1
|
Gupta A, Vejapi M, Knezevic NN. The role of nitric oxide and neuroendocrine system in pain generation. Mol Cell Endocrinol 2024; 591:112270. [PMID: 38750811 DOI: 10.1016/j.mce.2024.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Previous studies have indicated a complex interplay between the nitric oxide (NO) pain signaling pathways and hormonal signaling pathways in the body. This article delineates the role of nitric oxide signaling in neuropathic and inflammatory pain generation and subsequently discusses how the neuroendocrine system is involved in pain generation. Hormonal systems including the hypothalamic-pituitary axis (HPA) generation of cortisol, the renin-angiotensin-aldosterone system, calcitonin, melatonin, and sex hormones could potentially contribute to the generation of nitric oxide involved in the sensation of pain. Further research is necessary to clarify this relationship and may reveal therapeutic targets involving NO signaling that alleviate neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Aayush Gupta
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Rosalind Franklin University of Medicine and Science, USA
| | - Maja Vejapi
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
2
|
Jesus RLC, Araujo FA, Alves QL, Dourado KC, Silva DF. Targeting temperature-sensitive transient receptor potential channels in hypertension: far beyond the perception of hot and cold. J Hypertens 2023; 41:1351-1370. [PMID: 37334542 DOI: 10.1097/hjh.0000000000003487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Transient receptor potential (TRP) channels are nonselective cation channels and participate in various physiological roles. Thus, changes in TRP channel function or expression have been linked to several disorders. Among the many TRP channel subtypes, the TRP ankyrin type 1 (TRPA1), TRP melastatin type 8 (TRPM8), and TRP vanilloid type 1 (TRPV1) channels are temperature-sensitive and recognized as thermo-TRPs, which are expressed in the primary afferent nerve. Thermal stimuli are converted into neuronal activity. Several studies have described the expression of TRPA1, TRPM8, and TRPV1 in the cardiovascular system, where these channels can modulate physiological and pathological conditions, including hypertension. This review provides a complete understanding of the functional role of the opposing thermo-receptors TRPA1/TRPM8/TRPV1 in hypertension and a more comprehensive appreciation of TRPA1/TRPM8/TRPV1-dependent mechanisms involved in hypertension. These channels varied activation and inactivation have revealed a signaling pathway that may lead to innovative future treatment options for hypertension and correlated vascular diseases.
Collapse
Affiliation(s)
- Rafael Leonne C Jesus
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Fênix A Araujo
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| | - Quiara L Alves
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Keina C Dourado
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
| | - Darizy F Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Federal University of Bahia, Salvador
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation - FIOCRUZ, Bahia, Brazil
| |
Collapse
|
3
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Schain AJ, Melo A, Ashina S, Strassman AM, Burstein R. Celecoxib reduces cortical spreading depression-induced macrophage activation and dilatation of dural but not pial arteries in rodents: implications for mechanism of action in terminating migraine attacks. Pain 2020; 161:1019-1026. [PMID: 31895267 PMCID: PMC7166151 DOI: 10.1097/j.pain.0000000000001789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonsteroidal anti-inflammatory drugs, commonly known as COX-1/COX-2 inhibitors, can be effective in treating mild to moderate migraine headache. However, neither the mechanism by which these drugs act in migraine is known, nor is the specific contribution of COX-1 vs COX-2. We sought to investigate these unknowns using celecoxib, which selectively inhibits the enzymatic activity of COX-2, by determining its effects on several migraine-associated vascular and inflammatory events. Using in vivo 2-photon microscopy, we determined intraperitoneal celecoxib effects on cortical spreading depression (CSD)-induced blood vessel responses, plasma protein extravasation, and immune cell activation in the dura and pia of mice and rats. Compared to vehicle (control group), celecoxib reduced CSD-induced dilatation of dural arteries and activation of dural and pial macrophages significantly, but not dilatation or constriction of pial arteries and veins, or the occurrence of plasma protein extravasation. Collectively, these findings suggest that a mechanism by which celecoxib-mediated COX-2 inhibition might ease the intensity of migraine headache and potentially terminate an attack is by attenuating dural macrophages' activation and arterial dilatation outside the blood-brain barrier, and pial macrophages' activation inside the blood-brain barrier.
Collapse
Affiliation(s)
- Aaron J. Schain
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA 02115
- Harvard Medical School, Boston, MA 02215, USA
| | - Agustin Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA 02115
- Harvard Medical School, Boston, MA 02215, USA
| | - Sait Ashina
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA 02115
- Harvard Medical School, Boston, MA 02215, USA
| | - Andrew M. Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA 02115
- Harvard Medical School, Boston, MA 02215, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA 02115
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
5
|
Reed WR, Little JW, Lima CR, Sorge RE, Yarar-Fisher C, Eraslan M, Hurt CP, Ness TJ, Gu JG, Martins DF, Li P. Spinal Mobilization Prevents NGF-Induced Trunk Mechanical Hyperalgesia and Attenuates Expression of CGRP. Front Neurosci 2020; 14:385. [PMID: 32425750 PMCID: PMC7204433 DOI: 10.3389/fnins.2020.00385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Low back pain (LBP) is a complex and growing global health problem in need of more effective pain management strategies. Spinal mobilization (SM) is a non-pharmacological approach recommended by most clinical guidelines for LBP, but greater utilization and treatment optimization are hampered by a lack of mechanistic knowledge underlying its hypoalgesic clinical effects. Methods Groups of female Sprague-Dawley rats received unilateral trunk (L5 vertebral level) injections (50 μl) of either vehicle (phosphate-buffer solution, PBS; VEH) or nerve growth factor (NGF; 0.8 μM) on Days 0 and 5 with or without daily L5 SM (VEH, NGF, VEH + SM, VEH + SM). Daily passive SM (10 min) was delivered by a feedback motor (1.2 Hz, 0.9N) from Days 1 to 12. Changes in pain assays were determined for mechanical and thermal reflexive behavior, exploratory behavior (open field events) and spontaneous pain behavior (rat grimace scale). On Day 12, lumbar (L1–L6) dorsal root ganglia (DRG) were harvested bilaterally and calcitonin gene-related peptide (CGRP) positive immunoreactive neurons were quantified from 3 animals (1 DRG tissue section per segmental level) per experimental group. Results NGF induced bilateral trunk (left P = 0.006, right P = 0.001) mechanical hyperalgesia and unilateral hindpaw allodynia (P = 0.006) compared to the vehicle group by Day 12. Additionally, we found for the first time that NGF animals demonstrated decreased exploratory behaviors (total distance traveled) and increased grimace scale scoring compared to the VEH group. Passive SM prevented this development of local (trunk) mechanical hyperalgesia and distant (hindpaw) allodynia, and normalized grimace scale scores. NGF increased CGRP positive immunoreactive neurons in ipsilateral lumbar DRGs compared to the VEH group ([L1]P = 0.02; [L2]P = 0.007) and SM effectively negated this increase in pain-related neuropeptide CGRP expression. Conclusion SM prevents the development of local (trunk) NGF-induced mechanical hyperalgesia and distant (hindpaw) allodynia, in part, through attenuation of CGRP expression in lumbar DRG sensory neurons. NGF decreases rat exploratory behavior and increases spontaneous pain for which passive SM acts to mitigate these pain-related behavioral changes. These initial study findings suggest that beginning daily SM soon after injury onset might act to minimize or prevent the development of LBP by reducing production of pain-related neuropeptides.
Collapse
Affiliation(s)
- William R Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States.,Rehabilitation Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joshua W Little
- Department of Surgery, Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, MO, United States
| | - Carla R Lima
- Rehabilitation Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert E Sorge
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ceren Yarar-Fisher
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mualla Eraslan
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher P Hurt
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States.,Rehabilitation Sciences Program, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Timothy J Ness
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianguo G Gu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Daniel F Martins
- Postgraduate Program in Health Sciences, Experimental Neuroscience Laboratory (LaNEx), University of Southern Santa Catarina, Palhoça, Brazil
| | - Peng Li
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Differential Expression of Neuroinflammatory mRNAs in the Rat Sciatic Nerve Following Chronic Constriction Injury and Pain-Relieving Nanoemulsion NSAID Delivery to Infiltrating Macrophages. Int J Mol Sci 2019; 20:ijms20215269. [PMID: 31652890 PMCID: PMC6862677 DOI: 10.3390/ijms20215269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The neuroinflammatory response to peripheral nerve injury is associated with chronic pain and significant changes in the molecular expression profiles of mRNAs in neurons, glia and infiltrating immune cells. Chronic constriction injury (CCI) of the rat sciatic nerve provides an opportunity to mimic neuropathic injury and quantitatively assess behavior and differential gene expression in individual animals. Previously, we have shown that a single intravenous injection of nanoemulsion containing celecoxib (0.24 mg/kg) reduces inflammation of the sciatic nerve and relieves pain-like behavior for up to 6 days. Here, we use this targeted therapy to explore the impact on mRNA expression changes in both pain and pain-relieved states. Sciatic nerve tissue recovered from CCI animals is used to evaluate the mRNA expression profiles utilizing quantitative PCR. We observe mRNA changes consistent with the reduced recruitment of macrophages evident by a reduction in chemokine and cytokine expression. Furthermore, genes associated with adhesion of macrophages, as well as changes in the neuronal and glial mRNAs are observed. Moreover, genes associated with neuropathic pain including Maob, Grin2b/NMDAR2b, TrpV3, IL-6, Cacna1b/Cav2.2, Itgam/Cd11b, Scn9a/Nav1.7, and Tac1 were all found to respond to the celecoxib loaded nanoemulsion during pain relief as compared to those animals that received drug-free vehicle. These results demonstrate that by targeting macrophage production of PGE2 at the site of injury, pain relief includes partial reversal of the gene expression profiles associated with chronic pain.
