1
|
Behl T, Madaan P, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Demystifying the Neuroprotective Role of Neuropeptides in Parkinson's Disease: A Newfangled and Eloquent Therapeutic Perspective. Int J Mol Sci 2022; 23:4565. [PMID: 35562956 PMCID: PMC9099669 DOI: 10.3390/ijms23094565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin-proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
2
|
Loss of Corticostriatal Mu-Opioid Receptors in α-Synuclein Transgenic Mouse Brains. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010063. [PMID: 35054456 PMCID: PMC8781165 DOI: 10.3390/life12010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022]
Abstract
Ultrastructural, neurochemical, and molecular alterations within the striatum are associated with the onset and progression of Parkinson’s disease (PD). In PD, the dopamine-containing neurons in the substantia nigra pars compacta (SNc) degenerate and reduce dopamine-containing innervations to the striatum. The loss of striatal dopamine is associated with enhanced corticostriatal glutamatergic plasticity at the early stages of PD. However, with disease progression, the glutamatergic corticostriatal white matter tracts (WMTs) also degenerate. We analyzed the levels of Mu opioid receptors (MORs) in the corticostriatal WMTs, as a function of α-Synuclein (α-Syn) toxicity in transgenic mouse brains. Our data show an age-dependent loss of MOR expression levels in the striatum and specifically, within the caudal striatal WMTs in α-Syn tg mouse brains. The loss of MOR expression is associated with degeneration of the myelinated axons that are localized within the corticostriatal WMTs. In brains affected with late stages of PD, we detect evidence confirming the degeneration of myelinated axons within the corticostriatal WMTs. We conclude that loss of corticostriatal MOR expression is associated with degeneration of corticostriatal WMT in α-Syn tg mice, modeling PD.
Collapse
|
3
|
Zheng Y, Zhang L, Xie J, Shi L. The Emerging Role of Neuropeptides in Parkinson's Disease. Front Aging Neurosci 2021; 13:646726. [PMID: 33762925 PMCID: PMC7982480 DOI: 10.3389/fnagi.2021.646726] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD), the second most common age-related neurodegenerative disease, results from the loss of dopamine neurons in the substantia nigra. This disease is characterized by cardinal non-motor and motor symptoms. Several studies have demonstrated that neuropeptides, such as ghrelin, neuropeptide Y, pituitary adenylate cyclase-activating polypeptide, substance P, and neurotensin, are related to the onset of PD. This review mainly describes the changes in these neuropeptides and their receptors in the substantia nigra-striatum system as well as the other PD-related brain regions. Based on several in vitro and in vivo studies, most neuropeptides play a significant neuroprotective role in PD by preventing caspase-3 activation, decreasing mitochondrial-related oxidative stress, increasing mitochondrial biogenesis, inhibiting microglial activation, and anti-autophagic activity. Thus, neuropeptides may provide a new strategy for PD therapy.
Collapse
Affiliation(s)
- Yanan Zheng
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Linlin Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China.,Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, China.,Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Chen XY, Xue Y, Chen H, Chen L. The globus pallidus as a target for neuropeptides and endocannabinoids participating in central activities. Peptides 2020; 124:170210. [PMID: 31778724 DOI: 10.1016/j.peptides.2019.170210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The globus pallidus in the basal ganglia plays an important role in movement regulation. Neuropeptides and endocannabinoids are neuronal signalling molecules that influence the functions of the whole brain. Endocannabinoids, enkephalin, substance P, neurotensin, orexin, somatostatin and pituitary adenylate cyclase-activating polypeptides are richly concentrated in the globus pallidus. Neuropeptides and endocannabinoids exert excitatory or inhibitory effects in the globus pallidus mainly by modulating GABAergic, glutamatergic and dopaminergic neurotransmission, as well as many ionic mechanisms. Pallidal neuropeptides and endocannabinoids are associated with the pathophysiology of a number of neurological disorders, such as Parkinson's disease, Huntington's disease, schizophrenia, and depression. The levels of neuropeptides and endocannabinoids and their receptors in the globus pallidus change in neurological diseases. It has been demonstrated that spontaneous firing activity of globus pallidus neurons is closely related to the manifestations of Parkinson's disease. Therefore, the neuropeptides and endocannabinoids in the globus pallidus may function as potential targets for treatment in some neurological diseases. In this review, we highlight the morphology and function of neuropeptides and endocannabinoids in the globus pallidus and their involvement in neurological diseases.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Pan J, Yu J, Sun L, Xie C, Chang L, Wu J, Hawes S, Saez-Atienzar S, Zheng W, Kung J, Ding J, Le W, Chen S, Cai H. ALDH1A1 regulates postsynaptic μ-opioid receptor expression in dorsal striatal projection neurons and mitigates dyskinesia through transsynaptic retinoic acid signaling. Sci Rep 2019; 9:3602. [PMID: 30837649 PMCID: PMC6401150 DOI: 10.1038/s41598-019-40326-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/25/2019] [Indexed: 12/02/2022] Open
Abstract
Aldehyde dehydrogenase 1A1 (ALDH1A1), a retinoic acid (RA) synthase, is selectively expressed by the nigrostriatal dopaminergic (nDA) neurons that preferentially degenerate in Parkinson’s disease (PD). ALDH1A1–positive axons mainly project to the dorsal striatum. However, whether ALDH1A1 and its products regulate the activity of postsynaptic striatal neurons is unclear. Here we show that μ–type opioid receptor (MOR1) levels were severely decreased in the dorsal striatum of postnatal and adult Aldh1a1 knockout mice, whereas dietary supplement of RA restores its expression. Furthermore, RA treatment also upregulates striatal MOR1 levels and signaling and alleviates L-DOPA–induced dyskinetic movements in pituitary homeobox 3 (Pitx3)–deficient mice that lack of ALDH1A1–expressing nDA neurons. Therefore, our findings demonstrate that ALDH1A1–synthesized RA is required for postsynaptic MOR1 expression in the postnatal and adult dorsal striatum, supporting potential therapeutic benefits of RA supplementation in moderating L-DOPA–induced dyskinesia.
Collapse
Affiliation(s)
- Jing Pan
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jia Yu
- Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing University of Chinese Medicine, Beijing, 100095, P. R. China
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chengsong Xie
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lisa Chang
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Junbing Wu
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Hawes
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sara Saez-Atienzar
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wang Zheng
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,Children's National Medical Center, Washington, D.C., USA
| | - Justin Kung
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.,University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Jinhui Ding
- Bioinformatics Core, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Weidong Le
- Clinical Research Center on Neurological Diseases, the First Affiliated Hospital, Dalian Medical University, Dalian, 116011, P. R. China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Chen XY, Du YF, Chen L. Neuropeptides Exert Neuroprotective Effects in Alzheimer's Disease. Front Mol Neurosci 2019; 11:493. [PMID: 30687008 PMCID: PMC6336706 DOI: 10.3389/fnmol.2018.00493] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 12/21/2018] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits and neuronal loss. Deposition of beta-amyloid peptide (Aβ) causes neurotoxicity through the formation of plaques in brains of Alzheimer's disease. Numerous studies have indicated that the neuropeptides including ghrelin, neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), neuropeptide Y, substance P and orexin are closely related to the pathophysiology of Alzheimer's disease. The levels of neuropeptides and their receptors change in Alzheimer's disease. These neuropeptides exert neuroprotective roles mainly through preventing Aβ accumulation, increasing neuronal glucose transport, increasing the production of neurotrophins, inhibiting endoplasmic reticulum stress and autophagy, modulating potassium channel activity and hippocampal long-term potentiation. Therefore, the neuropeptides may function as potential drug targets in the prevention and cure of Alzheimer's disease.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China.,Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yi-Feng Du
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Lazarova M, Popatanasov A, Klissurov R, Stoeva S, Pajpanova T, Kalfin R, Tancheva L. Preventive Effect of Two New Neurotensin Analogues on Parkinson's Disease Rat Model. J Mol Neurosci 2018; 66:552-560. [PMID: 30374780 DOI: 10.1007/s12031-018-1171-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
Close functional and anatomical interactions between the neurotensin (NT) and dopamine (DA) systems suggest that NT could be associated with Parkinson's Disease (PD). However, clinical use of NT is limited due to its rapid degradation. This has led to the synthesis of a number of new NT fragment 8-13 [NT(8-13)] analogues, such as NT2 and NT4, to avoid the fast biodegradation of NT. The aim of this study was to investigate the neuroprotective effects of NT2 and NT4 on an experimental model of Parkinson's disease in rats induced with 6-hydroxydopamine (6-OHDA) treatment, producing striatal lesions. Wistar male rats were divided into different groups: a sham-operated (SO) group, a striatal 6-OHDA-lesioned control group, two groups of 6-OHDA-lesioned rats treated for 5 days with NT2 or NT4 (10 mg/kg, intraperitoneally) and a NT-treated group as reference. During the first and second week post lesion the animals were subjected to a number of behavioral tests (apomorphine-induced rotations, rotarod, passive avoidance test), and brain tissue was evaluated histologically and also assessed for DA levels. The results showed that both the number of apomorphine-induced rotations and falls (rotarod test) increased in the 6-OHDA group relative to the SO group. At the same time, the 6-OHDA-treated group showed significant memory impairment, based on the to step-through test, compared to the SO group. Treatment with NT2 and NT4 significantly decreased the number of apomorphine-induced rotations and improved the memory of lesioned animals, with these NT analogues demonstrating better neuroprotective and neuromodulatory effects than NT. DA content in the brain of the PD rats treated with NT2 and NT4 increased, possibly due to attenuation of the loss of DA-ergic neurons. NT2 and NT4 were found to easily penetrate the blood-brain barrier and they showed a better stability than the reference NT neuropeptide. In conclusion, the NT approach represents an attractive strategy for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Andrey Popatanasov
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | | | - Svetlana Stoeva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Tamara Pajpanova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113, Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113, Sofia, Bulgaria. .,Weizmann Institute of Science, 234 Herzl Str., 76100, Rehovot, Israel.
