1
|
Barroso IG, Nascimento BB, Ferreira C, Terra WR. Water fluxes and nutrient absorption along the midgut of three hemipterans, Mahanarva fimbriolata, Dysdercus peruvianus, and Rhodnius prolixus. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111773. [PMID: 39515658 DOI: 10.1016/j.cbpa.2024.111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Hemiptera Order comprises insect species adapted to different diets regarding water and nutrient content and availability, thus suggesting different combinations of proteins to ensure their absorption. To find out whether hemipterans use the same or distinct set of proteins and whether these differences are related to the phylogeny or the diet, RNAseq analyses were conducted in gut sections of three hemipterans, M. fimbriolata, D. peruvianus, and R. prolixus, with remarkable distinct diet. Since only a few of the selected proteins were functionally characterized, the coded putative proteins were manually curated by bioinformatics to infer their physiological function. The results suggest a relationship between gene expression patterns and water and nutrient dietary content and availability. In contrast, putative gene expansions and deletions are related to phylogeny, corresponding to evolutionary adaptations of ancestral forms to feed on xylem, cotton seeds, and blood, resulting in more resemblances between D. peruvianus and R. prolixus than M. fimbriolata. M. fimbriolata absorbs water through aquaporins Drip and Prip in the filtration chamber by passive diffusion, with a higher contribution of water-selective Drip. D. peruvianus water absorption involves Drip and Prip, but Prip contribution appears to be higher, and they probably cooperate with water-ion cotransporters in the posterior midgut. R. prolixus absorbs water in the anterior midgut involving a sodium transporter and a putative water-urea Prip. Sugars, amino acids, and lipids might be absorbed along the midgut in the three species, with a higher contribution of the posterior midgut for amino acid and lipid absorption in M. fimbriolata and D. peruvianus and the middle midgut in R. prolixus.
Collapse
Affiliation(s)
- Ignacio G Barroso
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Bárbara B Nascimento
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av.Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
2
|
Carpentier J, Martin C, Luttenschlager H, Deville N, Ferrara D, Purcaro G, Blecker C, Francis F, Caparros Megido R. Common soluble carbohydrates affect the growth, survival, and fatty acid profile of black soldier fly larvae Hermetia illucens (Stratiomyidae). Sci Rep 2024; 14:28157. [PMID: 39548131 PMCID: PMC11568187 DOI: 10.1038/s41598-024-75730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
The black soldier fly, Hermetia illucens (L. 1758), is an omnivorous saprophagous insect with a high potential for valorizing organic by-products rich in carbohydrates. Among carbohydrates, H. illucens relies on soluble sugars for the growth and storage lipid synthesis. This study aimed to assess the impact of common soluble sugars on the development, survival, and fatty acid composition of H. illucens. Monosaccharides and disaccharides were individually incorporated into a chicken feed diet. Cellulose was used as a control. Larvae fed glucose, fructose, sucrose, and maltose grew faster than control larvae. In contrast, lactose exhibited anti-nutritional effects on larvae, slowing down growth and reducing final individual weight. However, all soluble sugars produced larvae fatter than the control diet. Notably, the tested sugars shaped the fatty acid profile. Maltose and sucrose increased saturated fatty acid content compared to cellulose. Conversely, lactose increased the bioaccumulation of dietary unsaturated fatty acids. This study is the first to demonstrate the effect of soluble sugars on the fatty acid profile of H. illucens larvae. Our findings highlight that the tested carbohydrates have significant effects on black soldier fly fatty acid composition and can thus determine their final applications.
Collapse
Affiliation(s)
- Joachim Carpentier
- Functional and Evolutionary Entomology, UR TERRA, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium.
| | - Clément Martin
- Functional and Evolutionary Entomology, UR TERRA, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Hugo Luttenschlager
- Functional and Evolutionary Entomology, UR TERRA, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Nicolas Deville
- Functional and Evolutionary Entomology, UR TERRA, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Donatella Ferrara
- Chemistry for Sustainable Food and Environmental Systems, UR TERRA, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Giorgia Purcaro
- Chemistry for Sustainable Food and Environmental Systems, UR TERRA, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Christophe Blecker
- Unit of Food Science and Formulation, UR TERRA, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, UR TERRA, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium
| | - Rudy Caparros Megido
- Functional and Evolutionary Entomology, UR TERRA, Gembloux Agro-Bio Tech, University of Liège, Liège, Belgium.
| |
Collapse
|
3
|
Guillaume JB, Da Lage JL, Mezdour S, Marion-Poll F, Terrol C, Brouzes CMC, Schmidely P. Amylase activity across black soldier fly larvae development and feeding substrates: insights on starch digestibility and external digestion. Animal 2024; 18:101337. [PMID: 39476591 DOI: 10.1016/j.animal.2024.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 11/18/2024] Open
Abstract
Black soldier fly larvae (BSFL; Hermetia illucens) hold promise for converting biowaste into proteins and lipids for feed. Dietary starch is efficiently digested by the larvae and influences larval performance, but the mechanisms of starch digestion remain poorly understood. This study investigated changes in individual weight and amylase activity in BSFL after 4, 7 and 11 days of feeding for five substrates varying in starch content and type: chicken feed (CF), corn gluten feed (CGF), wheat bran (WB), wheat distillers grain (WDG) and discarded potatoes (DP). Substrate amylase activities were also measured with and without larvae (feeding and fermenting trays, respectively) over time in order to explore external digestion. Feed conversion ratio (FCR) and estimated digestibility (ED) of DM and starch were assessed at the end of the experiment. The ranking for best FCR was CF, WB, CGF, WDG and DP. In feeding trays, ED of DM was 69.8 ± 1.8, 59.5 ± 2.9, 58.6 ± 0.7, 45.4 ± 0.6 and 19.5 ± 0.8% in CF, DP, WB, CGF and WDG, respectively. Estimated digestibility of starch reached 100% with WB and CGF, followed by CF (88.2 ± 2.3%), DP (85.2 ± 1.2%) and WDG (43.1 ± 1.0%). Larval amylase activity increased with growth for all substrates and dropped when approaching pupation. No relationship was found between larval amylase activity and substrate starch or other nutrient content, but a negative correlation was reported with the reducing sugar content of the larvae, suggesting glucose repression of amylase production. Amylase activity decreased with time in all feeding and fermenting substrates except WDG and DP. In vitro degradation assays indicated that BSFL amylase was nine times more efficient on raw corn or wheat starch than on raw potato starch, highlighting that starch structure is a major driver of digestibility. Western blot analysis revealed the presence of BSFL amylase in the feeding substrate, hinting at external digestion. Larval amylase was purified to identify its optimal pH (5.0-6.5) and temperature (70 °C). These results highlight that starch content is not a major driver of amylase activity in BSFL and suggest that other non-investigated factors could have had a crucial impact on the activity of larval digestive enzymes, such as microbial community of the substrate and presence of amylase inhibitors. This study also provides insights into the evolution of BSFL digestive activity during their development and the occurrence of external digestion.
Collapse
Affiliation(s)
- J B Guillaume
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France; Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 91190 Gif-sur-Yvette, France; Agronutris, R&D Department, 31650 Saint-Orens de Gameville, France.
| | - J L Da Lage
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 91190 Gif-sur-Yvette, France
| | - S Mezdour
- Université Paris-Saclay, UMR Sayfood, AgroParisTech, INRAE, 91120 Palaiseau, France
| | - F Marion-Poll
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 91190 Gif-sur-Yvette, France; Université Paris-Saclay, AgroParisTech, 91120 Palaiseau, France
| | - C Terrol
- Agronutris, R&D Department, 31650 Saint-Orens de Gameville, France
| | - C M C Brouzes
- Agronutris, R&D Department, 31650 Saint-Orens de Gameville, France
| | - P Schmidely
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France; Université Paris-Saclay, AgroParisTech, 91120 Palaiseau, France
| |
Collapse
|
4
|
Azad RK, Thakur DR. Purification and characterization of α-amylase from Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae). Int J Biol Macromol 2024; 278:135009. [PMID: 39181371 DOI: 10.1016/j.ijbiomac.2024.135009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Acanthoscelides obtectus is one of the most notorious pests of stored kidney beans (Phaseolus vulgaris) worldwide. Kidney beans are an important source of food for these insects. α-Amylase is the main carbohydrate-digesting enzyme in animals including insects. In the current study, the biochemical analysis revealed higher α-amylase activity (U/ml) in 3rd and 4th larval instars but decreased gradually in subsequent developmental stages. However, the specific activity (U/mg) interestingly was highest in 1st instar and decreased in further developmental stages. During qualitative analysis of α-amylase using starch-agar and native PAGE, the maximum zone of starch lysis and a prominent band on the gel was observed in 3rd and 4th larval stages. The molecular mass of the native enzyme was also estimated and found to be 30.34 kDa. The crude α-amylase was further purified by ammonium sulfate precipitation, gel filtration on a Sephadex G-75, and ion exchange chromatography on the DEAE cellulose column. The purified amylase was found to be a monomer with a molecular mass of 15 kDa. The specific activity of the purified enzyme increased from 1.74 U/mg in the crude sample to 166.35 U/mg in the final purification step resulting in 95-fold purification with a yield of 11.14%. Further characterization of purified α-amylase revealed a pH optimum of 7.0 and a temperature optimum of 35 °C. Lineweaver-Burk plot analysis revealed Km and Vmax to be 0.09% and 3.3 U/mL, respectively. Oxalic acid, tannic acid, and HgCl2 significantly inhibited the enzyme, while the Na+, Ca++, and Mg++ ions acted as activators. In conclusion, the study revealed, the highest α-amylase activity in 3rd and 4th larval stages of Acanthoscelides obtectus followed by native and SDS PAGE resulting in molecular mass of 30.34 and 15 kDa respectively.
Collapse
Affiliation(s)
- Rajesh Kumar Azad
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India.
| | - Desh Raj Thakur
- Department of Biosciences, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
5
|
Carpentier J, Abenaim L, Luttenschlager H, Dessauvages K, Liu Y, Samoah P, Francis F, Caparros Megido R. Microorganism Contribution to Mass-Reared Edible Insects: Opportunities and Challenges. INSECTS 2024; 15:611. [PMID: 39194816 DOI: 10.3390/insects15080611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
The interest in edible insects' mass rearing has grown considerably in recent years, thereby highlighting the challenges of domesticating new animal species. Insects are being considered for use in the management of organic by-products from the agro-industry, synthetic by-products from the plastics industry including particular detoxification processes. The processes depend on the insect's digestive system which is based on two components: an enzymatic intrinsic cargo to the insect species and another extrinsic cargo provided by the microbial community colonizing-associated with the insect host. Advances have been made in the identification of the origin of the digestive functions observed in the midgut. It is now evident that the community of microorganisms can adapt, improve, and extend the insect's ability to digest and detoxify its food. Nevertheless, edible insect species such as Hermetia illucens and Tenebrio molitor are surprisingly autonomous, and no obligatory symbiosis with a microorganism has yet been uncovered for digestion. Conversely, the intestinal microbiota of a given species can take on different forms, which are largely influenced by the host's environment and diet. This flexibility offers the potential for the development of novel associations between insects and microorganisms, which could result in the creation of synergies that would optimize or expand value chains for agro-industrial by-products, as well as for contaminants.
