1
|
Abstract
Postthoracotomy pain management is essential imme diately after surgery and crucial for the patient suffering from this problem for a long duration. Understanding the causative and pathophysiological basis for this condition requires frequent assessment and a multidi mensional approach. Inadequate pain control has detri mental effects on the routine activities of patients as well as on their physical and emotional well-being. During the last 2 decades, the understanding of various pain-related issues has been strengthened resulting in early intervention and pain management. Various phar macological modalities including the role of nonopiates, opiates, and adjuvant drugs are helpful in combating postthoracotomy pain. A selective group of patients will benefit from interventional techniques. The treat ment decision requires a clear understanding of the disease and its impact on the patient. There must also be an understanding of risk and benefits as well as cost and benefits for various drugs and techniques before selecting the appropriate therapy.
Collapse
Affiliation(s)
- Subhash Jain
- Department of Anesthesiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Samyadev Datta
- Department of Anesthesiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Debra Tundis
- Department of Anesthesiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
2
|
Abstract
Adult peripheral neurons can regenerate after axonal damage. Large changes in gene expression occur in the cell bodies of these axotomized neurons, including decreases in expression of a number of proteins used for synaptic transmission and increases in expression of a number of proteins involved in regeneration. The signals that trigger these changes are just beginning to be elucidated. One characteristic of axotomized sympathetic, sensory, and motor neurons is that they increase expression of two neuropeptides, vasoactive intestinal peptide and galanin. These peptides may play important roles in the survival and regeneration of axotomized neurons deprived of their target-derived trophic factors. Recent studies have demonstrated two important signals in the induction of these peptides in sympathetic neurons: one is the release of leukemia inhibitory factor (LIF) by non-neuronal cells in the vicinity of the injured neurons and the other, the removal of target-derived nerve growth factor (NGF). Furthermore, there is a synergistic interaction between these two events whereby the removal of NGF alters the responsiveness of neurons to LIF. Future efforts will hopefully determine the extent to which LIF and NGF signal other aspects of the cell body response and the mechanisms that underlie these actions. NEUROSCIENTIST 3:176-185, 1997
Collapse
Affiliation(s)
- Richard E. Zigmond
- Department of Neurosciences Case Western Reserve University
Cleveland, Ohio
| |
Collapse
|
3
|
Wu S, Marie Lutz B, Miao X, Liang L, Mo K, Chang YJ, Du P, Soteropoulos P, Tian B, Kaufman AG, Bekker A, Hu Y, Tao YX. Dorsal root ganglion transcriptome analysis following peripheral nerve injury in mice. Mol Pain 2016; 12:12/0/1744806916629048. [PMID: 27030721 PMCID: PMC4955972 DOI: 10.1177/1744806916629048] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Peripheral nerve injury leads to changes in gene expression in primary sensory neurons of the injured dorsal root ganglia. These changes are believed to be involved in neuropathic pain genesis. Previously, these changes have been identified using gene microarrays or next generation RNA sequencing with poly-A tail selection, but these approaches cannot provide a more thorough analysis of gene expression alterations after nerve injury. METHODS The present study chose to eliminate mRNA poly-A tail selection and perform strand-specific next generation RNA sequencing to analyze whole transcriptomes in the injured dorsal root ganglia following spinal nerve ligation. Quantitative real-time reverse transcriptase polymerase chain reaction assay was carried out to verify the changes of some differentially expressed RNAs in the injured dorsal root ganglia after spinal nerve ligation. RESULTS Our results showed that more than 50 million (M) paired mapped sequences with strand information were yielded in each group (51.87 M-56.12 M in sham vs. 51.08 M-57.99 M in spinal nerve ligation). Six days after spinal nerve ligation, expression levels of 11,163 out of a total of 27,463 identified genes in the injured dorsal root ganglia significantly changed, of which 52.14% were upregulated and 47.86% downregulated. The largest transcriptional changes were observed in protein-coding genes (91.5%) followed by noncoding RNAs. Within 944 differentially expressed noncoding RNAs, the most significant changes were seen in long interspersed noncoding RNAs followed by antisense RNAs, processed transcripts, and pseudogenes. We observed a notable proportion of reads aligning to intronic regions in both groups (44.0% in sham vs. 49.6% in spinal nerve ligation). Using quantitative real-time polymerase chain reaction, we confirmed consistent differential expression of selected genes including Kcna2, Oprm1 as well as lncRNAs Gm21781 and 4732491K20Rik following spinal nerve ligation. CONCLUSION Our findings suggest that next generation RNA sequencing can be used as a promising approach to analyze the changes of whole transcriptomes in dorsal root ganglia following nerve injury and to possibly identify new targets for prevention and treatment of neuropathic pain.
Collapse
Affiliation(s)
- Shaogen Wu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Brianna Marie Lutz
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Xuerong Miao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA Department of Anesthesiology and Intensive Care, Eastern Hepatobiliary Surgical Hospital, The Second Military Medical University, Shanghai, China
| | - Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Kai Mo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Juan Chang
- High Performance and Research Computing, Office of Information Technology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Peicheng Du
- High Performance and Research Computing, Office of Information Technology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Patricia Soteropoulos
- Departments of Biochemistry & Microbiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Bin Tian
- Departments of Biochemistry & Microbiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Andrew G Kaufman
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Jiangsu, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA Departments of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA Department of Pharmacology & Physiology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
4
|
Shehab SADS. Fifth lumbar spinal nerve injury causes neurochemical changes in corresponding as well as adjacent spinal segments: a possible mechanism underlying neuropathic pain. J Chem Neuroanat 2014; 55:38-50. [PMID: 24394408 DOI: 10.1016/j.jchemneu.2013.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 01/19/2023]
Abstract
Previous investigations of the anatomical basis of the neuropathic-like manifestations in the spinal nerve ligation animal model have shown that the central terminations of the unmyelinated primary afferents of L5 spinal nerve are not restricted to the corresponding L5 spinal segment, and rather extend to two spinal segments rostrally and one segment caudally where they intermingle with primary afferents of the adjacent L4 spinal nerve. The aim of the present study was to investigate the neurochemical changes in the dorsal horn of the spinal cord and DRGs after L5 nerve injury in rats. In the first experiment, the right L5 nerve was ligated and sectioned for 14 days, and isolectin B4 (IB4, a tracer for unmyelinated primary afferents) was injected into the left L5 nerve. The results showed that the vasoactive intestinal peptide (VIP) was up-regulated in laminae I-II of L3-L6 spinal segments on the right side in exactly the same areas where IB4 labelled terminals were revealed on the left side. In the second experiment, L5 was ligated and sectioned and the spinal cord and DRGs were stained immunocytochemically with antibodies raised against various peptides known to be involved in pain transmission and hyperalgesia. The results showed that L5 nerve lesion caused down-regulation of substance P, calcitonin-gene related peptide and IB4 binding and up-regulation of neuropeptide Y and neurokinin-1 receptor in the dorsal horn of L4 and L5 spinal segments. Similar neurochemical changes were observed only in the corresponding L5 DRG with minimal effects observed in L3, L4 and L6 DRGs. Although, L5 nerve injury caused an up-regulation in NPY, no change in SP and CGRP immunoreactivity was observed in ipsilateral garcile nucleus. These neuroplastic changes in the dorsal horn of the spinal cord, in the adjacent uninjured territories of the central terminations of the adjacent uninjured nerves, might explain the mechanism of hyperalgesia after peripheral nerve injury.
Collapse
Affiliation(s)
- Safa Al-Deen Saudi Shehab
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, PO BOX 16777, United Arab Emirates.
| |
Collapse
|
5
|
Valls-Sole J, Castillo CD, Casanova-Molla J, Costa J. Clinical consequences of reinnervation disorders after focal peripheral nerve lesions. Clin Neurophysiol 2010; 122:219-28. [PMID: 20656551 DOI: 10.1016/j.clinph.2010.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/27/2010] [Accepted: 06/28/2010] [Indexed: 12/12/2022]
Abstract
Axonal regeneration and organ reinnervation are the necessary steps for functional recovery after a nerve lesion. However, these processes are frequently accompanied by collateral events that may not be beneficial, such as: (1) Uncontrolled branching of growing axons at the lesion site. (2) Misdirection of axons and target organ reinnervation errors, (3) Enhancement of excitability of the parent neuron, and (4) Compensatory activity in non-damaged nerves. Each one of those possible problems or a combination of them can be the underlying pathophysiological mechanism for some clinical conditions seen as a consequence of a nerve lesion. Reinnervation-related motor disorders are more likely to occur with lesions affecting nerves which innervate muscles with antagonistic functions, such as the facial, the laryngeal and the ulnar nerves. Motor disorders are better demonstrated than sensory disturbances, which might follow similar patterns. In some instances, the available examination methods give only scarce evidence for the positive diagnosis of reinnervation-related disorders in humans and the diagnosis of such condition can only be based on clinical observation. Whatever the lesion, though, the restitution of complex functions such as fine motor control and sensory discrimination would require not only a successful regeneration process but also a central nervous system reorganization in order to integrate the newly formed peripheral nerve structure into the prepared motor programs and sensory patterns.
Collapse
Affiliation(s)
- Josep Valls-Sole
- Department of Neurology, Hospital Clínic, Universitat de Barcelona, IDIBAPS (Institut d'Investigació Biomèdica August Pi i Sunyer), Spain.
| | | | | | | |
Collapse
|
6
|
Casals-Díaz L, Vivó M, Navarro X. Nociceptive responses and spinal plastic changes of afferent C-fibers in three neuropathic pain models induced by sciatic nerve injury in the rat. Exp Neurol 2009; 217:84-95. [PMID: 19416675 DOI: 10.1016/j.expneurol.2009.01.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/21/2009] [Accepted: 01/23/2009] [Indexed: 02/03/2023]
Abstract
Peripheral nerve injuries induce plastic changes on primary afferent fibers and on the spinal circuitry, which are related to the emergence of neuropathic pain. In this study we compared three models of sciatic nerve injury in the rat with different degrees of damage and impact on regeneration capability: crush nerve injury, chronic constriction injury (CCI) and spared nerve injury (SNI). All three models were characterized by means of nerve histology, in order to describe the degenerative and regenerative process of injured axons. Nociceptive responses were evaluated by mechanical and thermal algesimetry tests. Crush animals displayed higher withdrawal thresholds on the ipsilateral paw compared to the contralateral during the time of denervation, while CCI and SNI animals showed mechanical and thermal hyperalgesia. Central plasticity was evaluated by immunohistochemical labeling of non-peptidergic (IB4-positive) and peptidergic (substance P-positive) nociceptive C-fibers on L4-L6 spinal cord sections. After crush nerve injury and SNI, we observed progressive and sustained reduction of IB4 and SP immunolabeling at the sciatic projection territory in the superficial laminae of the dorsal horn, which affected only the tibial and peroneal nerves projection areas in the case of SNI. After CCI, changes on SP-immunoreactivity were not observed, and IB4-immunoreactive area decreased initially but recovered to normal levels on the second week post-injury. Thus, nociceptive responses depend on the type of injury, and the immunoreactivity pattern of afferent fibers at the spinal cord display changes less pronounced after partial than complete sciatic nerve injury. Although signs of neuropathic pain appear in all three lesion models, nociceptive responses and central plasticity patterns differ between them.