Collapse
|
7
|
Nagy JI, Lynn BD, Senecal JMM, Stecina K. Connexin36 Expression in Primary Afferent Neurons in Relation to the Axon Reflex and Modality Coding of Somatic Sensation. Neuroscience 2018; 383:216-234. [PMID: 29746988 DOI: 10.1016/j.neuroscience.2018.04.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 01/25/2023]
Abstract
Electrical coupling mediated by connexin36-containing gap junctions that form electrical synapses is known to be prevalent in the central nervous system, but such coupling was long ago reported also to occur between cutaneous sensory fibers. Here, we provide evidence supporting the capability of primary afferent fibers to engage in electrical coupling. In transgenic mice with enhanced green fluorescent protein (eGFP) serving as a reporter for connexin36 expression, immunofluorescence labeling of eGFP was found in subpopulations of neurons in lumbar dorsal root and trigeminal sensory ganglia, and in fibers within peripheral nerves and tissues. Immunolabeling of connexin36 was robust in the sciatic nerve, weaker in sensory ganglia than in peripheral nerve, and absent in these tissues from Cx36 null mice. Connexin36 mRNA was detected in ganglia from wild-type mice, but not in those from Cx36 null mice. Labeling of eGFP was localized within a subpopulation of ganglion cells containing substance P and calcitonin gene-releasing peptide, and in peripheral fibers containing these peptides. Expression of eGFP was also found in various proportions of sensory ganglion neurons containing transient receptor potential (TRP) channels, including TRPV1 and TRPM8. Ganglion cells labeled for isolectin B4 and tyrosine hydroxylase displayed very little co-localization with eGFP. Our results suggest that previously observed electrical coupling between peripheral sensory fibers occurs via electrical synapses formed by Cx36-containing gap junctions, and that some degree of selectivity in the extent of electrical coupling may occur between fibers belonging to subpopulations of sensory neurons identified according to their sensory modality responsiveness.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| | - B D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - K Stecina
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
8
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|
9
|
Abstract
Neuropathic pain often fails to respond to conventional pain management procedures. here we review the aetiology of neuropathic pain as would result from peripheral neuropathy or injury. We show that inflammatory mediators released from damaged nerves and tissue are responsible for triggering ectopic activity in primary afferents and that this, in turn, provokes increased spinal cord activity and the development of ‘central sensitization’. Although evidence is mounting to support the role of interleukin-1β, prostaglandins and other cytokines in the onset of neuropathic pain, the clinical efficacy of drugs which antagonize or prevent the actions of these mediators is yet to be determined. basic science findings do, however, support the use of pre-emptive analgesia during procedures which involve nerve manipulation and the use of anti-inflammatory steroids as soon as possible following traumatic nerve injury.
Collapse
|
10
|
Bullock CM, Kelly S. Calcitonin gene-related peptide receptor antagonists: beyond migraine pain--a possible analgesic strategy for osteoarthritis? Curr Pain Headache Rep 2014; 17:375. [PMID: 24068339 PMCID: PMC3824306 DOI: 10.1007/s11916-013-0375-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) pain is poorly understood and managed, as current analgesics have only limited efficacy and unwanted side effect profiles. A broader understanding of the pathological mechanisms driving OA joint pain is vital for the development of improved analgesics. Both clinical and preclinical data suggest an association between joint levels of the sensory neuropeptide calcitonin gene-related peptide (CGRP) and pain during OA. Whether a direct causative link exists remains an important unanswered question. Given the recent development of small molecule CGRP receptor antagonists with clinical efficacy against migraine pain, the interrogation of the role of CGRP in OA pain mechanisms is extremely timely. In this article, we provide the background to the importance of CGRP in pain mechanisms and review the emerging clinical and preclinical evidence implicating a role for CGRP in OA pain. We suggest that the CGRP receptor antagonists developed for migraine pain warrant further investigation in OA.
Collapse
Affiliation(s)
- C. M. Bullock
- Arthritis Research UK Pain Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK
| | - S. Kelly
- Arthritis Research UK Pain Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK
| |
Collapse
|
11
|
Xu Z, Li G, Feng X. Exploration on the underlying mechanism of female predominance in spasmodic dysphonia: an anatomical study of nodose ganglion in rats. Indian J Otolaryngol Head Neck Surg 2014; 66:26-30. [PMID: 24605297 DOI: 10.1007/s12070-012-0572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/24/2012] [Indexed: 11/29/2022] Open
Abstract
To study the gender differences of amount of neurons in the nodose ganglions of rats. Fourteen Sprague-Dawley rats (7 males and 7 females) were selected. Bilateral nodose ganglions were dissected and serial sections of nodose ganglion were cut in a cryostat, followed by Cresyl-violet staining for neurons. Eight to ten consecutive sections from mid-portion of each nodose ganglion sample, which represent the most neuron number per section, were counted and averaged. Gender difference in the amount of neurons in the nodose ganglions was compared. No gender difference of neuron numbers was found in either side of nodose ganglion (p > 0.05). However, average neuron number of nodose ganglions on the left side of male (654 ± 60) and female (616 ± 37) were significantly more than that on the right side of male (470 ± 22) and female (453 ± 40) respectively (p < 0.05). There is no gender difference in total neuron number of nodose ganglions between male and female rat. However, the neuron number in the left nodose ganglion is greater than that in the right one. The difference may be due to the fact that left and right nodose ganglion is receiving different visceral sensory impulses separately, which is associated with different physiological functions. Further work should be carried out with retrograde tracing on neurons of nodose ganglions in an animal model, which are directly related to laryngeal sensory transmission, in order to determine the gender difference in the neuron number and morphology related to laryngeal functions.
Collapse
Affiliation(s)
- Zengrui Xu
- Department of Otolaryngology, Tianjin Fourth Central Hospital, Tianjin, People's Republic of China ; Department of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Ge Li
- Center for Cancer Genomic and Center for Human Genomic, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Xin Feng
- Department of Otolaryngology, Wake Forest School of Medicine, Winston-Salem, NC USA
| |
Collapse
|
12
|
Raddant AC, Russo AF. Reactive oxygen species induce procalcitonin expression in trigeminal ganglia glia. Headache 2014; 54:472-84. [PMID: 24512072 DOI: 10.1111/head.12301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2013] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To examine calcitonin gene-related peptide (CGRP) gene expression under inflammatory conditions using trigeminal ganglia organ cultures as an experimental system. These cultures have increased proinflammatory signaling that may mimic neurogenic inflammation in the migraine state. BACKGROUND The trigeminal nerve sends peripheral pain signals to the central nervous system during migraine. Understanding the dynamic processes that occur within the trigeminal nerve and ganglion may provide insights into events that contribute to migraine pain. A neuropeptide of particular interest is CGRP, which can be elevated and play a causal role in migraine. However, most studies have overlooked a second splice product of the Calca gene that encodes calcitonin (CT), a peptide hormone involved in calcium homeostasis. Importantly, a precursor form of CT called procalcitonin (proCT) can act as a partial agonist at the CGRP receptor and elevated proCT has recently been reported during migraine. METHODS We used a trigeminal ganglion whole organ explant model, which has previously been demonstrated to induce pro-inflammatory agents in vitro. Quantitative polymerase chain reaction and immunohistochemistry were used to evaluate changes in messenger ribonucleic acid (mRNA) and protein levels of CGRP and proCT. RESULTS Whole mouse trigeminal ganglia cultured for 24 hours showed a 10-fold increase in CT mRNA, with no change in CGRP mRNA. A similar effect was observed in ganglia from adult rats. ProCT immunoreactivity was localized in glial cells. Cutting the tissue blunted the increase in CT, suggesting that induction required the close environment of the intact ganglia. Consistent with this prediction, there were increased reactive oxygen species in the ganglia, and the elevated CT mRNA was reduced by antioxidant treatment. Surprisingly, reactive oxygen species were increased in neurons, not glia. CONCLUSIONS These results demonstrate that reactive oxygen species can activate proCT expression from the CGRP gene in trigeminal glia by a paracrine regulatory mechanism. We propose that this glial recruitment pathway may occur following cortical spreading depression and neurogenic inflammation to increase CGRP nociceptive actions in migraine.
Collapse
Affiliation(s)
- Ann C Raddant
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
13
|
Kaiser EA, Russo AF. CGRP and migraine: could PACAP play a role too? Neuropeptides 2013; 47:451-61. [PMID: 24210136 PMCID: PMC3859433 DOI: 10.1016/j.npep.2013.10.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 11/24/2022]
Abstract
Migraine is a debilitating neurological disorder that affects about 12% of the population. In the past decade, the role of the neuropeptide calcitonin gene-related peptide (CGRP) in migraine has been firmly established by clinical studies. CGRP administration can trigger migraines, and CGRP receptor antagonists ameliorate migraine. In this review, we will describe multifunctional activities of CGRP that could potentially contribute to migraine. These include roles in light aversion, neurogenic inflammation, peripheral and central sensitization of nociceptive pathways, cortical spreading depression, and regulation of nitric oxide production. Yet clearly there will be many other contributing genes that could act in concert with CGRP. One candidate is pituitary adenylate cyclase-activating peptide (PACAP), which shares some of the same actions as CGRP, including the ability to induce migraine in migraineurs and light aversive behavior in rodents. Interestingly, both CGRP and PACAP act on receptors that share an accessory subunit called receptor activity modifying protein-1 (RAMP1). Thus, comparisons between the actions of these two migraine-inducing neuropeptides, CGRP and PACAP, may provide new insights into migraine pathophysiology.
Collapse
Affiliation(s)
- Eric A. Kaiser
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
- Department of Neurology, University of Iowa, Iowa City, IA 52242
- Veterans Affairs Medical Center, Iowa City, IA 52246
- Corresponding Author: Andrew F. Russo, University of Iowa, Department of Molecular Physiology and Biophysics, 5-432 BSB, 51 Newton Rd, Iowa City, IA 52242; Tel (319) 335-7872; Fax (319) 335-7330;
| |
Collapse
|
14
|
An anatomical and immunohistochemical characterization of afferents innervating the C6-C7 facet joint after painful joint loading in the rat. Spine (Phila Pa 1976) 2013; 38:E325-31. [PMID: 23324931 PMCID: PMC3600108 DOI: 10.1097/brs.0b013e318285b5bb] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study used retrograde neuronal tracing and immunohistochemistry to identify neurons innervating the C6-C7 facet joint and those expressing calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG) of rats after painful cervical facet joint injury. OBJECTIVE The objective of this study was to characterize the innervation of the C6-C7 facet joint after painful joint injury in the rat. SUMMARY OF BACKGROUND DATA The cervical facet joint is a source of neck pain, and its loading can initiate persistent pain. CGRP is a nociceptive neurotransmitter; peptidergic afferents have been identified in the facet joint's capsule. Although studies suggest that facet joint injury alters CGRP expression in joint afferents, the distribution of neurons innervating the C6-C7 facet joint and their expression of CGRP after a painful joint injury have not been investigated. METHODS Holtzman rats (Harlan Sprague-Dawley, Indianapolis, IN) received an intra-articular injection of cholera toxin subunit B in the C6-C7 facet joints. After injection, subgroups underwent either a painful joint distraction or sham procedure. Mechanical sensitivity was assessed, and immunohistochemical techniques were used to quantify CGRP expression and cholera toxin subunit B labeling in the C5-C8 DRGs. RESULTS Facet joint distraction-induced (P ≤ 0.0002) hypersensitivity. Neurons labeled by the joint injection were identified in the C5-C8 DRGs. Significantly, more (P ≤ 0.0001) cholera toxin subunit B-positive neurons were identified in the C7 DRG than any other level. At C7, 54.4% ± 15.3% of those neurons were also CGRP-positive, whereas only 41.5% ± 5.4% of all neurons were CGRP-positive; this difference was significant (P = 0.0084). CONCLUSION The greatest number of afferents from the C6-C7 facet joint has cell bodies in the C7 DRG, implicating this level as the most relevant for pain from this joint. In addition, peptidergic afferents seem to have an important role in facet joint-mediated pain.
