1
|
Menail HA, Cormier SB, Léger A, Robichaud S, Hebert-Chatelain E, Lamarre SG, Pichaud N. Age-related flexibility of energetic metabolism in the honey bee Apis mellifera. FASEB J 2023; 37:e23222. [PMID: 37781970 DOI: 10.1096/fj.202300654r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
The mechanisms that underpin aging are still elusive. In this study, we suggest that the ability of mitochondria to oxidize different substrates, which is known as metabolic flexibility, is involved in this process. To verify our hypothesis, we used honey bees (Apis mellifera carnica) at different ages, to assess mitochondrial oxygen consumption and enzymatic activities of key enzymes of the energetic metabolism as well as ATP5A1 content (subunit of ATP synthase) and adenylic energy charge (AEC). We also measured mRNA abundance of genes involved in mitochondrial functions and the antioxidant system. Our results demonstrated that mitochondrial respiration increased with age and favored respiration through complexes I and II of the electron transport system (ETS) while glycerol-3-phosphate (G3P) oxidation was relatively decreased. In addition, glycolytic, tricarboxylic acid cycle and ETS enzymatic activities increased, which was associated with higher ATP5A1 content and AEC. Furthermore, we detected an early decrease in the mRNA abundance of subunits of NADH ubiquinone oxidoreductase subunit B2 (NDUFB2, complex I), mitochondrial cytochrome b (CYTB, complex III) of the ETS as well as superoxide dismutase 1 and a later decrease for vitellogenin, catalase and mitochondrial cytochrome c oxidase subunit 1 (COX1, complex IV). Thus, our study suggests that the energetic metabolism is optimized with aging in honey bees, mainly through quantitative and qualitative mitochondrial changes, rather than showing signs of senescence. Moreover, aging modulated metabolic flexibility, which might reflect an underpinning mechanism that explains lifespan disparities between the different castes of worker bees.
Collapse
Affiliation(s)
- Hichem A Menail
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon B Cormier
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Adèle Léger
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Samuel Robichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Etienne Hebert-Chatelain
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Simon G Lamarre
- Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Nicolas Pichaud
- New Brunswick Centre for Precision Medicine, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
2
|
Endlicher R, Drahota Z, Kučera O, Červinková Z. Age-Dependent Changes in the Function of Mitochondrial Membrane Permeability Transition Pore in Rat Liver Mitochondria. Physiol Res 2021. [DOI: 10.33549//physiolres.934734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mitochondria play an important role in the cell aging process. Changes in calcium homeostasis and/or increased reactive oxygen species (ROS) production lead to the opening of mitochondrial permeability transition pore (MPTP), depolarization of the inner mitochondrial membrane, and decrease of ATP production. Our work aimed to monitor age-related changes in the Ca2+ ion effect on MPTP and the ability of isolated rat liver mitochondria to accumulate calcium. The mitochondrial calcium retention capacity (CRC) was found to be significantly affected by the age of rats. Measurement of CRC values of the rat liver mitochondria showed two periods when 3 to17-week old rats were tested. 3-week and 17-week old rats showed lower CRC values than 7-week old animals. Similar changes were observed while testing calcium-induced swelling of rat liver mitochondria. These findings indicate that the mitochondrial energy production system is more resistant to calcium-induced MPTP opening accompanied by the damaging effect of ROS in adult rats than in young and aged animals.
Collapse
Affiliation(s)
| | | | | | - Z. Červinková
- Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Hradec Kralove, Czech Republic.
| |
Collapse
|
3
|
Sánchez-Castellano C, Martín-Aragón S, Bermejo-Bescós P, Vaquero-Pinto N, Miret-Corchado C, Merello de Miguel A, Cruz-Jentoft AJ. Biomarkers of sarcopenia in very old patients with hip fracture. J Cachexia Sarcopenia Muscle 2020; 11:478-486. [PMID: 31912666 PMCID: PMC7113494 DOI: 10.1002/jcsm.12508] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/14/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hip fracture is both a cause and a consequence of sarcopenia. Older persons with sarcopenia have an increased risk of falling, and the prevalence of sarcopenia may be increased in those who suffer a hip fracture. The aim of this study was to explore potential biomarkers (neuromuscular and peripheral pro-inflammatory and oxidative stress markers) that may be associated with sarcopenia in very old persons with hip fracture. METHODS We recruited 150 consecutive patients ≥80 years old admitted to an orthogeriatric unit for an osteoporotic hip fracture. Muscle mass was assessed pre-operatively using bioelectrical impedance analysis; Janssen's (J) and Masanés' (M) reference cut-off points were used to define low muscle mass. Muscle strength was assessed with handgrip strength (Jamar's dynamometer). Sarcopenia was defined by having both low muscle mass and strength and using the European Working Group on Sarcopenia in Older People 2 definition of probable sarcopenia (low grip strength). Peripheral markers-pro-inflammatory and oxidative stress parameters-were determined either in the plasma or in the erythrocyte fraction obtained from peripheral whole blood of every patient pre-operatively. RESULTS Mean age was 87.6 ± 4.9 years, and 78.7% were women. The prevalence of sarcopenia was 11.5% with Janssen's, 34.9% with Masanés' cut-offs, and 93.3% with the European Working Group on Sarcopenia in Older People 2 definition of probable sarcopenia. Among the four pro-inflammatory cytokines tested in plasma, only tumour necrosis factor-α was different (lower) in sarcopenic than in non-sarcopenic participants using both muscle mass cut-offs (J 7.9 ± 6.2 vs. 8.3 ± 5.8, M 6.8 ± 4.7 vs. 9.1 ± 6.2). Erythrocyte glutathione system showed a non-significant tendency to lower glutathione levels and glutathione/oxidized glutathione ratios in sarcopenic participants compared with non-sarcopenic subjects. Catalase activity was also lower in sarcopenic participants (J 2904 ± 1429 vs. 3329 ± 1483, M 3037 ± 1430 vs. 3431 ± 1498). No significant differences were found between groups in chymotrypsin-like activity of the 20S proteasome, superoxide dismutase, glutathione peroxidase and butyrylcholinesterase activity, C-terminal agrin fragment, interferon-γ, or interleukin-1β. CONCLUSIONS The prevalence of sarcopenia in patients with hip fracture varies according to the definition and the muscle mass reference cut-off points used. We did not find differences in most neuromuscular, pro-inflammatory, or oxidative stress markers, except for lower peripheral tumour necrosis factor-α levels and catalase activity in sarcopenic participants, which may be markers of an early inflammatory reaction that is hampered in sarcopenic patients.
Collapse
Affiliation(s)
| | - Sagrario Martín-Aragón
- Departamento de Farmacología. Facultad de Farmacia. Universidad Complutense de Madrid.Departamento de Farmacología Universidad Complutense de Madrid, Spain
| | - Paloma Bermejo-Bescós
- Departamento de Farmacología. Facultad de Farmacia. Universidad Complutense de Madrid.Departamento de Farmacología Universidad Complutense de Madrid, Spain
| | | | | | | | | |
Collapse
|
4
|
Munro D, Pamenter ME. Comparative studies of mitochondrial reactive oxygen species in animal longevity: Technical pitfalls and possibilities. Aging Cell 2019; 18:e13009. [PMID: 31322803 PMCID: PMC6718592 DOI: 10.1111/acel.13009] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 11/30/2022] Open
Abstract
The mitochondrial oxidative theory of aging has been repeatedly investigated over the past 30 years by comparing the efflux of hydrogen peroxide (H2O2) from isolated mitochondria of long‐ and short‐lived species using horseradish peroxidase‐based assays. However, a clear consensus regarding the relationship between H2O2 production rates and longevity has not emerged. Concomitantly, novel insights into the mechanisms of reactive oxygen species (ROS) handling by mitochondria themselves should have raised concerns about the validity of this experimental approach. Here, we review pitfalls of the horseradish peroxidase/amplex red detection system for the measurement of mitochondrial ROS formation rates, with an emphasis on longevity studies. Importantly, antioxidant systems in the mitochondrial matrix are often capable of scavenging H2O2 faster than mitochondria produce it. As a consequence, as much as 84% of the H2O2 produced by mitochondria may be consumed before it diffuses into the reaction medium, where it can be detected by the horseradish peroxidase/amplex red system, this proportion is likely not consistent across species. Furthermore, previous studies often used substrates that elicit H2O2 formation at a much higher rate than in physiological conditions and at sites of secondary importance in vivo. Recent evidence suggests that the activity of matrix antioxidants may correlate with longevity instead of the rate of H2O2 formation. We conclude that past studies have been methodologically insufficient to address the putative relationship between longevity and mitochondrial ROS. Thus, novel methodological approaches are required that more accurately encompass mitochondrial ROS metabolism.
Collapse
Affiliation(s)
- Daniel Munro
- Department of Biology University of Ottawa Ottawa Ontario Canada
| | - Matthew E. Pamenter
- Department of Biology University of Ottawa Ottawa Ontario Canada
- University of Ottawa Brain and Mind Research Institute Ottawa Ontario Canada
| |
Collapse
|
5
|
Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients 2019; 11:nu11030504. [PMID: 30818813 PMCID: PMC6471790 DOI: 10.3390/nu11030504] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) protects against redox stress by providing reducing equivalents to antioxidants such as glutathione and thioredoxin. NADPH levels decline with aging in several tissues, but whether this is a major driving force for the aging process has not been well established. Global or neural overexpression of several cytoplasmic enzymes that synthesize NADPH have been shown to extend lifespan in model organisms such as Drosophila suggesting a positive relationship between cytoplasmic NADPH levels and longevity. Mitochondrial NADPH plays an important role in the protection against redox stress and cell death and mitochondrial NADPH-utilizing thioredoxin reductase 2 levels correlate with species longevity in cells from rodents and primates. Mitochondrial NADPH shuttles allow for some NADPH flux between the cytoplasm and mitochondria. Since a decline of nicotinamide adenine dinucleotide (NAD+) is linked with aging and because NADP+ is exclusively synthesized from NAD+ by cytoplasmic and mitochondrial NAD+ kinases, a decline in the cytoplasmic or mitochondrial NADPH pool may also contribute to the aging process. Therefore pro-longevity therapies should aim to maintain the levels of both NAD+ and NADPH in aging tissues.