Collapse
Affiliation(s)
- Joachim Carpentier
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Hugo Luttenschlager
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Kenza Dessauvages
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Yangyang Liu
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
- Institute of Feed Research, Chinese Academy of Agricultural Sciences (CAAS), Haidian District, Beijing 100193, China
| | - Prince Samoah
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| | - Rudy Caparros Megido
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
6
|
Shi W, Zhang L, Zhao Y, Li X. Exendin-4 Caused Growth Arrest by Regulating Sugar Metabolism in Hyphantria cunea (Lepidoptera: Erebidae) Larvae. INSECTS 2024; 15:503. [PMID: 39057236 PMCID: PMC11276936 DOI: 10.3390/insects15070503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Insects' growth and development are highly dependent on energy supply, with sugar metabolism playing a pivotal role in maintaining homeostasis and regulating physiological processes. The present study investigated the effects of exendin-4, a glucagon-like peptide-1 receptor (GLP-1R) agonist, on the growth, development, glycolysis, and energy metabolism of fourth-instar larvae of the fall webworm, Hyphantria cunea. We determined the impact of exendin-4 on larval growth and nutritional indices, analyzed the responses of glycolytic and metabolic pathways, and revealed the underlying regulatory mechanisms. Exendin-4 treatment significantly decreased growth and nutritional indices, influenced the activity of digestive enzymes, and induced changes in metabolite profiles, particularly affecting energy substance metabolism. We observed an increase in the glycogen content and a decrease in glucose and trehalose levels in the hemolymph, suggesting a regulatory effect on blood sugar homeostasis. Furthermore, exendin-4 promoted glycolysis by enhancing the activities and expressions of key glycolytic enzymes, leading to an increase in pyruvate production. This was accompanied by a reduction in ATP levels and the activation of AMP-activated protein kinase (AMPK), which may underlie the growth arrest in larvae. Our findings provide novel insights into the effects of exendin-4 on insect responses from an energy metabolism perspective and may contribute to the development of GLP-1R agonists for pest management.
Collapse
Affiliation(s)
- Wenhui Shi
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Lu Zhang
- College of Forestry, Northeast Forestry University, Harbin 150040, China;
| | - Yuecheng Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xingpeng Li
- College of Forestry, Beihua University, Jilin 132013, China
| |
Collapse
|
7
|
Wakuda M, Sakamoto T, Tanaka A, Sugimura S, Higashiura Y, Nakazato T, Bono H, Tabunoki H. High expression of serine protease, Brachyurin in the posterior midgut of black soldier fly (Hermetia illucens) during horse dropping processing. BMC Res Notes 2024; 17:182. [PMID: 38951856 PMCID: PMC11218125 DOI: 10.1186/s13104-024-06846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
OBJECTIVE Livestock droppings cause some environmental problems, but they have the potential to be used as effective biomass resources. The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is suitable for efficiently processing such resources. By using BSF larvae for the disposal of livestock droppings, we can obtain two valuable products: protein resources and organic fertilizer. However, there is insufficient research on the digestive enzymes suitable for processing this waste. Here, we aimed to construct an efficient BSF processing system using livestock droppings, and we explored the digestive enzymes involved in this process. RESULTS First, we investigated the characteristics of transcripts expressed in the midgut of BSF larvae and found that immune response-related genes were expressed in the midgut. Then, we investigated digestive enzymes and identified a novel serine protease, HiBrachyurin, whose mRNA was highly expressed in the posterior midgut when BSF larvae fed on horse droppings. Despite the low protein content of horse droppings, larvae that fed on horse droppings accumulated more protein than those in the other groups. Therefore, HiBrachyurin may contribute to digestibility in the early stage of protein degradation in BSF larvae fed on horse droppings.
Collapse
Affiliation(s)
- Megumi Wakuda
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takuma Sakamoto
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Akane Tanaka
- Division of Animal Life Science, Institute of Agriculture, Tokyo, Japan
- Laboratory of Comparative Animal Medicine, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Satoshi Sugimura
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan
| | - Yuki Higashiura
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - Takeru Nakazato
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Mishima, 411-8540, Shizuoka, Japan
| | - Hidemasa Bono
- Database Center for Life Science (DBCLS), Joint Support-Center for Data Science Research, Research Organization of Information and Systems (ROIS), Mishima, 411-8540, Shizuoka, Japan
- Laboratory of Bio-DX, Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima city, Hiroshima, 739-0046, Japan
- Laboratory of Genome Informatics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima city, Hiroshima, 739-0046, Japan
| | - Hiroko Tabunoki
- Department of Science of Biological Production, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan.
- Cooperative Major in Advanced Health Science, Graduate School of Bio-Applications and System Engineering, Tokyo University of Agriculture and Technology, Fuchu, 183-8509, Tokyo, Japan.
| |
Collapse
|
8
|
Krämer J, Hölker P, Predel R. How to Overcome a Snail? Identification of Putative Neurotoxins of Snail-Feeding Firefly Larvae (Coleoptera: Lampyridae, Lampyris noctiluca). Toxins (Basel) 2024; 16:272. [PMID: 38922166 PMCID: PMC11209139 DOI: 10.3390/toxins16060272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The larvae of some lampyrid beetles are highly specialized predators of snails. They have been observed to climb on the shells of their prey and use this exposed position to bite and inject secretions potentially originating from the midgut. Besides serving the purpose of extra-oral digestion (EOD), injected compounds also seem to have a paralyzing effect. Up to now, the toxins causing this paralyzing activity have not been identified. In the current study, we provide a first compositional analysis of the midgut secretion from lampyrid larvae, with a focus on identifying putative neurotoxins causing the observed paralyzing effect. For this purpose, we utilized a combined proteo-transcriptomic approach to characterize the compounds present in the midgut secretion of larval stages of Lampyris noctiluca. In terms of the absolute numbers of identified compounds, the midgut secretion is dominated by hydrolyzing enzymes comprising peptidases, carboxylesterases, and glycosidases. However, when considering expression levels, a few rather short cysteine-rich peptides exceed all other compounds. Some of these compounds show moderate similarity to putative neurotoxins identified in the venom of other arthropods and could be responsible for paralyzing effects. In addition to these potential toxins, we provide a list of peptides typical of the midgut secretion of L. noctiluca, supplemented by the corresponding precursor sequences.
Collapse
Affiliation(s)
- Jonas Krämer
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Patrick Hölker
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| | - Reinhard Predel
- Institute of Zoology, University of Cologne, Zuelpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
9
|
Carrière Y, Tabashnik BE. Negative association between host plant suitability and the fitness cost of resistance to Bacillus thuringiensis (Bacillales: Bacillaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1106-1112. [PMID: 38603568 DOI: 10.1093/jee/toae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Transgenic crops producing Bacillus thuringiensis (Bt) toxins are commonly used for controlling insect pests. Nearby refuges of non-Bt host plants play a central role in delaying the evolution of resistance to Bt toxins by pests. Pervasive fitness costs associated with resistance, which entail lower fitness of resistant than susceptible individuals in refuges, can increase the ability of refuges to delay resistance. Moreover, these costs are affected by environmental factors such as host plant suitability, implying that manipulating refuge plant suitability could improve the success of the refuge strategy. Based on results from a previous study of Trichoplusia ni resistant to Bt sprays, it was proposed that low-suitability host plants could magnify costs. To test this hypothesis, we investigated the association between host plant suitability and fitness costs for 80 observations from 30 cases reported in 18 studies of 8 pest species from 5 countries. Consistent with the hypothesis, the association between plant suitability and fitness cost was negative. With plant suitability scaled to range from 0 (low) to 1 (high), the expected cost was 20.7% with a suitability of 1 and the fitness cost increased 2.5% for each 0.1 decrease in suitability. The most common type of resistance to Bt toxins involves mutations affecting a few types of midgut proteins to which Bt toxins bind to kill insects. A better understanding of how such mutations interact with host plant suitability to generate fitness costs could be useful for enhancing the refuge strategy and sustaining the efficacy of Bt crops.
Collapse
|
10
|
Liang J, Lu H, Hao H, Zhang Q, Chen K, Xiang Z, He N. Post-ingestive stability of a mulberry Kunitz-type protease inhibitor MnKTI-1 in the digestive lumen of silkworm: dual inhibition towards α-amylase and serine protease. PEST MANAGEMENT SCIENCE 2024; 80:2860-2873. [PMID: 38375972 DOI: 10.1002/ps.7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Adaptation of specialist insects to their host plants and defense responses of plants to phytophagous insects have been extensively recognized while the dynamic interaction between these two events has been largely underestimated. Here, we provide evidence for characterization of an unrevealed dynamic interaction mode of digestive enzymes of specialist insect silkworm and inhibitor of its host plant mulberry tree. RESULTS MnKTI-1, a mulberry Kunitz-type protease inhibitor, whose messenger RNA (mRNA) transcription and protein expression in mulberry leaf were severely triggered and up-regulated by tens of times in a matter of hours in response to silkworm, Bombyx mori, and other mulberry pest insects, suggesting a quick response and broad spectrum to insect herbivory. MnKTI-1 proteins were detected in gut content and frass of specialist B. mori, and exhibited significant post-ingestive stability. Recombinant refolded MnKTI-1 (rMnKTI-1) displayed binding affinity to digestive enzymes and a dual inhibitory activity to α-amylase BmAmy and serine protease BmSP2956 in digestive juice of silkworm. Moreover, data from in vitro assays proved that the inhibition of recombinant rMnKTI-1 to BmAmy can be reverted by pre-incubation with BmSP15920, an inactivated silkworm digestive protease that lack of complete catalytic triad. CONCLUSION These findings demonstrate that mulberry MnKTI-1 has the potential to inhibit the digestive enzyme activities of its specialist insect herbivore silkworm, whereas this insect may employ inactivated proteases to block protease inhibitors to accomplish food digestion. The current work provides an insight to better understand the interacting mode between host plant Kunitz protease inhibitors and herbivorous insect digestive enzymes. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiubo Liang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Hulin Lu
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Haiye Hao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Qi Zhang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Kaiying Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Wang Y, Yao Y, Zhang Y, Qian X, Guo D, Coates BS. A chromosome-level genome assembly of the soybean pod borer: insights into larval transcriptional response to transgenic soybean expressing the pesticidal Cry1Ac protein. BMC Genomics 2024; 25:355. [PMID: 38594617 PMCID: PMC11005160 DOI: 10.1186/s12864-024-10216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.
Collapse
Affiliation(s)
- Yangzhou Wang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Yao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yunyue Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xueyan Qian
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, 532 Science II, 2310 Pammel Dr., Ames, IA, 50011, USA.
| |
Collapse
|
12
|
Malta LGF, Koerich LB, D'Ávila Pessoa GC, Araujo RN, Sant'Anna MRV, Pereira MH, Gontijo NF. Clogmia albipunctata (Williston, 1893) midgut physiology: pH control and functional relationship with Lower Diptera (nematoceran) especially with hematophagous species. Comp Biochem Physiol A Mol Integr Physiol 2024; 290:111584. [PMID: 38224901 DOI: 10.1016/j.cbpa.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Clogmia albipunctata (Williston, 1893) is a non-hematophagous insect belonging to the order Diptera, suborder Nematocera (Lower Diptera) and family Psychodidae. In the present work, we investigated how C. albipunctata control their midgut pH under different physiological conditions, comparing their midgut physiology with some nematoceran hematophagous species. The C. albipunctata midgut pH was measured after ingestion of sugar, protein and under the effect of the alkalinizing hormone released in the hemolymph of the hematophagous sand fly Lutzomyia longipalpis obtained just after a blood meal. The midgut pH of unfed or sugar-fed C. albipunctata is 5.5-6, and its midgut underwent alkalinization after protein ingestion or under treatment with hemolymph collected from blood fed L. longipalpis. These results suggested that in nematocerans, mechanisms for pH control seem shared between hematophagous and non-hematophagous species. This kind of pH control is convenient for successful blood digestion. The independent evolution of many hematophagous groups from the Lower Diptera suggests that characteristics involved in midgut pH control were already present in non-hematophagous species and represent a readiness for adaptation to this feeding mode.