Collapse
|
15
|
Hanada K, Kishimoto S, Bellier JP, Kimura H. Peripheral choline acetyltransferase in rat skin demonstrated by immunohistochemistry. Cell Tissue Res 2012; 351:497-510. [PMID: 23250574 DOI: 10.1007/s00441-012-1536-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/22/2012] [Indexed: 12/19/2022]
Abstract
Conventional choline acetyltransferase immunohistochemistry has been used widely for visualizing central cholinergic neurons and fibers but not often for labeling peripheral structures, probably because of their poor staining. The recent identification of the peripheral type of choline acetyltransferase (pChAT) has enabled the clear immunohistochemical detection of many known peripheral cholinergic elements. Here, we report the presence of pChAT-immunoreactive nerve fibers in rat skin. Intensely stained nerve fibers were distributed in association with eccrine sweat glands, blood vessels, hair follicles and portions just beneath the epidermis. These results suggest that pChAT-positive nerves participate in the sympathetic cholinergic innervation of eccrine sweat glands. Moreover, pChAT also appears to play a role in cutaneous sensory nerve endings. These findings are supported by the presence of many pChAT-positive neuronal cells in the sympathetic ganglion and dorsal root ganglion. Thus, pChAT immunohistochemistry should provide a novel and unique tool for studying cholinergic nerves in the skin.
Collapse
Affiliation(s)
- Keiji Hanada
- Department of Dermatology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | | | | | | |
Collapse
|
16
|
Guard S, Watson SP. Tachykinin receptor types: Classification and membrane signalling mechanisms. Neurochem Int 2012; 18:149-65. [PMID: 20504688 DOI: 10.1016/0197-0186(91)90180-l] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of selective agonists in both functional and binding studies has provided unequivocal evidence for the existence of three types of tachykinin receptor (NK(1), NK(2) and NK(3)); there is also preliminary evidence for the existence of further subtypes. These results have been confirmed by the development of selective antagonists and by the identification and cloning of three distinct cDNA sequences. All three receptors belong to the superfamily of G protein coupled receptors and are linked to the phosphoinositide transmembrane-signalling pathway. The purpose of this article is to review recent developments in the pharmacology of each receptor with emphasis on the NK(3) type. In particular, the need to use selective agonists and antagonists to identify each receptor type is stressed.
Collapse
Affiliation(s)
- S Guard
- University Department of Pharmacology, South Parks Road, Oxford OX1 3QT, U.K
| | | |
Collapse
|
17
|
Raddant AC, Russo AF. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med 2011; 13:e36. [PMID: 22123247 PMCID: PMC3383830 DOI: 10.1017/s1462399411002067] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the past two decades, a convergence of basic and clinical evidence has established the neuropeptide calcitonin-gene-related peptide (CGRP) as a key player in migraine. Although CGRP is a recognised neuromodulator of nociception, its mechanism of action in migraine remains elusive. In this review, we present evidence that led us to propose that CGRP is well poised to enhance neurotransmission in migraine by both peripheral and central mechanisms. In the periphery, it is thought that local release of CGRP from the nerve endings of meningeal nociceptors following their initial activation by cortical spreading depression is critical for the induction of vasodilation, plasma protein extravasation, neurogenic inflammation and the consequential sensitisation of meningeal nociceptors. Mechanistically, we propose that CGRP release can give rise to a positive-feedback loop involved in localised increased synthesis and release of CGRP from neurons and a CGRP-like peptide called procalcitonin from trigeminal ganglion glia. Within the brain, the wide distribution of CGRP and CGRP receptors provides numerous possible targets for CGRP to act as a neuromodulator.
Collapse
Affiliation(s)
- Ann C. Raddant
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
18
|
Lafont AG, Wang YF, Chen GD, Liao BK, Tseng YC, Huang CJ, Hwang PP. Involvement of calcitonin and its receptor in the control of calcium-regulating genes and calcium homeostasis in zebrafish (Danio rerio). J Bone Miner Res 2011; 26:1072-83. [PMID: 21542008 DOI: 10.1002/jbmr.301] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Calcitonin (CT) is one of the hormones involved in vertebrate calcium regulation. It has been proposed to act as a hypocalcemic factor, but the regulatory pathways remain to be clarified. We investigated the CT/calcitonin gene-related peptide (CGRP) family in zebrafish and its potential involvement in calcium homeostasis. We identified the presence of four receptors: CTR, CRLR1, CRLR2, and CRLR3. From the phylogenetic analysis, together with the effect observed after CT and CGRP overexpression, we concluded that CTR appears to be a CT receptor and CRLR1 a CGRP receptor. The distribution of these two receptors shows a major presence in the central nervous system and in tissues involved in ionoregulation. Zebrafish embryos kept in high-Ca(2+)-concentration medium showed upregulation of CT and CTR expression and downregulation of the epithelial calcium channel (ECaC). Embryos injected with CT morpholino (CALC MO) incubated in high-Ca(2+) medium, showed downregulation of CTR together with upregulation on ECaC mRNA expression. In contrast, overexpression of CT cRNA induced the downregulation of ECaC mRNA synthesis, concomitant with the downregulation in the calcium content after 30 hours postfertilization. At 4 days postfertilization, CT cRNA injection induced upregulation of hypercalcemic factors, with subsequent increase in the calcium content. These results suggest that CT acts as a hypocalcemic factor in calcium regulation, probably through inhibition of ECaC synthesis.
Collapse
Affiliation(s)
- Anne-Gaëlle Lafont
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
19
|
Extracellular signal-regulated kinases in pain of peripheral origin. Eur J Pharmacol 2010; 650:8-17. [PMID: 20950608 DOI: 10.1016/j.ejphar.2010.09.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/01/2010] [Accepted: 09/23/2010] [Indexed: 12/17/2022]
Abstract
Activation of members of the family of enzymes known as extracellular signal-regulated kinases (ERKs) is now known to be involved in the development and/or maintenance of the pain associated with many inflammatory conditions, such as herniated spinal disc pain, chronic inflammatory articular pain, and the pain associated with bladder inflammation. Moreover, ERKs are implicated in the development of neuropathic pain signs in animals which are subjected to the lumbar 5 spinal nerve ligation model and the chronic constriction injury model of neuropathic pain. The position has now been reached where all scientists working on pain subjects ought to be aware of the importance of ERKs, if only because certain of these enzymes are increasingly employed as experimental markers of nociceptive processing. Here, we introduce the reader, first, to the intracellular context in which these enzymes function. Thereafter, we consider the involvement of ERKs in mediating nociceptive signalling to the brain resulting from noxious stimuli at the periphery which will be interpreted by the brain as pain of peripheral origin.
Collapse
|
20
|
Joseph DJ, Choudhury P, MacDermott AB. An in vitro assay system for studying synapse formation between nociceptive dorsal root ganglion and dorsal horn neurons. J Neurosci Methods 2010; 189:197-204. [PMID: 20385165 PMCID: PMC2880384 DOI: 10.1016/j.jneumeth.2010.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 03/25/2010] [Accepted: 04/05/2010] [Indexed: 01/23/2023]
Abstract
Synapses between nociceptive dorsal root ganglion (DRG) neurons and spinal cord dorsal horn neurons represent the first loci for transmission of painful stimuli. Our knowledge of the molecular organization and development of these synapses is sparse due, partly, to a lack of a reliable model system that reconstitutes synaptogenesis between these two neuronal populations. To address this issue, we have established an in vitro assay system consisting of separately purified DRG neurons and dorsal horn neurons on astrocyte microislands. Using immunocytochemistry, we have found that 97%, 93%, 98%, 96%, and 94% of DRG neurons on these microislands express markers often associated with nociceptive neurons including Substance P, TRPV1, calcitonin-gene related peptide (CGRP), TrKA, and peripherin, respectively. Triple labeling with these nociceptive-like markers, synaptic vesicle marker Vglut2 and using MAP2 as a dendritic marker revealed the presence of nociceptive-like markers at synaptic terminals. Using this immunocytochemical approach, we counted contact points as overlapping MAP2/Vglut2 puncta and showed that they increased with time in culture. Single and dual patch-clamp recordings showed that overlapping Vglut2/MAP2 puncta observed after a few days in culture are likely to be functional synapses between DRG and dorsal horn neurons in our in vitro assay system. Taken together, these data suggest our co-culture microisland model system consists of mostly nociceptive-like DRG neurons that express presynaptic markers and form functional synapses with their dorsal horn partners. Thus, this model system may have direct application for studies on factors regulating development of nociceptive DRG/dorsal horn synapses.
Collapse
Affiliation(s)
- Donald J. Joseph
- Program in Neurobiology and Behavior-Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Papiya Choudhury
- Department of Physiology and Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Amy B. MacDermott
- Program in Neurobiology and Behavior-Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Physiology and Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
21
|
Estrogen effects on pain sensitivity and neuropeptide expression in rat sensory neurons. Exp Neurol 2010; 224:163-9. [PMID: 20303952 DOI: 10.1016/j.expneurol.2010.03.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/04/2010] [Accepted: 03/07/2010] [Indexed: 12/22/2022]
Abstract
While a number of chronic pain conditions are much more prevalent in women than men, the role of estrogen in regulating nociception remains unclear. Estrogen receptors (ER) are known to be expressed in various parts of the nociceptive pathway, including in the small-sized primary sensory neurons of the dorsal root ganglion (DRG). This study evaluated the effects of long term estrogen replacement on pain sensitivity and neuropeptide expression in the DRG of female Sprague Dawley rats. The goal was to evaluate whether estrogen modulates nociceptive neuropeptides in the DRG in a manner consistent with its effects on pain sensitivity. Our results show that long term (28 days) ovariectomy (ovx) of adult rats induces a profound thermal and mechanical hyperalgesia of the hindpaw and tail compared to ovariectomized animals that were continuously estrogen-treated (ovx+E). Significant changes in the expression of two neuropeptides, substance P (SP) and calcitonin gene-related peptide (CGRP), were observed using immunocytochemistry and in situ hybridization (ISH) in the small lumbar DRG neurons which contain ER. CGRP and SP were differentially regulated by estrogen, with SP showing a significant downregulation at both the peptide and mRNA levels while CGRP and its mRNA were increased in the DRG of estrogen-treated animals. We also evaluated the development of mechanical allodynia after partial sciatic nerve injury and found that both ovx and ovx+E animals developed significant allodynia within a week of the partial nerve injury, which continued for at least one month. The estrogen-treated animals showed a partial amelioration of the extent of the allodynia at 2 weeks post injury. Overall, the results suggest that estrogen has significant anti-nociceptive actions that can be directly correlated with changes in expression of two peptides in the small nociceptive ERalpha expressing neurons of the DRG.