Collapse
|
6
|
Pirson M, Clippe A, Knoops B. The curious case of peroxiredoxin-5: what its absence in aves can tell us and how it can be used. BMC Evol Biol 2018; 18:18. [PMID: 29422028 PMCID: PMC5806436 DOI: 10.1186/s12862-018-1135-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Background Peroxiredoxins are ubiquitous thiol-dependent peroxidases that represent a major antioxidant defense in both prokaryotic cells and eukaryotic organisms. Among the six vertebrate peroxiredoxin isoforms, peroxiredoxin-5 (PRDX5) appears to be a particular peroxiredoxin, displaying a different catalytic mechanism, as well as a wider substrate specificity and subcellular distribution. In addition, several evolutionary peculiarities, such as loss of subcellular targeting in certain species, have been reported for this enzyme. Results Western blotting analyses of 2-cys PRDXs (PRDX1–5) failed to identify the PRDX5 isoform in chicken tissue homogenates. Thereafter, via in silico analysis of PRDX5 orthologs, we went on to show that the PRDX5 gene is conserved in all branches of the amniotes clade, with the exception of aves. Further investigation of bird genomic sequences and expressed tag sequences confirmed the disappearance of the gene, though TRMT112, a gene located closely to the 5′ extremity of the PRDX5 gene, is conserved. Finally, using in ovo electroporation to overexpress the long and short forms of human PRDX5, we showed that, though the gene is lost in birds, subcellular targeting of human PRDX5 is conserved in the chick. Conclusions Further adding to the distinctiveness of this enzyme, this study reports converging evidence supporting loss of PRDX5 in aves. In-depth analysis revealed that this absence is proper to birds as PRDX5 appears to be conserved in non-avian amniotes. Finally, taking advantage of the in ovo electroporation technique, we validate the subcellular targeting of human PRDX5 in the chick embryo and bring forward this gain-of-function model as a potent way to study PRDX5 functions in vivo.
Collapse
Affiliation(s)
- Marc Pirson
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 4-5 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - André Clippe
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 4-5 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - Bernard Knoops
- Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain, 4-5 Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
7
|
Dong Z, Sinha R, Richie JP. Disease prevention and delayed aging by dietary sulfur amino acid restriction: translational implications. Ann N Y Acad Sci 2018; 1418:44-55. [PMID: 29399808 DOI: 10.1111/nyas.13584] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023]
Abstract
Sulfur amino acids (SAAs) play numerous critical roles in metabolism and overall health maintenance. Preclinical studies have demonstrated that SAA-restricted diets have many beneficial effects, including extending life span and preventing the development of a variety of diseases. Dietary sulfur amino acid restriction (SAAR) is characterized by chronic restrictions of methionine and cysteine but not calories and is associated with reductions in body weight, adiposity and oxidative stress, and metabolic changes in adipose tissue and liver resulting in enhanced insulin sensitivity and energy expenditure. SAAR-induced changes in blood biomarkers include reductions in insulin, insulin-like growth factor-1, glucose, and leptin and increases in adiponectin and fibroblast growth factor 21. On the basis of these preclinical data, SAAR may also have similar benefits in humans. While little is known of the translational significance of SAAR, its potential feasibility in humans is supported by findings of its effectiveness in rodents, even when initiated in adult animals. To date, there have been no controlled feeding studies of SAAR in humans; however, there have been numerous relevant epidemiologic and disease-based clinical investigations reported. Here, we summarize observations from these clinical investigations to provide insight into the potential effectiveness of SAAR for humans.
Collapse
Affiliation(s)
- Zhen Dong
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Raghu Sinha
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - John P Richie
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
8
|
Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol 2017; 595:7275-7309. [PMID: 29028112 PMCID: PMC5730851 DOI: 10.1113/jp275072] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Adaptive homeostasis is "the transient expansion or contraction of the homeostatic range for any given physiological parameter in response to exposure to sub-toxic, non-damaging, signalling molecules or events, or the removal or cessation of such molecules or events" (Davies, 2016). Adaptive homeostasis enables biological systems to make continuous short-term adjustments for optimal functioning despite ever-changing internal and external environments. Initiation of adaptation in response to an appropriate signal allows organisms to successfully cope with much greater, normally toxic, stresses. These short-term responses are initiated following effective signals, including hypoxia, cold shock, heat shock, oxidative stress, exercise-induced adaptation, caloric restriction, osmotic stress, mechanical stress, immune response, and even emotional stress. There is now substantial literature detailing a decline in adaptive homeostasis that, unfortunately, appears to manifest with ageing, especially in the last third of the lifespan. In this review, we present the hypothesis that one hallmark of the ageing process is a significant decline in adaptive homeostasis capacity. We discuss the mechanistic importance of diminished capacity for short-term (reversible) adaptive responses (both biochemical and signal transduction/gene expression-based) to changing internal and external conditions, for short-term survival and for lifespan and healthspan. Studies of cultured mammalian cells, worms, flies, rodents, simians, apes, and even humans, all indicate declining adaptive homeostasis as a potential contributor to age-dependent senescence, increased risk of disease, and even mortality. Emerging work points to Nrf2-Keap1 signal transduction pathway inhibitors, including Bach1 and c-Myc, both of whose tissue concentrations increase with age, as possible major causes for age-dependent loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C. D. Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
| | - Kelvin J. A. Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology CenterUniversity of Southern CaliforniaLos AngelesCA 90089USA
- Molecular and Computational Biology Program, Department of Biological Sciences of the Dornsife College of LettersArts & Sciences: the University of Southern CaliforniaLos AngelesCA 90089‐0191USA
| |
Collapse
|
9
|
Martín-Aragón S, Jiménez-Aliaga KL, Benedí J, Bermejo-Bescós P. Neurohormetic responses of quercetin and rutin in a cell line over-expressing the amyloid precursor protein (APPswe cells). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1285-1294. [PMID: 27765347 DOI: 10.1016/j.phymed.2016.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Plant secondary metabolites may induce adaptive cellular stress-responses in a variety of cells including neurons at the sub-toxic doses ingested by humans. Such 'neurohormesis' phenomenon, activated by flavonoids such as quercetin or rutin, may involve cell responses driven by modulation of signaling pathways which are responsible for its neuroprotective effects. PURPOSE We attempt to explore the molecular mechanisms involved in the neurohormetic responses to quercetin and rutin exposure, in a SH-SY5Y cell line which stably overexpresses the amyloid precursor protein (APP) Swedish mutation, based on a biphasic concentration-response relationship for cell viability. METHODS We examined the impact of both natural compounds, at concentrations in its hormetic range on the following cell parameters: chymotrypsin-like activity of the proteasome system; PARP-1 protein levels and expression and caspase activation; APP processing; and the main endogenous antioxidant enzymes. RESULTS Proteasome activities following quercetin or rutin treatment were significantly augmented in comparison with non-treated cells. Activity of caspase-3 was significantly attenuated by treatment with quercetin or rutin. Modest increased levels of PARP-1 protein and mRNA transcripts were observed in relation to the mild increase of proteasome activity. Significant reductions of the full-length APP and sAPP protein and APP mRNA levels were related to significant enhancements of α-secretase ADAM-10 protein and mRNA transcripts and significant increases of BACE processing in cells exposed to rutin. Furthermore, quercetin or rutin treatment displayed an overall increase of the four antioxidant enzymes. CONCLUSIONS The upregulation of the proteasome activity observed upon quercetin or rutin treatment could be afforded by a mild increased of PARP-1. Consequently, targeting the proteasome by quercetin or rutin to enhance its activity in a mild manner could avoid caspase activation. Moreover, it is likely that APP processing of cells upon rutin treatment is mostly driven by the non-amyloidogenic pathway leading to a putative reduction of βA production. Overall induction of endogenous antioxidant enzymes under quercetin or rutin treatments of APPswe cells might modulate its proteasome activity. We might conclude that quercetin and rutin might exert a neurohormetic cell response affecting various signaling pathways and molecular networks associated with modulation of proteasome function.
Collapse
Affiliation(s)
- Sagrario Martín-Aragón
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Karim Lizeth Jiménez-Aliaga
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Juana Benedí
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Paloma Bermejo-Bescós
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Schöttker B, Brenner H, Jansen EHJM, Gardiner J, Peasey A, Kubínová R, Pająk A, Topor-Madry R, Tamosiunas A, Saum KU, Holleczek B, Pikhart H, Bobak M. Evidence for the free radical/oxidative stress theory of ageing from the CHANCES consortium: a meta-analysis of individual participant data. BMC Med 2015; 13:300. [PMID: 26666526 PMCID: PMC4678534 DOI: 10.1186/s12916-015-0537-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The free radical/oxidative stress theory of ageing has received considerable attention, but the evidence on the association of oxidative stress markers with mortality is sparse. METHODS We measured derivatives of reactive oxygen metabolite (D-ROM) levels as a proxy for the reactive oxygen species concentration and total thiol levels (TTL) as a proxy for the redox control status in 10,622 men and women (age range, 45-85 years), from population-based cohorts from Germany, Poland, Czech Republic, and Lithuania, of whom 1,702 died during follow-up. RESULTS Both oxidative stress markers were significantly associated with all-cause mortality independently from established risk factors (including inflammation) and from each other in all cohorts. Regarding cause-specific mortality, compared to low D-ROM levels (≤ 340 Carr U), very high D-ROM levels (>500 Carr U) were strongly associated with both cardiovascular (relative risk (RR), 5.09; 95 % CI, 2.67-9.69) and cancer mortality (RR, 4.34; 95 % CI, 2.31-8.16). TTL was only associated with CVD mortality (RR, 1.30; 95 % CI, 1.15-1.48, for one-standard-deviation-decrease). The strength of the association of TTL with CVD mortality increased with age of the participants (RR for one-standard-deviation-decrease in those aged 70-85 years was 1.65; 95 % CI, 1.22-2.24). CONCLUSIONS In these four population-based cohort studies from Central and Eastern Europe, the oxidative stress serum markers D-ROM and TTL were independently and strongly associated with all-cause and CVD mortality. In addition, D-ROM levels were also strongly associated with cancer mortality. This study provides epidemiological evidence supporting the free radical/oxidative stress theory of ageing and suggests that d-ROMs and TTL are useful oxidative stress markers associated with premature mortality.
