1
|
Sütő B, Kun J, Bagoly T, Németh T, Pintér E, Kardos D, Helyes Z. Plasma Somatostatin Levels Are Lower in Patients with Coronary Stenosis and Significantly Increase after Stent Implantation. J Clin Med 2024; 13:4727. [PMID: 39200869 PMCID: PMC11355572 DOI: 10.3390/jcm13164727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Background/Objectives: Stimulated capsaicin-sensitive peptidergic sensory nerves release somatostatin (SST), which has systemic anti-inflammatory and analgesic effects, correlating with the severity of tissue injury. Previous studies suggest that SST release into the systemic circulation is likely to serve as a protective mechanism during thoracic and orthopedic surgeries, scoliosis operations, and septic conditions, all involving significant tissue damage, pain, and inflammation. In a severe systemic inflammation rat model, SST released from sensory nerves into the bloodstream enhanced innate defense, reducing mortality. Inflammation is the key pathophysiological process responsible for the formation, progression, instability, and healing of atherosclerotic plaques. Methods: We measured SST-like immunoreactivity (SST-LI) in the plasma of healthy volunteers in different age groups and also that of stable angina patients with coronary heart disease (CHD) using ELISA and tracked changes during invasive coronary interventions (coronarography) with and without stent implantation. Samples were collected at (1) pre-intervention, (2) after coronarography, (3) 2 h after coronarography initiation and coronary stent placement, and (4) the next morning. Results: There was a strong negative correlation between SST-LI concentrations and age; the plasma SST-LI of older healthy volunteers (47-73 years) was significantly lower than in young ones (24-27 years). Baseline SST-LI in CHD patients who needed stents was significantly reduced compared to those not requiring stents. Plasma SST-LI significantly increased two hours post stent insertion and the next morning compared to pre-intervention levels. Conclusions: Age-related SST decrease might be a consequence of lower gene expression within specific hypo-thalamic nuclei as has been previously demonstrated in rodent animals. Reperfusion of ischemic myocardium post-stent implantation may trigger SST release, potentially offering protective benefits in coronary heart disease. Investigating this SST-mediated mechanism could offer valuable insights for future therapies.
Collapse
Affiliation(s)
- Balázs Sütő
- Department of Anaesthesia and Intensive Therapy, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, 1117 Budapest, Hungary
| | - Teréz Bagoly
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Timea Németh
- Department of Languages for Biomedical Purposes and Communication, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, 1117 Budapest, Hungary
- Hungarian Research Network (HUN-REN-PTE), Chronic Pain Research Group, University of Pécs, 7624 Pécs, Hungary
| | - Dorottya Kardos
- Department of Anaesthesia and Intensive Therapy, General District Hospital Szekszárd, 7100 Szekszárd, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Laboratory for Drug Research and Development, 1117 Budapest, Hungary
- Hungarian Research Network (HUN-REN-PTE), Chronic Pain Research Group, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
2
|
Zhao R, Shi H, Yin J, Sun Z, Xu Y. Promoter Specific Methylation of SSTR4 is Associated With Alcohol Dependence in Han Chinese Males. Front Genet 2022; 13:915513. [PMID: 35754825 PMCID: PMC9218598 DOI: 10.3389/fgene.2022.915513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol dependence (AD), a disease can be affected by environmental factors with epigenetic modification like DNA methylation changes, is one of the most serious and complex public health problems in China and worldwide. Previous findings from our laboratory using the Illumina Infinium Human Methylation450 BeadChip suggested that methylation at the promoter of SSTR4 was one of the major form of DNA modification in alcohol-dependent populations. To investigate whether DNA methylation levels of the SSTR4 promoter influence alcohol-dependent behaviors, genomic DNA was extracted from the peripheral blood sample of 63 subjects with AD and 65 healthy controls, and pyrosequencing was used to verify the results of BeadChip array. Linear regression was used to analyze the correlation between the methylation levels of SSTR4 promoter and the scores of alcohol dependence scales. Gene expression of SSTR4 in brain tissue was obtained from the Genotype-Tissue Expression (GTEx) project and Human Brain Transcriptome database (HBT). We found the methylation levels of SSTR4 in AD group were significantly lower than healthy controls (two-tailed t-test, t = 14.723, p < 0.001). In addition, only weak to moderate correlations between the methylation levels of the SSTR4 promoter region and scale scores of Alcohol Use Disorders Identification Test (AUDIT), Life Events Scale (LES) and Wheatley Stress Profile (WSS) based on linear regression analyses (AUDIT: R 2 = 0.35, p < 0.001; LES: R 2 = 0.27, p < 0.001; WSS: R 2 = 0.49, p < 0.001). The hypomethylated status of SSTR4 may involve in the development of AD and increase the risk of AD persistence in Han Chinese males.