| |
Collapse
|
8
|
Sgroi S, Tonini R. Opioidergic Modulation of Striatal Circuits, Implications in Parkinson's Disease and Levodopa Induced Dyskinesia. Front Neurol 2018; 9:524. [PMID: 30026724 PMCID: PMC6041411 DOI: 10.3389/fneur.2018.00524] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
The functional organization of the dorsal striatum is complex, due to the diversity of neural inputs that converge in this structure and its subdivision into direct and indirect output pathways, striosomes and matrix compartments. Among the neurotransmitters that regulate the activity of striatal projection neurons (SPNs), opioid neuropeptides (enkephalin and dynorphin) play a neuromodulatory role in synaptic transmission and plasticity and affect striatal-based behaviors in both normal brain function and pathological states, including Parkinson's disease (PD). We review recent findings on the cell-type-specific effects of opioidergic neurotransmission in the dorsal striatum, focusing on the maladaptive synaptic neuroadaptations that occur in PD and levodopa-induced dyskinesia. Understanding the plethora of molecular and synaptic mechanisms underpinning the opioid-mediated modulation of striatal circuits is critical for the development of pharmacological treatments that can alleviate motor dysfunctions and hyperkinetic responses to dopaminergic stimulant drugs.
Collapse
Affiliation(s)
- Stefania Sgroi
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
9
|
Pan J, Cai H. Opioid system in L-DOPA-induced dyskinesia. Transl Neurodegener 2017; 6:1. [PMID: 28105331 PMCID: PMC5240307 DOI: 10.1186/s40035-017-0071-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022] Open
Abstract
L-3, 4-Dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) is a major clinical complication in the treatment of Parkinson’s disease (PD). This debilitating side effect likely reflects aberrant compensatory responses for a combination of dopaminergic neuron denervation and repeated L-DOPA administration. Abnormal endogenous opioid signal transduction pathways in basal ganglia have been well documented in LID. Opioid receptors have been targeted to alleviate the dyskinesia. However, the exact role of this altered opioid activity is remains under active investigation. In the present review, we discuss the current understanding of opioid signal transduction in the basal ganglia and how the malfunction of opioid signaling contributes to the pathophysiology of LID. Further study of the opioid system in LID may lead to new therapeutic targets and improved treatment of PD patients.
Collapse
Affiliation(s)
- Jing Pan
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892-3707 USA
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Building 35, Room 1A112, MSC 3707, 35 Convent Drive, Bethesda, MD 20892-3707 USA
| |
Collapse
|
10
|
Martinez AN, Philipp MT. Substance P and Antagonists of the Neurokinin-1 Receptor in Neuroinflammation Associated with Infectious and Neurodegenerative Diseases of the Central Nervous System. ACTA ACUST UNITED AC 2016; 1:29-36. [PMID: 27430034 DOI: 10.29245/2572.942x/2016/2.1020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review addresses the role that substance P (SP) and its preferred receptor neurokinin-1 (NK1R) play in neuroinflammation associated with select bacterial, viral, parasitic, and neurodegenerative diseases of the central nervous system. The SP/NK1R complex is a key player in the interaction between the immune and nervous systems. A common effect of this interaction is inflammation. For this reason and because of the predominance in the human brain of the NK1R, its antagonists are attractive potential therapeutic agents. Preventing the deleterious effects of SP through the use of NK1R antagonists has been shown to be a promising therapeutic strategy, as these antagonists are selective, potent, and safe. Here we evaluate their utility in the treatment of different neuroinfectious and neuroinflammatory diseases, as a novel approach to clinical management of CNS inflammation.
Collapse
Affiliation(s)
- Alejandra N Martinez
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA
| | - Mario T Philipp
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology and Immunology, Tulane University Medical School, New Orleans, LA, USA
| |
Collapse
|
11
|
Caputi FF, Carretta D, Lattanzio F, Palmisano M, Candeletti S, Romualdi P. Proteasome subunit and opioid receptor gene expression down-regulation induced by paraquat and maneb in human neuroblastoma SH-SY5Y cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:895-900. [PMID: 26498265 DOI: 10.1016/j.etap.2015.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/21/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Paraquat (PQ) and maneb (MB) are able to induce neurotoxic effects by promoting α-synuclein (α-syn) aggregates and altering tyrosine hydroxylase (TH), thus increasing the risk of Parkinson's disease (PD). These pesticides promote neurotoxic effects also by affecting proteasome function that normally regulate protein turnover. We investigated the effects of the two pesticides exposure on multiple targets involved in PD, using SH-SY5Y cells. First, we evaluated TH and α-syn protein levels following PQ and MB cell exposure and a significant increase of these protein levels was observed. Subsequently, since a relationship between ubiquitin/proteasome and opioid receptors has been proposed, the effects of pesticides on their gene expression have been investigated. A decrease of β1 and Rpt3 proteasome subunit mRNA levels, together with the μ and δ opioid receptor down-regulation, was detected. The reported alterations, here simultaneously observed, help to clarify the involvement of multiple biological markers implicated in PD, often separately evaluated.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Donatella Carretta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Francesca Lattanzio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Martina Palmisano
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Irnerio 48, 40126 Bologna, Italy.
| |
Collapse
|
12
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 347] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
13
|
Huot P, Johnston TH, Koprich JB, Fox SH, Brotchie JM. The Pharmacology of l-DOPA-Induced Dyskinesia in Parkinson’s Disease. Pharmacol Rev 2013; 65:171-222. [DOI: 10.1124/pr.111.005678] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
14
|
Light and electron-microscopic study of leucine enkephalin immunoreactivity in the cat claustrum. J Mol Histol 2012; 43:641-9. [DOI: 10.1007/s10735-012-9448-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 08/31/2012] [Indexed: 11/29/2022]
|
15
|
Thornton E, Vink R. Treatment with a substance P receptor antagonist is neuroprotective in the intrastriatal 6-hydroxydopamine model of early Parkinson's disease. PLoS One 2012; 7:e34138. [PMID: 22485158 PMCID: PMC3317489 DOI: 10.1371/journal.pone.0034138] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/28/2012] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation and blood brain barrier (BBB) dysfunction have been implicated in the pathogenesis of Parkinson's disease (PD). The neuropeptide substance P (SP) is an important mediator of both neuroinflammation and BBB dysfunction through its NK1 receptor in a process known as neurogenic inflammation. Increased SP content has previously been reported following 6-OHDA treatment in vitro, with the levels of SP correlating with cell death. The present study used an in vivo 6-OHDA lesion model to determine if dopaminergic degeneration was associated with increased SP in the substantia nigra and whether this degeneration could be prevented by using a SP, NK1 receptor antagonist. Unilateral, intrastriatal 6-OHDA lesions were induced and SP (10 µg/2 µL) or the NK1 receptor antagonists, N-acetyl-L-tryptophan (2 µL at 50 nM) or L-333,060 (2 µL at 100 nM), administered immediately after the neurotoxin. Nigral SP content was then determined using immunohistochemical and ELISA methods, neuroinflammation and barrier integrity was assessed using Iba-1, ED-1, GFAP and albumin immunohistochemistry, while dopaminergic cell loss was assessed with tyrosine hydroxylase immunohistochemistry. Motor function in all animals was assessed using the rotarod task. Intrastriatal 6-OHDA lesioning produced an early and sustained increase in ipsilateral nigral SP content, along with a breakdown of the BBB and activation of microglia and astrocytes. Further exacerbation of SP levels accelerated disease progression, whereas NK1 receptor antagonist treatment protected dopaminergic neurons, preserved barrier integrity, reduced neuroinflammation and significantly improved motor function. We propose that neurogenic inflammation contributes to dopaminergic degeneration in early experimental PD and demonstrate that an NK1 receptor antagonist may represent a novel neuroprotective therapy.