Collapse
|
22
|
Kosaras B, Jakubowski M, Kainz V, Burstein R. Sensory innervation of the calvarial bones of the mouse. J Comp Neurol 2009; 515:331-48. [PMID: 19425099 PMCID: PMC2710390 DOI: 10.1002/cne.22049] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Migraine sufferers frequently testify that their headache feels as if the calvarial bones are deformed, crushed, or broken (Jakubowski et al. [2006] Pain 125:286-295). This has lead us to postulate that the calvarial bones are supplied by sensory fibers. We studied sensory innervation of the calvaria in coronal and horizontal sections of whole-head preparations of postnatal and adult mice, via immunostaining of peripherin (a marker of thinly myelinated and unmyelinated fibers) or calcitonin gene-related peptide (CGRP; a marker more typical of unmyelinated nerve fibers). In pups, we observed nerve bundles coursing between the galea aponeurotica and the periosteum, between the periosteum and the bone, and between the bone and the meninges; as well as fibers that run inside the diploë in different orientations. Some dural fibers issued collateral branches to the pia at the frontal part of the brain. In the adult calvaria, the highest concentration of peripherin- and CGRP-labeled fibers was found in sutures, where they appeared to emerge from the dura. Labeled fibers were also observed in emissary canals, bone marrow, and periosteum. In contrast to the case in pups, no labeled fibers were found in the diploë of the adult calvaria. Meningeal nerves that infiltrate the periosteum through the calvarial sutures may be positioned to mediate migraine headache triggered by pathophysiology of extracranial tissues, such as muscle tenderness and mild trauma to the skull. In view of the concentration of sensory fibers in the sutures, it may be useful to avoid drilling the sutures in patients undergoing craniotomies for a variety of neurosurgical procedures.
Collapse
Affiliation(s)
- Bela Kosaras
- Departments of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
23
|
Khasabov SG, Hamamoto DT, Harding-Rose C, Simone DA. Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain. Brain Res 2007; 1180:7-19. [PMID: 17935703 PMCID: PMC2701262 DOI: 10.1016/j.brainres.2007.08.075] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/20/2007] [Accepted: 08/24/2007] [Indexed: 12/31/2022]
Abstract
Pain associated with cancer, particularly when tumors metastasize to bone, is often severe and debilitating. Better understanding of the neurobiological mechanisms underlying cancer pain will likely lead to the development of more effective treatments. The aim of this study was to characterize changes in response properties of nociceptive dorsal horn neurons following implantation of fibrosarcoma cells into and around the calcaneus bone, an established model of cancer pain. Extracellular electrophysiological recordings were made from wide dynamic range (WDR) and high threshold (HT) dorsal horn neurons in mice with tumor-evoked hyperalgesia and control mice. WDR and HT neurons were examined for ongoing activity and responses to mechanical, heat, and cold stimuli applied to the plantar surface of the hind paw. Behavioral experiments showed that mice exhibited hyperalgesia to mechanical and heat stimuli applied to their tumor-bearing hind paw. WDR, but not HT, nociceptive dorsal horn neurons in tumor-bearing mice exhibited sensitization to mechanical, heat, and cold stimuli and may contribute to tumor-evoked hyperalgesia. Specifically, the proportion of WDR neurons that exhibited ongoing activity and their evoked discharge rates were greater in tumor-bearing than in control mice. In addition, WDR neurons exhibited lower response thresholds for mechanical and heat stimuli, and increased responses to suprathreshold mechanical, heat, and cold stimuli. Our findings show that sensitization of WDR neurons contributes to cancer pain and supports the notion that the mechanisms underlying cancer pain differ from those that contribute to inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Sergey G. Khasabov
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| | - Darryl T. Hamamoto
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| | - Catherine Harding-Rose
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| | - Donald A. Simone
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware St. S.E., Minneapolis, Minnesota 55455
| |
Collapse
|
24
|
Lafont AG, Dufour S, Fouchereau-Peron M. Evolution of the CT/CGRP family: comparative study with new data from models of teleosts, the eel, and cephalopod molluscs, the cuttlefish and the nautilus. Gen Comp Endocrinol 2007; 153:155-69. [PMID: 17353015 DOI: 10.1016/j.ygcen.2007.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/22/2007] [Accepted: 01/23/2007] [Indexed: 11/20/2022]
Abstract
In mammals, alternative splicing of the calcitonin gene generates two distinct peptides: calcitonin (CT), synthesised in the thyroid C cells and involved in the regulation of calcium metabolism, and calcitonin gene-related peptide (CGRP), brain neuromediator synthesised in the peripheral and central nerves. CGRP is well represented and molecularly conserved during evolution whereas CT has not been detected in any of the invertebrates analysed so far. In order to better understand the evolution of this CT/CGRP peptide family we reviewed the major data concerning its evolution from the literature and our recent data obtained in models of teleosts and cephalopod molluscs. The presence of both CGRP-like molecules and its specific bindings sites in the central nervous system of eel, cuttlefish and nautilus, suggests that the brain neurotransmitter role of CGRP could represent an ancient role in metazoa, already present in cephalopods and conserved among vertebrates, as still observed in mammals. In contrast, the presence of CGRP specific binding sites, and not the peptide itself, in the gills suggests an endocrine role for CGRP, in cephalopods and teleosts, that may have been lost during the evolution of the tetrapod lineage. These data, and the absence of CT-like molecules that we observed in cephalopods, support the hypothesis that CGRP represents the ancestral molecule of the CT/CGRP family, appeared in metazoa before the vertebrate emergence. The distinction between CT and CGRP receptors appears to be an event posterior to the emergence of ecdysozoan and lophotrochozoan protostomes, probably in relation to the CT appearance. The evolution of the CT/CGRP peptide family is probably similar to the evolution of the CT/CGRP receptor family. In fact, the genic duplication that induced the appearance of the two separate molecules, CT and CGRP, may constitute an event close to that, which induced the appearance of the two specific receptors. These events remain to be further studied in order to better understand the peptide and receptor evolution of the CT/CGRP family.
Collapse
Affiliation(s)
- Anne-Gaëlle Lafont
- Muséum National d'Histoire Naturelle, Département des Milieux et Peuplements Aquatiques, USM 0401, UMR 5178 CNRS/MNHN/UPMC, Biologie des Organismes Marins et Ecosystèmes, Station de Biologie Marine, 29900 Concarneau, France
| | | | | |
Collapse
|
25
|
Nakamura A, Hayakawa T, Kuwahara S, Maeda S, Tanaka K, Seki M, Mimura O. Morphological and immunohistochemical characterization of the trigeminal ganglion neurons innervating the cornea and upper eyelid of the rat. J Chem Neuroanat 2007; 34:95-101. [PMID: 17587545 DOI: 10.1016/j.jchemneu.2007.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 05/10/2007] [Accepted: 05/11/2007] [Indexed: 10/23/2022]
Abstract
The cornea is sensitive to nociceptive stimuli and receives dense sensory innervations from the trigeminal ganglion, which also innervates the upper eyelid. We investigated the morphological and immunohistochemical characterization of the trigeminal ganglion neurons innervating the cornea and upper eyelid. We injected the retrograde tracer Fluoro-Gold (FG) into the cornea and the retrograde tracer cholera toxin subunit b (CTb) into the upper eyelid of the same animal. Less than 10% of the FG-labeled neurons were also labeled with CTb. The FG-labeled neurons were small (29.6+/-0.6microm), while the CTb-labeled neurons were large (36.1+/-0.5microm). We also characterized the neurons in the trigeminal ganglion with the retrograde tracer FG following its injection into the cornea or the upper eyelid, and immunohistochemical double-labeling with nociception-related neuronal markers, such as calcitonin gene-related peptides (CGRP), transient receptor potentiated vanilloid 1 (TRPV1), and substance P (SP). About 27% of the neurons innervating the cornea were double-labeled with CGRP, about 23% with TRPV1, and about 8% with SP. About 4% of the neurons innervating the upper eyelid were double-labeled for CGRP, about 11% for TRPV1, and 3% for SP. Thus, the percentages of double-labeled neurons for the neurons innervating the cornea were higher than those for the neurons innervating the upper eyelid. These results indicate that the cornea and the upper eyelid receive innervations mainly from different neurons of the trigeminal ganglia. The cornea is innervated by many characteristic sensory neurons containing nociception-related neuronal markers.
Collapse
Affiliation(s)
- Akiko Nakamura
- Department of Ophthalmology, Hyogo College of Medicine, Mukogawa, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Yasuhara O, Aimi Y, Shibano A, Kimura H. Primary sensory neurons containing choline acetyltransferase of the peripheral type in the rat trigeminal ganglion and their relation to neuropeptides-, calbindin- and nitric oxide synthase-containing cells. Brain Res 2007; 1141:92-8. [PMID: 17291466 DOI: 10.1016/j.brainres.2007.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/05/2007] [Accepted: 01/05/2007] [Indexed: 01/01/2023]
Abstract
We have previously demonstrated that a variant form of choline acetyltransferase (pChAT) is expressed in rat trigeminal neurons. To assess the significance of pChAT in sensory functions, we characterized immunohistochemically pChAT-positive trigeminal neurons in the rat. pChAT-immunoreactivity was observed in a rather uniform pattern in about half of all trigeminal neurons throughout the trigeminal ganglion. The majority of pChAT-positive neurons had small to medium-sized cell bodies. Double immunofluorescent study showed that more than 90% of substance P (SP)-positive trigeminal cells and about 80% of calcitonin gene-related peptide (CGRP)-positive cells exhibited pChAT-immunoreactivity. pChAT-positive cells formed a larger population of neurons than SP-positive or CGRP-positive cells, but they were a different population from calbindin-D(28k)-positive neurons. In addition, pChAT-immunoreactivity was present in a subset of neurons positive for neuronal nitric oxide synthase. The present results suggest that pChAT plays roles not only in nociception, but also in other sensory functions such as mechanoreception mediating tactile sensation.