Collapse
Affiliation(s)
- Rongrong Zhao
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huihui Shi
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiajun Yin
- Brain Science Basic Laboratory, The Affiliated Wuxi Mental Health Center with Nanjing Medical University, Wuxi, China
| | - Zhen Sun
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yahui Xu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
Bo Q, Yang F, Li Y, Meng X, Zhang H, Zhou Y, Ling S, Sun D, Lv P, Liu L, Shi P, Tian C. Structural insights into the activation of somatostatin receptor 2 by cyclic SST analogues. Cell Discov 2022; 8:47. [PMID: 35595746 PMCID: PMC9122944 DOI: 10.1038/s41421-022-00405-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
The endogenous cyclic tetradecapeptide SST14 was reported to stimulate all five somatostatin receptors (SSTR1-5) for hormone release, neurotransmission, cell growth arrest and cancer suppression. Two SST14-derived short cyclic SST analogues (lanreotide or octreotide) with improved stability and longer lifetime were developed as drugs to preferentially activate SSTR2 and treat acromegalia and neuroendocrine tumors. Here, cryo-EM structures of the human SSTR2-Gi complex bound with SST14, octreotide or lanreotide were determined at resolutions of 2.85 Å, 2.97 Å, and 2.87 Å, respectively. Structural and functional analysis revealed that interactions between β-turn residues in SST analogues and transmembrane SSTR2 residues in the ligand-binding pocket are crucial for receptor binding and functional stimulation of the two SST14-derived cyclic octapeptides. Additionally, Q1022.63, N2766.55, and F2947.35 could be responsible for the selectivity of lanreotide or octreotide for SSTR2 over SSTR1 or SSTR4. These results provide valuable insights into further rational development of SST analogue drugs targeting SSTR2.
Collapse
Affiliation(s)
- Qing Bo
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Fan Yang
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yingge Li
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianyu Meng
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Huanhuan Zhang
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Yingxin Zhou
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenglong Ling
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Demeng Sun
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Pei Lv
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Pan Shi
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
| | - Changlin Tian
- Department of Chemistry and the First Affiliated Hospital of USTC, School of Life Sciences, Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, Anhui Laboratory of Advanced Photonic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China.
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, China.
| |
Collapse
|
4
|
Regulatory Peptides in Asthma. Int J Mol Sci 2021; 22:ijms222413656. [PMID: 34948451 PMCID: PMC8707337 DOI: 10.3390/ijms222413656] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Numerous regulatory peptides play a critical role in the pathogenesis of airway inflammation, airflow obstruction and hyperresponsiveness, which are hallmarks of asthma. Some of them exacerbate asthma symptoms, such as neuropeptide Y and tachykinins, while others have ameliorating properties, such as nociception, neurotensin or β-defensin 2. Interacting with peptide receptors located in the lungs or on immune cells opens up new therapeutic possibilities for the treatment of asthma, especially when it is resistant to available therapies. This article provides a concise review of the most important and current findings regarding the involvement of regulatory peptides in asthma pathology.