Collapse
Affiliation(s)
- Ben Schöttker
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany. .,Network Aging Research, University of Heidelberg, Bergheimer Strasse 20, 69120, Heidelberg, Germany.
| | - Hermann Brenner
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Strasse 20, 69120, Heidelberg, Germany
| | - Eugène H J M Jansen
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, PO Box 1, 3720, BA, Bilthoven, The Netherlands
| | - Julian Gardiner
- Department Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, Great Britain
| | - Anne Peasey
- Department Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, Great Britain
| | | | - Andrzej Pająk
- Jagiellonian University Medical College, Faculty of Health Sciences, Krakow, Poland
| | - Roman Topor-Madry
- Jagiellonian University Medical College, Faculty of Health Sciences, Krakow, Poland
| | - Abdonas Tamosiunas
- Institute of Cardiology of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kai-Uwe Saum
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Bernd Holleczek
- Saarland Cancer Registry, Präsident Baltz-Strasse 5, 66119, Saarbrücken, Germany
| | - Hynek Pikhart
- Department Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, Great Britain
| | - Martin Bobak
- Department Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, Great Britain
| |
Collapse
|
11
|
Safwat MH, El-Sawalhi MM, Mausouf MN, Shaheen AA. Ozone ameliorates age-related oxidative stress changes in rat liver and kidney: effects of pre- and post-ageing administration. BIOCHEMISTRY (MOSCOW) 2015; 79:450-8. [PMID: 24954596 DOI: 10.1134/s0006297914050095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ageing process is known to be accompanied by increased oxidative stress and compromised antioxidant defenses. Controlled ozone administration has been shown to be effective in various pathophysiological conditions with an underlying oxidative burden. However, its effect on the biochemical alterations associated with the ageing process has been rarely studied. Therefore, the present work was carried out to study the role of ozone in counteracting the state of oxidative stress associated with ageing in rat liver and kidneys using two experimental models. In the pre-ageing model, ozone was administered prior to the onset of ageing at adulthood and continued after the start of the ageing process (3-month-old rats until the age of 15 months). While in the post-ageing model, ozone was administered after ageing has begun and lasted for one month (14-month-old rats until the age of 15 months). The pre-ageing ozone administration effectively reduced lipid and protein oxidation markers, namely, malondialdehyde and protein carbonyl levels and decreased lipofuscin pigment deposition in rat liver and kidneys. Moreover, it significantly restored hepatic and renal reduced glutathione (GSH) contents and normalized cytosolic hepatic glutathione peroxidase activity. Similar but less pronounced effects were observed in the post-ageing ozone-treated group. Nevertheless, in the latter model ozone administration failed to significantly affect liver and kidney lipofuscin levels, as well as kidney GSH contents. These data provide evidences for potentially positive effects of pre-ageing ozone therapy in neutralizing chronic oxidative stress associated with ageing in rat liver and kidneys.
Collapse
Affiliation(s)
- M H Safwat
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | | | | | | |
Collapse
|
12
|
Metabolomics of Human Brain Aging and Age-Related Neurodegenerative Diseases. J Neuropathol Exp Neurol 2014; 73:640-57. [DOI: 10.1097/nen.0000000000000091] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Aledo JC. Life-history Constraints on the Mechanisms that Control the Rate of ROS Production. Curr Genomics 2014; 15:217-30. [PMID: 24955029 PMCID: PMC4064561 DOI: 10.2174/1389202915666140515230615] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 12/01/2022] Open
Abstract
The quest to understand why and how we age has led to numerous lines of investigation that have gradually converged to consider mitochondrial metabolism as a major player. During mitochondrial respiration a small and variable amount of the consumed oxygen is converted to reactive species of oxygen (ROS). For many years, these ROS have been perceived as harmful by-products of respiration. However, evidence from recent years indicates that ROS fulfill important roles as cellular messengers. Results obtained using model organisms suggest that ROS-dependent signalling may even activate beneficial cellular stress responses, which eventually may lead to increased lifespan. Nevertheless, when an overload of ROS cannot be properly disposed of, its accumulation generates oxidative stress, which plays a major part in the ageing process. Comparative studies about the rates of ROS production and oxidative damage accumulation, have led to the idea that the lower rate of mitochondrial oxygen radical generation of long-lived animals with respect to that of their short-lived counterpart, could be a primary cause of their slow ageing rate. A hitherto largely under-appreciated alternative view is that such lower rate of ROS production, rather than a cause may be a consequence of the metabolic constraints imposed for the large body sizes that accompany high lifespans. To help understanding the logical underpinning of this rather heterodox view, herein I review the current literature regarding the mechanisms of ROS formation, with particular emphasis on evolutionary aspects.
Collapse
Affiliation(s)
- Juan Carlos Aledo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071-Málaga, Spain
| |
Collapse
|
14
|
Kumar D, Rizvi SI. A critical period in lifespan of male rats coincides with increased oxidative stress. Arch Gerontol Geriatr 2014; 58:427-33. [DOI: 10.1016/j.archger.2013.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/26/2013] [Accepted: 11/14/2013] [Indexed: 01/08/2023]
|
15
|
Poulose N, Raju R. Aging and injury: alterations in cellular energetics and organ function. Aging Dis 2014; 5:101-8. [PMID: 24729935 DOI: 10.14336/ad.2014.0500101] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 12/16/2022] Open
Abstract
Aging is characterized by increased oxidative stress, heightened inflammatory response, accelerated cellular senescence and progressive organ dysfunction. The homeostatic imbalance with aging significantly alters cellular responses to injury. Though it is unclear whether cellular energetic imbalance is a cause or effect of the aging process, preservation of mitochondrial function has been reported to be important in organ function restoration following severe injury. Unintentional injuries are ranked among the top 10 causes of death in adults of both sexes, 65 years and older. Aging associated decline in mitochondrial function has been shown to enhance the vulnerability of heart, lung, liver and kidney to ischemia/reperfusion injury. Studies have identified alterations in the level or activity of factors such as SIRT1, PGC-1α, HIF-1α and c-MYC involved in key regulatory processes in the maintenance of mitochondrial structural integrity, biogenesis and function. Studies using experimental models of hemorrhagic injury and burn have demonstrated significant influence of aging in metabolic regulation and organ function. Understanding the age-associated molecular mechanisms regulating mitochondrial dysfunction following injury is important towards identifying novel targets and therapeutic strategies to improve the outcome after injury in the elderly.
Collapse
Affiliation(s)
| | - Raghavan Raju
- Department of Medical Laboratory, Imaging and Radiological Sciences, Georgia Regents University, Augusta, GA30912, USA ; Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA30912, USA
| |
Collapse
|
16
|
Glöckner G, Heinze I, Platzer M, Held C, Abele D. The mitochondrial genome of Arctica islandica; Phylogeny and variation. PLoS One 2013; 8:e82857. [PMID: 24312674 PMCID: PMC3847043 DOI: 10.1371/journal.pone.0082857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/24/2013] [Indexed: 11/19/2022] Open
Abstract
Arctica islandica is known as the longest-lived non-colonial metazoan species on earth and is therefore increasingly being investigated as a new model in aging research. As the mitochondrial genome is associated with the process of aging in many species and bivalves are known to possess a peculiar mechanism of mitochondrial genome inheritance including doubly uniparental inheritance (DUI), we aimed to assess the genomic variability of the A. islandica mitochondrial DNA (mtDNA). We sequenced the complete mitochondrial genomes of A. islandica specimens from three different sites in the Western Palaearctic (Iceland, North Sea, Baltic Sea). We found the A. islandica mtDNA to fall within the normal size range (18 kb) and exhibit similar coding capacity as other animal mtDNAs. The concatenated protein sequences of all currently known Veneroidea mtDNAs were used to robustly place A. islandica in a phylogenetic framework. Analysis of the observed single nucleotide polymorphism (SNP) patterns on further specimen revealed two prevailing haplotypes. Populations in the Baltic and the North Sea are very homogenous, whereas the Icelandic population, from which exceptionally old individuals have been collected, is the most diverse one. Homogeneity in Baltic and North Sea populations point to either stronger environmental constraints or more recent colonization of the habitat. Our analysis lays the foundation for further studies on A. islandica population structures, age research with this organism, and for phylogenetic studies. Accessions for the mitochondrial genome sequences: KC197241 Iceland; KF363951 Baltic Sea; KF363952 North Sea; KF465708 to KF465758 individual amplified regions from different speciemen.
Collapse
Affiliation(s)
- Gernot Glöckner
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Köln and Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Berlin, Germany
- * E-mail:
| | - Ivonne Heinze
- Leibniz Institute for Age Research, Fritz-Lipmann Institute, Jena, Germany
| | - Matthias Platzer
- Leibniz Institute for Age Research, Fritz-Lipmann Institute, Jena, Germany
| | - Christoph Held
- Alfred Wegener Institute for Polar and Marine Research, AWI, Bremerhaven, Germany
| | - Doris Abele
- Alfred Wegener Institute for Polar and Marine Research, AWI, Bremerhaven, Germany
| |
Collapse
|
17
|
Lewis KN, Andziak B, Yang T, Buffenstein R. The naked mole-rat response to oxidative stress: just deal with it. Antioxid Redox Signal 2013; 19:1388-99. [PMID: 23025341 PMCID: PMC3791056 DOI: 10.1089/ars.2012.4911] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE The oxidative stress theory of aging has been the most widely accepted theory of aging providing insights into why we age and die for over 50 years, despite mounting evidence from a multitude of species indicating that there is no direct relationship between reactive oxygen species (ROS) and longevity. Here we explore how different species, including the longest lived rodent, the naked mole-rat, have defied the most predominant aging theory. RECENT ADVANCES In the case of extremely long-lived naked mole-rat, levels of ROS production are found to be similar to mice, antioxidant defenses unexceptional, and even under constitutive conditions, naked mole-rats combine a pro-oxidant intracellular milieu with high, steady state levels of oxidative damage. Clearly, naked mole-rats can tolerate this level of oxidative stress and must have mechanisms in place to prevent its translation into potentially lethal diseases. CRITICAL ISSUES In addition to the naked mole-rat, other species from across the phylogenetic spectrum and even certain mouse strains do not support this theory. Moreover, overexpressing or knocking down antioxidant levels alters levels of oxidative damage and even cancer incidence, but does not modulate lifespan. FUTURE DIRECTIONS Perhaps, it is not oxidative stress that modulates healthspan and longevity, but other cytoprotective mechanisms that allow animals to deal with high levels of oxidative damage and stress, and nevertheless live long, relatively healthy lifespans. Studying these mechanisms in uniquely long-lived species, like the naked mole-rat, may help us tease out the key contributors to aging and longevity.