Collapse
Affiliation(s)
| | - Robert Vink
- Adelaide Centre for Neuroscience Research, School of Medical Sciences, The University of Adelaide, Adelaide, South Australia
- * E-mail:
| |
Collapse
|
16
|
Effects of pallidal neurotensin on haloperidol-induced parkinsonian catalepsy: behavioral and electrophysiological studies. Neurosci Bull 2011; 26:345-54. [PMID: 20882060 DOI: 10.1007/s12264-010-0518-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE The globus pallidus plays a critical role in movement regulation. Previous studies have indicated that the globus pallidus receives neurotensinergic innervation from the striatum, and systemic administration of a neurotensin analog could produce antiparkinsonian effects. The present study aimed to investigate the effects of pallidal neurotensin on haloperidol-induced parkinsonian symptoms. METHODS Behavioral experiments and electrophysiological recordings were performed in the present study. RESULTS Bilateral infusions of neurotensin into the globus pallidus reversed haloperidol-induced parkinsonian catalepsy in rats. Electrophysiological recordings showed that microinjection of neurotensin induced excitation of pallidal neurons in the presence of systemic haloperidol administration. The neurotensin type-1 receptor antagonist SR48692 blocked both the behavioral and the electrophysiological effects induced by neurotensin. CONCLUSION Activation of pallidal neurotensin receptors may be involved in neurotensin-induced antiparkinsonian effects.
Collapse
|
17
|
László K, Tóth K, Kertes E, Péczely L, Lénárd L. The role of neurotensin in positive reinforcement in the rat central nucleus of amygdala. Behav Brain Res 2009; 208:430-5. [PMID: 20035801 DOI: 10.1016/j.bbr.2009.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 10/20/2022]
Abstract
In the central nervous system neurotensin (NT) acts as a neurotransmitter and neuromodulator. It was shown that NT has positive reinforcing effects after its direct microinjection into the ventral tegmental area. The central nucleus of amygdala (CeA), part of the limbic system, plays an important role in learning, memory, regulation of feeding, anxiety and emotional behavior. By means of immunohistochemical and radioimmune methods it was shown that the amygdaloid body is relatively rich in NT immunoreactive elements and NT receptors. The aim of our study was to examine the possible effects of NT on reinforcement and anxiety in the CeA. In conditioned place preference test male Wistar rats were microinjected bilaterally with 100 or 250 ng NT in volume of 0.4 microl or 35 ng neurotensin receptor 1 (NTS1) antagonist SR 48692 alone, or NTS1 antagonist 15 min before 100 ng NT treatment. Hundred or 250 ng NT significantly increased the time rats spent in the treatment quadrant. Prior treatment with the non-peptide NTS1 antagonist blocked the effects of NT. Antagonist itself did not influence the reinforcing effect. In elevated plus maze test we did not find differences among the groups as far as the anxiety index (time spent on the open arms) was concerned. Our results suggest that in the rat ACE NT has positive reinforcing effects. We clarified that NTS1s are involved in this action. It was also shown that NT does not influence anxiety behavior.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | | | | | | | | |
Collapse
|
18
|
Cui QL, Yung WH, Chen L. Effects of substance P on neuronal firing of pallidal neurons in parkinsonian rats. Neurosci Res 2008; 60:162-9. [DOI: 10.1016/j.neures.2007.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/27/2007] [Accepted: 10/19/2007] [Indexed: 10/22/2022]
|
19
|
Chen LW, Wang YQ, Bian GL, Wei LC, Yung KL. Neurokinin-3 peptide instead of neurokinin-1 synergistically exacerbates kainic acid-inducing degeneration of neurons in the substantia nigra of mice. J Neurochem 2007; 105:203-16. [PMID: 18021294 DOI: 10.1111/j.1471-4159.2007.05132.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neurokinin peptides neurokinin-1 (NK1), neurokinin-3 (NK3), and related receptors are abundantly distributed in the substantia nigra (SN) and evidenced by their possible roles in the Parkinson's disease. Differential intervention roles of NK3 on kainic acid (KA)-induced neuronal injury in the SN of mice were thus in vitro and in vivo studied by Fluoro-Jade C (FJC) staining, immunohistochemistry to tyrosine hydroxylase (TH) or phospho-NMDA receptor, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. It revealed that (i) in contrast to protective effect of NK1 agonist septide that reduced FJC-positive degenerative neurons and lesion volume insulted by KA, NK3 agonist senktide significantly increased FJC-positive ones and lesion volume, and this effect was sufficiently reversed by NK3 antagonist SB218795; (ii) similarly, senktide reduced TH-positive neurons and this effect was antagonized by SB218795, but septide increased TH-positive ones; (iii) mechanistic observation showed differential influences of NK1 and NK3 agonists on phosphorylated-NMDA receptor subunit 1 (phospho-NMDAR1) and glial fibrillary acidic protein-expressing astrocytes, i.e. senktide enhanced of NMDA receptor phosphorylation and astrocyte activity, while septide reduced NMDA receptor phosphorylation and astrocytic response; (iv) cell culture further confirmed the exacerbating effect of NK3 agonist on KA-induced lesion of nigral cells or dopaminergic neurons, in which administration of senktide alone did not show significant cell toxicity. This study presents new evidence that neurokinin NK3 instead of NK1 synergistically exacerbate excitotoxic neuronal degeneration in the SN in a dose-dependent manner and possibly through modulation of NMDA receptor phosphorylation and astrocyte activity, suggesting their potential significance in novel pharmaceutical therapy against Parkinson's disease.
Collapse
Affiliation(s)
- Liang-Wei Chen
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an, China.
| | | | | | | | | |
Collapse
|
20
|
Boutin H, Catherine A, Mackenzie ET, Jauzac P, Dauphin F. Long-term alterations in mu, delta and kappa opioidergic receptors following middle cerebral artery occlusion in mice. Acta Neuropathol 2007; 114:491-500. [PMID: 17676326 DOI: 10.1007/s00401-007-0269-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 07/02/2007] [Accepted: 07/05/2007] [Indexed: 12/15/2022]
Abstract
Alterations in the opioidergic system may play a role in the molecular mechanisms underlying neurochemical responses to cerebral ischaemia. The present study aimed to determine the delayed expression of mu, delta and kappa opioid receptors, following 1, 2, 7, and 30 days of middle cerebral artery occlusion (MCAO) in mice. Using quantitative autoradiography, we highlighted significant decreases in mu, delta and kappa opioid receptor expression in ipsilateral cortices from day 1 post-MCAO. Moreover, in contralateral nucleus lateralis thalami pars posterior, ipsi- and contralateral nucleus medialis dorsalis thalami, and ipsilateral substantia nigra, pars reticulata (SNr), kappa receptors were increased; mu receptor densities were decreased in nucleus ventralis thalami, pars posterior (VThP), and SNr. delta-Binding sites were increased in the striatum on day 30 post-MCAO. The alterations in opioid receptors in cortical infarcts were correlated with strong histological damage. Further reductions in opioid receptor densities in cortical infarcts were observed at later time points. In subcortical brain regions, opioid receptor densities were also altered but no histological damage was seen, except in the VThP, in which cell density was increased on day 30. Delayed reductions in opioid receptor densities in the infarct appeared as the continuation of the early processes previously demonstrated. However, changes in subcortical opioid receptor expression may correlate with neuronal alterations in remote brain regions. Changes in opioidergic receptor expression in these regions may be involved in the long-term consequences of stroke and could be used as biomarker of neuronal alteration through the use of imaging techniques in the clinic.