Collapse
Affiliation(s)
- Osamu Yasuhara
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | | | | | | |
Collapse
|
27
|
Abed JM, McClure SR, Yaeger MJ, Evans RB. Immunohistochemical evaluation of substance P and calcitonin gene-related peptide in skin and periosteum after extracorporeal shock wave therapy and radial pressure wave therapy in sheep. Am J Vet Res 2007; 68:323-8. [PMID: 17331023 DOI: 10.2460/ajvr.68.3.323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effect of focused extracorporeal shock wave therapy (ESWT) and radial pressure wave therapy (RPWT) on immunohistochemical staining for substance P and calcitonin gene-related peptide (CGRP) in the skin and periosteum of sheep. ANIMALS 36 sheep. PROCEDURES All 4 limbs of 36 sheep were treated with ESWT, RPWT, or a sham treatment. For 14 days after treatment, at least 2 sheep were euthanized daily and tissue was harvested for histologic evaluation of nerves via staining for substance P and CGRP in the skin and periosteum. RESULTS No effects of ESWT or RPWT were observed on the number of nerves with stain uptake for substance P or CGRP in the skin or periosteum. CONCLUSIONS AND CLINICAL RELEVANCE Substance P- and CGRP-containing nerve fibers are not disrupted by EWST or RPWT. Further studies are needed to identify the mechanism of analgesia observed in association with these treatment modalities.
Collapse
Affiliation(s)
- Janan M Abed
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
28
|
Hobara N, Goda M, Kitamura Y, Sendou T, Gomita Y, Kawasaki H. Adrenomedullin facilitates reinnervation of phenol-injured perivascular nerves in the rat mesenteric resistance artery. Neuroscience 2007; 144:721-30. [PMID: 17101235 DOI: 10.1016/j.neuroscience.2006.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 09/18/2006] [Accepted: 09/20/2006] [Indexed: 11/20/2022]
Abstract
Our previous report showed that innervation of calcitonin gene-related peptide (CGRP)- and neuropeptide Y (NPY)-containing nerves in rat mesenteric resistance arteries was markedly reduced by topical application of phenol, and that nerve growth factor (NGF) facilitates the reinnervation of both nerves. We also demonstrated that a CGRP superfamily peptide, adrenomedullin, is distributed in perivascular nerves of rat mesenteric resistance arteries. In the present study, we investigated the influence of adrenomedullin on the reinnervation of mesenteric perivascular nerves following topical phenol treatment. Under pentobarbital-Na anesthesia, 8-week-old Wistar rats underwent in vivo topical application of phenol (10% phenol in 90% ethanol) to the superior mesenteric artery proximal to the bifurcation of the abdominal aorta. After the treatment, the animals were subjected to immunohistochemistry of the third branch of small arteries proximal to the intestine and to vascular responsiveness testing on day 7. Topical phenol treatment caused marked reduction of the density of NPY-like immunoreactive (LI)- and CGRP-LI nerve fibers in the arteries. Adrenomedullin (360 or 1000 ng/h) or NGF (250 ng/h), which was administered intraperitoneally for 7 days using an osmotic mini-pump immediately after topical phenol treatment, significantly increased the density of CGRP-LI- and NPY-LI nerve fibers compared with saline. Treatment with adrenomedullin (1000 ng/h) or NGF restored adrenergic nerve-mediated vasoconstriction and CGRP nerve-mediated vasodilation in the perfused mesenteric artery treated topically with phenol. These results suggest that adrenomedullin, like NGF, has a facilitatory effect on the reinnervation of perivascular nerves.
Collapse
Affiliation(s)
- N Hobara
- Department of Clinical Pharmaceutical Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Rozen D, Grass GW. Intradiscal electrothermal coagulation and percutaneous neuromodulation therapy in the treatment of discogenic low back pain. Pain Pract 2006; 5:228-43. [PMID: 17147585 DOI: 10.1111/j.1533-2500.2005.05308.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Low back pain (LBP) is a major physical and socioeconomic entity. A significant percentage of LBP is attributable to internal disc disruption. The management of internal disc disruption has traditionally been limited to either conservative treatment or spinal fusion. Intradiscal electrothermal coagulation (IDET) and percutaneous neuromodulation therapy (PNT) are now being performed as an alternative to these therapies. Scientific data regarding the pathophysiology, biologic effects, and clinical results are relatively scarce. Early biomechanical and histologic investigations into the effects of IDET are conflicting. However, in early prospective human trials, IDET seems to provide some benefit with little risk. PNT represents a new less invasive technique for the treatment of discogenic pain, but limited research is available to determine long-term clinical efficacy. IDET and PNT are potentially beneficial treatments for internal disc disruption in carefully selected patients as an alternative to spinal fusion. More basic science and clinical research with long-term follow-up evaluation is necessary.
Collapse
Affiliation(s)
- Dima Rozen
- Department of Anesthesiology and Pain Medicine, Mount Sinai Medical Center, New York, New York 10029-6574, USA.
| | | |
Collapse
|
30
|
Schlomer JJ, Storey BB, Ciornei RT, McGillis JP. Calcitonin gene-related peptide inhibits early B cell development in vivo. J Leukoc Biol 2006; 81:802-8. [PMID: 17110419 DOI: 10.1189/jlb.0306229] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recent in vitro studies suggest that calcitonin gene-related peptide (CGRP) inhibits early B cell differentiation; however, there is no evidence in the intact animal for a role for CGRP in B cell development. Here, we show that in vivo treatment of mice with CGRP reduces the number of IL-7 responsive B cell progenitors in bone marrow. A single CGRP treatment reduces IL-7-responsive B cell progenitors by up to 40% for up to 72 h. The reduction is dose-dependent and can be blocked by a CGRP receptor antagonist, CGRP(8-37). CGRP in serum following injection is highly elevated at 30 min but returns to basal levels by 4 h, suggesting that a single injection of CGRP has long-lasting effects on B cell development. This report provides the first direct in vivo evidence that CGRP, a neuropeptide with multiple effects on mature lymphocytes, also plays a regulatory role in early B cell development in the bone marrow.
Collapse
Affiliation(s)
- Jerome J Schlomer
- Department of Microbiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
31
|
Xu P, Hall AK. The role of activin in neuropeptide induction and pain sensation. Dev Biol 2006; 299:303-9. [PMID: 16973148 DOI: 10.1016/j.ydbio.2006.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 08/05/2006] [Accepted: 08/12/2006] [Indexed: 11/16/2022]
Abstract
Signals from target tissues play critical roles in the functional differentiation of neuronal cells, and in their subsequent adaptations to peripheral changes in the adult. Sensory neurons in the dorsal root ganglia (DRG) provide an excellent model system for the study of signals that regulate the development of neuronal diversity. DRG have been well characterized and contain both neurons that convey information from muscles about limb position, as well as other neurons that provide sensations from skin about pain information. Sensory neurons involved in pain sensation can be distinguished physiologically and antigenically, and one hallmark characteristic is that these neurons contain neuropeptides important for their functions. The transforming growth factor (TGF) beta family member activin A has recently been implicated in neural development and response to injury. During sensory neuron development, peripheral target tissues containing activin or activin itself can regulate pain neuropeptide expression. Long after development has ceased, skin target tissues retain the capacity to signal neurons about changes or injury, to functionally refine synapses. This review focuses on the role of activin as a target-derived differentiative factor in neural development that has additional roles in response to cutaneous injuries in the adult.
Collapse
Affiliation(s)
- Pin Xu
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
32
|
Peptidergic nerves in the eye, their source and potential pathophysiological relevance. ACTA ACUST UNITED AC 2006; 53:39-62. [PMID: 16872680 DOI: 10.1016/j.brainresrev.2006.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 06/09/2006] [Accepted: 06/13/2006] [Indexed: 12/17/2022]
Abstract
Over the last five decades, several neuropeptides have been discovered which subsequently have been found to be highly conserved during evolution, to be widely distributed both in the central and peripheral nervous system and which act as neurotransmitters and/or neuromodulators. In the eye, the first peptide to be explored was substance P which was reported to be present in the retina but also in peripherally innervated tissues of the eye. Substance P is certainly the best characterized peptide which has been found in sensory neurons innervating the eye. Functionally, it has been shown to act trophically on corneal wound healing and to participate in the irritative response in lower mammals, a model for neurogenic inflammation, where it mediates the noncholinergic nonadrenergic contraction of the sphincter muscle. Over the last three decades, the interest has extended to investigate the presence and distribution of other neuropeptides including calcitonin gene-related peptide, vasoactive intestinal polypeptide, neuropeptide Y, pituitary adenylate cyclase-activating polypeptides, cholecystokinin, somatostatin, neuronal nitric oxide, galanin, neurokinin A or secretoneurin and important functional results have been obtained for these peptides. This review focuses on summarizing the current knowledge about neuropeptides in the eye excluding the retina and retinal pigment epithelium and to elucidate their potential functional significance.
Collapse
|
33
|
Weissner W, Winterson BJ, Stuart-Tilley A, Devor M, Bove GM. Time course of substance P expression in dorsal root ganglia following complete spinal nerve transection. J Comp Neurol 2006; 497:78-87. [PMID: 16680762 PMCID: PMC2571959 DOI: 10.1002/cne.20981] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence suggests that substance P (SP) is up-regulated in primary sensory neurons following axotomy and that this change occurs in larger neurons that do not usually produce SP. If this is so, then the up-regulation may allow normally neighboring, uninjured, and nonnociceptive dorsal root ganglion (DRG) neurons to become effective in activating pain pathways. By using immunohistochemistry, we performed a unilateral L5 spinal nerve transection on male Wistar rats and measured SP expression in ipsilateral L4 and L5 DRGs and contralateral L5 DRGs at 1-14 days postoperatively (dpo) and in control and sham-operated rats. In normal and sham-operated DRGs, SP was detectable almost exclusively in small neurons (< or =800 microm2). After surgery, the mean size of SP-positive neurons from the axotomized L5 ganglia was greater at 2, 4, 7, and 14 dpo. Among large neurons (>800 microm2) from the axotomized L5, the percentage of SP-positive neurons increased at 2, 4, 7, and 14 dpo. Among small neurons from the axotomized L5, the percentage of SP-positive neurons was increased at 1 and 3 dpo but was decreased at 7 and 14 dpo. Thus, SP expression is affected by axonal damage, and the time course of the expression is different between large and small DRG neurons. These data support a role for SP-producing, large DRG neurons in persistent sensory changes resulting from nerve injury.