Collapse
Affiliation(s)
- Luccas Gabriel Ferreira Malta
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Barbosa Koerich
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Grasielle Caldas D'Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo N Araujo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Marcos H Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Pampulha, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Zhao WJ, Li Y, Jiao ZL, Su PP, Yang LB, Sun CQ, Xiu JF, Shang XL, Guo G. Function analysis and characterisation of a novel chitinase, MdCht9, in Musca domestica. INSECT MOLECULAR BIOLOGY 2024; 33:157-172. [PMID: 38160324 DOI: 10.1111/imb.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
Insect chitinases have been proposed as potential targets for pest control. In this work, a novel group IV chitinase gene, MdCht9, from Musca domestica was found to have multiple functions in the physiological activity, including chitin regulation, development and antifungal immunity. The MdCht9 gene was cloned and sequenced, its phylogeny was analysed and its expression was determined in normal and 20E treated larvae. Subsequently, RNA interference (RNAi)-mediated MdCht9 knockdown was performed, followed by biochemical assays, morphological observations and transcriptome analysis. Finally, the recombinant protein MdCht9 (rMdCht9) was purified and tested for anti-microbial activity and enzyme characteristics. The results showed that MdCht9 consists of three domains, highly expressed in a larval salivary gland. RNAi silencing of MdCht9 resulted in significant down-regulation of chitin content and expression of 15 chitin-binding protein (CBP) genes, implying a new insight that MdCht9 might regulate chitin content by influencing the expression of CBPs. In addition, more than half of the lethality and partial wing deformity appeared due to the dsMdCht9 treatment. In addition, the rMdCht9 exhibited anti-microbial activity towards Candida albicans (fungus) but not towards Escherichia coli (G-) or Staphylococcus aureus (G+). Our work expands on previous studies of chitinase while providing a potential target for pest management.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Yan Li
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Zhen-Long Jiao
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Pei-Pei Su
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Long-Bing Yang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Chao-Qin Sun
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Jiang-Fan Xiu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiao-Li Shang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
| | - Guo Guo
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control (Guizhou Medical University), Ministry of Education, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
14
|
Rivers D, Waters K. Characterization of insect stains produced by Dermestes maculatus De Greer (Coleoptera: Dermestidae) resulting from interactions with human blood. Int J Legal Med 2024; 138:583-590. [PMID: 37814018 DOI: 10.1007/s00414-023-03103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Insect stains produced by adult Dermestes maculatus were characterized during interactions with human blood. Beetles were offered wet or dried blood positioned on ceramic tiles under laboratory conditions. Despite a life history strategy geared toward consumption of dried food stuffs, adult beetles interacted with wet blood more frequently than dried and produced more insect stains after ingesting wet blood. Most (> 95%) of the insect stains produced were the result of fecal elimination. These stains varied in morphologies but were consistently tan/light, black/grey, or red in color; were round to amorphous in shape; and frequently possessed tails. Tailed stains typically were tadpole-shaped or long and tapering from the stain body, yielding Ltl/Lb ratios greater than 1. Tails were the result of beetle locomotion while defecating. Human blood was detected in defecatory stains when using ABA Hematrace® lateral flow assays. When beetles interacted with dried blood, the bloodstains were most often modified due to physical disruption rather than feeding activity. This yielded flaking or dislodgement of the original stains. Within a forensic context, it is unknown whether D. maculatus interacts with any type of bloodstains at a crime scene.
Collapse
Affiliation(s)
- David Rivers
- Department of Biology, Loyola University Maryland, 4501 North Charles Street, Baltimore, MD, 21210, USA.
- Department of Forensic Science, Loyola University Maryland, 4501 North Charles Street, Baltimore, MD, 21210, USA.
| | - Kelly Waters
- Department of Biology, Loyola University Maryland, 4501 North Charles Street, Baltimore, MD, 21210, USA
| |
Collapse
|
15
|
Castillo DC, Sinpoo C, Phokasem P, Yongsawas R, Sansupa C, Attasopa K, Suwannarach N, Inwongwan S, Noirungsee N, Disayathanoowat T. Distinct fungal microbiomes of two Thai commercial stingless bee species, Lepidotrigona terminata and Tetragonula pagdeni suggest a possible niche separation in a shared habitat. Front Cell Infect Microbiol 2024; 14:1367010. [PMID: 38469352 PMCID: PMC10925696 DOI: 10.3389/fcimb.2024.1367010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Stingless bees, a social corbiculate bee member, play a crucial role in providing pollination services. Despite their importance, the structure of their microbiome, particularly the fungal communities, remains poorly understood. This study presents an initial characterization of the fungal community associated with two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon sequencing, we identified distinct fungal microbiomes in these two species. Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Rozellomycota were present. The most dominant genera, which varied significantly between species, included Candida and Starmerella. Additionally, several key enzymes associated with energy metabolism, structural strength, and host defense reactions, such as adenosine triphosphatase, alcohol dehydrogenase, β-glucosidase, chitinase, and peptidylprolyl isomerase, were predicted. Our findings not only augment the limited knowledge of the fungal microbiome in Thai commercial stingless bees but also provide insights for their sustainable management through understanding their microbiome.
Collapse
Affiliation(s)
- Diana C. Castillo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Phokasem
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chakriya Sansupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Korrawat Attasopa
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Erban T, Sopko B, Klimov PB, Hubert J. Mixta mediterraneensis as a novel and abundant gut symbiont of the allergen-producing domestic mite Blomia tropicalis. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:161-181. [PMID: 38227156 DOI: 10.1007/s10493-023-00875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Blomia tropicalis is an allergen-producing mite in the human environment in tropical regions. The microbiome of B. tropicalis was described using the barcode sequencing region of V4 16S rDNA and genome assemblage. Mixta mediterraneensis, previously isolated from human skin swabs, was identified as a B. tropicalis gut symbiont based on genome assembly. The microbiome contains two bacteria, Staphylococcus and M. mediterraneensis. The number of M. mediterraneensis 16S DNA copies was 106 per mite and 109 per feces in the rearing chamber based on qPCR quantification. The profile of this bacterium reached 50% of reads in the mite gut and feces. Genomic analyses revealed that the bacterium has several metabolic pathways that suggest metabolic cooperation with the mite host in vitamin and amino acid synthesis, nitrogen recycling, and antimicrobial defense. Lysozyme is present in the symbiotic bacterium but absent in the mite. The B. tropicalis microbiome contained Staphylococcus, which accelerates mite population growth. Mites can digest Staphylococcus by using specific enzymes with hydrolytic functions against bacterial cell walls (chitinases and cathepsin D), leading to endocytosis of bacteria and their degradation in lysosomes and phagosomes. Gene expression analysis of B. tropicalis indicated that phagocytosis was mediated by the PI3-kinase/Akt pathway interacting with the invasins produced by M. mediterraneensis. Moreover, the symbiont had metabolic pathways that allowed it to recycle the mite metabolic waste product guanine, known as a mite attractant. The mite host symbiont enhances mite aggregation in the feces, and the fecal-oral transmission route is excepted.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia
| | - Pavel B Klimov
- Purdue University, Lilly Hall of Life Sciences, G-225, 915 W State St, West Lafayette, IN, 47907, USA
| | - Jan Hubert
- Crop Research Institute, Drnovska 507/73, 161 06, Prague 6 - Ruzyne, Czechia.
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6 - Suchdol, Czechia.
| |
Collapse
|
17
|
Pascacio-Villafán C, Caravantes-Villatoro LA, Osorio-Paz I, Guillén L, García HS, Enciso-Ortiz E, Altúzar-Molina A, Barran-Prior R, Aluja M. Larval Rearing and Nutrition of the Polyphagous Tephritid Pest Anastrepha ludens on Artificial Diets with Calcium Alginate, Agar, or Carrageenan as Gelling Agents at Various Concentrations and across Extreme Larval Density Conditions. INSECTS 2023; 14:952. [PMID: 38132628 PMCID: PMC10743761 DOI: 10.3390/insects14120952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Research on larval rearing and nutrition of tephritid flies on artificial diets is key for the sterile insect technique. Here, we examined the effects of the type of gel (calcium alginate, agar, or carrageenan), at varying percentages in artificial diets for the polyphagous pest Anastrepha ludens, on the physicochemical and nutritional traits of the diets, and the effects of the type of gel, the gel content and the larval density (larvae/g of diet) used in production, quality parameters for mass-reared tephritids, diet removal (an indirect estimation of diet consumption), and nutritional traits of flies. Regardless of the gel content, calcium alginate diets were firmer and more resistant to penetration than the agar and carrageenan diets. The larval recovery, pupation, pupal weight, and flight ability of A. ludens were lower in calcium alginate diets than in agar and carrageenan diets. Diet removal was higher in calcium alginate diets; however, low levels of ammonium and high levels of uric acid in excretions from larvae on these diets suggest an alteration in protein metabolism. The firmness and penetration resistance characteristics of calcium alginate diets may have limited movement and feeding of larvae, but this could be overcome by the collective feeding of large groups of larvae. Our findings provide insights into the mechanism governing gel-diet rearing systems for A. ludens.
Collapse
Affiliation(s)
- Carlos Pascacio-Villafán
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico; (L.A.C.-V.); (I.O.-P.); (L.G.); (E.E.-O.); (A.A.-M.); (R.B.-P.); (M.A.)
| | - Luis A. Caravantes-Villatoro
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico; (L.A.C.-V.); (I.O.-P.); (L.G.); (E.E.-O.); (A.A.-M.); (R.B.-P.); (M.A.)
| | - Ixchel Osorio-Paz
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico; (L.A.C.-V.); (I.O.-P.); (L.G.); (E.E.-O.); (A.A.-M.); (R.B.-P.); (M.A.)
| | - Larissa Guillén
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico; (L.A.C.-V.); (I.O.-P.); (L.G.); (E.E.-O.); (A.A.-M.); (R.B.-P.); (M.A.)
| | - Hugo S. García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Veracruz 91897, Veracruz, Mexico;
| | - Erick Enciso-Ortiz
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico; (L.A.C.-V.); (I.O.-P.); (L.G.); (E.E.-O.); (A.A.-M.); (R.B.-P.); (M.A.)
| | - Alma Altúzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico; (L.A.C.-V.); (I.O.-P.); (L.G.); (E.E.-O.); (A.A.-M.); (R.B.-P.); (M.A.)
| | - Roxana Barran-Prior
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico; (L.A.C.-V.); (I.O.-P.); (L.G.); (E.E.-O.); (A.A.-M.); (R.B.-P.); (M.A.)
| | - Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología, A.C., Xalapa 91073, Veracruz, Mexico; (L.A.C.-V.); (I.O.-P.); (L.G.); (E.E.-O.); (A.A.-M.); (R.B.-P.); (M.A.)