Collapse
MESH Headings
- Animals
- Binding Sites/physiology
- Biomarkers/analysis
- Biomarkers/metabolism
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Brain Infarction/metabolism
- Brain Infarction/pathology
- Brain Infarction/physiopathology
- Brain Ischemia/metabolism
- Brain Ischemia/pathology
- Brain Ischemia/physiopathology
- Disease Models, Animal
- Disease Progression
- Down-Regulation/physiology
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/physiopathology
- Mice
- Nerve Degeneration/metabolism
- Nerve Degeneration/pathology
- Nerve Degeneration/physiopathology
- Opioid Peptides/metabolism
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Time
- Time Factors
Collapse
|
21
|
Abstract
Substance P is a member of the neurokinin family. Previous studies have reported the existence of substance P and its high-affinity receptor, neurokinin-1 receptor, in globus pallidus. Employing in vivo extracellular recording combined with behavioural tests, the effects of substance P in globus pallidus of rats were studied. Micropressure ejection of the selective neurokinin-1 receptor agonist [Sar9,Met(O2)11] substance P increased the spontaneous firing rate of pallidal neurons in a concentration-dependent manner, with increases of 27.3% at 0.01, 33.4% at 0.03, 45.5% at 0.1, 38.4% at 0.3 and 36.4% at 1.0 mm. The selective neurokinin-1 receptor antagonist SR140333B prevented the excitatory effects induced by [Sar9,Met(O2)11] substance P. In behaving rats, we observed the postural effects of neurokinin-1 receptor activation in the globus pallidus. Consistent with electrophysiological results, unilateral microinjection of [Sar9,Met(O2)11] substance P (0.1 mm) led to a SR140333B-sensitive contralateral deflection in the presence of systemic haloperidol administration. Combining electrophysiological and behavioural findings, we concluded that substance P produces excitatory effects on globus pallidus neurons via neurokinin-1 receptors.
Collapse
Affiliation(s)
- Qiao-Ling Cui
- Department of Physiology, Faculty of Medicine, Qingdao University, Qingdao, Shandong, China
| | | | | | | |
Collapse
|
22
|
Aubert I, Guigoni C, Li Q, Dovero S, Bioulac BH, Gross CE, Crossman AR, Bloch B, Bezard E. Enhanced preproenkephalin-B-derived opioid transmission in striatum and subthalamic nucleus converges upon globus pallidus internalis in L-3,4-dihydroxyphenylalanine-induced dyskinesia. Biol Psychiatry 2007; 61:836-44. [PMID: 16950226 DOI: 10.1016/j.biopsych.2006.06.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 05/24/2006] [Accepted: 06/28/2006] [Indexed: 11/22/2022]
Abstract
BACKGROUND A role for enhanced opioid peptide transmission has been suggested in the genesis of levodopa-induced dyskinesia. However, basal ganglia nuclei other than the striatum have not been regarded as potential sources, and the opioid precursors have never been quantified simultaneously with the levels of opioid receptors at the peak of dyskinesia severity. METHODS The levels of messenger RNA (mRNA) encoding the opioid precursors preproenkephalin-A and preproenkephalin-B in the striatum and the subthalamic nucleus and the levels of mu, delta, and kappa opioid receptors were measured within the basal ganglia of four groups of nonhuman primates killed at the peak of effect: normal, parkinsonian, parkinsonian chronically-treated with levodopa without exhibiting dyskinesia, and parkinsonian chronically-treated with levodopa showing overt dyskinesia. RESULTS Dyskinesia are associated with reduction in opioid receptor binding and specifically of kappa and mu receptor binding in the globus pallidus internalis (GPi), the main output structure of the basal ganglia. This decrease was correlated with enhancement of the expression of preproenkephalin-B mRNA but not that of preproenkephalin-A in the striatum and the subthalamic nucleus. CONCLUSIONS Abnormal transmission of preproenkephalin-B-derived opioid coming from the striatum and the subthalamic nucleus converges upon GPi at the peak of dose to induce levodopa-induced dyskinesia.
Collapse
Affiliation(s)
- Incarnation Aubert
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 5541, Bordeaux Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Colebrooke RE, Chan PM, Lynch PJ, Mooslehner K, Emson PC. Differential gene expression in the striatum of mice with very low expression of the vesicular monoamine transporter type 2 gene. Brain Res 2007; 1152:10-6. [PMID: 17433807 DOI: 10.1016/j.brainres.2007.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 03/04/2007] [Accepted: 03/10/2007] [Indexed: 01/22/2023]
Abstract
The vesicular monoamine transporter type 2 (VMAT2) packages pre-synaptic monoamines into vesicles. Previously, we generated mice hypomorphic for the VMAT2 gene (Slc18a2), which results in a approximately 95% reduction in VMAT2 protein, disrupted vesicular storage, severe depletion of striatal dopamine and mice with moderate motor behaviour deficits. Dopamine released from mid-brain dopamine neurons acts on post-synaptic type 1 (D1) and 2 (D2) receptors located on striatal medium spiny neurons to initiate a signalling cascade that leads to altered transcription factor activity, gene expression and neuronal activity. We investigated striatal gene expression changes in VMAT2hypo mice by quantitative real-time PCR and in situ hybridisation. Despite unaltered expression of D1 and D2 dopamine receptors, there were dramatic alterations in striatal mRNAs encoding the neuropeptides substance P, dynorphin, enkephalin and cholecystokinin. The promoters of these genes are regulated by a combination of transcription factors that includes cAMP responsive element binding protein-1 (CREB) and c-Fos. Indeed, the changes in peptide mRNAs were associated with elevated expression of Creb1 and c-Fos. These data indicate that striatal dopamine depletion, as a consequence of deficient vesicular storage in this mouse, triggers a complex program of gene expression, consistent with this mouse being an excellent model of Parkinson's disease.
Collapse
Affiliation(s)
- R E Colebrooke
- Laboratory of Molecular Neuroscience, The Babraham Institute, Babraham, Cambridge, UK
| | | | | | | | | |
Collapse
|
24
|
Hallett PJ, Brotchie JM. Striatal delta opioid receptor binding in experimental models of Parkinson's disease and dyskinesia. Mov Disord 2007; 22:28-40. [PMID: 17089424 DOI: 10.1002/mds.21163] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Enhanced delta opioid receptor transmission may represent an endogenous compensatory mechanism in parkinsonism to reduce the activity of the indirect striatopallidal pathway following dopamine depletion. Furthermore, increased delta opioid receptor transmission may be causative in the production of dyskinesia following repeated dopaminergic treatment in Parkinson's disease. The present study employed radioligand receptor autoradiography, using [3H]naltrindole, a ligand selective for the delta opioid receptor, to assess delta opioid receptor binding sites in forebrain regions of reserpine-treated rats, and in parkinsonian nondyskinetic, and dyskinetic MPTP-lesioned macaques. In reserpine-treated animals, specific delta opioid binding was increased in premotor cortex (+30%), sensorimotor striatum (+20%), and associative striatum (+17%) rostrally, but was not changed in caudal forebrain. In contrast, delta opioid receptor binding was not significantly altered at any region analyzed, in either nondyskinetic or dyskinetic, MPTP-lesioned macaques, compared to normal. These results suggest that transient changes in delta opioid receptor binding may occur in motor circuits following acute dopamine depletion. However, in the more chronic MPTP-lesioned macaque model, simple changes in delta opioid receptor number or affinity are unlikely to contribute to mechanisms for abnormal opioid transmission in Parkinson's disease and dyskinesia.
Collapse
Affiliation(s)
- Penelope J Hallett
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hopital, Charlestown, Massachusetts 02478, USA.
| | | |
Collapse
|
25
|
Chen L, Yung KKL, Yung WH. Neurotensin selectively facilitates glutamatergic transmission in globus pallidus. Neuroscience 2006; 141:1871-8. [PMID: 16814931 DOI: 10.1016/j.neuroscience.2006.05.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 11/26/2022]
Abstract
The tridecapeptide neurotensin has been demonstrated to modulate neurotransmission in a number of brain regions. There is evidence that neurotensin receptors exist in globus pallidus presynaptically and postsynaptically. Whole-cell patch-clamp recordings were used to investigate the modulatory effects of neurotensin on glutamate and GABA transmission in this basal ganglia nucleus in rats. Neurotensin at 1 microM significantly increased the frequency of glutamate receptor-mediated miniature excitatory postsynaptic currents. In contrast, neurotensin had no effect on GABA(A) receptor-mediated miniature inhibitory postsynaptic currents. The presynaptic facilitation of neurotensin on glutamatergic transmission could be mimicked by the C-terminal fragment, neurotensin (8-13), but not by the N-terminal fragment, neurotensin (1-8). The selective neurotensin type-1 receptor antagonist, SR48692 {2-[(1-(7-chloro-4-quinolinyl)-5-2(2,6-dimethoxyphenyl)pyrazol-3-yl)carbonylamino]-tricyclo(3.3.1.1.(3.7))-decan-2-carboxylic acid}, blocked this facilitatory effect of neurotensin, and which itself had no effect on miniature excitatory postsynaptic currents. The specific phospholipase C inhibitor, U73122 {1-[6-[[17beta-3-methoyyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione}, significantly inhibit neurotensin-induced facilitation on glutamate release. Taken together with the reported postsynaptic depolarization of neurotensin in globus pallidus, it is suggested that neurotensin excites the globus pallidus neurons by multiple mechanisms which may provide a rationale for further investigations into its involvement in motor disorders originating from the basal ganglia.