Collapse
Affiliation(s)
- Wendy Weissner
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
34
|
Williams IJ, Edwards S, Rubo A, Haller VL, Stevens DL, Welch SP. Time course of the enhancement and restoration of the analgesic efficacy of codeine and morphine by Δ9-tetrahydrocannabinol. Eur J Pharmacol 2006; 539:57-63. [PMID: 16687136 DOI: 10.1016/j.ejphar.2006.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/30/2006] [Accepted: 04/03/2006] [Indexed: 11/30/2022]
Abstract
Delta9-tetrahydrocannabinol (delta9-THC) synergizes with morphine and codeine by releasing endogenous opioids. These studies determined 1) the duration of enhancement of morphine and codeine by delta9-THC, 2) the effect of (delta9-THC on the time course of fully efficacious doses of the opioids, 3) restoration of efficacy of morphine and codeine by delta9-THC, and 4) duration of restoration. Sub-active combination doses of delta9-THC/morphine or delta9-THC/codeine are equivalent in duration of action and efficacy to high-dose opioids alone. Delta9-THC (20 mg/kg p.o.) significantly restores the antinociceptive effects of both high-dose morphine and codeine (100 and 200 mg/kg p.o., respectively) at later time points at which morphine or codeine was no longer active (360- and 120-min post-administration, respectively). Thus, the cannabinoid/opioid combination might be useful in therapeutics to enhance opioid activity, as well as to restore the efficacy of opioids.
Collapse
Affiliation(s)
- I Jovan Williams
- Department of Pharmacology and Toxicology and School of Nurse Anesthesia, Virginia Commonwealth University MCV Campus, Richmond, VA 23298, United States
| | | | | | | | | | | |
Collapse
|
35
|
Lukácová N, Kolesár D, Marsala M, Marsala J. Immunohistochemical, histochemical and radioassay analysis of nitric oxide synthase immunoreactivity in the lumbar and sacral dorsal root ganglia of the dog. Cell Mol Neurobiol 2006; 26:17-44. [PMID: 16633899 PMCID: PMC11521380 DOI: 10.1007/s10571-006-8843-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 09/29/2005] [Indexed: 12/18/2022]
Abstract
In this study, immunohistochemistry for neuronal nitric oxide synthase (bNOS-IR), nicotinamide adenine dinucleotide phosphate diaphorase histochemistry (NADPHd) and nitric oxide synthase radioassay were used to study the occurrence, number and distribution pattern of nitric oxide synthesizing neurons in the lumbar (L1-L7) and sacral (S1-S3) dorsal root ganglia of the dog. Nitric oxide synthase immunolabelling was present in a large number of small- (area <1,000 microm(2)) and medium-sized (area 1,000-2,000 microm(2)) as well as in a limited number of large-sized (area >2000 microm(2)) neurons. Although neuronal nitric oxide synthase immunolabelling and histochemical staining provided intense staining of multiple small- and medium-sized neurons in all lumbar and sacral dorsal root ganglia, immuno-labelled or histochemically stained somata exhibited little topographic distribution in individual dorsal root ganglia. Great heterogeneity was noticed in the immunolabelling of medium-sized nitric oxide synthase immunopositive neurons ranging from lightly immuno-labelled somata to heavily immunoreactive ones with completely obscured nuclei. Both staining procedures proved to be highly effective in visualizing intraganglionic fibers of various diameters. In general, the largest fibers revealed at the peripheral end of lumbar and sacral dorsal root ganglia were larger, 6.49-9.35 mum in diameter, while those running centrally and proceeding into the dorsal roots were about 30% reduced, ranging between 5.32 and 8.67 microm in diameter. Peripherally, the occurrence of nitric oxide synthase detected in axonal profiles, and confirmed histochemically, in the specimens of the femoral and sciatic nerves, is the first indication of the presence of nitric oxide synthase in the peripheral processes of somata located in L4-S2 dorsal root ganglia. Large and thin central nitric oxide synthase immunoreactive processes of L1-S3 dorsal root ganglion neurons segregate shortly before entering the spinal cord, the former making a massive medial bundle in the dorsal root accompanied by a slim lateral bundle penetrating Lissauer's tract. Quantitative assessment of the distribution of bNOS-IR and/or NADPHd-stained neurons showed a peculiar pattern in relation to spinal levels. Apparent incongruity was found in the total number of NADPHd-stained versus bNOS-IR neurons, demonstrating a clear prevalence of small bNOS-IR somata in all lumbar ganglia, while medium-sized NADPHd-stained somata clearly prevailed all along the rostrocaudal axis with a peak in L5 ganglion. While the number of small bNOS-IR neurons clearly outnumbered NADPHd-stained and NADPHd-unstained somata in S1-S3 ganglia, an inverse relation appeared comparing the total number of medium-sized NADPHd-stained and NADPHd-unstained somata compared with the number of moderate and intense bNOS-IR neurons. Densitometry of bNOS-IR and NADPHd-stained neurons in lumbar and sacral ganglia revealed two distinct subsets of densitometric profiles, one relating to more often found medium-sized bNOS immuno-labelled and the other, characteristic for moderately bNOS immunoreactive somata of the same cell size. Considerable differences in catalytic nitric oxide synthase activity, determined by conversion of [(3)H]arginine to [(3)H]citrulline were obtained in lumbosacral dorsal root ganglia all along the lumbosacral intumescence, the lowest (0.898+/- 0.2 dpm/min/microg protein) being in the L4 dorsal root ganglion and the highest (4.194+/-0.2 dpm/min/microg protein) in the S2 dorsal root ganglion.
Collapse
Affiliation(s)
- Nadezda Lukácová
- Slovak Academy of Sciences, Institute of Neurobiology, Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
36
|
Murata Y, Takahashi K, Ohtori S, Moriya H. Innervation of the sacroiliac joint in rats by calcitonin gene-related peptide-immunoreactive nerve fibers and dorsal root ganglion neurons. Clin Anat 2006; 20:82-8. [PMID: 16506235 DOI: 10.1002/ca.20277] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The sacroiliac joint (SIJ) can be a source of low back pain. Calcitonin gene-related peptide (CGRP) has been reported to play a significant role in nociceptive processing. However, the occurrence of CGRP-immunoreactive (CGRP-ir) sensory nerve fibers in the SIJ has not been fully defined. The present study investigated CGRP-ir nerve fibers supplying the SIJ. CGRP-ir nerve fibers in the vicinity of the SIJ cartilage and CGRP-ir neurons in the bilateral dorsal root ganglia (DRG) were examined immunohistochemically by administering anti-CGRP antiserum to rats. The SIJ was decalcified and cut into sections, and the CGRP-ir fibers around the SIJ cartilage were counted under microscopy. In another group, fluoro-gold (F-G), a neural tracer, was injected into the SIJ from the dorsal or ventral side with dorsal or ventral denervation. The number of F-G-labeled CGRP-ir neurons was counted in individual DRG. CGRP-ir fibers were observed more frequently in the tissues adjacent to the cranial part of the SIJ surface. In the case of dorsal denervation (ventral nerve supply), the CGRP-ir neurons composed 18.2% of the F-G-labeled neurons. In the case of ventral denervation (dorsal nerve supply), the CGRP-ir neurons composed 40.9% of the F-G-labeled neurons. There was a statistically significant difference in the number of CGRP-ir neurons between the ventral and dorsal nerve supplies to the SIJ. The cranial part of the dorsal side could be the part most associated with pain in the SIJ.
Collapse
Affiliation(s)
- Yasuaki Murata
- Department of Orthopaedic Surgery, Shimoshizu National Hospital, Chiba, Japan.
| | | | | | | |
Collapse
|
37
|
Holzer P. Peptidergic sensory neurons in the control of vascular functions: mechanisms and significance in the cutaneous and splanchnic vascular beds. Rev Physiol Biochem Pharmacol 2005; 121:49-146. [PMID: 1485073 DOI: 10.1007/bfb0033194] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P Holzer
- University of Graz, Department of Experimental and Clinical Pharmacology, Austria
| |
Collapse
|
38
|
Hayakawa T, Maeda S, Tanaka K, Seki M. Fine structural survey of the intermediate subnucleus of the nucleus tractus solitarii and its glossopharyngeal afferent terminals. ACTA ACUST UNITED AC 2005; 210:235-44. [PMID: 16170540 DOI: 10.1007/s00429-005-0021-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2005] [Indexed: 12/19/2022]
Abstract
The intermediate subnucleus of the nucleus tractus solitarii (imNTS) receives somatosensory inputs from the soft palate and pharynx, and projects onto the nucleus ambiguus, thus serving as a relay nucleus for swallowing. The ultrastructure and synaptology of the rat imNTS, and its glossopharyngeal afferent terminals, have been examined with cholera toxin-conjugated horseradish peroxidase (CT-HRP) as an anterograde tracer. The imNTS contained oval or ellipsoid-shaped, small to medium-sized neurons (18.2 x 11.4 microm) with little cytoplasm, few cell organelles and an irregularly shaped nucleus. The cytoplasm often contained one or two nucleolus-like stigmoid bodies. The average number of axosomatic terminals was 1.8 per profile. About 83% of them contained round vesicles and formed asymmetric synaptic contacts (Gray's type I), while about 17% contained pleomorphic vesicles and formed symmetric synaptic contacts (Gray's type II). The neuropil contained small or large axodendritic terminals, and about 92% of them were Gray's type I. When CT-HRP was injected into the nodose ganglion, many labeled terminals were found in the imNTS. All anterogradely labeled terminals contacted dendrites but not somata. The labeled terminals were usually large (2.69+/-0.09 mum) and exclusively of Gray's type I. They often contacted more than two dendrites, were covered with glial processes, and formed synaptic glomeruli. A small unlabeled terminal occasionally made an asymmetric synaptic contact with a large labeled terminal. The large glossopharyngeal afferent terminals and the neurons containing stigmoid bodies characterized the imNTS neurons that received pharyngeal afferents.