Collapse
Affiliation(s)
- Laura Casals-Díaz
- Department of Cell Biology, Group of Neuroplasticity and Regeneration, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
7
|
Navarro X. Chapter 27: Neural plasticity after nerve injury and regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 87:483-505. [PMID: 19682656 DOI: 10.1016/s0074-7742(09)87027-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Injuries to the peripheral nerves result in partial or total loss of motor, sensory, and autonomic functions in the denervated segments of the body due to the interruption of axons, degeneration of distal nerve fibers, and eventual death of axotomized neurons. Functional deficits caused by nerve injuries can be compensated by reinnervation of denervated targets by regenerating injured axons or by collateral branching of undamaged axons, and remodeling of nervous system circuitry related to the lost functions. Plasticity of central connections may compensate functionally for the lack of adequate target reinnervation; however, plasticity has limited effects on disturbed sensory localization or fine motor control after injuries, and may even result in maladaptive changes, such as neuropathic pain and hyperreflexia. After axotomy, neurons shift from a transmitter to a regenerative phenotype, activating molecular pathways that promote neuronal survival and axonal regeneration. Peripheral nerve injuries also induce a cascade of events, at the molecular, cellular, and system levels, initiated by the injury and progressing throughout plastic changes at the spinal cord, brainstem nuclei, thalamus, and brain cortex. Mechanisms involved in these changes include neurochemical changes, functional alterations of excitatory and inhibitory synaptic connections, sprouting of new connections, and reorganization of sensory and motor central maps. An important direction for research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, and are also able to modulate central nervous system reorganization, amplifying positive adaptive changes that improve functional recovery and also reducing undesirable effects.
Collapse
Affiliation(s)
- Xavier Navarro
- Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| |
Collapse
|
8
|
Vivó M, Puigdemasa A, Casals L, Asensio E, Udina E, Navarro X. Immediate electrical stimulation enhances regeneration and reinnervation and modulates spinal plastic changes after sciatic nerve injury and repair. Exp Neurol 2008; 211:180-93. [PMID: 18316076 DOI: 10.1016/j.expneurol.2008.01.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/19/2008] [Accepted: 01/25/2008] [Indexed: 12/23/2022]
Abstract
We have studied whether electrical stimulation immediately after nerve injury may enhance axonal regeneration and modulate plastic changes at the spinal cord level underlying the appearance of hyperreflexia. Two groups of adult rats were subjected to sciatic nerve section followed by suture repair. One group (ES) received electrical stimulation (3 V, 0.1 ms at 20 Hz) for 1 h after injury. A second group served as control (C). Nerve conduction, H reflex, motor evoked potentials, and algesimetry tests were performed at 1, 3, 5, 7 and 9 weeks after surgery, to assess muscle reinnervation and changes in excitability of spinal cord circuitry. The electrophysiological results showed higher levels of reinnervation, and histological results a significantly higher number of regenerated myelinated fibers in the distal tibial nerve in group ES in comparison with group C. The monosynaptic H reflex was facilitated in the injured limb, to a higher degree in group C than in group ES. The amplitudes of motor evoked potentials were similar in both groups, although the MEP/M ratio was increased in group C compared to group ES, indicating mild central motor hyperexcitability. Immunohistochemical labeling of sensory afferents in the spinal cord dorsal horn showed prevention of the reduction in expression of substance P at one month postlesion in group ES. In conclusion, brief electrical stimulation applied after sciatic nerve injury promotes axonal regeneration over a long distance and reduces facilitation of spinal motor responses.
Collapse
Affiliation(s)
- Meritxell Vivó
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Castro J, Negredo P, Avendaño C. Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode. Brain Res 2008; 1190:65-77. [DOI: 10.1016/j.brainres.2007.11.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/05/2007] [Accepted: 11/11/2007] [Indexed: 11/25/2022]
|
10
|
FRISTAD INGE, BLETSA ATHANASIA, BYERS MARGARET. Inflammatory nerve responses in the dental pulp. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1601-1546.2010.00247.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Navarro X, Vivó M, Valero-Cabré A. Neural plasticity after peripheral nerve injury and regeneration. Prog Neurobiol 2007; 82:163-201. [PMID: 17643733 DOI: 10.1016/j.pneurobio.2007.06.005] [Citation(s) in RCA: 631] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/18/2007] [Accepted: 06/14/2007] [Indexed: 01/01/2023]
Abstract
Injuries to the peripheral nerves result in partial or total loss of motor, sensory and autonomic functions conveyed by the lesioned nerves to the denervated segments of the body, due to the interruption of axons continuity, degeneration of nerve fibers distal to the lesion and eventual death of axotomized neurons. Injuries to the peripheral nervous system may thus result in considerable disability. After axotomy, neuronal phenotype switches from a transmitter to a regenerative state, inducing the down- and up-regulation of numerous cellular components as well as the synthesis de novo of some molecules normally not expressed in adult neurons. These changes in gene expression activate and regulate the pathways responsible for neuronal survival and axonal regeneration. Functional deficits caused by nerve injuries can be compensated by three neural mechanisms: the reinnervation of denervated targets by regeneration of injured axons, the reinnervation by collateral branching of undamaged axons, and the remodeling of nervous system circuitry related to the lost functions. Plasticity of central connections may compensate functionally for the lack of specificity in target reinnervation; plasticity in human has, however, limited effects on disturbed sensory localization or fine motor control after injuries, and may even result in maladaptive changes, such as neuropathic pain, hyperreflexia and dystonia. Recent research has uncovered that peripheral nerve injuries induce a concurrent cascade of events, at the systemic, cellular and molecular levels, initiated by the nerve injury and progressing throughout plastic changes at the spinal cord, brainstem relay nuclei, thalamus and brain cortex. Mechanisms for these changes are ubiquitous in central substrates and include neurochemical changes, functional alterations of excitatory and inhibitory connections, atrophy and degeneration of normal substrates, sprouting of new connections, and reorganization of somatosensory and motor maps. An important direction for ongoing research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, but are also able to modulate central nervous system reorganization, amplifying those positive adaptive changes that help to improve functional recovery but also diminishing undesirable consequences.
Collapse
Affiliation(s)
- X Navarro
- Group of Neuroplasticity and Regeneration, Institute of Neurosciences and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| | | | | |
Collapse
|
12
|
Sah DY, Porreca F, Ossipov MH. Modulation of neurotrophic growth factors as a therapeutic strategy for neuropathic pain. Drug Dev Res 2006. [DOI: 10.1002/ddr.20102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Gunjigake KK, Goto T, Nakao K, Konoo T, Kobayashi S, Yamaguchi K. Correlation between the appearance of neuropeptides in the rat trigeminal ganglion and reinnervation of the healing root socket after tooth extraction. Acta Histochem Cytochem 2006; 39:69-77. [PMID: 17327926 PMCID: PMC1790972 DOI: 10.1267/ahc.05057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Accepted: 03/13/2006] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide substance P (SP) modulates bone metabolism. This study examined the temporal appearance of the neuropeptides SP and brain-derived nerve growth factor (BDNF) and their receptors (neurokinin-1 receptor (NK1-R) and Trk B, respectively) in the rat trigeminal ganglion to investigate the role of neuropeptides in healing after tooth extraction. Rats were anesthetized and their upper right first molars were extracted; the rats were sacrificed 3 hours and 1–21 days after extraction. Their trigeminal ganglion and maxilla were removed, and cryosections were prepared and immunostained using specific antibodies against SP, BDNF, NK1-R, and Trk B. In the tooth sockets after extraction, new bone and a few SP-immunoreactive nerve fibers were first seen at day 7, and bone completely filled the sockets at day 21. In the trigeminal ganglion, the proportions of NK1-R-, BDNF-, and Trk B-immunoreactive neurons changed similarly, i.e., they initially decreased, increased rapidly to maximum levels by day 3, and then decreased gradually to control levels until 21 days. These findings suggest that the appearance of neuropeptides in the trigeminal ganglion, the reinnervation of SP-immunoreactive nerve fibers, and bone repair in the tooth socket during healing after extraction were correlated.
Collapse
Affiliation(s)
- Kaori K. Gunjigake
- Division of Orofacial Functions and Orthodontics, Kyushu Dental College, Kitakyushu 803–8580, Japan
| | - Tetsuya Goto
- Division of Anatomy, Kyushu Dental College, Kitakyushu 803–8580, Japan
- Correspondence to: Tetsuya Goto, D.D.S., Ph.D., Division of Anatomy, Kyushu Dental College, 2–6–1 Manazuru, Kokurakita-ku, Kitakyushu 803–8580, Japan. E-mail:
| | - Kayoko Nakao
- Division of Orofacial Functions and Orthodontics, Kyushu Dental College, Kitakyushu 803–8580, Japan
| | - Tetsuro Konoo
- Division of Orofacial Functions and Orthodontics, Kyushu Dental College, Kitakyushu 803–8580, Japan
| | - Shigeru Kobayashi
- Division of Anatomy, Kyushu Dental College, Kitakyushu 803–8580, Japan
| | - Kazunori Yamaguchi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental College, Kitakyushu 803–8580, Japan
| |
Collapse
|
14
|
Swamydas M, Skoff AM, Adler JE. Partial sciatic nerve transection causes redistribution of pain-related peptides and lowers withdrawal threshold. Exp Neurol 2004; 188:444-51. [PMID: 15246843 DOI: 10.1016/j.expneurol.2004.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 04/16/2004] [Accepted: 04/22/2004] [Indexed: 10/26/2022]
Abstract
Complete nerve transection results in loss of sensation and paralysis of the involved extremity. Such injury drastically reduces content of the nociceptive peptides, substance P, and somatostatin in the dorsal horn of the spinal cord and dorsal root ganglia innervating the limb. Partial nerve injuries occur more commonly in clinical practice, however, and frequently result in the development of chronic neuropathic pain. To investigate mechanisms underlying this pathologic pain syndrome, rats were subjected to partial sciatic nerve transection. Withdrawal thresholds determined with Von Frey hairs dropped dramatically in the operated limb. On postoperative Day 4, thresholds had decreased from 15 g to less than 5 g on the operated side, whereas those on the contralateral (unoperated) side or those from sham-operated rats did not change. Sciatic hemisection had no effect on total content of either substance P or somatostatin in the dorsal spinal cord and lumbar dorsal root ganglia as measured by radioimmunoassay on postoperative Days 4, 7, or 14. However, when examined immunohistochemically, there was a marked redistribution of both peptides associated with partial transection. On the contralateral side or in sham-operated rats, both substance P and somatostatin were confined to the superficial laminae of the dorsal horn. By contrast, on the operated side, content of both peptides was reduced by more than half in the superficial laminae. There was a compensatory increase in content in the deeper laminae where nociceptive peptides are not usually found. Redistribution of substance P and somatostatin may be due to axonal sprouting, increased peptide expression by interneurons, or aberrant expression of nociceptive peptides by neurons normally mediating mechanical sensation. The presence of increased levels of nociceptive peptides in regions of the spinal cord that mediate innocuous sensation may underlie development of allodynia.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
15
|
Shehab SAS, Spike RC, Todd AJ. Evidence against cholera toxin B subunit as a reliable tracer for sprouting of primary afferents following peripheral nerve injury. Brain Res 2003; 964:218-27. [PMID: 12576182 DOI: 10.1016/s0006-8993(02)04001-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to investigate whether cholera toxin B subunit (CTb) is transported by unmyelinated primary afferents following nerve injury, we transected the sciatic nerves of six rats, and injected the transected nerves (and in three cases also the intact contralateral nerves) with CTb, 2 weeks later. The relationship between CTb and two neuropeptides, vasoactive intestinal peptide (VIP) and neuropeptide Y (NPY), was then examined in neurons in the ipsilateral L4 and L5 dorsal root ganglia, using immunofluorescence staining and confocal microscopy. We also immunostained sections of spinal cord and caudal medulla for CTb, NPY and VIP. Following nerve section, VIP immunoreactivity was increased in laminae I-II of the spinal cord while NPY immunoreactivity was increased in laminae III-IV of the spinal cord and in the gracile nucleus. On the contralateral side, CTb labelling was detected in laminae I and III-V of the dorsal horn of the L4 and L5 spinal segments, as well as in the gracile nucleus. CTb labelling was seen in the same areas on the lesioned side, but with a dramatic increase in lamina II. No VIP or NPY immunoreactivity was observed in L4 and L5 dorsal root ganglia on the side of the intact nerve, but on the lesioned side VIP was detected in many small neurons and NPY in numerous large neurons. In agreement with the report by Tong et al. [J. Comp. Neurol. 404 (1999) 143], we found that while CTb labelling in the dorsal root ganglion on the side of the intact nerve was mainly in large neurons, on the lesioned side CTb was present in dorsal root ganglion neurons of all sizes. The main finding of the present study was that almost all of the VIP- (96%) and NPY- (98%) positive neurons in the dorsal root ganglia on the lesioned side were also CTb-labelled. After nerve injury VIP is upregulated in fine afferents that terminate in laminae I and II, and most of these probably have unmyelinated axons. Since the cell bodies of these neurons were labelled with CTb that had been injected into the transected sciatic nerve, this suggests that many of these fine afferents, which do not normally transport CTb, are capable of doing so after injury.