Collapse
Affiliation(s)
- L Chen
- Department of Physiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | | | | |
Collapse
|
26
|
Chin FT, Morse CL, Shetty HU, Pike VW. Automated radiosynthesis of [18F]SPA-RQ for imaging human brain NK1 receptors with PET. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.1016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Wang YQ, Hu HJ, Cao R, Chen LW. Differential co-localization of neurokinin-3 receptor and NMDA/AMPA receptor subunits in neurons of the substantia nigra of C57/BL mice. Brain Res 2005; 1053:207-12. [PMID: 16038885 DOI: 10.1016/j.brainres.2005.06.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 06/13/2005] [Accepted: 06/14/2005] [Indexed: 12/15/2022]
Abstract
By using a double immunofluorescence method we examined co-localization of neurokinin-3 receptor (NK-3R) and N-methyl-D-aspartate (NMDA)/alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits in neurons of the substantia nigra of adult mice. Overlapping distribution of NMDA receptor subunit 1 (NR1)/AMPA receptor subunits 1-4 (GluR1-4) and NK-3R-immunoreactive neurons were found in the substantia nigra pars compacta. It revealed that all (100%) of NK-3R-positive neurons displayed NR1, GluR2 or GluR3 immunoreactivity, 80% of them showed GluR1 immunoreactivity. In contrast, these neurons exhibiting both NK-3R and GluR4 immunoreactivity were hardly detected although GluR4-positive neurons were still distributed in the substantia nigra. The co-expression of NK-3R and NMDA/AMPA receptor subunits in the nigral neurons has provided a structural basis for functional modulation of neuronal glutamate receptors by neurokinin-3, suggesting that neurokinin peptides may be involved in modulation of neuronal properties and excitotoxicity in the substantia nigra of basal ganglia.
Collapse
Affiliation(s)
- Yan-Qin Wang
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, P R China
| | | | | | | |
Collapse
|
28
|
Fitzpatrick E, Ashkan K, Wallace BA, Benabid AL, Mitrofanis J. Differential survival patterns among midbrain dopaminergic cells of MPTP-treated monkeys and 6OHDA-lesioned rats. ACTA ACUST UNITED AC 2005; 210:101-23. [PMID: 16151853 DOI: 10.1007/s00429-005-0003-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
We explore the patterns of survival among dopaminergic cells of the midbrain in MPTP-treated macaque monkeys and 6OHDA-lesioned Sprague-Dawley rats. For the monkeys, animals were injected intramuscularly with MPTP for 8 days consecutively and then allowed to survive for 21 days. For the rats, 6OHDA was injected into the midbrain and then allowed to survive for either 7, 28 or 84 days. Brains were processed for tyrosine hydroxylase (TH) and calbindin immunocytochemistry to label populations in the ventral and dorsal tiers of midbrain dopaminergic cells. In monkeys, while there was a decrease in the TH+ cell number in the ventral tier of MPTP-treated cases (65%), there was an overall increase (22%) in the TH+ and calbindin+ cell number in the dorsal tier. Double labelling studies indicate that approximately 50% of TH+ cells of the dorsal tier contain calbindin also. In rats, there was a decrease in TH+ cell number in the ventral tier of 6OHDA-lesioned cases (97%), and to a lesser extent, in the TH+ and calbindin+ cell number in the dorsal tier ( approximately 40%). In conclusion, we show a surprising increase in TH+ and calbindin+ cell number in the dorsal tier in response to MPTP insult; such an increase was not evident after 6OHDA insult. We suggest that the increase in antigen expression relates to the dopaminergic reinnervation of the striatum in MPTP-treated cases. We also suggest that the greater loss of dopaminergic cells in the ventral tier when compared to the dorsal tier relates to glutamate toxicity.
Collapse
|
29
|
Spadoni F, Martella G, Martorana A, Lavaroni F, D'Angelo V, Bernardi G, Stefani A. Opioid-mediated modulation of calcium currents in striatal and pallidal neurons following reserpine treatment: focus on kappa response. Synapse 2004; 51:194-205. [PMID: 14666517 DOI: 10.1002/syn.10294] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Previous work has shown that enkephalins target N-type calcium (Ca2+) channels in striatal and globus pallidus (GP) neurons, principally through activation of mu-like receptors. Here, we examined the effects of selective mu, delta, and kappa agonists on Ca2+ currents in striatal and GP neurons isolated from either control or reserpine-treated rats. In cells from control rats DAMGO and dynorphin (DYN) inhibited high-voltage-activated (HVA) Ca2+ currents preferentially in "medium-to-small" GP cells (likely to correspond to parvalbumin-negative cells). The kappa response was elicited by several agonists (DYN 17, DYN 13, BRL, U50-488-H), U50-488-H being the most effective (>30% maximal inhibition). U50-488-H affected both omega-CgTxGVIA-sensitive and nimodipine-sensitive Ca2+ conductances. The kappa-mediated effect (but not the mu response) was slow and blocked by chelerythrine, supporting the involvement of protein kinase C. In neurons from reserpinized rats we observed modest changes in the mu-inhibited fraction in small GP cells and a dramatic reduction of the kappa-sensitive fraction in principal striatal cells. These data imply that aminergic depletion alters opiate transmission differentially in the indirect and direct pathways. The suppression of the kappa response only in striatum reinforces the notion of an imbalance of endogenous opiates as relevant in extrapyramidal motor dysfunctions.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Adrenergic Uptake Inhibitors/pharmacology
- Alkaloids
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Analysis of Variance
- Animals
- Benzophenanthridines
- Calcium Channel Blockers/pharmacology
- Calcium Channels/physiology
- Cell Size/drug effects
- Cells, Cultured
- Corpus Striatum/cytology
- Dose-Response Relationship, Drug
- Drug Interactions
- Dynorphins/pharmacology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, Leucine-2-Alanine/pharmacology
- Enzyme Inhibitors/pharmacology
- Male
- Membrane Potentials/drug effects
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neural Inhibition/drug effects
- Neurons/classification
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques/methods
- Phenanthridines/pharmacology
- Rats
- Rats, Wistar
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Reserpine/pharmacology
- omega-Conotoxin GVIA/pharmacology
Collapse
|
30
|
Chen L, Yung KKL, Yung WH. Neurotensin depolarizes globus pallidus neurons in rats via neurotensin type-1 receptor. Neuroscience 2004; 125:853-9. [PMID: 15120846 DOI: 10.1016/j.neuroscience.2004.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2004] [Indexed: 11/16/2022]
Abstract
The globus pallidus is a major component in the indirect pathway of the basal ganglia. There is evidence that neurotensin receptors exist in this nucleus. To determine the electrophysiological effects of neurotensin on pallidal neurons, whole-cell patch-clamp recordings were performed in the acutely prepared brain slices. Under current-clamp recordings, neurotensin at 1 microM depolarized pallidal neurons. Voltage-clamp recordings also showed an inward current induced by neurotensin. The depolarizing effect of neurotensin could be mimicked by the C-terminal fragment, neurotensin (8-13), but not by the N-terminal fragment, neurotensin (1-8). Both SR 142948A, a non-selective neurotensin receptor type-1 and type-2 antagonist, and SR 48692, a selective type-1 receptor antagonist, blocked the depolarizing effect of neurotensin, and which themselves had no effect on membrane potential. Thus, neurotensin type-1 receptors appear to mediate the effect of neurotensin. The depolarization evoked by neurotensin persisted in the presence of tetrodotoxin, ionotropic and metabotropic glutamate and GABA receptor antagonists, indicating that neurotensin excited the pallidal neurons by activating the receptor expressed on the neurons recorded. Current-voltage relationship revealed that both the suppression of a potassium conductance and the activation of a cationic conductance are involved in the neurotensin-induced depolarization. Based on the action of neurotensin in the globus pallidus we hypothesize that alterations of the striatopallidal neurotensin system contribute to symptoms of basal ganglia motor disorders.