Collapse
Affiliation(s)
- Tetsu Hayakawa
- Department of Anatomy, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | |
Collapse
|
39
|
Funakoshi K, Nakano M, Atobe Y, Goris RC, Kadota T, Yazama F. Differential development of TRPV1-expressing sensory nerves in peripheral organs. Cell Tissue Res 2005; 323:27-41. [PMID: 16142452 DOI: 10.1007/s00441-005-0013-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
In mouse ontogeny, neurons immunoreactive for transient receptor potential vanilloid receptor 1 (TRPV1) were observed primarily in the dorsal root ganglia (DRG) at embryonic day 13 (E13). In the embryonic period, the number of TRPV1(+) neurons decreased, but then gradually increased postnatally. Some of TRPV1(+) neurons were also immunoreactive for calcitonin gene-related peptide (CGRP). At postnatal day 7 (P7), 66% of CGRP(+) neurons were TRPV1(+), and 55% of TRPV1(+) neurons were also CGRP(+) in the L4 DRG. In the peripheral organs, TRPV1-immunorective nerve fibers were transiently observed in the skin at E14. They were also observed in the urinary tract at E14, and in the rectum at E15. Many TRPV1(+) nerve fibers in these organs were also CGRP(+). At P1, TRPV1(+) nerve fibers were observed in the respiratory organs, and to a lesser extent in the stomach, colon, skin, and skeletal muscles. The number of TRPV1(+) nerve fibers on each organ gradually increased postnatally. At P7, TRPV1(+) nerve fibers were also observed in the small intestine and kidneys. The percentage of total TRPV1(+) nerve fibers that co-localized with CGRP was greater in most organs at P7 than at P1. The present results indicate that TRPV1 expression on peripheral processes differs among organs. The differential time course of TRPV1 expression in the cell bodies might be related to the organs to which they project. Co-localization of TRPV1 with CGRP on nerve fibers also varies among organs. This suggests that the TRPV1-mediated neuropeptide release that occurs in certain pathophysiologic conditions also varies among organs.
Collapse
Affiliation(s)
- Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama, 236-0004, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Wacnik PW, Baker CM, Herron MJ, Kren BT, Blazar BR, Wilcox GL, Hordinsky MK, Beitz AJ, Ericson ME. Tumor-induced mechanical hyperalgesia involves CGRP receptors and altered innervation and vascularization of DsRed2 fluorescent hindpaw tumors. Pain 2005; 115:95-106. [PMID: 15836973 DOI: 10.1016/j.pain.2005.02.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 01/31/2005] [Accepted: 02/14/2005] [Indexed: 10/25/2022]
Abstract
Functional and anatomical relationships among primary afferent fibers, blood vessels, and cancers are poorly understood. However, recent evidence suggests that physical and biochemical interactions between these peripheral components are important to both tumor biology and cancer-associated pain. To determine the role of these peripheral components in a mouse model of cancer pain, we quantified the change in nerve and blood vessel density within a fibrosarcoma tumor mass using stereological analysis of serial confocal optical sections of immunostained hind paw. To this end we introduced the Discoma coral-derived red fluorescent protein (DsRed2) into the NCTC 2472 fibrosarcoma line using the Sleeping Beauty transposon methodology, thus providing a unique opportunity to visualize tumor-nerve-vessel associations in context with behavioral assessment of tumor-associated hyperalgesia. Tumors from hyperalgesic mice are more densely innervated with calcitonin gene related peptide (CGRP)-immunoreactive nerve fibers and less densely vascularized than tumors from non-hyperalgesic mice. As hyperalgesia increased from Day 5 to 12 post-implantation, the density of protein gene product 9.5 (PGP9.5)-immunoreactive nerves and CD31-immunoreactive blood vessels in tumors decreased, whereas CGRP-immunoreactive nerve density remained unchanged. Importantly, intra-tumor injection of a CGRP1 receptor antagonist (CGRP 8-37) partially blocked the tumor-associated mechanical hyperalgesia, indicating that local production of CGRP may contribute to tumor-induced nociception through a receptor-mediated process. The results describe for the first time the interaction among sensory nerves, blood vessels and tumor cells in otherwise healthy tissue, and our assessment supports the hypothesis that direct tumor cell-axon communication may underlie, at least in part, the occurrence of cancer pain.
Collapse
Affiliation(s)
- Paul W Wacnik
- Department of Pharmacology, University of Minnesota Schools of Medicine and Veterinary Medicine, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jungnickel J, Klutzny A, Guhr S, Meyer K, Grothe C. Regulation of neuronal death and calcitonin gene-related peptide by fibroblast growth factor-2 and FGFR3 after peripheral nerve injury: Evidence from mouse mutants. Neuroscience 2005; 134:1343-50. [PMID: 16009496 DOI: 10.1016/j.neuroscience.2005.04.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 04/19/2005] [Accepted: 04/23/2005] [Indexed: 10/25/2022]
Abstract
The presence and regulation of basic fibroblast growth factor and its high-affinity tyrosine kinase receptor FGFR3 in sensory neurons during development and after peripheral nerve injury suggest a physiological role of the fibroblast growth factor-2 system for survival and maintenance of sensory neurons. Here we investigated L5 spinal ganglia of intact and lesioned fibroblast growth factor-2 knock-out and FGFR3 knock-out mice. Quantification of sensory neurons in intact L5 spinal ganglia revealed no differences between wild-types and mutant mice. After sciatic nerve axotomy, the normally occurring neuron loss in wild-type mice was significantly reduced in both knock-out strains suggesting that fibroblast growth factor-2 is involved in neuronal death mediated via FGFR3. In addition, the number of chromatolytic and eccentric cells was significantly increased in fibroblast growth factor-2 knock-out mice indicating a transient protection of injured spinal ganglia neurons in the absence of fibroblast growth factor-2. The expression of the neuropeptide calcitonin gene-related peptide in sensory neurons of intact fibroblast growth factor-2 knock-out and FGFR3 knock-out mice was not changed in comparison to adequate wild-types. Fibroblast growth factor-2 wild-type and FGFR3 wild-type mice showed a lesion-induced decrease of calcitonin gene-related peptide-positive neurons in ipsilateral L5 spinal ganglia whereas the loss of calcitonin gene-related peptide-immunoreactive sensory neurons is reduced in the absence of fibroblast growth factor-2 or FGFR3, respectively. In addition, FGFR3 wild-type and knock-out mice displayed a contralateral reduction of the neuropeptide after axotomy. These results suggest that endogenous fibroblast growth factor-2 and FGFR3 are crucially involved in the regulation of survival and calcitonin gene-related peptide expression of lumbar sensory neurons after lesion, but not during development.
Collapse
Affiliation(s)
- J Jungnickel
- Hannover Medical School, Department of Neuroanatomy, Germany.
| | | | | | | | | |
Collapse
|
42
|
Schütz B, Mauer D, Salmon AM, Changeux JP, Zimmer A. Analysis of the cellular expression pattern of beta-CGRP in alpha-CGRP-deficient mice. J Comp Neurol 2004; 476:32-43. [PMID: 15236465 DOI: 10.1002/cne.20211] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study we compared the alpha-calcitonin gene-related peptide (alphaCGRP) and betaCGRP expression patterns in wild-type and knockout mice by using quantitative reverse transcriptase polymerase chain reaction and immunohistochemistry. In dorsal root ganglia and spinal cord of wild-type animals, alphaCGRP mRNA was about two times more abundant than betaCGRP mRNA. The betaCGRP mRNA was the only isoform expressed in the intestine. In alphaCGRP knockout mice, we found no change in betaCGRP mRNA levels in dorsal root ganglia and spinal cord compared with wild-type controls, but a twofold decrease in the intestine. CGRP immunoreactivity (IR) was detected in many small and some large neurons in the dorsal root ganglia, was found in sensory fibers and motor neurons in the spinal cord, and labeled neuromuscular junctions in wild-type mice. In the dorsal root ganglia of alphaCGRP knockout mice, punctate betaCGRP-IR again was predominantly found in small neurons. In the spinal cord, betaCGRP-IR fibers were localized to the outermost layer of the dorsal horn. IR was found in the cell bodies of motor neurons, but it was undetectable in neuromuscular junctions. In the intestine, CGRP-IR was localized to neurons of the myenteric plexus and to fibers in the mucosal folds, with similar staining intensity in both wild-type and knockout mice. Finally, CGRP-IR was undetectable in preganglionic fibers and postganglionic sympathetic neurons in mice from both genotypes. Our results indicate that alphaCGRP and betaCGRP are variably coexpressed in different functional aspects of the mouse nervous system. This pattern suggests distinct roles for betaCGRP in pain, neuromuscular, and gastrointestinal systems.
Collapse
Affiliation(s)
- Burkhard Schütz
- Laboratory of Molecular Neurobiology, Clinic for Psychiatry, University Medical Center, 53127 Bonn, Germany
| | | | | | | | | |
Collapse
|
43
|
Cruise BA, Xu P, Hall AK. Wounds increase activin in skin and a vasoactive neuropeptide in sensory ganglia. Dev Biol 2004; 271:1-10. [PMID: 15196945 DOI: 10.1016/j.ydbio.2004.04.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2003] [Revised: 03/17/2004] [Accepted: 04/02/2004] [Indexed: 12/31/2022]
Abstract
Successful healing of skin wounds requires sensory innervation and the release of vasoactive neuropeptides that dilate blood vessels and deliver serum proteins to the wound, and that cause pain that protects from further injury. Activin has been proposed as a target-derived regulator of sensory neuropeptides during development, but its role in the mature nervous system is unknown. While adult skin contains a low level of activin, protein levels in skin adjacent to a wound increase rapidly after an excision. Neurons containing the neuropeptide calcitonin gene-related peptide (CGRP) increased in sensory ganglia that projected to the wounded skin, but not in ganglia that projected to unwounded skin, suggesting that neurons respond to a local skin signal. Indeed, many adult sensory neurons respond with increased CGRP expression to the application of activin in vitro and utilize a smad-mediated signal transduction pathway in this response. A second skin-derived factor nerve growth factor (NGF) also increased in wounded skin and increased CGRP in cultured adult dorsal root ganglia (DRG) neurons but with lower efficacy. Together, these data support the hypothesis that activin made by skin cells regulates changes in sensory neuropeptides following skin injury, thereby promoting vasodilation and wound healing.