Collapse
Affiliation(s)
- S A S Shehab
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al-Ain, United Arab Emirates.
| | | | | |
Collapse
|
16
|
Chaudhary P, Baumann TK. Expression of VPAC2 receptor and PAC1 receptor splice variants in the trigeminal ganglion of the adult rat. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 104:137-42. [PMID: 12225867 DOI: 10.1016/s0169-328x(02)00329-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PACAP and VIP are members of the VIP/secretin/glucagon family of peptides with neurotransmitter, neuroprotective, and neurotrophic functions. PACAP and VIP are known to be upregulated in primary sensory neurons following nerve injury, implying that these neuropeptides could be mediators of sensory transmission in neuropathic pain states. Nerve injury at the level of the trigeminal root is thought to be the prime cause of trigeminal neuralgia. Since cross-excitation (a chemically-mediated form of nonsynaptic transmission) within the TG is postulated to play a central role in trigeminal neuralgia, we studied the expression of PACAP and VIP receptors in the TG by RT PCR and immunocytochemistry. Of the three known receptors (PAC1, VPAC1 and VPAC2), RT PCR revealed the presence of mRNA for VPAC2 and several splice variants of the PAC1 receptor. Immunocytochemistry showed PAC1 and VPAC2 to be present in small-diameter TG neurons. Thus, PACAP and VIP are potential mediators of cross-excitation in the TG.
Collapse
MESH Headings
- Afferent Pathways/metabolism
- Afferent Pathways/physiopathology
- Alternative Splicing/genetics
- Animals
- Cell Communication/genetics
- Cells, Cultured
- Immunohistochemistry
- Male
- Neurons, Afferent/metabolism
- Neuropeptides/metabolism
- Nociceptors/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Protein Isoforms/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Signal Transduction/genetics
- Trigeminal Ganglion/metabolism
- Trigeminal Ganglion/physiopathology
- Trigeminal Neuralgia/genetics
- Trigeminal Neuralgia/metabolism
- Trigeminal Neuralgia/physiopathology
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- Priya Chaudhary
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239-3098, USA
| | | |
Collapse
|
17
|
Xu XJ, Wiesenfeld-Hallin Z, Villar MJ, Fahrenkrug J, Hökfelt T. On the Role of Galanin, Substance P and Other Neuropeptides in Primary Sensory Neurons of the Rat: Studies on Spinal Reflex Excitability and Peripheral Axotomy. Eur J Neurosci 2002; 2:733-743. [PMID: 12106274 DOI: 10.1111/j.1460-9568.1990.tb00464.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction of intrathecally (i.t.) applied galanin (GAL) with substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), somatostatin (SOM) and C-fibre conditioning stimulation (CS) with regard to their effects on the spinal nociceptive flexor reflex was studied in decerebrate, spinalized, unanaesthetized rats with intact or sectioned sciatic nerves. SP, CGRP, VIP and SOM applied onto the surface of lumbar spinal cord or a brief CS train (1 Hz, 20 s) to the sural nerve facilitated the flexor reflex for several minutes in animals with intact or sectioned nerves. Pretreatment with GAL, which by itself had a biphasic effect on the flexor reflex in a dose-dependent manner, antagonized the reflex facilitation induced by sural CS before and after sciatic nerve section. SP-induced facilitation of the flexor reflex was antagonized by GAL in rats with intact sciatic nerves, but not after nerve section. In contrast, VIP-induced reflex facilitation was antagonized by GAL only after sectioning of the sciatic nerve. GAL was effective in antagonizing the facilitatory effect of CGRP under both situations, but had no effect on SOM-induced facilitation. A parallel immunohistochemical study revealed that after sciatic nerve section GAL-like immunoreactivity (LI) and VIP-LI are increased in the dorsal root ganglia and that these two peptides coexist in many cells. The present results indicate that GAL antagonizes the excitatory effect of some neuropeptides which exist in the spinal cord. This antagonism could explain the inhibitory effect of GAL on C-fibre CS-induced facilitation of the flexor reflex, which is presumably due to the release of some of these neuropeptides from the terminals of primary afferents. Furthermore, the interaction between GAL and other neuropeptides is altered by sciatic nerve section, paralleling changes in the levels of these neuropeptides in primary afferents and their pattern of coexistence after nerve section. It is proposed that SP and CGRP are important mediators of the spinal flexor reflex in intact rats. However, after axotomy VIP may replace SP in this capacity, paralleling the decrease in SP and marked increase in VIP levels. In general the study provides further support for involvement of peptides in sensory function.
Collapse
Affiliation(s)
- X.-J. Xu
- Department of Clinical Physiology, Section of Clinical Neurophysiology, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
18
|
Chong MS, Fitzgerald M, Winter J, Hu-Tsai M, Emson PC, Wiese U, Woolf CJ. GAP-43 mRNA in Rat Spinal Cord and Dorsal Root Ganglia Neurons: Developmental Changes and Re-expression Following Peripheral Nerve Injury. Eur J Neurosci 2002; 4:883-95. [PMID: 12106424 DOI: 10.1111/j.1460-9568.1992.tb00115.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The expression of growth-associated protein GAP-43 mRNA in spinal cord and dorsal root ganglion (DRG) neurons has been studied using an enzyme linked in situ hybridization technique in neonatal and adult rats. High levels of GAP-43 mRNA are present at birth in the majority of spinal cord neurons and in all dorsal root ganglion cells. This persists until postnatal day 7 and then declines progressively to near adult levels (with low levels of mRNA in spinal cord motor neurons and 2000 - 3000 DRG cells expressing high levels) at postnatal day 21. A re-expression of GAP-43 mRNA in adult rats is apparent, both in sciatic motor neurons and the majority of L4 and L5 dorsal root ganglion cells, 1 day after sciatic nerve section. High levels of the GAP-43 mRNA in the axotomized spinal motor neurons persist for at least 2 weeks but decline 5 weeks after sciatic nerve section, with the mRNA virtually undetectable after 10 weeks. The initial changes after sciatic nerve crush are similar, but by 5 weeks GAP-43 mRNA in the sciatic motor neurons has declined to control levels. In DRG cells, after both sciatic nerve section or crush, GAP-43 mRNA re-expression persists much longer than in motor neurons. There was no re-expression of GAP-43 mRNA in the dorsal horn of the spinal cord after peripheral nerve lesions. Our study demonstrates a similar developmental regulation in spinal cord and DRG neurons of GAP-43 mRNA. We show moreover that failure of re-innervation does not result in a maintenance of GAP-43 mRNA in axotomized motor neurons.
Collapse
Affiliation(s)
- M S Chong
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
19
|
Kos K, Fine L, Coulombe JN. Activin type II receptors in embryonic dorsal root ganglion neurons of the chicken. JOURNAL OF NEUROBIOLOGY 2001; 47:93-108. [PMID: 11291100 DOI: 10.1002/neu.1019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activin induces neuropeptide expression in chicken ciliary ganglion neurons. To determine if activin might also influence neuropeptide expression in developing sensory neurons, we examined whether type II activin receptors are expressed during embryonic development of the chicken dorsal root ganglia (DRG), and also examined the effects of activin on neuropeptide expression in cultured DRG neurons. Using reverse transcription polymerase chain reaction (rtPCR), we detected mRNAs for both the activin receptors type IIA (ActRIIA) and type IIB (ActRIIB) in DRG from embryonic day 7 through posthatch day 1. With in situ hybridization, we found that morphologically identifiable neurons express mRNAs for both ActRIIA and ActRIIB. With developmental age, a subset of neurons that hybridizes more intensely with riboprobes to these receptor mRNAs becomes evident. A similar pattern of expression is observed with immunocytochemical staining using antisera against activin type II receptors. To examine whether embryonic DRG cells respond to activin we treated dissociated cultures of DRG with activin A and assessed the expression of vasoactive intestinal peptide (VIP) and calcitonin gene related peptide (CGRP) mRNAs using semiquantitative rtPCR. Activin treatment results in an increase in VIP mRNA, but does not affect CGRP mRNA levels. These observations indicate that neurons in the embryonic chicken DRG can respond to activin and suggest that activin has the potential to play a role in the development and function of DRG sensory neurons.