Collapse
Affiliation(s)
- L Chen
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
31
|
Friedman Y, Richter A, Raymond R, Löscher W, Nobrega JN. Regional decreases in NK-3, but not NK-1 tachykinin receptor binding in dystonic hamster (dt(sz)) brains. Neuroscience 2002; 112:639-45. [PMID: 12074905 DOI: 10.1016/s0306-4522(02)00103-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although the pathophysiology of primary dystonias is currently unknown, it is thought to involve changes in the basal ganglia-thalamus-cortex circuit, particularly activity imbalances between direct and indirect striatal pathways. Substance P, a member of the tachykinin family of neuropeptides, is a major component in the direct pathway from striatum to basal ganglia output nuclei. In the present study quantitative autoradiography was used to examine changes in neurokinin-1 (NK-1) and neurokinin-3 (NK-3) receptors in mutant dystonic hamsters (dt(sz)), a well characterized model of paroxysmal dystonia. NK-1 receptors were labeled in 10 dystonic brains and 10 age-matched controls with 3 nM [(3)H]-[Sar(9), Met(O(2))(11)]-SP. NK-3 binding sites were labeled in adjacent sections with 2.5 nM [(3)H]senktide. NK-1 binding was found to be unaltered in 27 brain areas examined. In contrast, NK-3 binding was significantly reduced in layers 4 and 5 of the prefrontal (-46%), anterior cingulate (-42%) and parietal (-45%) cortices, ventromedial thalamus (-42%) and substantia nigra pars compacta (-36%) in dystonic brains compared to controls. The latter effects may be particularly relevant in view of evidence that activation of NK-3 receptors on dopaminergic neurons in the substantia nigra pars compacta can increase nigrostriatal dopaminergic activity. Since previous studies indicated that a reduced basal ganglia output in mutant hamsters is based on an overactivity of the direct pathway which also innervates substantia nigra pars compacta neurons, the decreased NK-3 binding could be related to a receptor down-regulation. The present finding of decreased NK-3 receptor density in the substantia nigra pars compacta, thalamic and cortical areas substantiates the hypothesis that disturbances of the basal ganglia-thalamus-cortex circuit play a critical role in the pathogenesis of paroxysmal dystonia.
Collapse
Affiliation(s)
- Y Friedman
- Neuroimaging Research Section, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
32
|
Shen KZ, Johnson SW. Presynaptic modulation of synaptic transmission by opioid receptor in rat subthalamic nucleus in vitro. J Physiol 2002; 541:219-30. [PMID: 12015431 PMCID: PMC2290302 DOI: 10.1113/jphysiol.2001.013404] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Presynaptic modulation of synaptic transmission in rat subthalamic nucleus (STN) neurons was investigated using whole-cell patch-clamp recordings in brain slices. Evoked GABAergic inhibitory postsynaptic currents (IPSCs) were reversibly reduced by methionine enkephalin (ME) with an IC(50) value of 1.1 +/- 0.3 microM. The action of ME was mimicked by the mu-selective agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO), and was partially blocked by the mu-selective antagonists naloxonazine and D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP). Evoked GABA(A) IPSCs were also inhibited by the delta-selective agonist [D-Pen(2,5)]-enkephalin (DPDPE), but not by the kappa-selective agonist (+)-(5 alpha,7 alpha,8 beta)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U-69593) and the orphan receptor agonist orphanin FQ/nociceptin (OFQ). DPDPE-induced inhibition was completely blocked by the delta-selective antagonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864). ME, DAMGO and DPDPE increased the paired-pulse ratio of IPSCs. Evoked excitatory postsynaptic currents (EPSCs) were reversibly reduced by ME with an IC(50) value of 0.35 +/- 0.14 microM. Inhibition by ME was associated with an increase in the paired-pulse ratio of EPSCs. The action of ME was mimicked by DAMGO, and blocked by naloxonazine. DPDPE had little effect on evoked EPSCs. Neither U-69593 nor OFQ had any effect. ME significantly decreased the frequency of spontaneous miniature EPSCs (mEPSCs) without change in their amplitude. The action of ME was mimicked by DAMGO. DPDPE had no effect. The presynaptic voltage-dependent potassium conductance blocker 4-aminopyridine (4-AP, 100 microM) abolished the inhibitory effects of ME on evoked IPSCs and EPSCs. In contrast, 4-AP only partially blocked the actions of baclofen. These results suggest that opioids inhibit inhibitory synaptic transmission in the STN through the activation of presynaptic mu- and delta- receptors. In contrast, inhibition of excitatory synaptic inputs to the STN occurs through the activation of only mu-receptors. Both inhibitions may be mediated by blockade of voltage-dependent potassium conductance.
Collapse
Affiliation(s)
- Ke-Zhong Shen
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, OR 97201, USA
| | | |
Collapse
|
33
|
Boules M, Warrington L, Fauq A, McCormick D, Richelson E. Antiparkinson-like effects of a novel neurotensin analog in unilaterally 6-hydroxydopamine lesioned rats. Eur J Pharmacol 2001; 428:227-33. [PMID: 11675040 DOI: 10.1016/s0014-2999(01)01260-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Parkinson's disease is a neuropathological disorder involving the degeneration of dopamine neurons in the substantia nigra, with the resultant loss of their terminals in the striatum. This dopamine loss causes most of the motor disturbances associated with the disease. One animal model of Parkinson's disease involves destruction of the nigrostriatal pathway with a neurotoxin (6-hydroxydopamine) injected into this pathway. In unilaterally lesioned animals, injection of D-amphetamine causes rotation towards the lesioned side, while injection of apomorphine acting upon supersensitive postsynaptic dopamine receptors causes rotation away from the lesioned side. In this study, we tested the effects of acute and subchronic injection of a neurotensin analog (NT69L) on the rotational behavior induced by D-amphetamine (5 mg/kg) or apomorphine (600 microg/kg) in unilaterally 6-hydroxydopamine lesioned rats. Pretreatment of animals with intraperitoneal injections of NT69L (1 mg/kg) resulted in a significant reduction of apomorphine-induced contralateral rotation and D-amphetamine-induced ipsilateral rotation in these lesioned rats with an ED(50) of 40 and 80 microg/kg, respectively. After three daily injections of NT69L, its effects on this rotational behavior were unchanged, suggesting that no tolerance develops to this effect of NT69L.
Collapse
Affiliation(s)
- M Boules
- Neuropsychopharmacology Laboratory, Mayo Foundation for Medical Education and Research, and Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | | | | | |
Collapse
|
34
|
Johansson PA, Andersson M, Andersson KE, Cenci MA. Alterations in cortical and basal ganglia levels of opioid receptor binding in a rat model of l-DOPA-induced dyskinesia. Neurobiol Dis 2001; 8:220-39. [PMID: 11300719 DOI: 10.1006/nbdi.2000.0372] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioid receptor-binding autoradiography was used as a way to map sites of altered opioid transmission in a rat model of l-DOPA-induced dyskinesia. Rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal pathways sustained a 3-week treatment with l-DOPA (6 mg/kg/day, combined with 12 mg/kg/day benserazide), causing about half of them to develop dyskinetic-like movements on the side of the body contralateral to the lesion. Autoradiographic analysis of mu-, delta-, and kappa-opioid binding sites was carried out in the caudate-putamen (CPu), the globus pallidus (GP), the substantia nigra (SN), the primary motor area, and the premotor-cingulate cortex. The dopamine-denervating lesion alone caused an ipsilateral reduction in opioid radioligand binding in the CPu, GP, and SN, but not in the cerebral cortex. Chronic l-DOPA treatment affected opioid receptor binding in both the basal ganglia and the cerebral cortex, producing changes that were both structure- and receptor-type specific, and closely related to the motor response elicited by the treatment. In the basal ganglia, the most clear-cut differences between dyskinetic and nondyskinetic rats pertained to kappa opioid sites. On the lesioned side, both striatal and nigral levels of kappa binding densities were significantly lower in the dyskinetic group, showing a negative correlation with the rats' dyskinesia scores on one hand and with the striatal expression of opioid precursor mRNAs on the other hand. In the cerebral cortex, levels of mu and delta binding site densities were bilaterally elevated in the dyskinetic group, whereas kappa radioligand binding was specifically increased in the nondyskinetic cases and showed a negative correlation with the rats' dyskinesia scores. These data demonstrate that bilateral changes in cortical opioid transmission are closely associated with l-DOPA-induced dyskinesia in the rat. Moreover, the fact that dyskinetic and nondyskinetic animals often show opposite changes in opioid radioligand binding suggests that the motor response to l-DOPA is determined, at least in part, by compensatory adjustments of brain opioid receptors.