Collapse
|
5
|
Varshosaz J, Raghami F, Rostami M, Jahanian A. PEGylated trimethylchitosan emulsomes conjugated to octreotide for targeted delivery of sorafenib to hepatocellular carcinoma cells of HepG2. J Liposome Res 2019; 29:383-398. [PMID: 30668221 DOI: 10.1080/08982104.2019.1570250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The current study aimed to develop PEGylated trimethyl chitosan (TMC) coated emulsomes (EMs) conjugated with octreotide for targeted delivery of sorafenib to hepatocellular carcinoma cells (HCC) of HepG2. Sorafenib loaded TMC coated EMs were prepared by the emulsion evaporation method and characterized concerning particle size, zeta potential, drug encapsulation efficiency, and in vitro drug release. Synthesized EMs were then conjugated to octreotide. The cytotoxicity of the targeted and non-targeted EMs was determined by cellular uptake and MTT assay on HepG2 cell. Cell cycle assay was also studied using flow cytometry. The results showed the optimized EMs had the particle size of 127 nm, zeta potential of -5.41 mV, loading efficiency of 95%, and drug release efficiency of 62% within 52 h. Octreotide was attached efficiently to the surface of EMs as much as 71%. MTT assay and cellular uptake studies showed that targeted EMs had more cytotoxicity than free sorafenib and non-targeted EMs. Cell cycle analyses revealed that there was a significant more accumulation of targeted EMs treated HepG2 cells in the G1 phase than free sorafenib and non-targeted EMs. The results indicate that designed EMs may be promising for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Fatemeh Raghami
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Mahboubeh Rostami
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Ali Jahanian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
6
|
Zhao Y, Peng L, Li X, Zhang Y. Expression of somatostatin and its receptor 1-5 in endometriotic tissues and cells. Exp Ther Med 2018; 16:3777-3784. [PMID: 30405748 PMCID: PMC6201141 DOI: 10.3892/etm.2018.6730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/09/2018] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to detect the expression of somatostatin (SS) and SS receptor (SSTR)1-5 in tissues from patients with endometriosis (EMS). Reverse transcription-quantitative polymerase chain reaction analysis was applied to examine the expression of somatostatin gene in ectopic endometrial cells (EECs). The expression of somatostatin receptor 1–5 in the ectopic endometrium (EE), eutopic endometrium and normal endometrium and their association with EMS staging were determined by immunohistochemistry. The results indicated that the expression of SS in EECs was significantly higher compared with that in the control group. SSTR1-5 were expressed in the EE tissues from 30 patients with EMS, and the positive rates were 43.3, 70.0, 53.3, 50.0 and 96.7%, respectively, which were closely associated with EMS staging of the patients. The positive rates of SSTR1-5 expression in the eutopic endometrium from 12 patients with EMS were 33.3, 41.7, 58.3, 58.3 and 83.3%, respectively, while the positive rates of SSTR1-5 expression in the normal endometrium from 14 women without EMS were 7.1, 7.1, 21.4, 28.6 and 64.3%, which were lower than the positive rates of SSTR1-5 in the EE (43.3, 70, 53.3, 50 and 96.7%) and eutopic endometrial cells (33.3, 41.7, 58.3, 58.3 and 83.3%). In conclusion, SS was highly expressed in EECs. SSTR1-5 were expressed in the ectopic as well as eutopic endometrium, and low or moderate expression of SSTR1-4 and high expression of SSTR5 were detected in the ectopic and eutopic endometrial tissues, while low expression of SSTR1-4 and partial expression of SSTR5 were detected in normal endometrium. The positive rates of expression of SSTR1-5 in the EE cells and eutopic endometrium were higher than those in the normal endometrium. The expression of all the subtypes of SSTR in the EE tissues was closely associated with EMS staging.
Collapse
Affiliation(s)
- Yanhua Zhao
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Lin Peng
- Reproductive and Stem Cell Research Institute, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiang Li
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
7
|
Lesouhaitier O, Clamens T, Rosay T, Desriac F, Louis M, Rodrigues S, Gannesen A, Plakunov VK, Bouffartigues E, Tahrioui A, Bazire A, Dufour A, Cornelis P, Chevalier S, Feuilloley MGJ. Host Peptidic Hormones Affecting Bacterial Biofilm Formation and Virulence. J Innate Immun 2018; 11:227-241. [PMID: 30396172 PMCID: PMC6738206 DOI: 10.1159/000493926] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/25/2022] Open
Abstract
Bacterial biofilms constitute a critical problem in hospitals, especially in resuscitation units or for immunocompromised patients, since bacteria embedded in their own matrix are not only protected against antibiotics but also develop resistant variant strains. In the last decade, an original approach to prevent biofilm formation has consisted of studying the antibacterial potential of host communication molecules. Thus, some of these compounds have been identified for their ability to modify the biofilm formation of both Gram-negative and Gram-positive bacteria. In addition to their effect on biofilm production, a detailed study of the mechanism of action of these human hormones on bacterial physiology has allowed the identification of new bacterial pathways involved in biofilm formation. In this review, we focus on the impact of neuropeptidic hormones on bacteria, address some future therapeutic issues, and provide a new view of inter-kingdom communication.