| |
Collapse
|
18
|
Wang Q, Yang L, Tian T, Sun Y, Dong H, Gong J, Hou Y. Proteomic Analysis of the Midgut Contents of Silkworm in the Pupal Stage. INSECTS 2023; 14:953. [PMID: 38132625 PMCID: PMC10743435 DOI: 10.3390/insects14120953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The silkworm Bombyx mori, a lepidopteran insect, possesses an 8-10-day pupal stage, during which significant changes occur in the midgut, where it first condenses into the yellow body, and then undergoes decomposition. To gain insights into this transformation process, proteomics was performed on Bombyx mori midgut contents on day 2 and day 7 after pupation. The results revealed the identification of 771 proteins with more than one unique peptide. An analysis using AgriGO demonstrated that these proteins were predominantly associated with catalytic activity. Among the identified proteins, a considerable number were found to be involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, nucleic acid degradation, and energy support. Additionally, variations in the levels of certain proteases were observed between the midgut contents on day 2 and day 7 after pupation. An in-depth analysis of the two-dimensional electrophoresis of the midgut contents on day 7 after pupation led to the identification of twelve protein spots with potential gelatinolytic activity. Among these, six proteases were identified through mass spectrometry, including the p37k protease, vitellin-degrading protease, chymotrypsin-2, etc. These proteases may be responsible for the digestion of the yellow body during the later stages of pupal development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Q.W.); (L.Y.); (T.T.); (Y.S.); (H.D.); (J.G.)
| |
Collapse
|
19
|
Song X, Qin YG, Zhang YH, Zhou YB, Chen D, Xie DH, Li ZX. Functional characterization of alkaline phosphatases involved alarm pheromone in the vetch aphid Megoura viciae. iScience 2023; 26:108115. [PMID: 37876794 PMCID: PMC10590853 DOI: 10.1016/j.isci.2023.108115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023] Open
Abstract
The alkaline phosphatases (ALPs) are highly promiscuous enzymes and have been extensively investigated in mammals for their medical significance, but their functional promiscuity is relatively poorly understood in insects. Here, we first identified four ALP genes (designated as MvALP1-4) in the vetch aphid Megoura viciae that contained one alkaline phosphatase site, three metal-binding sites, and varied other functional sites. Phylogenetic analysis, molecular docking and the spatiotemporal expression profiling of MvALP1-4 were very different, indicating a promiscuous functionality. We also found that MvALP4 involved the biosynthesis of aphid alarm pheromones (EβF) in vitro and in vivo. Finally, transcriptome analysis in the stimulated and unstimulated aphids supported the involvement of MvALPs in the biosynthesis of aphid alarm pheromones. Our study identified a multifunctional ALP involved terpene synthase enzyme activity in the aphid, which contributes to the understanding of the functional plasticity of ALPs in insects.
Collapse
Affiliation(s)
- Xuan Song
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yao-Guo Qin
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yi-Han Zhang
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu-Bei Zhou
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Chen
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dong-Hai Xie
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zheng-Xi Li
- Department of Entomology and MOA Key Laboratory for Monitoring and Environment-Friendly Control of Crop Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Grčić A, Ilijin L, Filipović A, Matić D, Mrdaković M, Todorović D, Vlahović M, Perić-Mataruga V. Digestive enzyme activity and macromolecule content in the hemolymph of differentially adapted Lymantria dispar L. populations after short-term increases in ambient temperature. ENVIRONMENTAL RESEARCH 2023; 236:116461. [PMID: 37343759 DOI: 10.1016/j.envres.2023.116461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Global, unpredictable temperature increases have strong effects on all organisms, especially insects. Elucidating the effects of short-term temperature increases on midgut digestive enzymes (α-glucosidase, lipase, trypsin, and leucine aminopeptidase - LAP) and metabolic macromolecules in the hemolymph (proteins, lipids, and trehalose) of phytophagous pest larvae of Lymantria dispar is important for general considerations of insect adaptation to a warming climate and potential pest control options. We also wanted to determine whether the different adaptations of L. dispar populations to environmental pollution might affect their ability to cope with heat stress using larvae from the undisturbed, Kosmaj forest and disturbed, Lipovica forest. Heat treatments at 28 °C increased α-glucosidase activity in both larval populations, inhibited LAP activity in larvae from the polluted forest, and had no significant effect on trypsin and lipase activities, regardless of larval origin. The concentration of proteins, lipids, and trehalose in the hemolymph of larvae from the disturbed forest increased, whereas the population from the undisturbed forest showed only an increase in proteins and lipids after the heat treatments. Larval mass was also increased in larvae from the undisturbed forest. Our results suggest a higher sensitivity of digestive enzymes and metabolism to short-term heat stress in L. dispar populations adapted to pollution in their forest habitat, although climate warming is not beneficial even for populations from unpolluted forests. The digestive and metabolic processes of L. dispar larvae are substantially affected by sublethal short-term increases in ambient temperature.
Collapse
Affiliation(s)
- Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia.
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of the Republic of Serbia, University of Belgrade, Despot Stefan Blvd.142, 11060, Belgrade, Serbia
| |
Collapse
|
21
|
Luo X, Fang G, Chen K, Song Y, Lu T, Tomberlin JK, Zhan S, Huang Y. A gut commensal bacterium promotes black soldier fly larval growth and development partly via modulation of intestinal protein metabolism. mBio 2023; 14:e0117423. [PMID: 37706881 PMCID: PMC10653789 DOI: 10.1128/mbio.01174-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE Black solider fly larvae and the gut microbiota can recycle nutrients from various organic wastes into valuable insect biomass. We found that Citrobacter amalonaticus, a gut commensal bacterium of the insect, exerts beneficial effects on larval growth and development and that the expression of many metabolic larval genes was significantly impacted by the symbiont. To identify the larval genes involved in the host-symbiont interaction, we engineered the symbiont to produce double-strand RNA and enabled the strain to silence host genes in the larval gut environment where the interaction takes place. With this approach, we confirmed that two intestinal protease families are involved in the interaction and provided further evidence that intestinal protein metabolism plays a role in the interaction. This work expands the genetic toolkits available to study the insect functional genomics and host-symbiont interaction and provide the prospective for the future application of gut microbiota on the large-scale bioconversion.
Collapse
Affiliation(s)
- Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gangqi Fang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kuangqin Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Song
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | | - Shuai Zhan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yongping Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Arad N, Paredes-Montero JR, Mondal MH, Ponvert N, Brown JK. RNA interference-mediated knockdown of genes involved in sugar transport and metabolism disrupts psyllid Bactericera cockerelli (Order: Hemiptera) gut physiology and results in high mortality. FRONTIERS IN INSECT SCIENCE 2023; 3:1283334. [PMID: 38469486 PMCID: PMC10926392 DOI: 10.3389/finsc.2023.1283334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 03/13/2024]
Abstract
Introduction The causal agent of zebra chip of potato and vein-greening diseases of tomato is "Candidatus Liberibacter solanacearum" (CLso), a fastidious bacterium transmitted by the potato psyllid. In the absence of disease-resistant cultivars, disease management has relied on minimizing vector population size to reduce CLso transmission, which requires frequent insecticide applications. There is growing interest in the use of RNA interference (RNAi) technology to supplant traditional insecticides with biopesticides. This requires knowledge of genes essential for insect livelihood whose knockdown leads to significant mortality or other phenotypes. Such candidate genes can be evaluated by reverse genetics approaches to further corroborate predicted gene function. Methods Here, five potato psyllid genes involved in sugar homeostasis in the potato psyllid gut, α-glucosidase1 (AGLU1), aquaporin2 (AQP2), facilitated trehalose transporter1 (TRET1), Trehalase1 (TRE1), and Trehalase2 (TRE2), were investigated as candidates for effective gene silencing. Potato psyllid dsRNAs were designed to optimize knockdown of gene targets. Third instar PoP nymphs were given a 48-hr ingestion-access period (IAP) on individual or groups of dsRNA in 20% sucrose. Mortality was recorded 0, 3, 5, 7, and 9 days post-IAP. Gene knockdown was analyzed 9 days post-IAP by quantitative real-time reverse-transcriptase polymerase chain reaction amplification. Results The individual or stacked dsRNA combinations resulted in 20-60% and 20-40% knockdown, respectively, while subsequent psyllid mortality ranged from 20-40% to >60% for single and stacked dsRNA combinations, respectively. Reverse genetics analysis showed that simultaneous knockdown of the five selected candidate genes with predicted functions in pathways involved in sugar-homeostasis, metabolism, and -transport yielded the highest mortality, when compared with single or combinations of targets. Discussion Results confirmed the functions afforded by psyllid gut genes responsible for osmotic homeostasis and sugar metabolism/transport are essential for livelihood, identifying them as potentially lucrative RNAi biopesticide targets and highlighted the translational relevance of targeting multiple nodes in a physiological pathway simultaneously.
Collapse
Affiliation(s)
- Neda Arad
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Jorge R. Paredes-Montero
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Guayas, Ecuador
| | | | - Nathaniel Ponvert
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
23
|
Ibanez F, Vieira Rocha S, Dawson WO, El-Mohtar C, Robertson C, Stelinski LL, Soares-Costa A. Gene silencing of cathepsins B and L using CTV-based, plant-mediated RNAi interferes with ovarial development in Asian citrus psyllid (ACP), Diaphorina citri. FRONTIERS IN PLANT SCIENCE 2023; 14:1219319. [PMID: 37841623 PMCID: PMC10570424 DOI: 10.3389/fpls.2023.1219319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a vector of the bacteria Candidatus Liberibacter americanus (CLam) and Candidatus Liberibacter asiaticus (CLas), which are phloem-restricted and associated with the most important and destructive worldwide citrus disease, Huanglongbing (HLB). Currently, no cure for HLB has been described. Therefore, measures have focused on reducing D. citri populations. In these insects, cathepsin B (DCcathB) and L (DCcathL) enzymes play an important role in digestion, and are involved in embryogenesis, immune defense, and ecdysis. In this study, we used a CTV-based vector to deliver dsRNA (CTV-dsRNA) into Citrus macrophylla plants targeting DCcathB and DCcathL genes in D. citri that fed on the phloem of these CTV-RNAi infected plants. Subsequently, we evaluated expression of DCcathB and DCcathL genes as well as the Vitellogenin (Vg) gene by RT-qPCR in D. citri fed on CTV-dsRNA occurring in plant phloem. It was found that a defective phenotype in D. citri females as a result of knockdown of DCcathB and DCcathL genes mediated by CTV dsRNA. These results showed that Psyllids fed on plants treated with the CTV-dsRNA exhibited downregulation of the Vg gene, one of the most important genes associated with embryogenic and female development, which was associated with dsRNA-mediated silencing of the two cathepsin genes. Based on our findings, a CTV-based strategy for delivering RNAi via plants that targets DCcathB and DCcathL genes may represent a suitable avenue for development of dsRNA-based tools to manage D. citri that limits the spread of HLB.
Collapse
Affiliation(s)
- Freddy Ibanez
- Department of Entomology, Texas A&M AgriLife Research, Weslaco, TX, ;United States
| | - Sâmara Vieira Rocha
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, ;Brazil
| | - William O. Dawson
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Choaa El-Mohtar
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Cecile Robertson
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Lukasz L. Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| | - Andrea Soares-Costa
- Plant Pathology Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, ;United States
| |
Collapse
|
24
|
Gama MDVF, Alexandre YDN, Pereira da Silva JM, Castro DP, Genta FA. Digestive α-L-fucosidase activity in Rhodnius prolixus after blood feeding: effect of secretagogue and nutritional stimuli. Front Physiol 2023; 14:1123414. [PMID: 37538373 PMCID: PMC10394381 DOI: 10.3389/fphys.2023.1123414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction: Rhodnius prolixus (Hemiptera: Reduviidae) is an important vector of Trypanosoma cruzi, the causative agent of Chagas Disease. This insect is a model for the study of insect physiology, especially concerning the digestion of blood. Among the enzymes produced in the midgut of R. prolixus after blood feeding there is a α-L-fucosidase activity. There are very few studies on α-L-fucosidase of insects, and the role of R. prolixus α-L-fucosidase is still not clear. In this work, we tested if the mechanism for production of this enzyme is similar to the observed for proteases, a secretatogue mechanism that respond to the protein contents of the meal. Methods: We tested if specific proteins or sugars elicit this response, which may help to understand the nature of the physiological substrate for this enzyme. Results: In general, our results showed that the Anterior Midgut was the only midgut fraction that responds to the blood meal in terms of α-L-fucosidase production. Besides that, this response was not triggered by midgut distension or by ingestion of the blood cell fraction. Conversely, the enzyme was produced after feeding with the plasma fraction. However, the production of α-L-fucosidase was also triggered by different biochemical stimuli, as protein or fucoidan ingestion. Discussion: This suggested that the production of the enzyme in the anterior midgut was a general physiological response under control of different convergent signals. Besides that, the comparison between different treatments for artificial blood feeding showed that heparinated blood was the choice with minor side effects for the study of the midgut α-L-fucosidase, when compared to defibrinated or citrated blood.