Collapse
MESH Headings
- Activin Receptors, Type II
- Animals
- Antibodies
- Calcitonin Gene-Related Peptide/genetics
- Cell Differentiation/physiology
- Cells, Cultured
- Chick Embryo
- Chickens
- Ganglia, Spinal/chemistry
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Gene Expression Regulation, Developmental
- Immunohistochemistry
- In Situ Hybridization
- Neurons/chemistry
- Neurons/cytology
- Neurons/physiology
- RNA, Messenger/analysis
- Receptors, Growth Factor/analysis
- Receptors, Growth Factor/genetics
- Receptors, Growth Factor/immunology
- Vasoactive Intestinal Peptide/genetics
Collapse
Affiliation(s)
- K Kos
- Department of Anatomy and Cell Biology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814, USA
| | | | | |
Collapse
|
20
|
Tsuzuki K, Kondo E, Fukuoka T, Yi D, Tsujino H, Sakagami M, Noguchi K. Differential regulation of P2X(3) mRNA expression by peripheral nerve injury in intact and injured neurons in the rat sensory ganglia. Pain 2001; 91:351-360. [PMID: 11275393 DOI: 10.1016/s0304-3959(00)00456-5] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The P2X(3) receptor is a ligand-gated cation channel activated by the binding of extracellular adenosine 5'-triphosphate (ATP), an agent that has been suggested to have a role in the nociceptive pathway after tissue and nerve injury. After peripheral nerve injury, both down regulation and up regulation of the P2X(3) receptor in sensory ganglion neurons have been observed. The purpose of this study was to examine the precise regulation of P2X(3) mRNA expression in primary sensory neurons after nerve injury. We used two nerve injury models in the rat, the transection of the tibial and common peroneal nerves and the transection of the infraorbital nerve, and observed dorsal root ganglion (DRG) and trigeminal ganglion neurons, respectively. P2X(3) mRNA in both neuron populations was detected by in situ hybridization with an oligonucleotide probe that was confirmed by Northern blot analysis. To identify axotomized neurons, we examined the expression of activating transcription factor 3 (ATF3), which is regarded as a neuronal-injury marker, using immunohistochemistry. In the DRG, the mean percentage of P2X(3) mRNA-labeled neurons relative to the total number of neurons increased from 32.7% in the naive rats to 42.7% at 3 days after injury. The mean percentage of P2X(3) mRNA-labeled neurons in ATF3 immunoreactive (ir) neurons was 29.5% at 3 postoperative days, which gradually decreased to 11.2% at 28 days after injury. In the trigeminal ganglion, the mean percentage of P2X(3) mRNA-labeled neurons was 36.9% at 3 days after injury, versus 26.0% in the naive rats. In the ATF3-ir neurons, the mean percentage of P2X(3) mRNA-labeled neurons was 25.3% at 1 postoperative day and was reduced to 6.1% at 28 postoperative days. The finding that P2X(3) mRNA in ATF3-ir neurons decreased significantly after injury indicates that axotomized neurons decreased the expression of P2X(3) mRNA, despite the increase in P2X(3) mRNA relative to the total number of sensory ganglion neurons. These data strongly suggest that P2X(3) mRNA expression increases in intact neurons and that P2X(3) mRNA in intact neurons may play a role in the pathomechanism of post-nerve injury in primary sensory neurons.
Collapse
MESH Headings
- Activating Transcription Factor 3
- Animals
- Axotomy
- Blotting, Northern
- Cerebral Cortex/chemistry
- Cerebral Cortex/physiology
- Ganglia, Spinal/chemistry
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiopathology
- Gene Expression/physiology
- Immunohistochemistry
- Male
- Maxillary Nerve/physiology
- Neurons, Afferent/chemistry
- Neurons, Afferent/physiology
- Peroneal Nerve/physiology
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2X3
- Tibial Nerve/physiology
- Transcription Factors/analysis
- Trigeminal Ganglion/chemistry
- Trigeminal Ganglion/cytology
- Trigeminal Ganglion/physiopathology
Collapse
Affiliation(s)
- Kenzo Tsuzuki
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan Department of Otorhinolaryngology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Wakisaka S, Atsumi Y, Youn SH, Maeda T. Morphological and cytochemical characteristics of periodontal Ruffini ending under normal and regeneration processes. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2000; 63:91-113. [PMID: 10885447 DOI: 10.1679/aohc.63.91] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Current knowledge on the Ruffini endings, primary mechanoreceptors in the periodontal ligament is reviewed with special reference to their cytochemical features and regeneration process. Morphologically, they are characterized by extensive ramifications of expanded axonal terminals and an association with specialized Schwann cells, called lamellar or terminal Schwann cells, which are categorized, based on their histochemical properties, as non-myelin-forming Schwann cells. Following nerve injury, the periodontal Ruffini endings of the rat incisor ligament can regenerate more rapidly than Ruffini endings in other tissues. During regeneration, terminal Schwann cells associated with the periodontal Ruffini endings migrate into regions where they are never found under normal conditions. Also during regeneration, alterations in the expression level of various bioactive substances occur in both axonal and Schwann cell elements in the periodontal Ruffini endings. Neuropeptide Y, which is not detected in intact periodontal Ruffini endings, is transiently expressed in their regenerating axons. Growth-associated protein-43 (GAP-43) is expressed transiently in both axonal and Schwann cell elements during regeneration, while this protein is localized in the Schwann sheath of periodontal Ruffini endings under normal conditions. The expression of calbindin D28k and calretinin, both belonging to the buffering type of calcium-binding proteins, was delayed in periodontal Ruffini endings, compared to their morphological regeneration. As the importance of axon-Schwann cell interactions has been proposed, further investigations are needed to elucidate their molecular mechanism particularly the contribution of growth factors during the regeneration as well as development of the periodontal Ruffini endings.
Collapse
Affiliation(s)
- S Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Suita, Japan.
| | | | | | | |
Collapse
|
22
|
Maeda T, Ochi K, Nakakura-Ohshima K, Youn SH, Wakisaka S. The Ruffini ending as the primary mechanoreceptor in the periodontal ligament: its morphology, cytochemical features, regeneration, and development. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:307-27. [PMID: 10759411 DOI: 10.1177/10454411990100030401] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The periodontal ligament receives a rich sensory nerve supply and contains many nociceptors and mechanoreceptors. Although its various kinds of mechanoreceptors have been reported in the past, only recently have studies revealed that the Ruffini endings--categorized as low-threshold, slowly adapting, type II mechanoreceptors--are the primary mechanoreceptors in the periodontal ligament. The periodontal Ruffini endings display dendritic ramifications with expanded terminal buttons and, furthermore, are ultrastructurally characterized by expanded axon terminals filled with many mitochondria and by an association with terminal or lamellar Schwann cells. The axon terminals of the periodontal Ruffini endings have finger-like projections called axonal spines or microspikes, which extend into the surrounding tissue to detect the deformation of collagen fibers. The functional basis of the periodontal Ruffini endings has been analyzed by histochemical techniques. Histochemically, the axon terminals are reactive for cytochrome oxidase activity, and the terminal Schwann cells have both non-specific cholinesterase and acid phosphatase activity. On the other hand, many investigations have suggested that the Ruffini endings have a high potential for neuroplasticity. For example, immunoreactivity for p75-NGFR (low-affinity nerve growth factor receptor) and GAP-43 (growth-associated protein-43), both of which play important roles in nerve regeneration/development processes, have been reported in the periodontal Ruffini endings, even in adult animals (though these proteins are usually repressed or down-regulated in mature neurons). Furthermore, in experimental studies on nerve injury to the inferior alveolar nerve, the degeneration of Ruffini endings takes place immediately after nerve injury, with regeneration beginning from 3 to 5 days later, and the distribution and terminal morphology returning to almost normal at around 14 days. During regeneration, some regenerating Ruffini endings expressed neuropeptide Y, which is rarely observed in normal animals. On the other hand, the periodontal Ruffini endings show stage-specific configurations which are closely related to tooth eruption and the addition of occlusal forces to the tooth during postnatal development, suggesting that mechanical stimuli due to tooth eruption and occlusion are a prerequisite for the differentiation and maturation of the periodontal Ruffini endings. Further investigations are needed to clarify the involvement of growth factors in the molecular mechanisms of the development and regeneration processes of the Ruffini endings.
Collapse
Affiliation(s)
- T Maeda
- Department of Oral Anatomy, Niigata University School of Dentistry, Japan
| | | | | | | | | |
Collapse
|
23
|
Liu CN, Wall PD, Ben-Dor E, Michaelis M, Amir R, Devor M. Tactile allodynia in the absence of C-fiber activation: altered firing properties of DRG neurons following spinal nerve injury. Pain 2000; 85:503-521. [PMID: 10781925 DOI: 10.1016/s0304-3959(00)00251-7] [Citation(s) in RCA: 338] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We examined the relation between ectopic afferent firing and tactile allodynia in the Chung model of neuropathic pain. Transection of the L5 spinal nerve in rats triggered a sharp, four- to six-fold increase in the spontaneous ectopic discharge recorded in vivo in sensory axons in the ipsilateral L5 dorsal root (DR). The increase, which was not yet apparent 16 h postoperatively, was complete by 24 h. This indicates rapid modification of the electrical properties of the neurons. Only A-neurons, primarily rapidly conducting A-neurons, contributed to the discharge. No spontaneously active C-neurons were encountered. Tactile allodynia in hindlimb skin emerged during precisely the same time window after spinal nerve section as the ectopia, suggesting that ectopic activity in injured myelinated afferents can trigger central sensitization, the mechanism believed to be responsible for tactile allodynia in the Chung model. Most of the spike activity originated in the somata of axotomized DRG neurons; the spinal nerve end neuroma accounted for only a quarter of the overall ectopic barrage. Intracellular recordings from afferent neuron somata in excised DRGs in vitro revealed changes in excitability that closely paralleled those seen in the DR axon recordings in vivo. Corresponding changes in biophysical characteristics of the axotomized neurons were catalogued. Axotomy carried out at a distance from the DRG, in the mid-portion of the sciatic nerve, also triggered increased afferent excitability. However, this increase occurred at a later time following axotomy, and the relative contribution of DRG neuronal somata, as opposed to neuroma endings, was smaller. Axotomy triggers a wide variety of changes in the neurochemistry and physiology of primary afferent neurons. Investigators studying DRG neurons in culture need to be alert to the rapidity with which axotomy, an inevitable consequence of DRG excision and dissociation, alters key properties of these neurons. Our identification of a specific population of neurons whose firing properties change suddenly and synchronously following axotomy, and whose activity is associated with tactile allodynia, provides a powerful vehicle for defining the specific cascade of cellular and molecular events that underlie neuropathic pain.
Collapse
Affiliation(s)
- Chang-Ning Liu
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel Department of Physiology, Medical School, St. Thomas', London, UK Physiologisches Institut, Christian-Albrechts Universitat, 24098 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Barthó L, Lázár Z, Lénárd L, Benkó R, Tóth G, Penke B, Szolcsányi J, Maggi CA. Evidence for the involvement of ATP, but not of VIP/PACAP or nitric oxide, in the excitatory effect of capsaicin in the small intestine. Eur J Pharmacol 2000; 392:183-8. [PMID: 10762672 DOI: 10.1016/s0014-2999(00)00137-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The contractile effect of capsaicin in the guinea-pig small intestine involves an activation of enteric cholinergic neurons. Our present data show that the P(2) purinoceptor antagonist pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 30 microM) significantly reduces the contractile response to capsaicin (2 microM) in the presence, but not in the absence, of the tachykinin receptor antagonists [O-Pro(9), (Spiro-gamma-lactam)Leu(10), Trp(11)]physalaemin (1-11) (GR 82334; 3 microM) and (S)-(N)-(1-(3-(1-benzoyl-3-(3, 4-dichlorophenyl)piperidin-3-yl)propyl)-4-phenylpiperidine-4-yl)-N -methylacetamide (SR 142804: 100 nM) (for blocking tachykinin NK1 and NK3 receptors, respectively). PPADS (30 microM) fails to influence submaximal cholinergic contractions evoked by cholecystokinin octapeptide (CCK-8; 2-3 nM) or senktide (1 nM), or the direct smooth muscle-contracting effect of histamine (100-200 nM). A higher concentration (300 microM) of PPADS is also without effect against the stimulatory action of cholecystokinin octapeptide. This means that PPADS can probably be safely used as a purinoceptor antagonist in intestinal preparations. The putative pituitary adenylate cyclase activating peptide (PACAP) receptor antagonist PACAP-(6-38) (3 microM) significantly reduces the contractile effect of PACAP-(1-38) (10 nM) and abolishes that of vasoactive intestinal polypeptide (VIP; 10 nM). PACAP-(6-38) (3 microM) fails to influence the effect of capsaicin (2 microM) both in the absence and in the presence of tachykinin receptor antagonists. The nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine (L-NOARG; 100 microM) also fails to inhibit the capsaicin-induced motor response. We conclude that an endogenous ligand of PPADS-sensitive P(2) purinoceptors (possibly ATP), but not a VIP/PACAP-like peptide or NO, is involved in the nontachykininergic activation of cholinergic neurons in the course of the capsaicin-induced contraction.