Collapse
MESH Headings
- Animals
- Basal Ganglia/drug effects
- Basal Ganglia/metabolism
- Basal Ganglia/physiopathology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Binding Sites/drug effects
- Binding Sites/physiology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- Diprenorphine/pharmacokinetics
- Disease Models, Animal
- Dopamine Agents/pharmacology
- Dyskinesia, Drug-Induced/etiology
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/physiopathology
- Enkephalins/genetics
- Female
- Levodopa/pharmacology
- Narcotic Antagonists/pharmacokinetics
- Oxidopamine/pharmacology
- Protein Precursors/genetics
- RNA, Messenger/metabolism
- Radioligand Assay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Sympatholytics/pharmacology
- Tritium/pharmacokinetics
Collapse
Affiliation(s)
- P A Johansson
- Department of Physiological Sciences, Neurobiology Division, Wallenberg Neuroscience Centre, University of Lund, Sölvegatan 17, Lund, S-223 62, Sweden
| | | | | | | |
Collapse
|
35
|
Boutin H, Dauphin F, Jauzac P, MacKenzie ET. Exofocal alterations in opioidergic receptor densities following focal cerebral ischemia in the mouse. Exp Neurol 2000; 164:314-21. [PMID: 10915570 DOI: 10.1006/exnr.2000.7400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In previous studies of our group, we have reported differential alterations in opioidergic receptor subtypes densities in infarcted and periinfarcted brain tissue following middle cerebral artery occlusion (MCAO) in mice. Other studies have also described subcortical alterations consecutive to focal cortical ischemia. For a better understanding of ischemic processes in exofocal areas, we have investigated the evolution of opioidergic receptors following focal cortical ischemia through the quantification of relative binding densities, B(max) and K(d) values for the mu, delta, and kappa subtypes. Our results demonstrate that opioid receptor subtypes exhibit adaptations at distance from the ischemic core, mainly in the striatum, the thalamus, and the substantia nigra. Indeed, mu and delta B(max) values were increased in ventral thalamic nuclei, while kappa relative binding densities were transiently increased in nucleus medialis dorsalis and nucleus lateralis, pars posterior. Moreover, the B(max) of mu and delta receptors were transiently decreased at 6 h post-MCAO in ipsi- and contralateral patches and matrices of the striatum. Conversely, the mu B(max) values were increased in ipsi- and contralateral substantia nigra, pars compacta, and pars reticulata, 24 h following MCAO. In contralateral substantia nigra, pars compacta, kappa B(max) was found to be decreased at 24 h post-MCAO. These alterations could reflect neuronal dysfunction in exofocal brain structures, consecutively to the degeneration of defined neuroanatomical pathways. Our study indicates that opioidergic receptors could be used as markers of the neuronal reorganization that take place in subcortical areas following an ischemic insult of the brain cortex.
Collapse
Affiliation(s)
- H Boutin
- CNRS UMR 6551, Centre CYCERON, University of Caen, Boulevard H. Becquerel, Caen Cedex, 14074, France
| | | | | | | |
Collapse
|
36
|
Abstract
Opiate receptor avidity (unoccupied receptor density / the receptor dissociation constant), was measured in four animals with unilateral parkinsonian symptoms following MPTP (1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine) infusions into the internal carotid of one side, and nine normal controls with positron emission tomography (PET) and 6-deoxy-6-beta-[(18)F]fluoronaltrexone (cyclofoxy, CF), a mu- and kappa-opiate receptor antagonist. PET studies of 6-[(18)F]-L-fluoro-L-3,4-dihydroxyphenylalanine ([(18)F]-DOPA) in these parkinsonian animals, although documenting the primarily unilateral nature of the lesion, also demonstrated a milder loss of dopaminergic on the side opposite the infusion. Opiate receptor avidity was found to be reduced by 20-34% in the caudate, anterior putamen, thalamus, and amygdala of these primarily unilaterally MPTP-exposed animals, bilaterally with no statistically significant differences between the two sides. The affected regions are the same as those previously demonstrated to have a 30-35% loss in clinically recovered bilaterally MPTP-lesioned animals. These findings confirm that the opiate pathway can change in response to modest decreases in basal ganglia dopamine innervation. Thus, opiate pathway adaptation is likely to contribute to the dynamic changes in basal ganglia circuits that forestall the initial clinical manifestations of Parkinson's disease. In addition, opiate pathway(s) may contribute to the treatment responsiveness and progression of the disease either directly through effects on basal ganglia function or indirectly through effects on basal ganglia plasticity.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Animals
- Basal Ganglia/physiology
- Brain/diagnostic imaging
- Brain/drug effects
- Brain/physiology
- Cerebellum/physiology
- Cerebral Cortex/physiology
- Dihydroxyphenylalanine/analogs & derivatives
- Dihydroxyphenylalanine/pharmacokinetics
- Fluorine Radioisotopes
- Functional Laterality
- Infusions, Parenteral
- Limbic System/physiology
- Macaca mulatta
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacokinetics
- Narcotic Antagonists/pharmacokinetics
- Organ Specificity
- Receptors, Opioid/drug effects
- Receptors, Opioid/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Tomography, Emission-Computed
Collapse
Affiliation(s)
- R M Cohen
- Laboratory of Cerebral Metabolism, National Institute of Health, Bethesda, Maryland 20892-4030, USA.
| | | | | | | |
Collapse
|
37
|
Goulet M, Morissette M, Grondin R, Falardeau P, Bédard PJ, Rostène W, Di Paolo T. Neurotensin receptors and dopamine transporters: effects of MPTP lesioning and chronic dopaminergic treatments in monkeys. Synapse 1999; 32:153-64. [PMID: 10340626 DOI: 10.1002/(sici)1098-2396(19990601)32:3<153::aid-syn2>3.0.co;2-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of denervation with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) of the dopamine (DA) nigrostriatal pathway on neurotensin (NT) receptor and DA transporter (DAT) in basal ganglia of monkeys (Macaca fascicularis) was investigated. The MPTP lesion induced a marked depletion of DA (90% or more vs. control) in the caudate nucleus and putamen. The densities of NT agonist binding sites labeled with [125I]NT and the NT antagonist binding sites labeled with [3H]SR142948A decreased by half in the caudate-putamen of MPTP-monkeys. In addition, the densities of [125I]NT and [3H]SR142948A binding sites markedly decreased (-77 and -63%, respectively) in the substantia nigra of MPTP-monkeys. Levocabastine did not compete with high affinity for [125I]NT binding in the monkey cingulate cortex, suggesting that only one class of NT receptors was labelled in the monkey brain. An extensive decrease of [3H]GBR12935 DAT binding sites (-92% vs. Control) was observed in the striatum of MPTP-monkeys and an important loss of DAT mRNA(-86% vs. Control) was observed in substantia nigra. Treatments for 1 month with either the D1 agonist SKF-82958 (3 mg/kg/day) or the D2 agonist cabergoline (0.25 mg/kg/day) had no effect on the lesion-induced decrease in NT and DAT binding sites or DAT mRNA levels. The decrease of striatal NT binding sites was less than expected from the decrease of DA content in this nucleus, suggesting only partial localization of NT receptors on nigrostriatal DAergic projections. These data also suggest that under severe DA denervation, treatment with D1 or D2 DA agonists does not modulate NT receptors and DAT density.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- Adamantane/analogs & derivatives
- Adamantane/metabolism
- Animals
- Autoradiography
- Binding Sites/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Caudate Nucleus/drug effects
- Caudate Nucleus/metabolism
- Denervation
- Dopamine/metabolism
- Dopamine Agents/metabolism
- Dopamine Agents/pharmacology
- Dopamine Plasma Membrane Transport Proteins
- Dose-Response Relationship, Drug
- Down-Regulation/drug effects
- Imidazoles/metabolism
- In Situ Hybridization
- Macaca fascicularis
- Membrane Glycoproteins
- Membrane Transport Proteins
- Neostriatum/drug effects
- Neostriatum/metabolism
- Nerve Tissue Proteins
- Neurotensin/metabolism
- Piperidines/metabolism
- Putamen/drug effects
- Putamen/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Dopamine/metabolism
- Receptors, Neurotensin/agonists
- Receptors, Neurotensin/antagonists & inhibitors
- Receptors, Neurotensin/metabolism
- Substantia Nigra/drug effects
- Substantia Nigra/metabolism
Collapse
Affiliation(s)
- M Goulet
- Faculty of Pharmacy, Laval University, Québec, Qc, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Tang FI, Chiu TH, Wang Y. Electrochemical studies of the effects of substance P on dopamine terminals in the rat striatum. Exp Neurol 1998; 152:41-9. [PMID: 9682011 DOI: 10.1006/exnr.1998.6834] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the regulation of dopamine (DA) release and clearance by Substance P (SP) in striatum. In vivo high speed chronoamperometric recording techniques, with Nafion-coated carbon-fiber electrodes, were used to evaluate extracellular DA concentrations in urethane-anesthetized Sprague-Dawley rats. SP was locally applied to striatum. Our data indicate that SP can induce DA release in striatum. However, only about half of the striatal sites respond to SP. Readministration of SP to the same site elicited a smaller DA release. These data suggest that SP-evoked release shows tachyphyllaxis and is heterogeneous in the striatum. Lesioning of DA neurons with 6-OHDA into the medial forebrain bundle abolished DA release induced by SP. It has been shown that SP interacts with three different tachykinin receptors. We found that application of the Neurokinin-1 (NK1) agonist [Sar9, Met (O2)11]SP, but not the NK3 agonist senktide, induced DA release, suggesting that SP-induced DA release may be mediated through NK1 receptors. We further examined SP effects on DA clearance in striatum. We found that pretreatment with SP significantly attenuated extracellular levels of DA after exogeneous application of DA, suggesting that DA clearance is augmented by SP. Taken together, our data demonstrate that substance P facilitates dopamine release and clearance in the striatum.