Collapse
Affiliation(s)
| | | | | | - Daniele Pereira Castro
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Mori BA, Coutu C, Erlandson MA, Hegedus DD. Characterization of the swede midge, Contarinia nasturtii, first instar larval salivary gland transcriptome. CURRENT RESEARCH IN INSECT SCIENCE 2023; 4:100064. [PMID: 37575317 PMCID: PMC10415697 DOI: 10.1016/j.cris.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/09/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Proteins in saliva of gall-forming insect larvae govern insect-host plant interactions. Contarinia nasturtii, the swede midge, is a pest of brassicaceous vegetables (cabbage, cauliflower, broccoli) and canola. We examined the salivary gland (SG) transcriptome of first instar larvae reared on Brassica napus and catalogued genes encoding secreted proteins that may contribute to the initial stages of larval establishment, the synthesis of plant growth hormones, extra-oral digestion and evasion of host defenses. A significant portion of the secreted proteins with unknown functions were unique to C. nasturtii and were often members of larger gene families organized in genomic clusters with conservation patterns suggesting that they are undergoing selection.
Collapse
Affiliation(s)
- Boyd A. Mori
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0×2, Canada
| | - Martin A. Erlandson
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0×2, Canada
| | - Dwayne D. Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, Saskatoon, SK S7N 0×2, Canada
| |
Collapse
|
26
|
Rhimi M, Da Lage JL, Haser R, Feller G, Aghajari N. Structural and Functional Characterization of Drosophila melanogaster α-Amylase. Molecules 2023; 28:5327. [PMID: 37513201 PMCID: PMC10384113 DOI: 10.3390/molecules28145327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Insects rely on carbohydrates such as starch and glycogen as an energy supply for growth of larvae and for longevity. In this sense α-amylases have essential roles under extreme conditions, e.g., during nutritional or temperature stress, thereby contributing to survival of the insect. This makes them interesting targets for combating insect pests. Drosophila melanogaster α-amylase, DMA, which belongs to the glycoside hydrolase family 13, sub family 15, has been studied from an evolutionary, biochemical, and structural point of view. Our studies revealed that the DMA enzyme is active over a broad temperature and pH range, which is in agreement with the fluctuating environmental changes with which the insect is confronted. Crystal structures disclosed a new nearly fully solvated metal ion, only coordinated to the protein via Gln263. This residue is only conserved in the subgroup of D. melanogaster and may thus contribute to the enzyme adaptive response to large temperature variations. Studies of the effect of plant inhibitors and the pseudo-tetrasaccharide inhibitor acarbose on DMA activity, allowed us to underline the important role of the so-called flexible loop on activity/inhibition, but also to suggest that the inhibition modes of the wheat inhibitors WI-1 and WI-3 on DMA, are likely different.
Collapse
Affiliation(s)
- Moez Rhimi
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| | - Jean-Luc Da Lage
- Evolution, Génomes, Comportement, Ecologie, UMR 9191 University Paris-Saclay-CNRS-IRD, F-91190 Gif-sur-Yvette, France
| | - Richard Haser
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| | - Georges Feller
- Laboratory of Biochemistry, Center for Protein Engineering-InBioS, Institute of Chemistry B6a, University of Liège, B-4000 Liège, Belgium
| | - Nushin Aghajari
- Molecular Microbiology and Structural Biochemistry, UMR5086, CNRS, University of Lyon 1, 7 Passage du Vercors, F-69367 Lyon, CEDEX 07, France
| |
Collapse
|
27
|
Gordon JM, Santangelo RG, González-Morales MA, Menechella M, Schal C, DeVries ZC. Spatial distribution of histamine in bed bug-infested homes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163180. [PMID: 37001661 PMCID: PMC10219852 DOI: 10.1016/j.scitotenv.2023.163180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/26/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023]
Abstract
Histamine is a component of the bed bug aggregation pheromone. It was recently identified as an environmental contaminant in homes with active bed bug infestations, posing a potential health risk to humans via skin contact or inhalation. It remains unclear how histamine is distributed in homes and if histamine can become airborne. In the present study, histamine levels in household dust were quantified from multiple locations within bed bug infested and uninfested apartments. Bed bug population levels were quantified using both traps and visual counts. The amount of histamine detected varied significantly with respect to sampling location, with the highest concentration of histamine quantified from bedding material. Infestation severity did not have a significant effect on histamine quantified at any location. Our results indicate that the bedroom should be the primary focus of histamine mitigation efforts, although histamine can be found throughout the home. Histamine quantified from homes without active bed bug infestations suggests that histamine from previous infestations can persist following pest eradication. These findings highlight the importance of histamine as a potential insect allergen and will be important for the development of targeted mitigation strategies of bed bug histamine.
Collapse
Affiliation(s)
- Johnalyn M Gordon
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| | - Richard G Santangelo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Maria A González-Morales
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA; Defense Centers for Public Health-Aberdeen, Entomology Science Division, Pesticide Use and Resistance Monitoring Branch, Aberdeen Proving Ground, MD 21010, USA
| | - Mark Menechella
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Zachary C DeVries
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
28
|
Zhao P, Rensing C, Wang D. Symbiotic Bacteria Modulate Lymantria dispar Immunity by Altering Community Proportions after Infection with LdMNPV. Int J Mol Sci 2023; 24:9694. [PMID: 37298643 PMCID: PMC10254028 DOI: 10.3390/ijms24119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The symbiotic bacteria-insect interaction is considered to be associated with immunity and drug resistance. However, the wide variety of insect species and habitats is thought to have a significant impact on the symbiotic community, leading to disparate results. Here, we demonstrated that symbiotic bacteria regulated the immune response by changing the proportion of the Gram-positive and the Gram-negative bacterial community in Lymantria dispar (L. dispar) after infection with its viral pathogen, L. dispar Nucleopolyhedrovirus (LdMNPV). After oral infection, the immune deficiency pathway was activated immediately, and the expression of Relish was up-regulated to promote the secretion of antimicrobial peptides. Meanwhile, the abundance of the Gram-negative bacterial community increased at the same time. Moreover, the Toll pathway was not regulated in the same way as the Imd pathway was after infection. However, the change in the Toll pathway's expression remained positively correlated to the abundance of Gram-positive bacteria. This finding implied that the ratio of Gram-negative to Gram-positive bacteria in the LdMNPV infected larvae had an effect on the immune response. Our findings revealed that the immune regulation of L. dispar was regulated by the relative abundance of its symbiotic bacteria at different infection times with LdMNPV, which provides a new way to understand symbiotic bacteria-insect interactions.
Collapse
Affiliation(s)
- Peixu Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China;
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
29
|
Nuss AB, Gulia-Nuss M. Trypsin, the Major Proteolytic Enzyme for Blood Digestion in the Mosquito Midgut. Cold Spring Harb Protoc 2023; 2023:pdb.top107656. [PMID: 36787964 DOI: 10.1101/pdb.top107656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
When a female mosquito takes a blood meal, proteolytic activity surges in the midgut. Trypsin-like serine proteases are the major endoproteolytic enzyme induced by feeding in mosquitoes. The mosquito midgut lacks trypsin activity before the blood meal, but in most anautogenous mosquitoes, trypsin activity increases continuously up to 30 h after feeding and subsequently returns to baseline levels by 60 h. Trypsin activity in mosquitoes is restricted entirely to the posterior midgut lumen, where blood is stored and digested. Trypsin enzyme activity can be quantitatively measured using the artificial Nα-benzoyl-DL-arginine 4-nitroanilide hydrochloride substrate, a method described in our associated protocol.
Collapse
Affiliation(s)
- Andrew B Nuss
- Department of Biochemistry and Molecular Biology, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, Veterinary, and Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
30
|
Peptidomics as a Tool to Assess the Cleavage of Wine Haze Proteins by Peptidases from Drosophila suzukii Larvae. Biomolecules 2023; 13:biom13030451. [PMID: 36979386 PMCID: PMC10046487 DOI: 10.3390/biom13030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Thermolabile grape berry proteins such as thaumatin-like proteins (TLPs) and chitinases (CHIs) promote haze formation in bottled wines if not properly fined. As a natural grapevine pest, the spotted-wing fly Drosophila suzukii is a promising source of peptidases that break down grape berry proteins because the larvae develop and feed inside mature berries. Therefore, we produced recombinant TLP and CHI as model thermolabile wine haze proteins and applied a peptidomics strategy to investigate whether D. suzukii larval peptidases were able to digest them under acidic conditions (pH 3.5), which are typically found in winemaking practices. The activity of the novel peptidases was confirmed by mass spectrometry, and cleavage sites within the wine haze proteins were visualized in 3D protein models. The combination of recombinant haze proteins and peptidomics provides a valuable screening tool to identify optimal peptidases suitable for clarification processes in the winemaking industry.
Collapse
|
31
|
Zhao J, Song Y, Jiang X, He L, Wei L, Zhao Z. Synergism of Feeding and Digestion Regulated by the Neuropeptide F System in Ostrinia furnacalis Larvae. Cells 2023; 12:cells12010194. [PMID: 36611986 PMCID: PMC9818795 DOI: 10.3390/cells12010194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Feeding is crucial for the growth and survival of animals, including humans, but relatively little is known about how it is regulated. Here, we show that larval feeding in Ostrinia furnacalis is regulated by neuropeptide F (NPF, the homologous peptide of mammalian NPY) via the insulin signalling pathway in the midgut. Furthermore, the genes pi3k and mtor in the insulin pathway positively regulate α-amylase and lipase of the midgut by recruiting the transcription factors c-Myc and PPARγ for binding to the promotors of these two enzymes. Importantly, we find that the feeding behaviour and the digestive system of midgut in O. furnacalis larvae are closely related and interactive in that knocking down α-amylase or lipase induces a reduction in larval feeding, while food-deprived larvae lead to fewer expressions of α-amylase and lipase. Importantly, it is the gut NPF that regulates the α-amylase and lipase, while variations of α-amylase and lipase may feed back to the brain NPF. This current study reveals a molecular feedback mechanism between feeding behaviour and the digestive system that is regulated by the conserved NPF via insulin signalling systems in the midgut of O. furnacalis larvae.
Collapse
Affiliation(s)
- Jiajia Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu Song
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuemin Jiang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei He
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding 071002, China
- Correspondence: (L.W.); (Z.Z.)