Collapse
Affiliation(s)
- L Barthó
- Department of Pharmacology and Pharmacotherapy, University Medical School of Pécs, H-7643, Pécs, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Scott C, Perry MJ, Raven PE, Massey EJ, Lisney SJ. Capsaicin-sensitive afferents are involved in signalling transneuronal effects between cutaneous sensory nerves. Neuroscience 2000; 95:535-41. [PMID: 10658634 DOI: 10.1016/s0306-4522(99)00444-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to investigate changes in contralateral nerves associated with peripheral nerve injuries. Transection and subsequent regeneration of the saphenous nerve on one side caused a suppression of the ability of the contralateral saphenous nerve to produce a neurogenic plasma extravasation response. This effect was transient, and was first evident two weeks after injury, reaching its maximum at four weeks, but was no longer detectable at eight weeks. This change was paralleled by a decrease in the content of substance P, a neuropeptide involved in neurogenic plasma extravasation, in the contralateral nerve. The neurotoxin capsaicin was used to deplete the nerve of a subclass of C-fibres, namely the polymodal nociceptor afferents. Pretreatment of the nerve to be lesioned with capsaicin was sufficient to significantly attenuate the changes in the plasma extravasation response and substance P content observed on the contralateral side. The effectiveness of the capsaicin treatment was confirmed by histological examination. These results strongly suggest that changes observed at a site distant from the location of the nerve injury are dependent on the integrity of capsaicin-sensitive C-fibre afferents within the injured nerve. Furthermore, given that the contralateral nerve has commonly been used as the control for an injury conducted on the homologous nerve or muscle on the opposite side of the body, the underlying assumption being that the contralateral nerve remained unchanged, the present findings emphasize the need for separate groups of control animals which have undergone no surgical procedures.
Collapse
Affiliation(s)
- C Scott
- Johnson and Johnson Research, The Australian Technology Park, Eveleigh, NSW, Australia
| | | | | | | | | |
Collapse
|
26
|
Effects of sciatic nerve injuries on delta -opioid receptor and substance P immunoreactivities in the superficial dorsal horn of the rat. Eur J Pain 1999; 3:115-129. [PMID: 10700341 DOI: 10.1053/eujp.1998.0104] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of the present study was to examine the effects of transection combined with tight ligation, and crush of the sciatic nerve on delta -opioid receptor and substance P immunoreactivities in the superficial spinal dorsal horn at different time points after injury. Both the delta -opioid receptor and substance P are primarily localised to primary afferent fibres and terminals. Seven days following transection and ligation, a slight decrease in both delta -opioid receptor and substance P levels was seen in laminae I and II. The maximal reduction appeared to take place around 4 weeks. Restoration of immunoreactivity was observed by 32 weeks, and by 1 year the levels were almost back to normal. Regarding crush injury, the reduction in both delta -opioid receptor and substance P immunoreactivities were less pronounced and recovery was faster than after transection injury. Already by 16 weeks, the levels were almost back to normal.These results show that peripheral nerve injuries dramatically reduce the levels of delta -opioid receptor and substance P immunoreactivities in the superficial dorsal horn after short survivals and demonstrate recovery after long survivals. Whether the marked reduction of delta -opioid receptors in the dorsal horn is involved in the decreased ability of opioid analgesics to alleviate neuropathic pain remains to be studied. Copyright 1999 European Federation of Chapters of the International Association for the Study of Pain.
Collapse
|
27
|
Antunes Bras JM, Laporte AM, Benoliel JJ, Bourgoin S, Mauborgne A, Hamon M, Cesselin F, Pohl M. Effects of peripheral axotomy on cholecystokinin neurotransmission in the rat spinal cord. J Neurochem 1999; 72:858-67. [PMID: 9930763 DOI: 10.1046/j.1471-4159.1999.720858.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Because cholecystokinin (CCK) acts as a "functional" endogenous opioid antagonist, it has been proposed that changes in central CCKergic neurotransmission might account for the relative resistance of neuropathic pain to the analgesic action of morphine. This hypothesis was addressed by measuring CCK-related parameters 2 weeks after unilateral sciatic nerve section in rats. As expected, significant decreases (-25-38%) in the tissue concentrations and in vitro release of both substance P and calcitonin gene-related peptide were noted in the dorsal quadrant of the lumbar spinal cord on the lesioned side. In contrast, the tissue levels and in vitro release of CCK were unchanged in the same area in lesioned rats. Measurements in dorsal root ganglia at L4-L6 levels revealed no significant changes in proCCK mRNA after the lesion. However, sciatic nerve section was associated with a marked ipsilateral increase in both CCK-B receptor mRNA levels in these ganglia (+70%) and the autoradiographic labeling of CCK-B receptors by [3H]pBC 264 (+160%) in the superficial layers of the lumbar dorsal horn. Up-regulation of CCK-B receptors rather than CCK synthesis and release probably contributes to increased spinal CCKergic neurotransmission in neuropathic pain.
Collapse
Affiliation(s)
- J M Antunes Bras
- INSERM U 288, NeuroPsychoPharmacologie Moléculaire, Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bester H, Allchorne AJ, Woolf CJ. Recovery of C-fiber-induced extravasation following peripheral nerve injury in the rat. Exp Neurol 1998; 154:628-36. [PMID: 9878197 DOI: 10.1006/exnr.1998.6953] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peripheral nerve injury leads to substantial alterations in injured sensory neurons. These include cell death, phenotypic modifications, and regeneration. Primary sensory neurons have recently been shown not to die until a time beyond 4 months following a nerve crush or ligation and this loss is, moreover, limited to cells with unmyelinated axons, the C-fibers. The late loss of C-fibers may be due to a lack of target reinnervation during the regenerative phase. In order to investigate this, we have used a particular peripheral function, unique to C-fibers, as a measure of peripheral reinnervation: an increase in capillary permeability on antidromic activation of C-fibers, i.e., neurogenic extravasation. This was investigated in rats that had received a nerve crush injury 1 to 50 weeks earlier. Some recovery of the capacity of C-fibers to generate extravasation was detected at 8-10 weeks, which increased further at 12-14 weeks, and then plateaued at this level with no further recovery at 30 or 50 weeks. In intact and damaged sciatic nerves, A beta-fibers never induced extravasation. These findings are compatible with the hypothesis that those C-fibers which make it back to their peripheral targets do not subsequently die and those that do not, may die.
Collapse
Affiliation(s)
- H Bester
- Department of Anatomy and Developmental Biology, University College London, Medawar Building, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
29
|
Ma W, Bisby MA. Partial and complete sciatic nerve injuries induce similar increases of neuropeptide Y and vasoactive intestinal peptide immunoreactivities in primary sensory neurons and their central projections. Neuroscience 1998; 86:1217-34. [PMID: 9697128 DOI: 10.1016/s0306-4522(98)00068-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Partial nerve injury is more likely to cause neuropathic pain than complete nerve injury. We have compared the changes in neuropeptide expression in primary sensory neurons which follow complete and partial injuries to determine if these might be involved. Since more neurons are damaged by complete injury, we expected that complete sciatic nerve injury would simply cause greater increases in neuropeptide Y and vasoactive intestinal peptide than partial injury. We examined neuropeptide Y and vasoactive intestinal peptide immunoreactivities in L4 and L5 dorsal root ganglia, the dorsal horn of L4-L5 spinal cord, and the gracile nuclei of rats killed 14 days after unilateral complete sciatic nerve transection, partial sciatic nerve transection and chronic constriction injury of the sciatic nerves. In all three groups of rats, neuropeptide Y- and vasoactive intestinal peptide-immunoreactive neurons were increased in the ipsilateral L4 and L5 dorsal root ganglion when compared with the contralateral side. Most neuropeptide Y-immunoreactive neurons were of medium and large size, but a few were small. Neuropeptide Y-immunoreactive axonal fibers were increased from laminae I to IV, and vasoactive intestinal peptide-immunoreactive axonal fibers were increased in laminae I and II, of the ipsilateral dorsal horn of L4-L5 spinal cord. The increases of neuropeptide Y and vasoactive intestinal peptide immunoreactivities in the dorsal horn were similar among the three groups. However, only after constriction injury were some vasoactive intestinal peptide-immunoreactive neurons seen in the deeper laminae of the ipsilateral dorsal horn. Robust neuropeptide Y-immunoreactive axonal fibers and some neuropeptide Y-immunoreactive cells were seen in the ipsilateral gracile nuclei of all three groups of animals, but neuropeptide Y-immunoreactive cells were more prominent after constriction injury. Contrary to our expectations, partial and complete sciatic nerve injuries induced similar increases in neuropeptide Y and vasoactive intestinal peptide in lumbar dorsal root ganglion neurons and their central projections in the dorsal horn and the gracile nuclei two weeks after injury. Some neurons whose axons were spared by partial injury may also increase neuropeptide Y or vasoactive intestinal peptide expression. Altered neuropeptide release from these functional sensory neurons may play a role in neuropathic pain.
Collapse
Affiliation(s)
- W Ma
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
30
|
Molander C, Hongpaisan J, Shortland P. Somatotopic redistribution of c-fos expressing neurons in the superficial dorsal horn after peripheral nerve injury. Neuroscience 1998; 84:241-53. [PMID: 9522378 DOI: 10.1016/s0306-4522(97)00375-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The functional somatotopic reorganization of the lumbar spinal cord dorsal horn after nerve injury was studied in the rat by mapping the stimulus-evoked distribution of neurons expressing proto-oncogene c-fos. In three different nerve injury paradigms, the saphenous nerve was electrically stimulated at C-fibre strength at survival times ranging from 40 h to more than six months: 1) Saphenous nerve stimulation from three weeks onwards after ipsilateral sciatic nerve transection resulted in an increase in the number of Fos-immunoreactive neurons within the dorsal horn saphenous territory in laminae I-II, and an expansion of the saphenous territory into the denervated sciatic territory until 14 weeks postinjury. 2) Saphenous nerve stimulation from five days onwards after ipsilateral sciatic nerve section combined with saphenous nerve crush resulted in an increase in the number of Fos-immunoreactive neurons within the dorsal horn saphenous nerve territory, and an expansion of the saphenous nerve territory into the denervated sciatic nerve territory. 3) Stimulation of the crushed nerve (without previous adjacent nerve section) at five days, but not at eight months resulted in a temporary increase in the number of Fos-immunoreactive neurons within the territory of the injured nerve, and no change in area at either survival time. The results indicate that nerve injury results in an increased capacity of afferents in an adjacent uninjured, or regenerating nerve, to excite neurons both in its own and in the territory of the permanently injured nerve in the dorsal horn. The onset and duration of the increased postsynaptic excitability and expansion depends on the types of nerve injuries involved. These findings indicate the complexity of the central changes that follows in nerve injuries that contain a mixture of uninjured, regenerating and permanently destroyed afferents.