Collapse
Affiliation(s)
- Bethany A Cruise
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
44
|
Aoki Y, Takahashi Y, Ohtori S, Moriya H, Takahashi K. Distribution and immunocytochemical characterization of dorsal root ganglion neurons innervating the lumbar intervertebral disc in rats: a review. Life Sci 2004; 74:2627-42. [PMID: 15041445 DOI: 10.1016/j.lfs.2004.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previously, it was believed that the lumbar intervertebral disc was innervated segmentally by dorsal root ganglion (DRG) neurons via the sinuvertebral nerves. Recently, it was demonstrated using retrograde tracing methods that the lower disc (L5-L6) is innervated predominantly by upper (L1 and L2) DRG neurons via the sympathetic trunks. Furthermore, we investigated the expression of various pain-related molecules such as calcitonin gene-related peptide (CGRP), isolectin B4 (IB4), P2X(3) receptor and vanniloid receptor 1 (VR1) in DRG neurons innervating the disc using a combination of immunostaining with the retrograde tracing method. This review outlines the distribution and immunocytochemical characterization of DRG neurons innervating the disc. Small nociceptive DRG neurons are classified into nerve growth factor (NGF)-dependent neurons and glial cell line-derived neurotrophic factor (GDNF)-dependent neurons and they can be distinguished by their reactivity for CGRP and IB4, respectively. We found that about half of the neurons innervating the disc were CGRP-immunoreactive (-ir), whilst, only 0.6% of the DRG neurons were IB4-positive, thereby indicating that NGF-dependent neurons are the main subpopulation which transmits and modulates nociceptive information from the disc. In addition, we also demonstrated P2X(3)- and VR1-immunoreactivity in DRG neurons innervating the disc and noted that they were mainly localized in NGF-dependent neurons. It is well known that NGF has sensitizing effects on DRG neurons, with a recent study demonstratng the presence of NGF in the painful intervertebral disc. Therefore, it is suggested that NGF is involved in the generation of discogenic low back pain.
Collapse
Affiliation(s)
- Yasuchika Aoki
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8670, Japan.
| | | | | | | | | |
Collapse
|
45
|
Aoki Y, Takahashi Y, Takahashi K, Chiba T, Kurokawa M, Ozawa T, Moriya H. Sensory innervation of the lateral portion of the lumbar intervertebral disc in rats. Spine J 2004; 4:275-80. [PMID: 15125848 DOI: 10.1016/j.spinee.2003.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Accepted: 10/02/2003] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT An annular tear extending to the outer one-third of the annulus is thought to be one of the causes of low back pain. However, some patients have bilateral low back symptoms, even if the annular tear is localized in the lateral disc. Because nociceptive information from the lateral disc is transmitted by the dorsal root ganglion (DRG) neurons innervating the lateral disc, we investigated the distribution of the DRG neurons innervating the lateral portion of the disc. PURPOSE To clarify the distribution and pathway of the DRG neurons innervating the lateral portion of the L5-L6 disc in rats. STUDY DESIGN/SETTING Using the retrograde tracing method, we studied the innervation pattern of the lateral portion of the L5-L6 intervertebral disc in rats. METHODS The retrograde transport of Fluoro-Gold (F-G; Fluorochrome, Denver, CO) was used in 22 rats. Subjects included a nontreated group (n=16) and a sympathectomized group (n=6). Seven days after the application of F-G crystals to the left lateral portion of the L5-L6 disc, bilateral T12-L6 DRGs were observed by fluorescent microscopy. RESULTS In the nontreated group, of all the F-G-labeled neurons, 93.1% were present in the left DRGs and 6.9% were in the right DRGs. The number of labeled neurons was largest in the left L2 DRGs. In the sympathectomized group, the numbers of labeled neurons in the T13, L1 and L2 DRGs were significantly lower than the numbers in the nontreated group. CONCLUSION Results of this study indicate that DRG neurons innervating the lateral portion of the disc are distributed mainly in the ipsilateral side but also in the contralateral side. The DRG neurons in T13, L1 and L2 innervate the lateral portion of the L5-L6 disc through the paravertebral sympathetic trunks.
Collapse
Affiliation(s)
- Yasuchika Aoki
- Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba City 260-8670, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Johnson GM. The sensory and sympathetic nerve supply within the cervical spine: review of recent observations. ACTA ACUST UNITED AC 2004; 9:71-6. [PMID: 15040965 DOI: 10.1016/s1356-689x(03)00093-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2002] [Revised: 07/07/2003] [Accepted: 07/22/2003] [Indexed: 11/16/2022]
Abstract
The purpose of this review is to identify recently observed features of the sympathetic and sensory systems and their pathways which characterize cervical spine innervation and their potential relevance to the clinical pain syndromes. The results of studies examining the innervation patterns of the zygoapophysial joints serve to demonstrate that structures in the cervical spine, as in other spinal regions, are partly innervated by sensory nerves traveling along sympathetic pathways. These studies also demonstrate that the neuropeptide levels in the cell bodies located within the dorsal root ganglion of these sensory nerves fluctuate according to the physiological state of the zygoapophysial joint. Additional to the sympathetic nerves accompanying the vertebral artery, the innervation patterns of dura and posterior longitudinal ligament in the upper cervical spine are distinctive features of cervical spine innervation. The possible clinical implications of cervical innervation patterns are considered with reference to referred pain, the pain patterns associated with a dissecting vertebral artery and cervicogenic headaches.
Collapse
Affiliation(s)
- Gillian M Johnson
- Otago School of Physiotherapy, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
47
|
Hobara N, Nakamura A, Ohtsuka A, Narasaki M, Shibata K, Gomoita Y, Kawasaki H. Distribution of adrenomedullin-containing perivascular nerves in the rat mesenteric artery. Peptides 2004; 25:589-99. [PMID: 15165714 DOI: 10.1016/j.peptides.2004.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 02/09/2004] [Accepted: 02/11/2004] [Indexed: 11/27/2022]
Abstract
Distribution of adrenomedullin (AM)-containing perivascular nerve fibers was studied in rat mesenteric arteries. Many fibers containing AM-like immunoreactivity (LI) were observed in the adventitia. AM-LI fibers were abolished by cold storage denervation or capsaicin but not 6-hydroxydopamine. Double immunostainings showed colocalization of AM-LI with calcitonin gene-related peptide (CGRP)-LI. The dorsal root ganglia had many AM-positive cells and AM mRNA detected by RT-PCR. Electron microscopy study revealed high proportions of immunogold labeling for AM and colocalization of both AM-LI and CGRP-LI in unmyelinated nerve axons. These results suggest that AM-containing perivascular nerves are distributed in the rat mesenteric artery.
Collapse
Affiliation(s)
- N Hobara
- Department of Clinical Pharmaceutical Science, Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Galanin peptide in primary sensory neurons may confer analgesia following injury. Its presence in regenerative axon sprouts where pain may be initiated has not been examined. We examined very early outgrowth of peptidergic axon sprouts after sciatic nerve crush in mice with experimental streptozotocin-induced diabetes. Diabetic mice had a retarded wave of outgrowing galanin axons, but those expressing calcitonin gene-related peptide grew normally. Diabetic mice also developed early, then persistent excessive autotomy behaviour, an index of pain behaviour in complete nerve lesions. Diabetes is associated with variations in the early outgrowth of peptide-containing axons. A relative delay in galanin axon outgrowth could contribute to heightened neuropathic pain in diabetes.
Collapse
Affiliation(s)
- James M Kennedy
- Department of Clinical Neurosciences, University of Calgary, Room 182A, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
49
|
Kuramoto H, Oomori Y, Murabayashi H, Kadowaki M, Karaki SI, Kuwahara A. Localization of neurokinin 1 receptor (NK1R) immunoreactivity in rat esophagus. J Comp Neurol 2004; 478:11-21. [PMID: 15334646 DOI: 10.1002/cne.20169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the present immunohistochemical study was to investigate the localization of neurokinin 1 receptor (NK1R) in rat esophagus and examine the relationship between NK1Rs and intrinsic cholinergic, nitrergic, or substance P (SP) neurons. NK1R immunoreactivity (IR) was observed on the nerve cell bodies in the myenteric ganglia throughout the esophagus, but not on striated muscles and smooth muscle cells of the muscularis mucosae. The frequency of occurrence of NK1R neurons was highest in the cervical esophagus and lowest in the lower thoracic esophagus. Considerable immunoreactivity was seen on the nerve cell surfaces and was also present in the cytoplasm of cell somas and in the initial part of the axons, but not in any other nerve fibers or terminals. Dogiel type I-like morphology was observed in some of the NK1R neurons; however, the majority exhibited polymorphic morphology. Double immunolabeling indicated that a majority (77%) of the NK1R neurons were immunoreactive for choline acetyltransferase (ChAT), while a minority (23%) were immunoreactive for nitric oxide synthase (NOS)-IR. Most of the NK1R neurons (92%) were innervated by the SP nerve fibers. Triple immunolabeling indicated that 70% of the NK1R neurons were associated with intrinsic SP nerve fibers (without CGRP-IR), 59% were associated with extrinsic SP nerve fibers (with CGRP-IR), and 35% were associated with both intrinsic and extrinsic SP nerve fibers. These results suggest that SP/tachykinin released from the SP nerve fibers of intrinsic and/or extrinsic origin activates the predominantly intrinsic cholinergic neurons via NK1Rs to influence neuronal transmission or motility in rat esophagus.
Collapse
Affiliation(s)
- Hirofumi Kuramoto
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Lundy F, Linden G. NEUROPEPTIDES AND NEUROGENIC MECHANISMS IN ORAL AND PERIODONTAL INFLAMMATION. ACTA ACUST UNITED AC 2004; 15:82-98. [PMID: 15059944 DOI: 10.1177/154411130401500203] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is generally accepted that the nervous system contributes to the pathophysiology of peripheral inflammation, and a neurogenic component has been implicated in many inflammatory diseases, including periodontitis. Neurogenic inflammation should be regarded as a protective mechanism, which forms the first line of defense and protects tissue integrity. However, severe or prolonged noxious stimulation may result in the inflammatory response mediating injury rather than facilitating repair. This review focuses on the accumulating evidence suggesting that neuropeptides have a pivotal role in the complex cascade of chemical activity associated with periodontal inflammation. An overview of neuropeptide synthesis and release introduces the role of neuropeptides and their interactions with other inflammatory factors, which ultimately lead to neurogenic inflammation. The biological effects of the neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), and neuropeptide Y (NPY) are summarized, and evidence for their involvement in the localized inflammatory lesions which characterize periodontitis is presented. In this context, the role of CGRP in bone metabolism is described in more detail. Recent research highlighting the role of the nervous system in suppressing pain and inflammation is also discussed.
Collapse
Affiliation(s)
- F.T. Lundy
- Oral Science Research Centre, School of Dentistry, Queen's University Belfast, Grosvenor Road, Belfast BT12 6BP, Northern Ireland, UK
| | | |
Collapse
|