Collapse
Affiliation(s)
- Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France,
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Thibaut Rosay
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Florie Desriac
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Mélissande Louis
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Sophie Rodrigues
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Andrei Gannesen
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of RAS, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir K Plakunov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of RAS, Moscow, Russian Federation
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines EA 3884, IUEM, Université de Bretagne-Sud (UBL), Lorient, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines EA 3884, IUEM, Université de Bretagne-Sud (UBL), Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment, LMSM EA 4312, Normandy University, University of Rouen Normandy, Evreux, France
| |
Collapse
|
8
|
Dong H, Wei Y, Xie C, Zhu X, Sun C, Fu Q, Pan L, Wu M, Guo Y, Sun J, Shen H, Ye J. Structural and functional analysis of two novel somatostatin receptors identified from topmouth culter (Erythroculter ilishaeformis). Comp Biochem Physiol C Toxicol Pharmacol 2018; 210:18-29. [PMID: 29698686 DOI: 10.1016/j.cbpc.2018.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
In the present study, we cloned and characterized two somatostatin (SS) receptors (SSTRs) from topmouth culter (Erythroculter ilishaeformis) designated as EISSTR6 and EISSTR7. Analysis of EISSTR6 and EISSTR7 signature motifs, 3D structures, and homology with the known members of the SSTR family indicated that the novel receptors had high similarity to the SSTRs of other vertebrates. EISSTR6 and EISSTR7 mRNA expression was detected in 17 topmouth culter tissues, and the highest level was observed in the pituitary. Luciferase reporter assay revealed that SS14 significantly inhibited forskolin-stimulated pCRE-luc promoter activity in HEK293 cells transiently expressing EISSTR6 and EISSTR7, indicating that the receptors can be activated by SS14. We also identified phosphorylation sites important for the functional activity of EISSTR6 and EISSTR7 by mutating Ser23, 43, 107, 196, 311 and Ser7, 29, 61, 222, 225 residues, respectively, to Ala, which significantly reduced the inhibitory effects of SS14 on the CRE promoter mediated by EISSTR6 and EISSTR7. Furthermore, treatment of juvenile topmouth culters with microcystin-LR or 17β-estradiol significantly affected EISSTR6 and EISSTR7 transcription in the brain, liver and spleen, suggesting that these receptors may be involved in the pathogenic mechanisms induced by endocrine disruptors. Our findings should contribute to the understanding of the structure-function relationship and evolution of the SSTR family.
Collapse
Affiliation(s)
- Haiyan Dong
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China; National-local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China.
| | - Yunhai Wei
- Department of Gastrointestinal Surgery, the Central Hospital of Huzhou, 198 Hongqi Road, Huzhou, Zhejiang 313000, PR China
| | - Chao Xie
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Xiaoxuan Zhu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Chao Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Qianwen Fu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Lei Pan
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Mengting Wu
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Yinghan Guo
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Jianwei Sun
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Hong Shen
- Department of Basic Medical Science, Huzhou University, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China
| | - Jinyun Ye
- National-local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition of Chinese Academy of Fishery Sciences, 759 Erhuan East Road, Huzhou, Zhejiang 313000, PR China.