Collapse
Affiliation(s)
- Kaitlyn N Lewis
- 1 Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | | | | | | |
Collapse
|
18
|
Barja G. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 2013; 19:1420-45. [PMID: 23642158 PMCID: PMC3791058 DOI: 10.1089/ars.2012.5148] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/11/2013] [Accepted: 05/05/2013] [Indexed: 01/12/2023]
Abstract
An updated version of the mitochondrial free radical theory of aging (MFRTA) and longevity is reviewed. Key aspects of the theory are emphasized. Another main focus concerns common misconceptions that can mislead investigators from other specialties, even to wrongly discard the theory. Those different issues include (i) the main reactive oxygen species (ROS)-generating site in the respiratory chain in relation to aging and longevity: complex I; (ii) the close vicinity or even contact between that site and the mitochondrial DNA, in relation to the lack of local efficacy of antioxidants and to sub-cellular compartmentation; (iii) the relationship between mitochondrial ROS production and oxygen consumption; (iv) recent criticisms on the MFRTA; (v) the widespread assumption that ROS are simple "by-products" of the mitochondrial respiratory chain; (vi) the unnecessary postulation of "vicious cycle" hypotheses of mitochondrial ROS generation which are not central to the free radical theory of aging; and (vii) the role of DNA repair concerning endogenous versus exogenous damage. After considering the large body of data already available, two general characteristics responsible for the high maintenance degree of long-lived animals emerge: (i) a low generation rate of endogenous damage: and (ii) the possession of tissue macromolecules that are highly resistant to oxidative modification.
Collapse
Affiliation(s)
- Gustavo Barja
- Department of Animal Physiology II, Faculty of Biological Sciences, Complutense University , Madrid, Spain
| |
Collapse
|
19
|
Stuart JA, Liang P, Luo X, Page MM, Gallagher EJ, Christoff CA, Robb EL. A comparative cellular and molecular biology of longevity database. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1937-1947. [PMID: 22836712 PMCID: PMC3776122 DOI: 10.1007/s11357-012-9458-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 07/09/2012] [Indexed: 06/01/2023]
Abstract
Discovering key cellular and molecular traits that promote longevity is a major goal of aging and longevity research. One experimental strategy is to determine which traits have been selected during the evolution of longevity in naturally long-lived animal species. This comparative approach has been applied to lifespan research for nearly four decades, yielding hundreds of datasets describing aspects of cell and molecular biology hypothesized to relate to animal longevity. Here, we introduce a Comparative Cellular and Molecular Biology of Longevity Database, available at ( http://genomics.brocku.ca/ccmbl/ ), as a compendium of comparative cell and molecular data presented in the context of longevity. This open access database will facilitate the meta-analysis of amalgamated datasets using standardized maximum lifespan (MLSP) data (from AnAge). The first edition contains over 800 data records describing experimental measurements of cellular stress resistance, reactive oxygen species metabolism, membrane composition, protein homeostasis, and genome homeostasis as they relate to vertebrate species MLSP. The purpose of this review is to introduce the database and briefly demonstrate its use in the meta-analysis of combined datasets.
Collapse
Affiliation(s)
- Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada, L2S 3A1,
| | | | | | | | | | | | | |
Collapse
|
20
|
Muller F. The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. J Am Aging Assoc 2013; 23:227-53. [PMID: 23604868 DOI: 10.1007/s11357-000-0022-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most biogerontologists agree that oxygen (and nitrogen) free radicals play a major role in the process of aging. The evidence strongly suggests that the electron transport chain, located in the inner mitochondrial membrane, is the major source of reactive oxygen species in animal cells. It has been reported that there exists an inverse correlation between the rate of superoxide/hydrogen peroxide production by mitochondria and the maximum longevity of mammalian species. However, no correlation or most frequently an inverse correlation exists between the amount of antioxidant enzymes and maximum longevity. Although overexpression of the antioxidant enzymes SOD1 and CAT (as well as SOD1 alone) have been successful at extending maximum lifespan in Drosophila, this has not been the case in mice. Several labs have overexpressed SOD1 and failed to see a positive effect on longevity. An explanation for this failure is that there is some level of superoxide damage that is not preventable by SOD, such as that initiated by the hydroperoxyl radical inside the lipid bilayer, and that accumulation of this damage is responsible for aging. I therefore suggest an alternative approach to testing the free radical theory of aging in mammals. Instead of trying to increase the amount of antioxidant enzymes, I suggest using molecular biology/transgenics to decrease the rate of superoxide production, which in the context of the free radical theory of aging would be expected to increase longevity. This paper aims to summarize what is known about the nature and mechanisms of superoxide production and what genes are involved in controlling the rate of superoxide production.
Collapse
Affiliation(s)
- F Muller
- Laboratory of David M. Kramer, Institute of Biological Chemistry, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
21
|
Sanchez-Roman I, Barja G. Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp Gerontol 2013; 48:1030-42. [PMID: 23454735 DOI: 10.1016/j.exger.2013.02.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/17/2013] [Accepted: 02/21/2013] [Indexed: 11/25/2022]
Abstract
Comparative studies indicate that long-lived mammals have low rates of mitochondrial reactive oxygen species production (mtROSp) and oxidative damage in their mitochondrial DNA (mtDNA). Dietary restriction (DR), around 40%, extends the mean and maximum life span of a wide range of species and lowers mtROSp and oxidative damage to mtDNA, which supports the mitochondrial free radical theory of aging (MFRTA). Regarding the dietary factor responsible for the life extension effect of DR, neither carbohydrate nor lipid restriction seems to modify maximum longevity. However protein restriction (PR) and methionine restriction (at least 80% MetR) increase maximum lifespan in rats and mice. Interestingly, only 7weeks of 40% PR (at least in liver) or 40% MetR (in all the studied organs, heart, brain, liver or kidney) is enough to decrease mtROSp and oxidative damage to mtDNA in rats, whereas neither carbohydrate nor lipid restriction changes these parameters. In addition, old rats also conserve the capacity to respond to 7weeks of 40% MetR with these beneficial changes. Most importantly, 40% MetR, differing from what happens during both 40% DR and 80% MetR, does not decrease growth rate and body size of rats. All the available studies suggest that the decrease in methionine ingestion that occurs during DR is responsible for part of the aging-delaying effect of this intervention likely through the decrease of mtROSp and ensuing DNA damage that it exerts. We conclude that lowering mtROS generation is a conserved mechanism, shared by long-lived species and dietary, protein, and methionine restricted animals, that decreases damage to macromolecules situated near the complex I mtROS generator, especially mtDNA. This would decrease the accumulation rate of somatic mutations in mtDNA and maybe finally also in nuclear DNA.
Collapse
Affiliation(s)
- Ines Sanchez-Roman
- Department of Animal Physiology-II, Faculty of Biological Sciences, Complutense University of Madrid (UCM), Spain
| | | |
Collapse
|
22
|
Jimenez AG, Harper JM, Queenborough SA, Williams JB. Linkages between the life-history evolution of tropical and temperate birds and the resistance of cultured skin fibroblasts to oxidative and non-oxidative chemical injury. ACTA ACUST UNITED AC 2012; 216:1373-80. [PMID: 23264487 DOI: 10.1242/jeb.079889] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A fundamental challenge facing physiological ecologists is to understand how variation in life history at the whole-organism level might be linked to cellular function. Thus, because tropical birds have higher annual survival and lower rates of metabolism, we hypothesized that cells from tropical species would have greater cellular resistance to chemical injury than cells from temperate species. We cultured dermal fibroblasts from 26 tropical and 26 temperate species of birds and examined cellular resistance to cadmium, H(2)O(2), paraquat, thapsigargin, tunicamycium, methane methylsulfonate (MMS) and UV light. Using ANCOVA, we found that the values for the dose that killed 50% of cells (LD(50)) from tropical birds were significantly higher for H(2)O(2) and MMS. When we tested for significance using a generalized least squares approach accounting for phylogenetic relationships among species to model LD(50), we found that cells from tropical birds had greater tolerance for Cd, H(2)O(2), paraquat, tunicamycin and MMS than cells from temperate birds. In contrast, tropical birds showed either lower or no difference in tolerance to thapsigargin and UV light in comparison with temperate birds. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to be more resistant to forms of oxidative and non-oxidative stress than cells from shorter-lived temperate species.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Evolution, The Ohio State University, 318 W 12th Avenue, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
23
|
Rodriguez KA, Wywial E, Perez VI, Lambert AJ, Edrey YH, Lewis KN, Grimes K, Lindsey ML, Brand MD, Buffenstein R. Walking the oxidative stress tightrope: a perspective from the naked mole-rat, the longest-living rodent. Curr Pharm Des 2012; 17:2290-307. [PMID: 21736541 DOI: 10.2174/138161211797052457] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/07/2011] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS), by-products of aerobic metabolism, cause oxidative damage to cells and tissue and not surprisingly many theories have arisen to link ROS-induced oxidative stress to aging and health. While studies clearly link ROS to a plethora of divergent diseases, their role in aging is still debatable. Genetic knock-down manipulations of antioxidants alter the levels of accrued oxidative damage, however, the resultant effect of increased oxidative stress on lifespan are equivocal. Similarly the impact of elevating antioxidant levels through transgenic manipulations yield inconsistent effects on longevity. Furthermore, comparative data from a wide range of endotherms with disparate longevity remain inconclusive. Many long-living species such as birds, bats and mole-rats exhibit high-levels of oxidative damage, evident already at young ages. Clearly, neither the amount of ROS per se nor the sensitivity in neutralizing ROS are as important as whether or not the accrued oxidative stress leads to oxidative-damage-linked age-associated diseases. In this review we examine the literature on ROS, its relation to disease and the lessons gleaned from a comparative approach based upon species with widely divergent responses. We specifically focus on the longest lived rodent, the naked mole-rat, which maintains good health and provides novel insights into the paradox of maintaining both an extended healthspan and lifespan despite high oxidative stress from a young age.