Collapse
Affiliation(s)
- F I Tang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | | | | |
Collapse
|
39
|
Piccini P, Weeks RA, Brooks DJ. Alterations in opioid receptor binding in Parkinson's disease patients with levodopa-induced dyskinesias. Ann Neurol 1997; 42:720-6. [PMID: 9392571 DOI: 10.1002/ana.410420508] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Levodopa-induced dyskinesias remain a major challenge in the therapeutic management of Parkinson's disease (PD). Their etiology is unknown although dysfunction of striatal opioid transmission has been implicated in experimental models of PD. To determine whether the opioid system is involved in human dyskinetic PD, we measured in vivo opioid receptor binding in PD patients with and without levodopa-induced dyskinesias, using positron emission tomography (PET) and the opioid receptor ligand [11C]diprenorphine. Striatal and thalamic/occipital uptake ratios were calculated using a region of interest (ROI) approach. In addition, we used statistical parametric mapping (SPM) and images reflecting the volume of distribution of [11C]diprenorphine to assess changes in cerebral receptor binding on a voxel-by-voxel basis. By using the ROI approach, we found significantly reduced striatal and thalamic opioid binding in dyskinetic, but not in nondyskinetic, PD patients. The SPM approach confirmed reduced availability in these areas and, in addition, showed decreased cingulate and increased prefrontal opioid receptor binding in the dyskinetic patients. Our findings confirm that altered opioid transmission is part of the pathophysiology of levodopa-induced dyskinesias in PD and support further investigation into the role of opioid agents in the management of these involuntary movements.
Collapse
Affiliation(s)
- P Piccini
- MRC Cyclotron Unit, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
40
|
|
41
|
Barker R. Tachykinins, neurotrophism and neurodegenerative diseases: a critical review on the possible role of tachykinins in the aetiology of CNS diseases. Rev Neurosci 1996; 7:187-214. [PMID: 8916292 DOI: 10.1515/revneuro.1996.7.3.187] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The tachykinins are a family of undecapeptides that are widely distributed throughout the body, including the central nervous system (CNS). They have several well defined roles in non-CNS sites as well as in the dorsal horn, where they are involved in the transmission of nociceptive information. However their function(s) in other CNS sites is unclear, but there is some evidence that they function as neuromodulators rather than neurotransmitters. This neuromodulation includes a possible role in maintaining the integrity of neuronal populations, analogous to the functions of neurotrophic factors. This review critically evaluates the role of tachykinins as neurotrophic factors, with particular reference to the common neurodegenerative diseases of the CNS.
Collapse
Affiliation(s)
- R Barker
- National Hospital for Neurology and Neurosurgery, London, U.K
| |
Collapse
|
42
|
Haber SN, Ryoo H, Cox C, Lu W. Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 1995; 362:400-10. [PMID: 8576447 DOI: 10.1002/cne.903620308] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The midbrain dopamine system can be divided into two groups of cells based on chemical characteristics and connectivity. The dorsal tier neurons, which include the dorsal pars compacta and the ventral tegmental area, are calbindin-positive, and project to the shell of the nucleus accumbens. The ventral tier neurons are calbindin-negative and project to the sensorimotor striatum. This study examined the distribution of the mRNAs for the dopamine transporter molecule (DAT) and the D2 receptor in the midbrain of monkeys by using in situ hybridization. The distribution patterns were compared to that of tyrosine hydroxylase and calbindin immunohistochemistry. The results show that high levels of hybridization for DAT and the D2 receptor mRNA are found in the ventral tier, calbindin-negative neurons and relatively low levels are found in the dorsal, calbindin-positive tier. Within the dorsal tier, the dorsal substantia nigra pars compacta has the least amount of both messages. These results show that in monkeys, the ventral tegmental area and the dorsal pars compacta form a dorsal continuum of dopamine neurons which express lower levels of mRNA for DAT and D2 receptor than the ventral tier. DAT has been shown to be involved in the selective neurotoxicity of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Different levels of DAT mRNA and calbindin may explain the differential effects of MPTP neurotoxicity.
Collapse
Affiliation(s)
- S N Haber
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine, New York 14642, USA
| | | | | | | |
Collapse
|
43
|
Schlösser B, Kudernatsch MB, Sutor B, ten Bruggencate G. Delta, mu and kappa opioid receptor agonists inhibit dopamine overflow in rat neostriatal slices. Neurosci Lett 1995; 191:126-30. [PMID: 7659278 DOI: 10.1016/0304-3940(94)11552-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The actions of opioid receptor agonists on stimulus evoked dopamine overflow in rat neostriatal slices were investigated using fast cyclic voltammetry. Activation of delta and mu receptors reversibly depressed striatal dopamine efflux induced by intrastriatal stimulation. The inhibitory effect of DADLE (D-Ala2, D-Leu5-enkephalin, delta/mu agonist), DPDPE (D-Pen2,5-enkephalin, delta selective) and DALDA (D-Arg2, Lys4-dermorphin-(1,4)-amide, mu selective), respectively, were concentration dependent and could be blocked by application of receptor subtype selective antagonists. At a concentration of 1 microM, the kappa receptor agonist U-50488H inhibited dopamine overflow. This effect could be partially antagonized by kappa receptor selective antagonists. Prior application of virtually ineffective concentrations (< or = 0.1 microM) of the kappa agonist reduced the efficacy of 1 microM U-50488H suggesting a desensitization of the receptor. Since the stimulus induced dopamine overflow in striatal slices can be attributed solely to the release of dopamine from presynaptic terminals, these experiments demonstrate that delta, mu and kappa opioid receptors exert an inhibitory control on striatal dopamine release via a presynaptic mechanism.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
- Analgesics/pharmacology
- Animals
- Dopamine/metabolism
- Dopamine Uptake Inhibitors/pharmacology
- Electric Stimulation
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalin, Leucine-2-Alanine/pharmacology
- Enkephalins/pharmacology
- In Vitro Techniques
- Male
- Neostriatum/drug effects
- Neostriatum/metabolism
- Nomifensine/pharmacology
- Oligopeptides/pharmacology
- Pyrrolidines/pharmacology
- Rats
- Rats, Wistar
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
Collapse
Affiliation(s)
- B Schlösser
- Department of Physiology, University of Munich, Germany
| | | | | | | |
Collapse
|
44
|
Abstract
This article is the 17th installment of our annual review of research concerning the opiate system. It includes papers published during 1994 involving the behavioral, nonanalgesic, effects of the endogenous opiate peptides. The specific topics covered this year include stress; tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148, USA
| | | | | |
Collapse
|