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (L.W.); (Z.Z.)
| |
Collapse
|
32
|
The effects of temperature stress and population origin on the thermal sensitivity of Lymantria dispar L. (Lepidoptera: Erebidae) larvae. Sci Rep 2022; 12:21858. [PMID: 36528655 PMCID: PMC9759568 DOI: 10.1038/s41598-022-26506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Increased environmental temperature is one of the most frequent stresses effecting metabolic rate in herbivorous insect species. Our goal was to compare the influence of increased environmental temperature and induced thermotolerance on the activity of midgut phosphatases and brain tissue hsp70 concentration in 5th instar Lymantria dispar larvae originating from an unpolluted and polluted forest. Induced thermotolerance (larval pre-treatment at high, sub-lethal temperature) increases the species ability to overcome the negative effects of thermal stress, therefore we monitored the effect of this regime in larvae originating from both forests. Thermal regimes in this experiment predominantly influenced the alkaline phosphatases activity and it was affected by temperature, population origin, and their combined effect. Total acid phosphatases activity was changed only by the joint effect of temperature and population origin. Brain hsp70 concentration was under a significant individual and joint effect of temperature and population. In both populations, brain tissue hsp70 concentration and alkaline phosphatases activity should be taken under consideration as a battery with biomarker potential for thermal stress in L. dispar larvae as a bioindicator species.
Collapse
|
33
|
Sardar P, Šustr V, Chroňáková A, Lorenc F. Metatranscriptomic holobiont analysis of carbohydrate-active enzymes in the millipede Telodeinopus aoutii (Diplopoda, Spirostreptida). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.931986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As important decomposers of soil organic matter, millipedes contribute to lignocellulose decomposition and nutrient cycling. The degradation of lignocellulose requires the action of several carbohydrate-active enzymes (CAZymes) and, in most invertebrates, depends on the activity of mutualistic gut microorganisms. To address the question of the importance of the microbiota and endogenous (host) enzymes in digestive processes in millipedes, we analyzed metatranscriptomic data from the tropical millipede Telodeinopus aoutii at the holobiont level. Functional annotation included identification of expressed CAZymes (CAZy families and EC terms) in the host and its intestinal microbiota, foregut, midgut, and hindgut, compared to non-intestinal tissues. Most of the 175 CAZy families were expressed exclusively in the gut microbiota and more than 50% of these microbial families were expressed exclusively in the hindgut. The greatest diversity of expressed endogenous CAZymes from all gut sections was found in the midgut (77 families). Bacteria were the major microbial producers of CAZymes, Proteobacteria dominating in the midgut and Bacteriodetes with Firmicutes in the hindgut. The contribution of the eukaryotic microbiota to CAZymes production was negligible. Functional classification of expressed CAZy families confirmed a broad functional spectrum of CAZymes potentially expressed in the holobiont. Degradation of lignocellulose in the digestive tract of the millipede T. aoutii depends largely on bacterial enzymes expressed in the hindgut. Endogenous cellulases were not detected, except for the potentially cellulolytic family AA15, but an expression of cellulolytic enzymes of this family was not confirmed at the EC-number level. The midgut had the greatest diversity of expressed endogenous CAZymes, mainly amylases, indicating the importance of digesting α-glucosidases for the millipede. In contrast, bacterial lignocellulolytic enzymes are sparsely expressed here. The hindgut was the hotspot of microbial degradation of cellulose and hemicellulases. The gain of the millipede from the microbial lignocellulose degradation in the gut, and consequently the mutualistic status of the relationship between the millipede and its cellulolytic gut bacteria, depends on the ability of the millipede to take up microbial metabolites as nutrients through the hindgut wall. Enzymes expressed in the intestine can degrade all components of lignocellulose except lignin. Assuming that soil microbiota is partially degraded lignin in the millipede diet, T. aoutii can be considered a decomposer of soil organic matter relying primarily on its gut bacteria. The deposition of millipede fecal pellets containing an organic matter modified by the hindgut bacterial community could be of ecological significance.
Collapse
|
34
|
Grogan C, Bennett M, Lampe DJ. An evaluation of fusion partner proteins for paratransgenesis in Asaia bogorensis. PLoS One 2022; 17:e0273568. [PMID: 36048823 PMCID: PMC9436115 DOI: 10.1371/journal.pone.0273568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Mosquitoes transmit many pathogens responsible for human diseases, such as malaria which is caused by parasites in the genus Plasmodium. Current strategies to control vector-transmitted diseases are increasingly undermined by mosquito and pathogen resistance, so additional methods of control are required. Paratransgenesis is a method whereby symbiotic bacteria are genetically modified to affect the mosquito’s phenotype by engineering them to deliver effector molecules into the midgut to kill parasites. One paratransgenesis candidate is Asaia bogorensis, a Gram-negative bacterium colonizing the midgut, ovaries, and salivary glands of Anopheles sp. mosquitoes. Previously, engineered Asaia strains using native signals to drive the release of the antimicrobial peptide, scorpine, fused to alkaline phosphatase were successful in significantly suppressing the number of oocysts formed after a blood meal containing P. berghei. However, these strains saw high fitness costs associated with the production of the recombinant protein. Here, we report evaluation of five different partner proteins fused to scorpine that were evaluated for effects on the growth and fitness of the transgenic bacteria. Three of the new partner proteins resulted in significant levels of protein released from the Asaia bacterium while also significantly reducing the prevalence of mosquitoes infected with P. berghei. Two partners performed as well as the previously tested Asaia strain that used alkaline phosphatase in the fitness analyses, but neither exceeded it. It may be that there is a maximum level of fitness and parasite inhibition that can be achieved with scorpine being driven constitutively, and that use of a Plasmodium specific effector molecule in place of scorpine would help to mitigate the stress on the symbionts.
Collapse
Affiliation(s)
- Christina Grogan
- Department of Biological Sciences, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, PA, United States of America
| | - Marissa Bennett
- Department of Biological Sciences, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, PA, United States of America
| | - David J. Lampe
- Department of Biological Sciences, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ashbrook AR, Mikaelyan A, Schal C. Comparative Efficacy of a Fungal Entomopathogen with a Broad Host Range against Two Human-Associated Pests. INSECTS 2022; 13:774. [PMID: 36135475 PMCID: PMC9505452 DOI: 10.3390/insects13090774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 05/03/2023]
Abstract
The ability of a fungal entomopathogen to infect an insect depends on a variety of factors, including strain, host, and environmental conditions. Similarly, an insect’s ability to prevent fungal infection is dependent on its biology, environment, and evolutionary history. Synanthropic pests have adapted to thrive in the indoor environment, yet they arose from divergent evolutionary lineages and occupy different feeding guilds. The hematophagous bed bug (Cimex lectularius) and omnivorous German cockroach (Blattella germanica) are highly successful indoors, but have evolved different physiological and behavioral adaptations to cope with the human-built environment, some of which also reduce the efficacy of fungal biopesticides. In order to gain greater insight into the host barriers that prevent or constrain fungal infection in bed bugs and German cockroaches, we tested different doses of Beauveria bassiana GHA through surface contact, topical application, feeding, and injection. Bed bugs were generally more susceptible to infection by B. bassiana with the mode of delivery having a significant impact on infectivity. The German cockroach was highly resilient to infection, requiring high doses of fungal conidia (>8.8 × 104) delivered by injection into the hemocoel to cause mortality. Mortality occurred much faster in both insect species after exposure to surfaces dusted with dry conidia than surfaces treated with conidia suspended in water or oil. These findings highlight the importance of developing innovative delivery techniques to enhance fungal entomopathogens against bed bugs and cockroaches.
Collapse
|
36
|
Nepomuceno DB, D'Ávila Pessoa GC, Koerich LB, Pereira MH, Sant'Anna MRV, Araújo RN, Gontijo NF. cAMP: A second messenger involved in the mechanism of midgut alkalinization in Lutzomyia longipalpis. INSECT SCIENCE 2022; 29:1059-1070. [PMID: 34730278 DOI: 10.1111/1744-7917.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The sand fly Lutzomyia longipalpis is the main vector of Leishmania infantum in the Americas. Female sand flies ingest sugar-rich solutions and blood, which are digested in the midgut. Digestion of nutrients is an essential function performed by digestive enzymes, which require appropriate physiological conditions. One of the main aspects that influence enzymatic activity is the gut pH, which must be tightly controlled. Considering second messengers are frequently involved in the coordination of tightly regulated physiological events, we investigated if the second messenger cAMP would participate in the process of alkalinization in the abdominal midgut of female L. longipalpis. In midguts containing the indicator dye bromothymol-blue, cAMP stimulated the alkalinization of the midgut lumen. Through another technique based on the use of fluorescein as a pH indicator, we propose that cAMP is involved in the alkalinization of the midgut by activating HCO3- transport from the enterocyte's cytoplasm to the lumen. The results strongly suggested that the carrier responsible for this process would be a HCO3- /Cl- antiporter located in the enterocytes' apical membrane. Hematophagy promotes the release of alkalinizing hormones in the hemolymph; however, when the enzyme adenylyl cyclase, responsible for cAMP production, was inhibited, we observed that the hemolymph from blood-fed L. longipalpis' females did not stimulate midgut alkalinization. This result indicated that hormone-stimulated alkalinization is mediated by cAMP. In the present study, we provide evidences that cAMP has a key role in the control of intestinal pH.
Collapse
Affiliation(s)
- Denise Barguil Nepomuceno
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Grasielle Caldas D'Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo Barbosa Koerich
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Nascimento Araújo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
37
|
Structural Characterization of Per Os Infectivity Factor 5 (PIF5) Reveals the Essential Role of Intramolecular Interactions in Baculoviral Oral Infectivity. J Virol 2022; 96:e0080622. [PMID: 35862697 PMCID: PMC9327705 DOI: 10.1128/jvi.00806-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Baculoviruses initiate oral infection in the highly alkaline midgut of insects via a group of envelope proteins called per os infectivity factors (PIFs). To date, no high-resolution structural information has been reported for any PIF. Here, we present the crystal structure of the PIF5 ectodomain (PIF5e) from Autographa californica multiple nucleopolyhedrovirus (AcMNPV) at a 2.2-Å resolution. It revealed an open cavity between the N-terminal E1 domain and the C-terminal E2 domain and a cysteine-rich region with three pairs of disulfide bonds in the E2 domain. Multiple conserved intramolecular interactions within PIF5 are essential for maintaining its tertiary structure. Two conserved arginines (Arg8 and Arg74) play critical roles in E1-E2 interactions, and mutagenesis analysis supported their crucial role in oral infection. Importantly, the reduction in the oral infectivity of the Arg8, Arg74, or cysteine mutant viruses was related to the proteolytic cleavage of PIF5 by the endogenous protease embedded in occlusion bodies during alkaline treatment. This suggested that the structural stability of PIF5 under physiological conditions in the insect midgut is critical for baculoviral oral infectivity. IMPORTANCEPer os infection mediated by PIFs is the highly complex mechanism by which baculoviruses initiate infection in insects. Previous studies revealed that multiple PIF proteins form a large PIF complex on the envelope of virions, while PIF5 functions independently of the PIF complex. Here, we report the crystal structure of AcMNPV PIF5e, which, to our knowledge, is the first atomic structure reported for a PIF protein. The structure revealed the precise locations of three previously proposed disulfide bonds and other conserved intramolecular interactions, which are important for the structural stability of PIF5 and are also essential for oral infectivity. These findings advance our understanding of the molecular mechanism of baculovirus oral infection under alkaline conditions.