Collapse
Affiliation(s)
- Karl A Rodriguez
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr. San Antonio, TX 78245, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Birds and longevity: does flight driven aerobicity provide an oxidative sink? Ageing Res Rev 2012; 11:242-53. [PMID: 22198369 DOI: 10.1016/j.arr.2011.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 12/25/2022]
Abstract
Birds generally age slower and live longer than similar sized mammals. For birds this occurs despite elevated blood glucose levels that for mammals would in part define them as diabetic. However these data were acquired in respiration states that have little resemblance to conditions in healthy tissues and mitochondrial RS production is probably minimal in healthy animals. Indeed mitochondria probably act as net consumers rather than producers of RS. Here we propose that (1) if mitochondria are antioxidant systems, the greater mitochondrial mass in athletic species, such as birds, is advantageous as it should provide a substantial sink for RS. (2) The intense drive for aerobic performance and decreased body density to facilitate flight may explain the relative insensitivity of birds to insulin, as well as depressed insulin levels and apparent sensitization to glucagon. Glucagon also associates with the sirtuin protein family, most of which are associated with caloric restriction regulated pathways, mitochondrial biogenesis and life span extension. (3) We note that telomeres, which appear to be unusually long in birds, bind Sirtuins 2 and 4 and therefore may stabilize and protect nuclear DNA. Ultimately these flight driven responses may suppress somatic growth and protect DNA from oxidative damage that would otherwise lead to ageing and non-viral cancers.
Collapse
|
25
|
Merchán Arenas DR, Acevedo AM, Vargas Méndez LY, Kouznetsov VV. Scavenger Activity Evaluation of the Clove Bud Essential Oil (Eugenia caryophyllus) and Eugenol Derivatives Employing ABTS Decolorization. Sci Pharm 2011; 79:779-91. [PMID: 22145105 PMCID: PMC3221489 DOI: 10.3797/scipharm.1109-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 10/17/2011] [Indexed: 01/16/2023] Open
Abstract
The essential oil (EO) of clove bud dried fruits from Eugenia caryophyllus was obtained by a conventional hydrodistillation process in an excellent yield (11.7 %). Its chemical composition was analyzed by GC-MS, identifying eugenol as a main constituent (60.5%). Four eugenol-like molecules, γ-diisoeugenol, hydroxymethyleugenol, dihydroeugenol and 1,3-dioxanylphenol, were synthesized using eugenol or isoeugenol as initial precursors under green chemistry protocols. To evaluate the possible antioxidant capacity of eugenol compounds including the clove bud EO, the Trolox® Equivalent Antioxidant Capacity value, obtained by the ABTS(+•) radical-cation discoloration method, was employed. The methodology was performed in a UV-Vis reader of 96-well microplates (dilution methodology), using well-known antioxidant agents (BHA, BHT and vitamin E) as reference compounds. It was found that the prepared eugenol derivatives had a more potent free radical scavenger activity than the reference compounds. In particular, the most active molecules, γ-diisoeugenol and 1,3-dioxanylphenol, were ca. 3-fold more potent than vitamin E.
Collapse
Affiliation(s)
- Diego R Merchán Arenas
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, A. A. 678, Bucaramanga, Colombia
| | | | | | | |
Collapse
|
26
|
Montgomery MK, Hulbert AJ, Buttemer WA. The long life of birds: the rat-pigeon comparison revisited. PLoS One 2011; 6:e24138. [PMID: 21904609 PMCID: PMC3164121 DOI: 10.1371/journal.pone.0024138] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/02/2011] [Indexed: 12/22/2022] Open
Abstract
The most studied comparison of aging and maximum lifespan potential (MLSP) among endotherms involves the 7-fold longevity difference between rats (MLSP 5y) and pigeons (MLSP 35y). A widely accepted theory explaining MLSP differences between species is the oxidative stress theory, which purports that reactive oxygen species (ROS) produced during mitochondrial respiration damage bio-molecules and eventually lead to the breakdown of regulatory systems and consequent death. Previous rat-pigeon studies compared only aspects of the oxidative stress theory and most concluded that the lower mitochondrial superoxide production of pigeons compared to rats was responsible for their much greater longevity. This conclusion is based mainly on data from one tissue (the heart) using one mitochondrial substrate (succinate). Studies on heart mitochondria using pyruvate as a mitochondrial substrate gave contradictory results. We believe the conclusion that birds produce less mitochondrial superoxide than mammals is unwarranted. We have revisited the rat-pigeon comparison in the most comprehensive manner to date. We have measured superoxide production (by heart, skeletal muscle and liver mitochondria), five different antioxidants in plasma, three tissues and mitochondria, membrane fatty acid composition (in seven tissues and three mitochondria), and biomarkers of oxidative damage. The only substantial and consistent difference that we have observed between rats and pigeons is their membrane fatty acid composition, with rats having membranes that are more susceptible to damage. This suggests that, although there was no difference in superoxide production, there is likely a much greater production of lipid-based ROS in the rat. We conclude that the differences in superoxide production reported previously were due to the arbitrary selection of heart muscle to source mitochondria and the provision of succinate. Had mitochondria been harvested from other tissues or other relevant mitochondrial metabolic substrates been used, then very different conclusions regarding differences in oxidative stress would have been reached.
Collapse
Affiliation(s)
- Magdalene K Montgomery
- School of Biological Sciences, University of Wollongong, Wollongong, [corrected] New South Wales, Australia.
| | | | | |
Collapse
|
27
|
Pamplona R, Costantini D. Molecular and structural antioxidant defenses against oxidative stress in animals. Am J Physiol Regul Integr Comp Physiol 2011; 301:R843-63. [PMID: 21775650 DOI: 10.1152/ajpregu.00034.2011] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this review, it is our aim 1) to describe the high diversity in molecular and structural antioxidant defenses against oxidative stress in animals, 2) to extend the traditional concept of antioxidant to other structural and functional factors affecting the "whole" organism, 3) to incorporate, when supportable by evidence, mechanisms into models of life-history trade-offs and maternal/epigenetic inheritance, 4) to highlight the importance of studying the biochemical integration of redox systems, and 5) to discuss the link between maximum life span and antioxidant defenses. The traditional concept of antioxidant defenses emphasizes the importance of the chemical nature of molecules with antioxidant properties. Research in the past 20 years shows that animals have also evolved a high diversity in structural defenses that should be incorporated in research on antioxidant responses to reactive species. Although there is a high diversity in antioxidant defenses, many of them are evolutionary conserved across animal taxa. In particular, enzymatic defenses and heat shock response mediated by proteins show a low degree of variation. Importantly, activation of an antioxidant response may be also energetically and nutrient demanding. So knowledge of antioxidant mechanisms could allow us to identify and to quantify any underlying costs, which can help explain life-history trade-offs. Moreover, the study of inheritance mechanisms of antioxidant mechanisms has clear potential to evaluate the contribution of epigenetic mechanisms to stress response phenotype variation.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, University of Lleida Biomedical Research Institute of Lleida, Lleida, Spain
| | | |
Collapse
|
28
|
Pamplona R. Mitochondrial DNA damage and animal longevity: insights from comparative studies. J Aging Res 2011; 2011:807108. [PMID: 21423601 PMCID: PMC3056244 DOI: 10.4061/2011/807108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/16/2010] [Accepted: 01/04/2011] [Indexed: 12/22/2022] Open
Abstract
Chemical reactions in living cells are under strict enzyme control and conform to a tightly regulated metabolic program. However, uncontrolled and potentially deleterious endogenous reactions occur, even under physiological conditions. Aging, in this chemical context, could be viewed as an entropic process, the result of chemical side reactions that chronically and cumulatively degrade the function of biological systems. Mitochondria are a main source of reactive oxygen species (ROS) and chemical sidereactions in healthy aerobic tissues and are the only known extranuclear cellular organelles in animal cells that contain their own DNA (mtDNA). ROS can modify mtDNA directly at the sugar-phosphate backbone or at the bases, producing many different oxidatively modified purines and pyrimidines, as well as single and double strand breaks and DNA mutations. In this scenario, natural selection tends to decrease the mitochondrial ROS generation, the oxidative damage to mtDNA, and the mitochondrial mutation rate in long-lived species, in agreement with the mitochondrial oxidative stress theory of aging.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, IRB, Lleida, c/Montserrat Roig-2, 5008 Lleida, Spain
| |
Collapse
|
29
|
Koivula MJ, Eeva T. Metal-related oxidative stress in birds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2359-70. [PMID: 20382455 DOI: 10.1016/j.envpol.2010.03.013] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/10/2010] [Accepted: 03/12/2010] [Indexed: 05/20/2023]
Abstract
Metals can cause oxidative stress by increasing the formation of reactive oxygen species (ROS), which render antioxidants incapable of defence against growing amounts of free radicals. Metal toxicity is related to their oxidative state and reactivity with other compounds. Our aim is to review the mechanisms on how metals cause oxidative stress and what is known about metal-induced oxidative stress in wildlife. Taking birds as model organisms, we summarize the mechanisms responsible for antioxidant depletion and give a view of how to detect metal-induced oxidative stress in birds by using different biomarkers. The mechanisms producing the harmful effects of oxidative stress are complex with different biomolecular mechanisms associated with ecotoxicological and ecological aspects. The majority of the studies concerning metals and ROS related to oxidative stress have focused on the biomolecular level, but little is known about the effects at the cellular level or at the level of individuals or populations.