Collapse
Affiliation(s)
- C Molander
- Karolinska Institutet, Department of Neuroscience, Doktorsringen, Stockholm, Sweden
| | | | | |
Collapse
|
31
|
Fristad I, Jacobsen EB, Kvinnsland IH. Coexpression of vasoactive intestinal polypeptide and substance P in reinnervating pulpal nerves and in trigeminal ganglion neurones after axotomy of the inferior alveolar nerve in the rat. Arch Oral Biol 1998; 43:183-9. [PMID: 9631170 DOI: 10.1016/s0003-9969(98)00009-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effect of this axotomy on the expression of vasoactive intestinal polypeptide (VIP) in trigeminal ganglion neurones and nerve fibres in the first molar was examined immunohistochemically 3 weeks postsurgically in rats. A distinct upregulation of VIP-like immunoreactivity was found in 3 to 4% of the neurones (mean dia., 20.9 +/- 0.45 microns; mean cross-sectional area, 367 +/- 13.2 microns 2) in the mandibular region after axotomy. An almost complete coexpression was registered in neurones upregulated for VIP and growth-associated protein 43. Coexpression of VIP and substance P (SP) was found in a small number of the immunoreactive (IR) small-sized neurones, mainly in those in which VIP and SP were both weakly immunoreactive. In the uninjured ganglion, weakly labelled VIP-positive granules were frequently traced at high magnification in the cytoplasm of small neurones. No VIP-IR fibres were found in the control molar pulp, except for a few in the root pulp near the apex. However, 3 weeks after axotomy, a number of VIP-containing nerve fibres were found in the molar pulp and apical periodontium. Coarse VIP-IR fibres directed towards the odontoblast layer were a common finding. In some of these fibres VIP was shown to colocalize with SP. These results indicate that VIP is clearly expressed and transported in regenerating primary afferent neurones after axotomy of the inferior alveolar nerve.
Collapse
Affiliation(s)
- I Fristad
- Department of Odontology-Endodontics, School of Dentistry, University of Bergen, Norway
| | | | | |
Collapse
|
32
|
Rice FL, Fundin BT, Arvidsson J, Aldskogius H, Johansson O. Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970825)385:2<149::aid-cne1>3.0.co;2-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Lopes P, Couture R. Localization of bradykinin-like immunoreactivity in the rat spinal cord: effects of capsaicin, melittin, dorsal rhizotomy and peripheral axotomy. Neuroscience 1997; 78:481-97. [PMID: 9145804 DOI: 10.1016/s0306-4522(96)00554-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A putative role for bradykinin has been proposed in the processing of sensory information at the level of the spinal cord. Autoradiographic studies have demonstrated the presence of B2 kinin receptor binding sites in superficial laminae of the dorsal horn and a down-regulation of those receptors in rat models of pain injury. In this study, classical immunocytochemistry and confocal microscopy immunofluorescence were used first to localize bradykinin-like immunoreactivity in all major spinal cord segments of naive rats; second, to assess bradykinin-like immunoreactivity changes that occur in animals subjected to various chemical treatments and surgical lesions. High densities of bradykinin-like immunoreactivity were observed in motoneuron of the ventral horn, deeper laminae and nucleus dorsalis of the dorsal horn. Higher magnification of ventral horn showed strong immunostaining of motoneuron perikaryas and their proximal processes. Two types of bradykinin-like immunoreactivity immunostained cellular bodies were observed in deeper laminae of the dorsal horn. These interneurons, morphologically corresponding to islets and antenna-type cells project dendrites to adjacent laminae. Furthermore, numerous strongly marked dendrites, transversally cut, suggest the presence of projection neurons to higher cervical centres. Following unilateral lumbar dorsal rhizotomy (L1-L6) or peripheral lesion of the sciatic nerve, important increases of bradykinin-like immunoreactivity were found in laminae III and IV of the ipsilateral dorsal horn. In contrast, significant decreases of immunodeposits were observed in both cell bodies and numerous dendrites of motoneuron surrounding neuropil. Specific destructions of sensory afferent fibres with capsaicin or selective activation of kallikreins with melittin caused increases of bradykinin-like immunoreactivity in both the dorsal and ventral horns of the spinal cord. These results which demonstrate the cellular localization of bradykinin-like immunoreactivity in both dorsal and ventral horns of the rat spinal cord, further reveal the plasticity of this non-sensory peptidergic system following various chemical and surgical treatments. Hence, these anatomical findings along with earlier functional and receptor autoradiographic studies reinforce the putative role of bradykinin in sensory function.
Collapse
Affiliation(s)
- P Lopes
- Department of Physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | | |
Collapse
|
34
|
Regeneration of periodontal primary afferents of the rat incisor following injury of the inferior alveolar nerve with special reference to neuropeptide Y-like immunoreactive primary afferents. Brain Res 1997. [DOI: 10.1016/s0006-8993(96)01451-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Waschek JA. VIP and PACAP receptor-mediated actions on cell proliferation and survival. Ann N Y Acad Sci 1996; 805:290-300; discussion 300-1. [PMID: 8993411 DOI: 10.1111/j.1749-6632.1996.tb17491.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- J A Waschek
- Department of Psychiatry, University of California at Los Angeles 90024-1759, USA.
| |
Collapse
|
36
|
Gorio A, Vergani L, Ferro L, Prino G, Di Giulio AM. Glycosaminoglycans in nerve injury: II. Effects on transganglionic degeneration and on the expression of neurotrophic factors. J Neurosci Res 1996; 46:572-80. [PMID: 8951669 DOI: 10.1002/(sici)1097-4547(19961201)46:5<572::aid-jnr6>3.0.co;2-g] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Injury to the sciatic nerve leads to the transganglionic degeneration of sensory axons and to the induction of neurotrophins and p75 nerve growth factor receptor synthesis by the denervated Schwann cells. Sciatic nerve axotomy caused a marked loss of substance P and of met-enkephalin in the lumbar cord. Substance P immunostaining and pre-proenkephalin mRNA expression were reduced in the dorsal horn layers I and II ipsilaterally to the lesion. Treating rats with low doses (0.25 mg/kg) of heparin or COS 8, a natural glycosaminoglycan mixture with low anticoagulant activity, the peptide loss was prevented and the content increased of about 50% above control values. The effects of COS 8 treatment were also evident on Schwann cells. COS 8 augmented the increase of nerve growth factor, brain-derived neurotrophic factor, and NT-3 mRNA expression in the distal stump of the axotomized sciatic nerve. Therefore, it can be concluded that glycosaminoglycans neuroprotective effects on lesioned sensory axons might have been mediated by the dramatic promotion of neurotrophin synthesis. Although the in vitro studies (Lesma et al.: J Neurosci Res, 1996) suggested also a likely direct effect as extracellular matrix components that is not mediated by trophic factors.
Collapse
Affiliation(s)
- A Gorio
- Laboratory for Research on Pharmacology of Neurodegenerative Disorders, Dept. Medical Pharmacology, Milano, Italy
| | | | | | | | | |
Collapse
|
37
|
Sun Y, Zigmond RE. Leukaemia inhibitory factor induced in the sciatic nerve after axotomy is involved in the induction of galanin in sensory neurons. Eur J Neurosci 1996; 8:2213-20. [PMID: 8921314 DOI: 10.1111/j.1460-9568.1996.tb00744.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dramatic changes occur in neuropeptide expression in sensory and sympathetic neurons following axonal injury. Based on the finding that the cytokine leukemia inhibitory factor (LIF) plays an important role in mediating these changes in sympathetic neurons, its participation in triggering changes in sensory neurons was examined. By the use of transgenic mice in which the LIF gene had been knocked out, LIF was found to contribute to the induction of galanin expression in dorsal root ganglia (DRG) after sciatic nerve lesion. On the other hand, two other neuropeptide changes that occur in DRG under these conditions, the reduction of substance P and induction of neuropeptide Y, were independent of LIF expression. In the sympathetic superior cervical ganglion, transection of the postganglionic nerves close to the ganglion resulted in a rapid induction of LIF mRNA in the ganglion and in the lesioned nerve trunk. In contrast, transection of the sciatic nerve close to or distant from the DRG caused a rapid induction of LIF mRNA in the lesioned nerve, but not in the DRG. DRG were capable of making substantial amounts of LIF mRNA when placed in explant cultures, but, in vivo, only a slight induction was found even when both central and peripheral nerve processes of these sensory neurons were transected. These latter observations suggest that, in contrast to the superior cervical ganglia, the DRG environment inhibits the lesion-induced expression of LIF in vivo and/or explanted DRG produce stimulatory signals not found in vivo. Together with the data on the induction of galanin, these observations provide evidence that LIF, generated at a site at some distance from the ganglion, is involved in triggering part of the cell body reaction in sensory neurons.
Collapse
Affiliation(s)
- Y Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4975, USA
| | | |
Collapse
|
38
|
Oyelese AA, Kocsis JD. GABAA-receptor-mediated conductance and action potential waveform in cutaneous and muscle afferent neurons of the adult rat: differential expression and response to nerve injury. J Neurophysiol 1996; 76:2383-92. [PMID: 8899611 PMCID: PMC2605353 DOI: 10.1152/jn.1996.76.4.2383] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Whole cell patch-clamp recordings were obtained from identified cutaneous and muscle afferent neurons (33-60 microns diam) in dissociated L4 and L5 dorsal root ganglia (DRGs) from normal rats and from rats 2-3 wk after sciatic nerve ligation or crush injury. gamma-Aminobutyric acid (GABA)-induced conductance was compared in normal and injured neurons from both functional classes of sensory neurons. 2. Control cutaneous afferent neurons had a peak GABA-mediated conductance of 287 +/- 27 (SE) nS compared with 457 +/- 42 nS for control muscle afferent neurons. 3. An inflection on the downslope of the action potential was observed in 47% of cutaneous afferent neurons compared with 20% of muscle afferent neurons. 4. After ligation and transection of the sciatic nerve there was no change in the GABA-mediated conductance of muscle afferent neurons or in the action potential waveform (23% inflected). However, the cutaneous afferent neurons displayed a greater than two-fold increase in their GABA-mediated conductance and displayed a prominent reduction in the number of neurons with inflected action potentials (13% inflected). Input resistance was similar in cutaneous and muscle afferent neurons and decreased after ligation in cutaneous but not muscle afferents. Resting potential averaged from -50 to -56 mV in normal and ligated groups for both cutaneous and muscle afferent neurons. 5. After crush injury in cutaneous afferent neurons where the transected axons were allowed to regenerate into the distal nerve stump, GABAA-receptor-mediated conductance was elevated compared with controls. However, action potential waveform was not altered by crush injury, suggesting a differential regulation of these two properties in cutaneous afferent neurons. 6. These data indicate that injury-induced plasticity of GABAA-receptor-mediated conductance and action potential waveform occurs in cutaneous but not muscle afferent DRG neurons. It appears that peripherally derived influences are critical in maintaining the electrophysiological phenotype of cutaneous afferent neurons but not muscle afferent neurons.