Collapse
|
38
|
Yoon KA, Kim WJ, Lee S, Yang HS, Lee BH, Lee SH. Comparative analyses of the venom components in the salivary gland transcriptomes and saliva proteomes of some heteropteran insects. INSECT SCIENCE 2022; 29:411-429. [PMID: 34296820 DOI: 10.1111/1744-7917.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Salivary gland-specific transcriptomes of nine heteropteran insects with distinct feeding strategies (predaceous, hematophagous, and phytophagous) were analyzed and annotated to compare and identify the venom components as well as their expression profiles. The transcriptional abundance of venom genes was verified via quantitative real-time PCR. Hierarchical clustering of 30 representative differentially expressed venom genes from the nine heteropteran species revealed unique groups of salivary gland-specific genes depending on their feeding strategy. The commonly transcribed genes included a paralytic neurotoxin (arginine kinase), digestive enzymes (cathepsin and serine protease), an anti-inflammatory protein (cystatin), hexamerin, and an odorant binding protein. Both predaceous and hematophagous (bed bug) heteropteran species showed relatively higher transcription levels of genes encoding proteins involved in proteolysis and cytolysis, whereas phytophagous heteropterans exhibited little or no expression of these genes, but had a high expression of vitellogenin, a multifunctional allergen. Saliva proteomes from four representative species were also analyzed. All venom proteins identified via saliva proteome analysis were annotated using salivary gland transcriptome data. The proteomic expression profiles of venom proteins were in good agreement with the salivary gland-specific transcriptomic profiles. Our results indicate that profiling of the salivary gland transcriptome provides important information on the composition and evolutionary features of venoms depending on their feeding strategy.
Collapse
Affiliation(s)
- Kyungjae Andrew Yoon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Hee-Sun Yang
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Department of Agricultural Biology, Seoul National University, Seoul, Korea
| |
Collapse
|
39
|
Enrichment of Anaerobic Microbial Communities from Midgut and Hindgut of Sun Beetle Larvae (Pachnoda marginata) on Wheat Straw: Effect of Inoculum Preparation. Microorganisms 2022; 10:microorganisms10040761. [PMID: 35456811 PMCID: PMC9024811 DOI: 10.3390/microorganisms10040761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
The Pachnoda marginata larva have complex gut microbiota capable of the effective conversion of lignocellulosic biomass. Biotechnological utilization of these microorganisms in an engineered system can be achieved by establishing enrichment cultures using a lignocellulosic substrate. We established enrichment cultures from contents of the midgut and hindgut of the beetle larva using wheat straw in an alkaline medium at mesophilic conditions. Two different inoculation preparations were used: procedure 1 (P1) was performed in a sterile bench under oxic conditions using 0.4% inoculum and small gauge needles. Procedure 2 (P2) was carried out under anoxic conditions using more inoculum (4%) and bigger gauge needles. Higher methane production was achieved with P2, while the highest acetic acid concentrations were observed with P1. In the enrichment cultures, the most abundant bacterial families were Dysgonomonadaceae, Heliobacteriaceae, Ruminococcaceae, and Marinilabiliaceae. Further, the most abundant methanogenic genera were Methanobrevibacter, Methanoculleus, and Methanosarcina. Our observations suggest that in samples processed with P1, the volatile fatty acids were not completely converted to methane. This is supported by the finding that enrichment cultures obtained with P2 included acetoclastic methanogens, which might have prevented the accumulation of acetic acid. We conclude that differences in the inoculum preparation may have a major influence on the outcome of enrichment cultures from the P. marginata larvae gut.
Collapse
|
40
|
Ahmed DM, Mohsen AEAM, El-Deeb MA, Alkhedaide A, El-Tahan AM, Metwally ESM. The larvicidal effect of neemazal T/S, clove oil and ginger oil on tomato leafminer, Tuta absoluta compared to coragen. Saudi J Biol Sci 2022; 29:1447-1455. [PMID: 35280545 PMCID: PMC8913390 DOI: 10.1016/j.sjbs.2021.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 11/08/2022] Open
Abstract
The present study aimed to evaluate the toxicity and biochemical changes of Tuta absoluta 3rd instar larvae affected by neemazal T/S, clove oil and ginger oil. These compounds were evaluated compared to the recommended pesticide, Coragen 20% SC. by means of sublethal concentrations, LC25 and LC50 under constant laboratory conditions. Results showed that neemazal T/S is more toxic than detected oils compared with higher toxicity of coragen with LC50 values of 57.52, 159.94, 633.38 and 930.71 μg mL−1 for coragen, neemazal, ginger oil and clove oil, respectively. There were highly significant differences between all treatments and untreated larvae. Neemazal possessed the greatest effect on activity level of most physiological parameters than selected oils. Larval content of digestive enzymes was decreased significantly 48 h after all treatments except for lipase, α-esterase and β-esterase (in case of coragen and clove oil). Also, total proteins, total carbohydrates, total lipids and total free amino acids take the same trend. Based on this study, these sublethal doses caused a significantly dose-dependent perturbation in determined components.
Collapse
|
41
|
The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success. Genes (Basel) 2022; 13:genes13030446. [PMID: 35328000 PMCID: PMC8956072 DOI: 10.3390/genes13030446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), is a major global pest of cereal grains. Infestations are difficult to control as larvae feed inside grain kernels, and many populations are resistant to both contact insecticides and fumigants. We sequenced the genome of R. dominica to identify genes responsible for important biological functions and develop more targeted and efficacious management strategies. The genome was assembled from long read sequencing and long-range scaffolding technologies. The genome assembly is 479.1 Mb, close to the predicted genome size of 480.4 Mb by flow cytometry. This assembly is among the most contiguous beetle assemblies published to date, with 139 scaffolds, an N50 of 53.6 Mb, and L50 of 4, indicating chromosome-scale scaffolds. Predicted genes from biologically relevant groups were manually annotated using transcriptome data from adults and different larval tissues to guide annotation. The expansion of carbohydrase and serine peptidase genes suggest that they combine to enable efficient digestion of cereal proteins. A reduction in the copy number of several detoxification gene families relative to other coleopterans may reflect the low selective pressure on these genes in an insect that spends most of its life feeding internally. Chemoreceptor genes contain elevated numbers of pseudogenes for odorant receptors that also may be related to the recent ontogenetic shift of R. dominica to a diet consisting primarily of stored grains. Analysis of repetitive sequences will further define the evolution of bostrichid beetles compared to other species. The data overall contribute significantly to coleopteran genetic research.
Collapse
|
42
|
Zhao X, Geng Y, Hu T, Zhao Y, Yang S, Hao D. Evaluation of Optimal Reference Genes for qRT-PCR Analysis in Hyphantria cunea (Drury). INSECTS 2022; 13:97. [PMID: 35055939 PMCID: PMC8778541 DOI: 10.3390/insects13010097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 12/04/2022]
Abstract
The relative quantification of gene expression is mainly achieved through reverse transcription-quantitative PCR (qRT-PCR); however, its reliability and precision rely on proper data normalization using one or more optimal reference genes. Hyphantria cunea (Drury) has been an invasive pest of forest trees, ornamental plants, and fruit trees in China for many years. Currently, the molecular physiological role of reference genes in H. cunea is unclear, which hinders functional gene study. Therefore, eight common reference genes, RPS26, RPL13, UBI, AK, RPS15, EIF4A, β-actin, α-tub, were selected to evaluate levels of gene expression stability when subjected to varied experimental conditions, including developmental stage and gender, different tissues, larvae reared on different hosts and different larval density. The geNorm, BestKeeper, ΔCt method, and NormFinder statistical algorithms were used to normalize gene transcription data. Furthermore, the stability/suitability of these candidates was ranked overall by RefFinder. This study provides a comprehensive evaluation of reference genes in H. cunea and could help select reference genes for other Lepidoptera species.
Collapse
Affiliation(s)
- Xudong Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yishu Geng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Tianyi Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yongang Zhao
- Forest Station of Huaian District, Huaian 223001, China; (Y.Z.); (S.Y.)
| | - Suling Yang
- Forest Station of Huaian District, Huaian 223001, China; (Y.Z.); (S.Y.)
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.G.); (T.H.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
43
|
Morgan J, Salcedo-Sora JE, Triana-Chavez O, Strode C. Expansive and Diverse Phenotypic Landscape of Field Aedes aegypti (Diptera: Culicidae) Larvae with Differential Susceptibility to Temephos: Beyond Metabolic Detoxification. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:192-212. [PMID: 34718656 PMCID: PMC8755997 DOI: 10.1093/jme/tjab179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 05/08/2023]
Abstract
Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.
Collapse
Affiliation(s)
- Jasmine Morgan
- Department of Biology, Edge Hill University, Ormskirk, UK
| | - J Enrique Salcedo-Sora
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Omar Triana-Chavez
- Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of Antioquia, Medellín, Colombia
| | - Clare Strode
- Department of Biology, Edge Hill University, Ormskirk, UK
| |
Collapse
|
44
|
Hilda K, Bhuvaragavan S, Kamatchi R, Meenakumari M, Janarthanan S. Cloning, expression and characterization of arcelin and its impact on digestive enzymes of the stored product insect pest, Callosobruchus maculatus (F.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 180:104982. [PMID: 34955175 DOI: 10.1016/j.pestbp.2021.104982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
The pulse beetle Callosobruchus maculatus causes potential damage to legume crops by infesting the seeds, leading to a reduction of total protein content. Arcelin found in the wild accessions of the common bean, is an insecticidal protein that has the potency to hamper the metabolism of the bruchid beetle. The arcelin gene from the wild accession of Phaseolus lunatus was isolated and the ORF encoding 158 amino acids was cloned in pET-45b (+) vector. The recombinant clones were transformed in BL21 STAR (DE3) pLysS cells, and the expressed arcelin was purified using Ni-NTA column. The recombinant protein was used in preparing an artificial diet, and the insecticidal activity was elucidated against the bruchid pest C. maculatus. Adult emergence and seed damage were drastically reduced in the treated groups. The response towards ingested diet by digestive enzymes involved in metabolism was elucidated through quantitative gene expression. The highest expression was observed in the aminopeptidase, followed by upregulation of alpha-amylase, glycoside hydrolase family 31 and cathepsin D-like aspartic protease, and downregulation of cathepsin L-like cysteine protease. The recombinant arcelin demonstrates effective insecticidal activity against the bruchid beetle. The changes in digestive enzymes to counteract the anti-nutritional nature of the protein were the strategies of the insect defense mechanism.
Collapse
Affiliation(s)
- Karuppiah Hilda
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | | | | | - Mani Meenakumari
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Sundaram Janarthanan
- Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
45
|
Filipović A, Mrdaković M, Ilijin L, Grčić A, Matić D, Todorović D, Vlahović M, Perić-Mataruga V. Effects of fluoranthene on digestive enzymes activity and relative growth rate of larvae of lepidopteran species, Lymantria dispar L. and Euproctis chrysorrhoea L. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109123. [PMID: 34237426 DOI: 10.1016/j.cbpc.2021.109123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 11/20/2022]
Abstract
Fluoranthene is one of the most abundant polycyclic aromatic hydrocarbon pollutants in the environment and it may accumulate in plant leaves which are the main food source for phytophagous insect species. The aim of this study was to establish the effects of dietary fluoranthene on specific activities of digestive enzymes and expression of their isoforms in the midgut, and the relative growth rates of Lymantria dispar and Euproctis chrysorrhoea larvae. Exposure to fluoranthene led to significantly decreased trypsin activity in the midgut of larvae of both species. Leucine aminopeptidase activity decreased significantly in the midgut of L. dispar larvae exposed to the lower concentration of fluoranthene, but that enzyme activity showed the opposite trend in E. chrysorrhoea larvae. There was no pollutant induced changes in lipase activity in L. dispar, while elevated enzyme activity was recorded in the midgut of E. chrysorrhoea larvae exposed to the lower concentration of fluoranthene. Different patterns of expression of enzyme isoforms were noticed. Relative growth rates of both species significantly decreased in fluoranthene treated larvae. These responses indicate to the significance of relationships between physiological changes and fitness-related traits in L. dispar and E. chrysorrhoea larvae affected by pollutant, and contribute to understanding the mechanisms of their adjustment to stressful conditions.