Collapse
Affiliation(s)
- Miia J Koivula
- Department of Biology, Section of Ecology, University of Turku, FI-20014 Turku, Finland.
| | | |
Collapse
|
30
|
Lewis KN, Mele J, Hayes JD, Buffenstein R. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol 2010; 50:829-43. [PMID: 21031035 DOI: 10.1093/icb/icq034] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although aging is a ubiquitous process that prevails in all organisms, the mechanisms governing both the rate of decline in functionality and the age of onset remain elusive. A profound constitutively upregulated cytoprotective response is commonly observed in naturally long-lived species and experimental models of extensions to lifespan (e.g., genetically-altered and/or experimentally manipulated organisms), as indicated by enhanced resistance to stress and upregulated downstream components of the cytoprotective nuclear factor erythroid 2-related factor 2 (Nrf2)-signaling pathway. The transcription factor Nrf2 is constitutively expressed in all tissues, although levels may vary among organs, with the key detoxification organs (kidney and liver) exhibiting highest levels. Nrf2 may be further induced by cellular stressors including endogenous reactive-oxygen species or exogenous electrophiles. The Nrf2-signaling pathway mediates multiple avenues of cytoprotection by activating the transcription of more than 200 genes that are crucial in the metabolism of drugs and toxins, protection against oxidative stress and inflammation, as well as playing an integral role in stability of proteins and in the removal of damaged proteins via proteasomal degradation or autophagy. Nrf2 interacts with other important cell regulators such as tumor suppressor protein 53 (p53) and nuclear factor-kappa beta (NF-κB) and through their combined interactions is the guardian of healthspan, protecting against many age-related diseases including cancer and neurodegeneration. We hypothesize that this signaling pathway plays a critical role in the determination of species longevity and that this pathway may indeed be the master regulator of the aging process.
Collapse
Affiliation(s)
- Kaitlyn N Lewis
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM 2.2, San Antonio, TX 78245, USA
| | | | | | | |
Collapse
|
31
|
Patel BP, Safdar A, Raha S, Tarnopolsky MA, Hamadeh MJ. Caloric restriction shortens lifespan through an increase in lipid peroxidation, inflammation and apoptosis in the G93A mouse, an animal model of ALS. PLoS One 2010; 5:e9386. [PMID: 20195368 PMCID: PMC2827549 DOI: 10.1371/journal.pone.0009386] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/09/2009] [Indexed: 01/24/2023] Open
Abstract
Caloric restriction (CR) extends lifespan through a reduction in oxidative stress, delays the onset of morbidity and prolongs lifespan. We previously reported that long-term CR hastened clinical onset, disease progression and shortened lifespan, while transiently improving motor performance in G93A mice, a model of amyotrophic lateral sclerosis (ALS) that shows increased free radical production. To investigate the long-term CR-induced pathology in G93A mice, we assessed the mitochondrial bioenergetic efficiency and oxidative capacity (CS--citrate synthase content and activity, cytochrome c oxidase--COX activity and protein content of COX subunit-I and IV and UCP3-uncoupling protein 3), oxidative damage (MDA--malondialdehyde and PC--protein carbonyls), antioxidant enzyme capacity (Mn-SOD, Cu/Zn-SOD and catalase), inflammation (TNF-alpha), stress response (Hsp70) and markers of apoptosis (Bax, Bcl-2, caspase 9, cleaved caspase 9) in their skeletal muscle. At age 40 days, G93A mice were divided into two groups: Ad libitum (AL; n = 14; 7 females) or CR (n = 13; 6 females), with a diet equal to 60% of AL. COX/CS enzyme activity was lower in CR vs. AL male quadriceps (35%), despite a 2.3-fold higher COX-IV/CS protein content. UCP3 was higher in CR vs. AL females only. MnSOD and Cu/Zn-SOD were higher in CR vs. AL mice and CR vs. AL females. MDA was higher (83%) in CR vs. AL red gastrocnemius. Conversely, PC was lower in CR vs. AL red (62%) and white (30%) gastrocnemius. TNF-alpha was higher (52%) in CR vs. AL mice and Hsp70 was lower (62%) in CR vs. AL quadriceps. Bax was higher in CR vs. AL mice (41%) and CR vs. AL females (52%). Catalase, Bcl-2 and caspases did not differ. We conclude that CR increases lipid peroxidation, inflammation and apoptosis, while decreasing mitochondrial bioenergetic efficiency, protein oxidation and stress response in G93A mice.
Collapse
Affiliation(s)
- Barkha P. Patel
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Adeel Safdar
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Sandeep Raha
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Mark A. Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mazen J. Hamadeh
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
32
|
Patel BP, Hamadeh MJ. Nutritional and exercise-based interventions in the treatment of amyotrophic lateral sclerosis. Clin Nutr 2009; 28:604-17. [PMID: 19782443 DOI: 10.1016/j.clnu.2009.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 05/30/2009] [Accepted: 06/01/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Disease pathogenesis in amyotrophic lateral sclerosis (ALS) involves a number of interconnected mechanisms all resulting in the rapid deterioration of motor neurons. The main mechanisms include enhanced free radical production, protein misfolding, aberrant protein aggregation, excitotoxicity, mitochondrial dysfunction, neuroinflammation and apoptosis. The aim of this review is to assess the efficacy of using nutrition- and exercise-related interventions to improve disease outcomes in ALS. METHODS Studies involving nutrition or exercise in human and animal models of ALS were reviewed. RESULTS Treatments conducted in animal models of ALS have not consistently translated into beneficial results in clinical trials due to poor design, lack of power and short study duration, as well as differences in the genetic backgrounds, treatment dosages and disease pathology between animals and humans. However, vitamin E, folic acid, alpha lipoic acid, lyophilized red wine, coenzyme Q10, epigallocatechin gallate, Ginkgo biloba, melatonin, Cu chelators, and regular low and moderate intensity exercise, as well as treatments with catalase and l-carnitine, hold promise to mitigating the effects of ALS, whereas caloric restriction, malnutrition and high-intensity exercise are contraindicated in this disease model. CONCLUSIONS Improved nutritional status is of utmost importance in mitigating the detrimental effects of ALS.
Collapse
Affiliation(s)
- Barkha P Patel
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada M3J 1P3
| | | |
Collapse
|
33
|
Furness LJ, Speakman JR. Energetics and longevity in birds. AGE (DORDRECHT, NETHERLANDS) 2008; 30:75-87. [PMID: 19424858 PMCID: PMC2527636 DOI: 10.1007/s11357-008-9054-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 04/14/2008] [Indexed: 05/26/2023]
Abstract
The links between energy expenditure and ageing are different at different levels of enquiry. When studies have examined the relationships between different species within a given class the association is generally negative--animals with greater metabolism per gram of tissue live shorter lives. Within species, or between classes (e.g. between birds and mammals) the association is the opposite--animals with higher metabolic rates live longer. We have previously shown in mammals that the negative association between lifespan and metabolic rate is in fact an artefact of using resting rather than daily energy expenditure, and of failing to adequately take into account the confounding effects of body size and the lack of phylogenetic independence of species data. When these factors are accounted for, across species of mammals, the ones with higher metabolism also have the largest lifetime expenditures of energy-consistent with the inter-class and intra-specific data. A previous analysis in birds did not yield the same pattern, but this may have been due to a lack of sufficient power in the analysis. Here we present an analysis of a much enlarged data set (>300 species) for metabolic and longevity traits in birds. These data show very similar patterns to those in mammals. Larger individuals have longer lives and lower per-gram resting and daily energy expenditures, hence there is a strong negative relationship between longevity and mass-specific metabolism. This relationship disappears when the confounding effects of body mass and phylogeny are accounted for. Across species of birds, lifetime expenditure of energy per gram of tissue based on both daily and resting energy expenditure is positively related to metabolic intensity, mirroring these statistical relationships in mammals and synergizing with the positive associations of metabolism with lifespan within species and between vertebrate classes.
Collapse
Affiliation(s)
- L. J. Furness
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ Scotland, UK
| | - J. R. Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ Scotland, UK
| |
Collapse
|
34
|
Buffenstein R, Edrey YH, Yang T, Mele J. The oxidative stress theory of aging: embattled or invincible? Insights from non-traditional model organisms. AGE (DORDRECHT, NETHERLANDS) 2008; 30:99-109. [PMID: 19424860 PMCID: PMC2527631 DOI: 10.1007/s11357-008-9058-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species (ROS), inevitable byproducts of aerobic metabolism, are known to cause oxidative damage to cells and molecules. This, in turn, is widely accepted as a pivotal determinant of both lifespan and health span. While studies in a wide range of species support the role of ROS in many age-related diseases, its role in aging per se is questioned. Comparative data from a wide range of endotherms offer equivocal support for this theory, with many exceptions and inconclusive findings as to whether or not oxidative stress is either a correlate or a determinant of maximum species lifespan. Available data do not support the premise that metabolic rate and in vivo ROS production are determinants of lifespan, or that superior antioxidant defense contributes to species longevity. Rather, published studies often show either a negative associate or lack of correlation with species longevity. Furthermore, many long-living species such as birds, bats and mole-rats exhibit high levels of oxidative damage even at young ages. Similarly genetic manipulations altering expression of key antioxidants do not necessarily show an impact on lifespan, even though oxidative damage levels may be affected. While it is possible that these multiple exceptions to straightforward predictions of the free radical theory of aging all reflect species-specific, "private" mechanisms of aging, the preponderance of contrary data nevertheless present a challenge to this august theory. Therefore, contrary to accepted dogma, the role of oxidative stress as a determinant of longevity is still open to question.
