glu-6-P) hydrolysis appear synchronous, while the slow phase of glucose accumulation occurs during the steady-state phase of glucose production. 2) [14C]Glucose efflux from preloaded microsomes can be observed upon addition of either cold Glu-6-P or Glu-6-Pase inhibitors, but not cold glucose. 3) Similar steady-state levels of intramicrosomal glucose are observed under symmetrical conditions of Glu-6-P or vanadate concentrations during influx and efflux experiments, and those levels are directly proportional to Glu-6-Pase activity. 4) The rates of both glucose influx and efflux are characterized by t1/2 values that are independent of Glu-6-P concentrations. 5) Glucose efflux in the presence of saturating concentrations of vanadate was not blocked by 1 mM phloretin, and the initial rates of efflux appear directly proportional to intravesicular glucose concentrations. 6) It is concluded that glucose influx into microsomes is tightly linked to Glu-6-Pase activity, while glucose efflux may occur independent of hydrolysis, so that microsomal glucose transport appears unidirectional even though it can be accounted for by diffusion only over the accessible range of sugar concentrations.
Collapse
Affiliation(s)
- J F St-Denis
- Department of Nutrition, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
48
|
Van Schaftigen E. Glucosamine-sensitive and -insensitive detritiation of [2-3H]glucose in isolated rat hepatocytes: a study of the contributions of glucokinase and glucose-6-phosphatase. Biochem J 1995; 308 ( Pt 1):23-9. [PMID: 7755569 PMCID: PMC1136838 DOI: 10.1042/bj3080023] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glucosamine, a potent inhibitor of glucokinase (hexokinase IV or D), was used to estimate the contribution of this enzyme to glucose phosphorylation in freshly isolated rat hepatocytes and its sensitivity to fructose 6-phosphate in situ. Experiments with radiolabelled glucosamine indicated that this amino sugar, at concentrations of 5 or 40 mM, readily penetrated hepatocytes to reach in 1 min a total (i.e., glucosamine+metabolites) intracellular concentration equal to 0.8-1.2-fold its extracellular concentration. In marked contrast, N-acetylglucosamine barely penetrated the cells. The detritiation of [2-3H]glucose, used to estimate glucose phosphorylation in intact cells, was inhibited by glucosamine much more potently than by N-acetylglucosamine, half-maximal effects being reached at about 2.5 and 30 mM respectively. Extrapolation of the data indicated that about 12% of the detritiation was resistant to glucosamine. Dihydroxyacetone (10 mM), lactate (10 mM) + pyruvate (1 mM), and glucagon (1 microM) increased up to 8-fold the concentration of hexose 6-phosphates (glucose 6-phosphate+fructose 6-phosphate) and, against expectations, modestly decreased the detritiation rate measured in the absence of glucosamine. In the presence of 40 mM glucosamine, these agents increased the detritiation rate, which then positively correlated with the concentration of hexose 6-phosphates. This hexose 6-phosphates-dependent detritiation was sensitive to inhibition by vanadate, and was also catalysed by gel-filtered cell-free extracts, as well as by liver microsomes in the presence of phosphoglucoisomerase; it can be explained by an exchange reaction catalysed by glucose-6-phosphatase. When this exchange reaction is taken into account, it appears that the rate of glucose detritiation attributable to glucokinase decreases when the concentration of hexose 6-phosphates increases. This is in agreement with the known effect of fructose 6-phosphate to potentiate the inhibition of glucokinase by its regulatory protein.
Collapse
Affiliation(s)
- E Van Schaftigen
- Laboratoire de Chimie Physiologique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
49
|
Cam MC, Faun J, McNeill JH. Concentration-dependent glucose-lowering effects of oral vanadyl are maintained following treatment withdrawal in streptozotocin-diabetic rats. Metabolism 1995; 44:332-9. [PMID: 7885278 DOI: 10.1016/0026-0495(95)90163-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have recently reported that treatment with vanadyl sulfate 0.75 mg/mL in drinking water eliminates hyperglycemia in a subset of streptozotocin (STZ)-diabetic rats, with some rats remaining unresponsive to such treatment. In the present study, we demonstrate that unresponsive diabetic animals become normoglycemic when given higher concentrations of vanadyl. Since the subset of rats that require higher concentrations ([HC] 1.25 to 1.50 mg/mL) were found to be more severely diabetic before treatment than those that responded to lower concentrations ([LC] 0.75 to 1.00 mg/mL), the relative amount of residual circulating insulin (LC 36.0 +/- 2.2 v HC 25.6 +/- 3.3 microU/mL) appeared to be a key element in achievement of a normoglycemic effect to a given dose of vanadyl. Similarly, STZ-diabetic animals that responded to euglycemia with a more potent organic vanadyl compound (naglivan) had higher pretreatment plasma insulin levels than unresponsive animals (DT-R) (35.5 +/- 1.9 v 24.2 +/- 3.6 microU/mL). Vanadyl treatment over 10 weeks resulted in a period of normalized glucose levels and glucose tolerance after treatment was stopped. At 20 weeks after withdrawal from treatment with vanadyl sulfate, 13 of 19 animals remained euglycemic, whereas four of seven naglivan-treated animals also maintained normal glucose levels after a 30-week withdrawal period. At 3 weeks after withdrawal, maintenance of normal glucose homeostasis appeared to be independent of altered insulin levels, whereas at 20 weeks an improved insulin secretion, albeit 50% that of age-matched controls both in the fed state and in response to a glucose dose, was sufficient to return plasma glucose levels to the normal range.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M C Cam
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
50
|
Ferber S, Meyerovitch J, Kriauciunas KM, Kahn CR. Vanadate normalizes hyperglycemia and phosphoenolpyruvate carboxykinase mRNA levels in ob/ob mice. Metabolism 1994; 43:1346-54. [PMID: 7968588 DOI: 10.1016/0026-0495(94)90026-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oral vanadate administration has been demonstrated to normalize blood glucose levels in ob/ob and db/db mice and streptozotocin (STZ) diabetic rats. The exact mechanism of this vanadate effect is uncertain, since there are no consistent effects on the insulin receptor tyrosine kinase activity or phosphotyrosine phosphatase activity. We have therefore studied the postreceptor actions of vanadate, focusing our attention on the steady-state levels of mRNA of enzymes involved in carbohydrate metabolism. When compared with their lean (ob/+) controls, the livers of ob/ob mice exhibited an approximately 90% reduction in the levels of phosphoenolpyruvate carboxykinase (PEPCK) mRNA and twofold to fivefold higher levels of the mRNAs for glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the "liver beta-cell" glucose transporter (GLUT2), and the proto-oncogene c-myc. Administration of sodium vanadate (0.25 mg/mL) in the drinking water of ob/ob mice over a 45-day period resulted in a near normalization of blood glucose and increased PEPCK mRNA levels more than ninefold. Starvation of the ob/ob mice for 24 to 48 hours also increased PEPCK mRNA levels by fourfold to 15-fold. Vanadate treatment did not alter mRNA levels of any other proteins studied and had no effect on PEPCK mRNA in ob/+ mice. However, 1 to 100 mumol/L vanadate produced a concentration-dependent increase in PEPCK mRNA levels in an H35 hepatoma cell line, an effect opposite to the suppression of PEPCK mRNA produced by insulin. In summary, hyperglycemia in the ob/ob mouse is characterized by decreased expression of PEPCK and increased expression of GAPDH mRNA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Ferber
- Research Division, Joslin Diabetes Center, Boston, MA 02215
| | | | | | | |
Collapse
|