Collapse
Affiliation(s)
- A A Oyelese
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
39
|
Hyatt-Sachs H, Bachoo M, Schreiber R, Vaccariello SA, Zigmond RE. Chemical sympathectomy and postganglionic nerve transection produce similar increases in galanin and VIP mRNA but differ in their effects on peptide content. JOURNAL OF NEUROBIOLOGY 1996; 30:543-55. [PMID: 8844517 DOI: 10.1002/(sici)1097-4695(199608)30:4<543::aid-neu9>3.0.co;2-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Large changes in neuronal gene expression occur in adult peripheral neurons after axonal transection. In the rat superior cervical ganglion, for example, neurons that do not normally express vasoactive intestinal peptide (VIP) or galanin do so after postganglionic nerve transection. These effects of axotomy could result from a number of aspects of the surgical procedure. To test the idea that the important variable might be the disconnection of axotomized neuronal cell bodies from their target tissues, we examined the effects of producing such a disconnection by means of the compound 6-hydroxydopamine (6-OHDA), a neurotoxin that causes degeneration of sympathetic varicosities and avoids many of the complications of surgery. Two days after 6-OHDA treatment, VIP and galanin immunoreactivities had increased two- and 40-fold, respectively. Nevertheless, these increases were substantially smaller than the 30- and 300-fold changes seen after surgical axotomy. When expression of VIP and galanin was examined at the mRNA level, however, comparable increases were found after either procedure. The results indicate that chemical destruction of sympathetic varicosities produces an equivalent signal for increasing VIP and galanin mRNA as does axonal transection. The differences in the neuropeptide levels achieved suggests that peptide expression after nerve transection is regulated both at the mRNA and protein levels.
Collapse
Affiliation(s)
- H Hyatt-Sachs
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106-4975, USA
| | | | | | | | | |
Collapse
|
40
|
White DM, Mansfield K. Vasoactive intestinal polypeptide and neuropeptide Y act indirectly to increase neurite outgrowth of dissociated dorsal root ganglion cells. Neuroscience 1996; 73:881-7. [PMID: 8809806 DOI: 10.1016/0306-4522(96)00055-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies suggest that rearrangement of synaptic circuitry of primary afferent neurons in the spinal cord may contribute, in part, to hyperalgesia that is often associated with peripheral nerve injury. This study of cultured adult rat dorsal root ganglion cells examined whether vasoactive intestinal polypeptide and neuropeptide Y, which are up-regulated in sensory neurons following nerve transection, possibly contribute to the morphological alterations induced by nerve injury. Neurite outgrowth of dissociated dorsal root ganglion cells was examined two weeks following either sciatic nerve transection or intrathecal administration of test agents via osmotic pumps. Dissociated cells taken from rats with transected sciatic nerve or following intrathecal administration of either vasoactive intestinal polypeptide or neuropeptide Y had a significant increase in the percentage of cells with neurites as compared to dorsal root ganglion cells taken from normal animals. Intrathecal administration, into rats with nerve lesion, of the vasoactive intestinal polypeptide and neuropeptide Y antagonists, vasoactive intestinal polypeptide(10-28) and alpha-trinositol, respectively, significantly attenuated the nerve injury-induced increase in neurite outgrowth. Vasoactive intestinal polypeptide and neuropeptide Y had no influence on neurite outgrowth when applied to normal dissociated dorsal root ganglion cells, however, when added to cells co-cultured with spinal cord explants, both peptides significantly increased the percentage of cells with neurites. K252a, a protein kinase inhibitor, attenuated the trophic action of neuropeptide Y, but not that of vasoactive intestinal polypeptide. The action of vasoactive intestinal polypeptide on neurite outgrowth was attenuated by the protein kinase A inhibitor, the Rp-isomer of adenosine-3',5'-cyclic monophosphorothioate. The results suggest that the peptides may contribute, indirectly, to the nerve injury-induced increase in neurite outgrowth of sensory neurons via separate spinally-derived neurotrophic factors and the study provides further insight into the possible mechanisms underlying hyperalgesia associated with nerve injury.
Collapse
Affiliation(s)
- D M White
- Department of Anaesthesia and Pain Management, University of Sydney, N.S.W., Australia
| | | |
Collapse
|
41
|
Wakisaka S, Youn SH, Maeda T, Kurisu K. Neuropeptide Y-like immunoreactive primary afferents in the periodontal tissues following dental injury in the rat. REGULATORY PEPTIDES 1996; 63:163-9. [PMID: 8837225 DOI: 10.1016/0167-0115(96)00038-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The distribution of neuropeptide Y (NPY)-like immunoreactive (-IR) nerve fibers in the periodontal tissues following dental injury to the rat maxillary first molar was examined with a combination of dental injury and surgical sympathectomy of the superior cervical ganglion (SCGx). In normal animals, NPY-IR nerve fibers were observed around the blood vessels of the trigeminal ganglion, dental pulp and periodontal tissues. These nerve fibers completely disappeared following SCGx. Fourteen days following dental injury of the maxillary first molar combined with SCGx, a small number NPY-IR cells was observed in the dorsal to middle portion of the maxillary division of the trigeminal ganglion. These were mostly medium- to large-sized cells with a mean +/- SD cross-sectional area of 541.4 +/- 239.3 microns 2. Approx. 50% of these cells had the cross-sectional areas between 400-600 micron 2. In the periodontal tissues of injured first molar, thick NPY-IR nerve fibers showing an irregular appearance were detected in the apical region. Immunoelectron microscopy showed that most NPY-IR nerve fibers near the lower half of the injured periodontal ligament had an axonal diameter of approx. 7-8 microns, and lacked apparent myelin sheaths. Near NPY-IR nerve fibers, many macrophages with phagosomes containing debris of the myelin sheaths were observed. At the oral epithelium covering the injured roots of the maxillary first molar, thick NPY-IR nerve fibers were recognizable and some penetrated the epithelium. No NPY-IR nerve fibers were observed in the dental pulp or periodontal tissues in second and third molars, and ultrastructural views of nerve fibers were almost intact following combined SCGx and dental injury to the first molar. The present results indicate that NPY-IR primary afferents appeared in the periodontal tissues following dental injury, and that NPY may be closely associated with the regeneration process of injured primary afferents.
Collapse
Affiliation(s)
- S Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Japan.
| | | | | | | |
Collapse
|
42
|
Ekblad E, Mulder H, Sundler F. Vasoactive intestinal peptide expression in enteric neurons is upregulated by both colchicine and axotomy. REGULATORY PEPTIDES 1996; 63:113-21. [PMID: 8837219 DOI: 10.1016/0167-0115(96)00028-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Axotomy is known to induce changes in neuropeptide expression in several types of neurons. Colchicine blocks the axonal transport and may mimic axotomy. The effects of colchicine-treatment and axotomy (local nerve crush by clamping of the gut) on enteric neurons expressing vasoactive intestinal peptide, neuropeptide Y and nitric oxide synthase were studied in rat small intestine by immunocytochemistry and in situ hybridization. Colchicine treatment significantly increased the number of submucous and myenteric neurons expressing vasoactive intestinal peptide and its mRNA. In contrast, an increase in the number of neuropeptide Y or nitric oxide synthase expressing neurons could not be detected. Axotomy markedly increased the number of myenteric vasoactive intestinal peptide-immunoreactive neurons in the segment located orally to the lesion, but not in the segment anally to the lesion, whereas that of nitric oxide synthase and neuropeptide Y expressing neurons was not affected. Double immunostaining revealed that the myenteric neurons containing nitric oxide synthase were induced by colchicine and axotomy to express vasoactive intestinal peptide. The present data indicate that colchicine and axotomy may induce marked changes in the neuropeptide expression of enteric neurons.
Collapse
Affiliation(s)
- E Ekblad
- Department of Physiology and Neuroscience, University of Lund, Sweden
| | | | | |
Collapse
|
43
|
Wakisaka S, Youn SH, Kato J, Takemura M, Kurisu K. Neuropeptide Y-immunoreactive primary afferents in the dental pulp and periodontal ligament following nerve injury to the inferior alveolar nerve in the rat. Brain Res 1996; 712:11-8. [PMID: 8705292 DOI: 10.1016/0006-8993(95)01421-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The distribution of neuropeptide Y (NPY)-immunoreactive (IR) primary afferents in the dental pulp and periodontal ligament of the rat mandible were examined following combined chronic constriction injury (CCI) of the inferior alveolar nerve (IAN) and sympathectomy of the superior cervical ganglion (SCG). NPY-IR nerve fibers were observed around the blood vessels in the trigeminal ganglion, dental pulp and periodontal ligament in normal animals. Following combined CCI of the IAN and sympathectomy of SCG (SCGx), perivascular NPY-IR nerve fibers originating from SCG disappeared completely, but many NPY-IR nerve fibers coming from the trigeminal ganglion appeared in the dental pulp and periodontal ligament. In the molar dental pulp, thick NPY-IR nerve fibers were observed within the nerve bundle, and some thin NPY-IR nerve fibers ran towards the odontoblast layer; very few NPY-IR nerve fibers were observed in the incisor pulp. In the periodontal ligament of molar, thick NPY-IR nerve fibers appeared at the alveolar part following combined CCI of IAN and SCGx. In the lingual portion of the periodontal ligament of the incisor, many thick NPY-IR nerve fibers were observed. These occasionally showed a tree-like appearance, resembling immature Ruffini endings; slowly adapting mechanoreceptors. The present results indicate that periodontal mechanoreceptors are among the main targets of injury-evoked NPY following IAN injury.
Collapse
Affiliation(s)
- S Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Japan.
| | | | | | | | | |
Collapse
|
44
|
Wakisaka S, Takikita S, Youn SH, Kurisu K. Partial coexistence of neuropeptide Y and calbindin D28k in the trigeminal ganglion following peripheral axotomy of the inferior alveolar nerve in the rat. Brain Res 1996; 707:228-34. [PMID: 8919300 DOI: 10.1016/0006-8993(95)01262-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunohistochemistry was applied to examine the correlation between neuropeptide Y (NPY) and the two calcium binding proteins (CaBPs) parvalbumin (PV) and calbindin D28k (CB) in the trigeminal ganglion following peripheral axotomy of the inferior alveolar nerve (IAN) in the rat. Five days following transection and application of FluoroGold (FG) to the cut end of the IAN, approximately 14.8% (80/539) and 18.6% (90/483) of FG-labeled IAN neurons in the trigeminal ganglion showed PV-like immunoreactivity (-LI) and CB-LI, respectively. The mean +/- S.D. area of FG-labeled PV-like immunoreactive (-IR) cells (FG/PV-IR cells) and FG/CB-IR cells were 835.9 +/- 303.1 mu m2 and 712.7 +/- 246.0 mu m2, respectively. FG/PV-IR cells were significantly larger than FG/CB-IR cells. Fourteen days following peripheral axotomy of the IAN, NPY-LI appeared in the medium- to large-sized cells. Double immunostaining revealed that approximately 3.3% (52/1569) of NPY-IR cells in the axotomized trigeminal ganglion displayed PV-LI, while approximately 26.7% (371/1392) of NPY-IR cells displayed CB-LI. The mean +/- S.D. cross-sectional areas of PV-IR and CB-IR trigeminal ganglion cells displaying NPY-LI were 819.5 +/- 265.6 mu m2 and 766.5 +/- 279.7 mu m2, respectively. There were no significant differences in the cross-sectional areas either between NPY/PV-IR cells and NPY/CB-IR cells, or between FG/PV-IR cells and NPY/PV-IR cells, or between FG/CB-IR cells and NPY/CB-IR cells. The present results indicate that injury-evoked medium- to large-sized NPY neurons were a different population from large-sized PV neurons, and NPY was partly co-localized with CB.