Collapse
Affiliation(s)
- Rochelle Buffenstein
- Barshop Institute for Aging and Longevity Studies and Department of Physiology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, STCBM #2.2, San Antonio, TX 78245, USA.
| | | | | | | |
Collapse
|
35
|
|
36
|
Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 2007; 87:1175-213. [PMID: 17928583 DOI: 10.1152/physrev.00047.2006] [Citation(s) in RCA: 593] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Maximum life span differences among animal species exceed life span variation achieved by experimental manipulation by orders of magnitude. The differences in the characteristic maximum life span of species was initially proposed to be due to variation in mass-specific rate of metabolism. This is called the rate-of-living theory of aging and lies at the base of the oxidative-stress theory of aging, currently the most generally accepted explanation of aging. However, the rate-of-living theory of aging while helpful is not completely adequate in explaining the maximum life span. Recently, it has been discovered that the fatty acid composition of cell membranes varies systematically between species, and this underlies the variation in their metabolic rate. When combined with the fact that 1) the products of lipid peroxidation are powerful reactive molecular species, and 2) that fatty acids differ dramatically in their susceptibility to peroxidation, membrane fatty acid composition provides a mechanistic explanation of the variation in maximum life span among animal species. When the connection between metabolic rate and life span was first proposed a century ago, it was not known that membrane composition varies between species. Many of the exceptions to the rate-of-living theory appear explicable when the particular membrane fatty acid composition is considered for each case. Here we review the links between metabolic rate and maximum life span of mammals and birds as well as the linking role of membrane fatty acid composition in determining the maximum life span. The more limited information for ectothermic animals and treatments that extend life span (e.g., caloric restriction) are also reviewed.
Collapse
Affiliation(s)
- A J Hulbert
- Metabolic Research Centre, Institute for Conservation Biology, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia.
| | | | | | | |
Collapse
|
37
|
Pamplona R, Barja G. Highly resistant macromolecular components and low rate of generation of endogenous damage: two key traits of longevity. Ageing Res Rev 2007; 6:189-210. [PMID: 17702671 DOI: 10.1016/j.arr.2007.06.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 06/14/2007] [Accepted: 06/19/2007] [Indexed: 01/07/2023]
Abstract
Key characteristics relating oxidative damage to aging and longevity are reviewed. Available information indicates that the specific composition of tissue macromolecules (proteins, lipids and mitochondrial DNA) in long-lived animal species gives them an intrinsically high resistance to modification that likely contributes to the superior longevity of these species. This is obtained in the case of lipids by decreasing fatty acid unsaturation, and in the proteins by lowering their methionine content. Long-lived animals also show low rates of reactive oxygen species (ROS) generation and oxidative damage at their mitochondria. On the other hand, dietary restriction decreases mitochondrial ROS production and oxidative damage to mitochondrial DNA and proteins. These changes are due to the decreased intake of dietary proteins (not of lipids or carbohydrates) of the dietary restricted animals. In turn, these effects of protein restriction seem to be specifically due to the lowered methionine intake of the protein and dietary restricted animals. It is emphasized that both a low rate of generation of endogenous damage and an intrinsically high resistance to modification of tissue macromolecules are key traits of animal longevity.
Collapse
Affiliation(s)
- Reinald Pamplona
- Department of Basic Medical Sciences, Faculty of Medicine, University of Lleida, Lleida 25008, Spain
| | | |
Collapse
|
38
|
Wilhelm Filho D, Althoff SL, Dafré AL, Boveris A. Antioxidant defenses, longevity and ecophysiology of South American bats. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:214-220. [PMID: 17257902 DOI: 10.1016/j.cbpc.2006.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 10/30/2006] [Accepted: 11/08/2006] [Indexed: 02/02/2023]
Abstract
Microchiropteran bats sustain very high oxygen consumption rates when active, but they also exhibit drastic daily drops in oxygen consumption when torpid. In addition, bats are also characterized by an extraordinary longevity considering their body mass and high specific metabolic rate when compared to other mammals of related size. Therefore, they consist of a very interesting group regarding the free radical theory of aging. The present study was carried out to measure the antioxidant defenses of several tissues of five South American bat species, attempting to correlate the antioxidant status, ecophysiology and longevity. Superoxide dismutase (SOD) and catalase (CAT) activities in blood, liver and kidney were higher compared to other tissues. The contents of alpha-tocopherol and beta-carotene found in liver, heart, kidneys, and pectoral muscles were one to two orders of magnitude higher than those usually found in rat and mouse liver. Also, these contents in liver were generally inversely related to lipoperoxidation measured as TBARS contents. Blood GSH contents and the activities of SOD and CAT were higher in torpid Sturnira lillium compared to active ones, thus suggesting that the elevation of such antioxidants might be daily modulated to minimize the oxidative stress related to the transition from torpid to active state in bats. The lower ROS generation reported in the literature for other bat species, their high constitutive antioxidant defenses, and the daily energy sparing associated with torpor appear to be closely related to their ecophysiological adaptations and to their extended longevity.
Collapse
Affiliation(s)
- Danilo Wilhelm Filho
- Departamento de Ecologia e Zoologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Sérgio Luiz Althoff
- Departamento de Ecologia e Zoologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Alcir Luiz Dafré
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Alberto Boveris
- Laboratorio de Radicales Libres, Facultad de Farmacia y Bioquímica, Universidade de Buenos Aires, Argentina
| |
Collapse
|
39
|
Judge S, Leeuwenburgh C. Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol 2007; 292:C1983-92. [PMID: 17344313 DOI: 10.1152/ajpcell.00285.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria have been a central focus of several theories of aging as a result of their critical role in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function coupled with the accumulation of oxidative damage to macromolecules may be causal to the decline in cardiac performance with age. In contrast, regular physical activity and lifelong caloric restriction can prevent oxidative stress, delay the onset of morbidity, increase life span, and reduce the risk of developing several pathological conditions. The health benefits of life long exercise and caloric restriction may be, at least partially, due to a reduction in the chronic amount of mitochondrial oxidant production. In addition, the available data suggest that chronic exercise may serve to enhance antioxidant enzyme activities, and augment certain repair/removal pathways, thereby reducing the amount of oxidative tissue damage. However, the characterization of age-related changes to cardiac mitochondria has been complicated by the fact that two distinct populations of mitochondria exist in the myocardium: subsarcolemmal mitochondria and interfibrillar mitochondria. Several studies now suggest the importance of studying both mitochondrial populations when attempting to elucidate the contribution of mitochondrial dysfunction to myocardial aging. The role that mitochondrial dysfunction and oxidative stress play in contributing to cardiac aging will be discussed along with the use of lifelong exercise and calorie restriction as countermeasures to aging.
Collapse
Affiliation(s)
- Sharon Judge
- Dept. of Medicine, University of Florida, College of Medicine, Gainesville, FL 32611, USA
| | | |
Collapse
|
40
|
Cohen A, Klasing K, Ricklefs R. Measuring circulating antioxidants in wild birds. Comp Biochem Physiol B Biochem Mol Biol 2007; 147:110-21. [PMID: 17303461 DOI: 10.1016/j.cbpb.2006.12.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 12/16/2006] [Accepted: 12/31/2006] [Indexed: 01/22/2023]
Abstract
Antioxidants protect against free radical damage, which is associated with various age-related pathologies. Antioxidants are also an important buffer against the respiratory burst of the immune system. This protection presumably has costs and therefore might underlie important life-history trade-offs. Studying such trade-offs in a comparative context requires field-applicable methods for assessing antioxidant capacity in wild animals. Here, we present modifications to a simple spectrophotometric assay (the TEAC or TAS assay) that can be applied to miniscule amounts of blood plasma to determine circulating antioxidant capacity. Additionally, uric acid, the most abundant circulating antioxidant, should be measured independently. Uric acid in birds is derived from amino acid catabolism, perhaps incidentally to its antioxidant function. The assay was validated in experimental studies on chickens showing effects of diet on antioxidant capacity, and in field measurements on 92 species of birds, which demonstrate substantial species differences in constitutive antioxidant capacity. Furthermore, most wild birds demonstrate a dramatic change in antioxidant capacity due to stress. These results show that this technique detects variation appropriate for both interspecific and intraspecific studies, and that antioxidants and uric acid change in response to conditions of interest to field ecologists, such as diet and stress.
Collapse
Affiliation(s)
- Alan Cohen
- Department of Biology, R223 Research Building, University of Missouri St Louis, St Louis, MO 63121-4499, USA.
| | | | | |
Collapse
|
41
|
Abstract
The proteasome has an important role in the degradation of normal, damaged, mutant, or misfolded proteins. This includes the degradation of normal and regulatory proteins in the cellular metabolism and additionally the removal of damaged proteins as a stress response. The two well-described proteasome regulators, the 11S and the 19S regulators, forming together with the 20S 'core' proteasome various forms of the proteasome, including the ATP-stimulated 26S proteasome. As a result of aerobic metabolism, reactive oxygen species (ROS) are constantly generated during the lifetime of biological organisms. Consequently a permanent generation of oxidative damage takes place. This includes the formation of oxidatively modified proteins. These oxidized protein derivatives tend to aggregate, and accumulation of these aggregates may lead to cell death. To prevent this, such oxidatively modified proteins are selectively recognized and either repaired or degraded by the proteasome. The current knowledge of the repair systems and the degradation mechanism is reviewed here. The possible interactions between the ubiquitin-proteasome-system, the chaperone system, the protein repair mechanisms, and other antioxidative defense strategies are highlighted.
Collapse
Affiliation(s)
- Diana Poppek
- Research Institute of Environmental Medicine, Heinrich Heine University, Duesseldorf, Germany
| | | |
Collapse
|
42
|
Lambert AJ, Merry BJ. Lack of effect of caloric restriction on bioenergetics and reactive oxygen species production in intact rat hepatocytes. J Gerontol A Biol Sci Med Sci 2005; 60:175-80. [PMID: 15814858 DOI: 10.1093/gerona/60.2.175] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To investigate the hypothesis that caloric restriction alters mitochondrial function in situ, intact hepatocytes were isolated from fully fed and calorie-restricted (55% of control food intake, 4 months duration) male Brown-Norway rats at 6 months of age, and various parameters were determined. Overall, the production of reactive oxygen species was not affected by caloric restriction, neither were the mitochondrial membrane potential, oxygen consumption driving proton leak, or oxygen consumption driving ATP turnover. It is concluded that while isolated mitochondria from liver tissue of calorie-restricted animals display a reduction in the generation of reactive oxygen species, it was not possible to confirm this effect in isolated hepatocytes. Further work is required to establish what effect, if any, caloric restriction has on the rate of generation of reactive oxygen species in intact cells and tissues and importantly at the whole-animal level.