Collapse
Affiliation(s)
- Aleksandra Filipović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia.
| | - Marija Mrdaković
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Larisa Ilijin
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Anja Grčić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dragana Matić
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Dajana Todorović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Milena Vlahović
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| | - Vesna Perić-Mataruga
- Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia
| |
Collapse
|
46
|
Huber M, Roder T, Irmisch S, Riedel A, Gablenz S, Fricke J, Rahfeld P, Reichelt M, Paetz C, Liechti N, Hu L, Bont Z, Meng Y, Huang W, Robert CA, Gershenzon J, Erb M. A beta-glucosidase of an insect herbivore determines both toxicity and deterrence of a dandelion defense metabolite. eLife 2021; 10:68642. [PMID: 34632981 PMCID: PMC8504966 DOI: 10.7554/elife.68642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/05/2021] [Indexed: 12/13/2022] Open
Abstract
Gut enzymes can metabolize plant defense compounds and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence feeding preference is largely unknown. We studied the metabolization of taraxinic acid β-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We have demonstrated that TA-G is rapidly deglucosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha β-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglucosylation. Using cross-species RNA interference, we have shown that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G-deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense compound. Our work illustrates the multifaceted roles of insect digestive enzymes as mediators of plant-herbivore interactions. Plants produce certain substances to fend off attackers like plant-feeding insects. To stop these compounds from damaging their own cells, plants often attach sugar molecules to them. When an insect tries to eat the plant, the plant removes the stabilizing sugar, ‘activating’ the compounds and making them toxic or foul-tasting. Curiously, some insects remove the sugar themselves, but it is unclear what consequences this has, especially for insect behavior. Dandelions, Taraxacum officinale, make high concentrations of a sugar-containing defense compound in their roots called taraxinic acid β-D-glucopyranosyl ester, or TA-G for short. TA-G deters the larvae of the Maybug – a pest also known as the common cockchafer or the doodlebug – from eating dandelion roots. When Maybug larvae do eat TA-G, it is found in their systems without its sugar. However, it is unclear whether it is the plant or the larva that removes the sugar. A second open question is how the sugar removal process affects the behavior of the Maybug larvae. Using chemical analysis and genetic manipulation, Huber et al. investigated what happens when Maybug larvae eat TA-G. This revealed that the acidity levels in the larvae’s digestive system deactivate the proteins from the dandelion that would normally remove the sugar from TA-G. However, rather than leaving the compound intact, larvae remove the sugar from TA-G themselves. They do this using a digestive enzyme, known as a beta-glucosidase, that cuts through sugar. Removing the sugar from TA-G made the compound less toxic, allowing the larvae to grow bigger, but it also increased TA-G’s deterrent effects, making the larvae less likely to eat the roots. Any organism that eats plants, including humans, must deal with chemicals like TA-G in their food. Once inside the body, enzymes can change these chemicals, altering their effects. This happens with many medicines, too. In the future, it might be possible to design compounds that activate only in certain species, or under certain conditions. Further studies in different systems may aid the development of new methods of pest control, or new drug treatments.
Collapse
Affiliation(s)
- Meret Huber
- Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany.,Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Thomas Roder
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Sandra Irmisch
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Alexander Riedel
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Saskia Gablenz
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Julia Fricke
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Peter Rahfeld
- Department of Bioorganic Chemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Christian Paetz
- Research group Biosynthesis/NMR, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Nicole Liechti
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Lingfei Hu
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Zoe Bont
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ye Meng
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Wei Huang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
47
|
Methanogenesis in the Digestive Tracts of the Tropical Millipedes Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae). Appl Environ Microbiol 2021; 87:e0061421. [PMID: 34020937 DOI: 10.1128/aem.00614-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanogens represent the final decomposition step in anaerobic degradation of organic matter, occurring in the digestive tracts of various invertebrates. However, factors determining their community structure and activity in distinct gut sections are still debated. In this study, we focused on the tropical millipede species Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae), which release considerable amounts of methane. We aimed to characterize relationships between physicochemical parameters, methane production rates, and methanogen community structure in the two major gut sections, midgut and hindgut. Microsensor measurements revealed that both sections were strictly anoxic, with reducing conditions prevailing in both millipedes. Hydrogen concentration peaked in the anterior hindgut of E. pulchripes. In both species, the intestinal pH was significantly higher in the hindgut than in the midgut. An accumulation of acetate and formate in the gut indicated bacterial fermentation activities in the digestive tracts of both species. Phylogenetic analysis of 16S rRNA genes showed a prevalence of Methanobrevibacter spp. (Methanobacteriales), accompanied by a small fraction of so-far-unclassified "Methanomethylophilaceae" (Methanomassiliicoccales), in both species, which suggests that methanogenesis is mostly hydrogenotrophic. We conclude that anoxic conditions, negative redox potential, and bacterial production of hydrogen and formate promote gut colonization by methanogens. The higher activities of methanogens in the hindgut are explained by the higher pH of this compartment and their association with ciliates, which are restricted to this compartment and present an additional source of methanogenic substrates. IMPORTANCE Methane (CH4) is the second most important atmospheric greenhouse gas after CO2 and is believed to account for 17% of global warming. Methanogens are a diverse group of archaea and can be found in various anoxic habitats, including digestive tracts of plant-feeding animals. Termites, cockroaches, the larvae of scarab beetles, and millipedes are the only arthropods known to host methanogens and emit large amounts of methane. Millipedes are ranked as the third most important detritivores after termites and earthworms, and they are considered keystone species in many terrestrial ecosystems. Both methane-producing and non-methane-emitting species of millipedes have been observed, but what limits their methanogenic potential is not known. In the present study, we show that physicochemical gut conditions and the distribution of symbiotic ciliates are important factors determining CH4 emission in millipedes. We also found close similarities to other methane-emitting arthropods, which might be associated with their similar plant-feeding habits.
Collapse
|
48
|
Hafeez M, Li XW, Zhang JM, Zhang ZJ, Huang J, Wang LK, Khan MM, Shah S, Fernández-Grandon GM, Lu YB. Role of digestive protease enzymes and related genes in host plant adaptation of a polyphagous pest, Spodoptera frugiperda. INSECT SCIENCE 2021; 28:611-626. [PMID: 33629522 DOI: 10.1111/1744-7917.12906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 05/27/2023]
Abstract
The evolutionary success of phytophagous insects depends on their ability to efficiently exploit plants as a source of energy for survival. Herbivorous insects largely depend on the efficiency, flexibility, and diversity of their digestive physiology and sophistication of their detoxification system to use chemically diverse host plants as food sources. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a polyphagous pest of many commercially important crops. To elucidate the ability of this insect pest to adapt to host plant mechanisms, we evaluated the impact of primary (corn) and alternate (rice) host plants after 11 generations on gut digestive enzymatic activity and expression profiles of related genes. Results indicated that the total protease and class-specific trypsin- and chymotrypsin-like protease activity of S. frugiperda significantly differed among host plant treatments. The class-specific protease profiles greatly differed in S. frugiperda midguts upon larval exposure to different treatments with inhibitors compared with treatments without inhibitors. Similarly, the single and cumulative effects of the enzyme-specific inhibitors TLCK, TPCK, and E-64 significantly increased larval mortality and reduced larval growth/mass across different plant treatments. Furthermore, the quantitative reverse transcription polymerase chain reaction results revealed increased transcription of two trypsin (SfTry-3, SfTry-7) and one chymotrypsin gene (Sfchym-9), which indicated that they have roles in host plant adaptation. Knockdown of these genes resulted in significantly reduced mRNA expression levels of the trypsin genes. This was related to the increased mortality observed in treatments compared with the dsRED control. This result indicates possible roles of S. frugiperda gut digestive enzymes and related genes in host plant adaptation.
Collapse
Affiliation(s)
- Muhammad Hafeez
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiao-Wei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jin-Ming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhi-Jun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Li-Kun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Muhammad Musa Khan
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou, 510642, China
| | - Sakhawat Shah
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | | | - Yao-Bin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
49
|
Aguirre-Rojas LM, Scully ED, Trick HN, Zhu KY, Smith CM. Comparative analyses of transcriptional responses of Dectes texanus LeConte (Coleoptera: Cerambycidae) larvae fed on three different host plants and artificial diet. Sci Rep 2021; 11:11448. [PMID: 34075134 PMCID: PMC8169664 DOI: 10.1038/s41598-021-90932-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Dectes texanus is an important coleopteran pest of soybeans and cultivated sunflowers in the Midwestern United States that causes yield losses by girdling stems of their host plants. Although sunflower and giant ragweed are primary hosts of D. texanus, they began colonizing soybeans approximately 50 years ago and no reliable management method has been established to prevent or reduce losses by this pest. To identify genes putatively involved when feeding soybean, we compared gene expression of D. texanus third-instar larvae fed soybean to those fed sunflower, giant ragweed, or artificial diet. Dectes texanus larvae differentially expressed 514 unigenes when fed on soybean compared to those fed the other diet treatments. Enrichment analyses of gene ontology terms from up-regulated unigenes in soybean-fed larvae compared to those fed both primary hosts highlighted unigenes involved in oxidoreductase and polygalacturonase activities. Cytochrome P450s, carboxylesterases, major facilitator superfamily transporters, lipocalins, apolipoproteins, glycoside hydrolases 1 and 28, and lytic monooxygenases were among the most commonly up-regulated unigenes in soybean-fed larvae compared to those fed their primary hosts. These results suggest that D. texanus larvae differentially expressed unigenes involved in biotransformation of allelochemicals, digestion of plant cell walls and transport of small solutes and lipids when feeding in soybean.
Collapse
Affiliation(s)
- Lina M Aguirre-Rojas
- Deparment of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92506, USA
| | - Erin D Scully
- Stored Product Insect and Engineering Research Unit, USDA-ARS-CGAHR, Manhattan, KS, 66502, USA
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - C Michael Smith
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
50
|
Eberhard FE, Klimpel S, Guarneri AA, Tobias NJ. Metabolites as predictive biomarkers for Trypanosoma cruzi exposure in triatomine bugs. Comput Struct Biotechnol J 2021; 19:3051-3057. [PMID: 34136103 PMCID: PMC8178018 DOI: 10.1016/j.csbj.2021.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), colonizes the intestinal tract of triatomines. Triatomine bugs act as vectors in the life cycle of the parasite and transmit infective parasite stages to animals and humans. Contact of the vector with T. cruzi alters its intestinal microbial composition, which may also affect the associated metabolic patterns of the insect. Earlier studies suggest that the complexity of the triatomine fecal metabolome may play a role in vector competence for different T. cruzi strains. Using high-resolution mass spectrometry and supervised machine learning, we aimed to detect differences in the intestinal metabolome of the triatomine Rhodnius prolixus and predict whether the insect had been exposed to T. cruzi or not based solely upon their metabolic profile. We were able to predict the exposure status of R. prolixus to T. cruzi with accuracies of 93.6%, 94.2% and 91.8% using logistic regression, a random forest classifier and a gradient boosting machine model, respectively. We extracted the most important features in producing the models and identified the major metabolites which assist in positive classification. This work highlights the complex interactions between triatomine vector and parasite including effects on the metabolic signature of the insect.
Collapse
Affiliation(s)
- Fanny E. Eberhard
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt/Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Frankfurt/Main, Germany
| | - Alessandra A. Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima,1715, Belo Horizonte, MG CEP 30190-009, Brazil
| | - Nicholas J. Tobias
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Frankfurt/Main, Germany
- Corresponding author at: LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany.
| |
Collapse
|