Collapse
Affiliation(s)
- S Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Faculty of Dentistry, Japan.
| | | | | | | |
Collapse
|
45
|
Rydh-Rinder M, Holmberg K, Elfvin LG, Wiesenfeld-Hallin Z, Hokfelt T. Effects of peripheral axotomy on neuropeptides and nitric oxide synthase in dorsal root ganglia and spinal cord of the guinea pig: an immunohistochemical study. Brain Res 1996; 707:180-8. [PMID: 8919294 DOI: 10.1016/0006-8993(95)01231-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of axotomy (3, 10 and 21 days) on the expression of some neuronal markers was analysed in dorsal root ganglia and spinal cord of guinea-pigs using immunohistochemistry. Three weeks following injury, substance P-like immunoreactivity (-LI) was slightly reduced in the DRGs of the ipsilateral side, whereas a marked increase in neuropeptide Y(NPY)-LI could be detected ipsilaterally and a smaller increase contralaterally. NPY-LI was mainly expressed in small, but also some medium-sized and large neuron profiles after axotomy. Galanin-LI showed a moderate bilateral increase. No significant changes could be observed in DRGs for calcitonin gene-related peptide (CGRP)-, vasoactive intestinal polypeptide-, peptide histidine isoleucine- or nitric oxide synthase-LIs. In the ventral horn CGRP-LI was slightly increased bilaterally in motoneurons, most pronounced on the injured side. Autotomy behaviour was seen in seven of the nine animals in the twenty-one day group. The present results demonstrate that also in guinea-pigs several peptides undergo distinct changes in their expression after peripheral nerve injury. However, in contrast to rats and monkeys, galanin-LI is only moderately increased in guinea-pigs. Neuropeptide Y showed a dramatic increase mainly in small neurons, in contrast to the upregulation in large neurons in the rat. Thus, distinct species differences exist with regard to the cellular response to nerve injury.
Collapse
|
46
|
Sommer C, Myers RR. Neurotransmitters in the spinal cord dorsal horn in a model of painful neuropathy and in nerve crush. Acta Neuropathol 1995; 90:478-85. [PMID: 8560981 DOI: 10.1007/bf00294809] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We tested the hypothesis that neurochemical changes in the spinal cord dorsal horn associated with neuropathic pain states differ from those seen in association with non-painful neuropathies. Immunohistochemistry was performed on spinal cord sections from rats with a chronic constriction injury (CCI), which develop hyperalgesia, and from animals with a nerve crush injury, which do not develop hyperalgesia or other signs of a painful syndrome. Immunohistochemistry was quantified by computer-assisted densitometry. Calcitonin gene-related peptide (CGRP) immunoreactivity and substance P (SP) immunoreactivity were decreased from 1 to 4 weeks after injury in CCI and from 2 to 6 weeks in crush. Gamma-aminobutyric acid immunoreactivity was unchanged in both conditions at all time points. Met-enkephalin (Met-enk) immunoreactivity was increased in CCI and unchanged in crush. Although SP and CGRP are involved in pain transmission, we conclude that their decrease in immunoreactivity is not specific for the CCI model, but rather a more general event in nerve de- and regeneration. The increase in immunoreactivity for the opioid peptide Met-ink, however, was only seen in the late phase of CCI, and may be specific for conditions associated with neuropathic pain and its resolution.
Collapse
Affiliation(s)
- C Sommer
- Department of Anesthesiology, University of California, San Diego, USA
| | | |
Collapse
|
47
|
Xu XJ, Andell S, Zhang X, Wiesenfeld-Hallin Z, Langel U, Bedecs K, Hökfelt T, Bartfai T. Peripheral axotomy increases the expression of galanin message-associated peptide (GMAP) in dorsal root ganglion cells and alters the effects of intrathecal GMAP on the flexor reflex in the rat. Neuropeptides 1995; 28:299-307. [PMID: 7603589 DOI: 10.1016/0143-4179(95)90046-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously reported that galanin message-associated peptide (GMAP), a fragment of galanin precursor protein, occurs in a limited number of dorsal root ganglion (DRG) cells in rats with intact sciatic nerves. In the present study, the localization of GMAP in dorsal root ganglia, dorsal roots and dorsal horn was analyzed immunohistochemically and compared between rats with intact and sectioned sciatic nerves. Furthermore, the effects of intrathecal (i.t.) GMAP on the flexor reflex in rats with intact and sectioned nerves were examined. In rats with intact sciatic nerves, i.t. GMAP elicited a moderate facilitation of the flexor reflex. The facilitation of the flexor reflex induced by conditioning stimulation (CS) of cutaneous C-fibers was strongly blocked by GMAP. GMAP also selectively antagonized the reflex facilitatory effect of i.t. substance P (SP), but not i.t. vasoactive intestinal peptide (VIP). Unilateral sciatic nerve section induced an upregulation of GMAP in the ipsilateral dorsal root ganglia 2 weeks after axotomy. The effect of GMAP on the baseline reflex was similar in normal and axotomized rats, but the blocking effect of GMAP on C-fiber CS-induced facilitation was significantly reduced after axotomy. GMAP did not antagonize the reflex facilitatory effect of SP after axotomy, whereas an antagonism on VIP-induced facilitation was observed. The possible role of GMAP in spinal transmission and comparison with the effects of galanin are discussed.
Collapse
Affiliation(s)
- X J Xu
- Department of Medical Laboratory Science and Technology, Huddinge University Hospital, Karolinska Institute, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cheng L, Khan M, Mudge AW. Calcitonin gene-related peptide promotes Schwann cell proliferation. J Biophys Biochem Cytol 1995; 129:789-96. [PMID: 7730412 PMCID: PMC2120445 DOI: 10.1083/jcb.129.3.789] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Schwann cells in culture divide in response to defined mitogens such as PDGF and glial growth factor (GGF), but proliferation is greatly enhanced if agents such as forskolin, which increases Schwann cell intracellular cAMP, are added at the same time as PDGF or GGF (Davis, J. B., and P. Stroobant. 1990. J. Cell Biol. 110:1353-1360). The effect of forskolin is probably due to an increase in numbers of PDGF receptors (Weinmaster, G., and G. Lemke. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:915-920. Neuropeptides and beta-adrenergic agonists have been reported to have no effect on potentiating the mitogenic response of either PDGF or GGF. We show that the neuropeptide calcitonin gene-related peptide (CGRP) increases Schwann cell cAMP levels, but the cells rapidly desensitize. We therefore stimulated the cells in pulsatile fashion to partly overcome the effects of desensitization and show that CGRP can synergize with PDGF to stimulate Schwann cell proliferation, and that CGRP is as effective as forskolin in the pulsatile regime. CGRP is a good substrate for the neutral endopeptidase 24.11. Schwann cells in vivo have this protease on their surface, so the action of CGRP could be terminated by this enzyme and desensitization prevented. We therefore suggest that CGRP may play an important role in stimulating Schwann cell proliferation by regulating the response of mitogenic factors such as PDGF.
Collapse
Affiliation(s)
- L Cheng
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, United Kingdom
| | | | | |
Collapse
|
49
|
Kar S, Quirion R. Neuropeptide receptors in developing and adult rat spinal cord: an in vitro quantitative autoradiography study of calcitonin gene-related peptide, neurokinins, mu-opioid, galanin, somatostatin, neurotensin and vasoactive intestinal polypeptide receptors. J Comp Neurol 1995; 354:253-81. [PMID: 7782502 DOI: 10.1002/cne.903540208] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A number of neuroactive peptides including calcitonin gene-related peptide (CGRP), substance P, neurokinin B, opioids, somatostatin (SRIF), galanin, neurotensin and vasoactive intestinal polypeptide (VIP) have been localized in adult rat spinal cord and are considered to participate either directly and/or indirectly in the processing of sensory, motor and autonomic functions. Most of these peptides appear early during development, leading to the suggestion that peptides, in addition to their neurotransmitter/neuromodulator roles, may possibly be involved in the normal growth and maturation of the spinal cord. To provide an anatomical substrate for a better understanding of the possible roles of peptides in the ontogenic development of the cord, we investigated the topographical profile as well as variation in densities of [125I]hCGRP alpha, [125I]substance P/neurokinin-1 (NK-1), [125I]eledoisin/neurokinin-3 (NK-3), [125I]FK 33-824 ([D-Ala2, Me-Phe4, Met(O)ol5]enkephalin)/mu-opioid, [125I]galanin, [125I]T0D8-SRIF14 (an analog of somatostatin); [125I]neurotensin and [125I]VIP binding sites in postnatal and adult rat spinal cord using in vitro quantitative receptor autoradiography. Receptor binding sites recognized by each radioligand are found to be distributed widely during early stages of postnatal development and then to undergo selective modification to attain their adult profile of distribution during the third week of postnatal development. The apparent density of various receptor sites, however, are differently regulated depending on the lamina and the stage of development studied. For example, the density of mu-opioid binding sites, following a peak at postnatal day 4 (P4), declines gradually in almost all regions of the spinal cord with the increasing age of the animal. [125I]substance P/NK-1 binding sites, on the other hand, show very little variation until P14 and then subsequently decrease as the development proceeds. In the adult rat, most of these peptide receptor binding sites are localized in relatively high amounts in the superficial laminae of the dorsal horn. To varying extents, moderate to low density of various peptide receptor binding sites are also found to be present in the ventral horn, intermediolateral cell column and around the central canal. Taken together, these results suggest that each receptor-ligand system is regulated differently during development and may each uniquely be involved in cellular growth, differentiation and in maturation of the normal neural circuits of the spinal cord. Furthermore, the selective localization of various receptor binding sites in adult rat spinal cord over a wide variety of functionally distinct regions reinforces the neurotransmitter/modulator roles of these peptides in sensory, motor and autonomic functions associated with the spinal cord.
Collapse
Affiliation(s)
- S Kar
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada
| | | |
Collapse
|
50
|
Abstract
Neuronal peptides exert neurohormonal and neurotransmitter (neuromodulator) functions in the central nervous system (CNS). Besides these functions, a group of neuropeptides may have a capacity to create cell proliferation, growth, and survival. Axotomy induces transient (1-21 d) upregulation of synthesis and gene expression of neuropeptides, such as galanin, corticotropin releasing factor, dynorphin, calcitonin gene-related peptide, vasoactive intestinal polypeptide, cholecystokinin, angiotensin II, and neuropeptide Y. These neuropeptides are colocalized with "classic" neurotransmitters (acetylcholine, aspartate, glutamate) or neurohormones (vasopressin, oxytocin) that are downregulated by axotomy in the same neuronal cells. It is more likely that neuronal cells, in response to axotomy, increase expression of neuropeptides that promote their survival and regeneration, and may downregulate substances related to their transmitter or secretory activities.
Collapse
Affiliation(s)
- M Palkovits
- Laboratory of Neuromorphology, Semmelweis Medical University, Budapest, Hungary
| |
Collapse
|