Collapse
Affiliation(s)
- Adrian J Lambert
- Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge, CB2 2XY, UK.
| | | |
Collapse
|
43
|
Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004; 37:755-67. [PMID: 15304252 DOI: 10.1016/j.freeradbiomed.2004.05.034] [Citation(s) in RCA: 762] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 05/24/2004] [Accepted: 05/28/2004] [Indexed: 01/04/2023]
Abstract
Mitochondria are potent producers of cellular superoxide, from complexes I and III of the electron transport chain, and mitochondrial superoxide production is a major cause of the cellular oxidative damage that may underlie degradative diseases and aging. This superoxide production is very sensitive to the proton motive force, so it can be strongly decreased by mild uncoupling. Superoxide and the lipid peroxidation products it engenders, including hydroxyalkenals such as hydroxynonenal, are potent activators of proton conductance by mitochondrial uncoupling proteins such as UCP2 and UCP3, although the mechanism of activation has yet to be established. These observations suggest a hypothesis for the main, ancestral function of uncoupling proteins: to cause mild uncoupling and so diminish mitochondrial superoxide production, hence protecting against disease and oxidative damage at the expense of a small loss of energy. We review the growing evidence for this hypothesis, in mitochondria, in cells, and in vivo. More recently evolved roles of uncoupling proteins are in adaptive thermogenesis (UCP1) and perhaps as part of a signaling pathway to regulate insulin secretion in pancreatic beta cells (UCP2).
Collapse
|
44
|
Abstract
To demonstrate that an uncoupling of respiration and phosphorylation, measured in vitro, reflects an in vivo situation, we badly need in vivo measurements of some uncoupling-linked parameters. The importance of this assertion is illustrated by studies of Barja and co-workers. A lower rate of H(2)O(2) production by mitochondria isolated from long-lived birds compared with short-lived mammals of the same body weight (see publications by Barja's and Sohal's groups) could be explained by (i) an in vivo difference or (ii) an in vitro artefact. In both cases, the reason for lower H(2)O(2) production may well be the same, i.e. a mild uncoupling of respiration in avian mitochondria showing lowered respiratory control. Again, this should be due to an in vivo operation of some bird-specific natural uncouplers (the first case) or stronger in vitro damage to the avian mitochondria during their isolation and incubation (the second). The latter possibility seemed more probable when Barja and co-workers revealed that the level of antioxidants in birds is lower than in mammals. However, further studies by the same group showed that the degree of unsaturation of fatty acids in birds is lower than in mammals, indicating a greater resistance of avian mitochondria to oxidative damage in vitro. Indeed, it was found that lipid peroxidation in isolated avian mitochondria occurs at a much lower rate than in mammals. More importantly, the in vivo level of peroxidation of lipids and proteins appears to be lower in birds than in mammals. Thus, it seems probable that longer lifespan of birds really does correlate with a slower rate of production of H2O2 by mitochondria in vivo.
Collapse
Affiliation(s)
- Vladimir P Skulachev
- Department of Bioenergetics, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Building A, Moscow 119992, Russia.
| |
Collapse
|
45
|
Brunet-Rossinni AK. Reduced free-radical production and extreme longevity in the little brown bat (Myotis lucifugus) versus two non-flying mammals. Mech Ageing Dev 2004; 125:11-20. [PMID: 14706233 DOI: 10.1016/j.mad.2003.09.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The extended longevity of bats, despite their high metabolic rate, may provide insight to patterns and mechanisms of aging. Here I test predictions of the free radical or oxidative stress theory of aging as an explanation for differences in lifespan between the little brown bat, Myotis lucifugus (maximum lifespan potential MLSP=34 years), the short-tailed shrew, Blarina brevicauda (MLSP=2 years), and the white-footed mouse, Peromyscus leucopus (MLSP=8 years) by comparing whole-organism oxygen consumption, hydrogen peroxide production, and superoxide dismutase activity in heart, kidney, and brain tissue. Mitochondria from M. lucifugus produced half to one-third the amount of hydrogen peroxide per unit of oxygen consumed compared to mitochondria from B. brevicauda and P. leucopus, respectively. Superoxide dismutase (SOD) activity did not differ among the three species. These results are similar to those found for birds, which like bats have high metabolic rates and extended longevities, and provide support for the free radical theory of aging as an at least partial explanation for the extreme longevity of bats.
Collapse
Affiliation(s)
- Anja K Brunet-Rossinni
- Department of Ecology, Evolution and Behavior, James Ford Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
46
|
Abstract
Despite their high lifetime energy expenditures, most birds can be characterized as long-lived homeotherms with moderately slow aging. A growing body of research confirms the prediction that birds have special adaptations for preventing aging-related oxidative and glycoxidative damage. Nonetheless, biogerontologists have been slow to develop avian laboratory models. A number of domestic poultry and cage bird species represent either established or very promising animal models for studies of basic aging processes and their prevention, including degenerative neurobiological, behavioral and reproductive processes. Several kinds of birds have also been used in studies of cellular resistance to oxidative stressors in vitro. Results of preliminary studies on chickens and quail suggest that caloric restriction may extend the reproductive life span of hens, but its long-term effects on life span remain unstudied. Birds' innate anti-aging mechanisms may actually make them more suitable in some respects as models of longevity than short-lived laboratory rodents, and bird studies may ultimately reveal routes for therapeutic intervention in diseases of human aging and infertility.
Collapse
Affiliation(s)
- D J Holmes
- Department of Biological Sciences, University of Idaho, P.O. Box 443051, Moscow, ID 83844-3051, USA.
| | | |
Collapse
|
47
|
Judge S, Judge A, Grune T, Leeuwenburgh C. Short-term CR decreases cardiac mitochondrial oxidant production but increases carbonyl content. Am J Physiol Regul Integr Comp Physiol 2003; 286:R254-9. [PMID: 14592935 DOI: 10.1152/ajpregu.00502.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lifelong caloric restriction (CR) reduces the rate of mitochondrial oxidant production and the accumulation of oxidized proteins and prevents some of the age-associated decline in 20S proteasome activity. However, few studies have investigated how rapidly the beneficial effects of CR take place. We investigated whether 2 mo of CR in 6-mo-old rats would be of sufficient duration to elicit these beneficial changes. Mitochondrial oxidant production was significantly diminished in the CR rats compared with the ad libitum-fed animals. Short-term CR also caused a significant decrease in mitochondrial superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, but there were no differences in cytosolic SOD and GPX activities, whereas mitochondrial and cytosolic catalase (CAT) activity was increased with CR. However, protein carbonyl content was significantly elevated in both the mitochondrial and cytosolic fractions from CR rats. Of the three major 20S proteasome activities (chymotrypsin-like, trypsin-like, and peptidylglutamyl-peptide hydrolase), the peptidylglutamyl-peptide hydrolase activity was significantly elevated in the CR animals, possibly because of the fact that there were more oxidized proteins to be degraded. Although fewer oxidants were produced in the CR animals, it is possible that the ability to scavenge oxidants was transiently suppressed because of the reduction in mitochondrial antioxidant enzyme activities, which may explain the observed increases in carbonyl content.
Collapse
Affiliation(s)
- Sharon Judge
- Univ. of Florida, Biochemistry of Aging Laboratory, P. O. Box 118206, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
48
|
Kristal BS, Krasnikov BF. Structure-(Dys)function relationships in mitochondrial electron transport chain complex II? SCIENCE OF AGING KNOWLEDGE ENVIRONMENT : SAGE KE 2003; 2003:PE3. [PMID: 12844553 DOI: 10.1126/sageke.2003.5.pe3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It has been postulated that mitochondrially derived reactive oxygen species (ROS) play a major causative role in aging processes. The primary sources of these oxidants are believed to be complexes I and III of the electron transport chain, with little evidence supporting oxidant formation at complex II (succinate dehydrogenase). Mutation of a complex II protein has, however, been shown to cause increased oxidative stress and decreased life expectancy in the Caenorhabditis elegans mutant mev-1. A recent study by Yankovskaya and colleagues, in which the structure of Escherichia coli succinate dehydrogenase was determined, provides an explanation for these observations. Furthermore, these results suggest possible mechanisms by which electron leakage might occur at this site in the aged organism.
Collapse
Affiliation(s)
- Bruce S Kristal
- Dementia Research Service of the Burke Medical Research Institute, White Plains, NY 10605, USA.
| | | |
Collapse
|
49
|
Abstract
Available studies are consistent with the possibility that oxygen radicals endogenously produced by mitochondria are causally involved in the determination of the rate of aging in homeothermic vertebrates. Oxidative damage to tissue macromolecules seems to increase during aging. The rate of mitochondrial oxygen radical generation of post-mitotic tissues is negatively correlated with animal longevity. In agreement with this, long-lived animals show lower levels of oxidative damage in their mitochondrial DNA (mtDNA) than short-lived ones, whereas this does not occur in nuclear DNA (nDNA). Caloric restriction, which decreases the rate of aging, also decreases mitochondrial oxygen radical generation and oxidative damage to mitochondrial DNA. This decrease in free radical generation occurs in complex I and is due to a decrease in the degree of electronic reduction of the complex I free radical generator, similarly to what has been described in various cases in long-lived animals. These results suggest that similar mechanisms have been used to extend longevity through decreases in oxidative stress in caloric restriction and during the evolution of species with different longevities.
Collapse
Affiliation(s)
- Gustavo Barja
- Department of Animal Biology-II (Animal Physiology), Faculty of Biology, Complutense University, 28040, Madrid, Spain
| |
Collapse
|
50
|
Svensson E, RÅberg L, Koch C, Hasselquist D. Energetic stress, immunosuppression and the costs of an antibody response. Funct Ecol 2002. [DOI: 10.1046/j.1365-2435.1998.00271.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|