| |
Collapse
|
9
|
Urlacher E, Soustelle L, Parmentier ML, Verlinden H, Gherardi MJ, Fourmy D, Mercer AR, Devaud JM, Massou I. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function? PLoS One 2016; 11:e0146248. [PMID: 26741132 PMCID: PMC4704819 DOI: 10.1371/journal.pone.0146248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera) brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA) and its receptor (Apime-ASTA-R); and C-type allatostatins (Apime-ASTC and Apime-ASTCC) and their common receptor (Apime-ASTC-R). Apime-ASTA-R and Apime-ASTC-R are the receptors in bees most closely related to vertebrate galanin and somatostatin receptors, respectively. We examine the functional properties of the two honeybee receptors and show that they are transcriptionally expressed in the adult brain, including in brain centers known to be important for learning and memory processes. Thus we investigated the effects of exogenously applied allatostatins on appetitive olfactory learning in the bee. Our results show that allatostatins modulate learning in this insect, and provide important insights into the evolution of somatostatin/allatostatin signaling.
Collapse
Affiliation(s)
- Elodie Urlacher
- Department of Zoology, Dunedin, Otago, New Zealand
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- * E-mail:
| | - Laurent Soustelle
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR 5203, Montpellier, France
| | - Marie-Laure Parmentier
- CNRS, UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
- INSERM, U1191, Montpellier, France
- Université de Montpellier, UMR 5203, Montpellier, France
| | - Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Leuven, Belgium
| | - Marie-Julie Gherardi
- EA 4552 Réceptorologie et ciblage thérapeutique en cancérologie, Université de Toulouse, UPS, Toulouse, France
| | - Daniel Fourmy
- EA 4552 Réceptorologie et ciblage thérapeutique en cancérologie, Université de Toulouse, UPS, Toulouse, France
| | | | - Jean-Marc Devaud
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
| | - Isabelle Massou
- Centre National de la Recherche Scientifique (CNRS), Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
- Université de Toulouse, UPS Centre de Recherches sur la Cognition Animale (UMR 5169), Toulouse, France
| |
Collapse
|
10
|
Shi TJS, Xiang Q, Zhang MD, Barde S, Kai-Larsen Y, Fried K, Josephson A, Glück L, Deyev SM, Zvyagin AV, Schulz S, Hökfelt T. Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain. Mol Pain 2014; 10:12. [PMID: 24521084 PMCID: PMC3943448 DOI: 10.1186/1744-8069-10-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/06/2014] [Indexed: 12/30/2022] Open
Abstract
Background Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia (DRGs) and spinal cord. Results SST and sst2A protein and sst2 transcript were found in both mouse and human DRGs, sst2A-immunoreactive (IR) cell bodies and processes in lamina II in mouse and human spinal dorsal horn, and sst2A-IR nerve terminals in mouse skin. The receptor protein was associated with the cell membrane. Following peripheral nerve injury sst2A-like immunoreactivity (LI) was decreased, and SST-LI increased in DRGs. sst2A-LI accumulated on the proximal and, more strongly, on the distal side of a sciatic nerve ligation. Fluorescence-labeled SST administered to a hind paw was internalized and retrogradely transported, indicating that a SST-sst2A complex may represent a retrograde signal. Internalization of sst2A was seen in DRG neurons after systemic treatment with the sst2 agonist octreotide (Oct), and in dorsal horn and DRG neurons after intrathecal administration. Some DRG neurons co-expressed sst2A and the neuropeptide Y Y1 receptor on the cell membrane, and systemic Oct caused co-internalization, hypothetically a sign of receptor heterodimerization. Oct treatment attenuated the reduction of pain threshold in a neuropathic pain model, in parallel suppressing the activation of p38 MAPK in the DRGs Conclusions The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Tie-Jun Sten Shi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Somvanshi RK, Zou S, Qiu X, Kumar U. Somatostatin receptor-2 negatively regulates β-adrenergic receptor mediated Ca(2+) dependent signaling pathways in H9c2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:735-45. [PMID: 24412308 DOI: 10.1016/j.bbamcr.2014.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 01/06/2023]
Abstract
In the present study, we report that somatostatin receptor 2 (SSTR2) plays a crucial role in modulation of β1AR and β2AR mediated signaling pathways that are associated with increased intracellular Ca(2+) and cardiac complications. In H9c2 cells, SSTR2 colocalizes with β1AR or β2AR in receptor specific manner. SSTR2 selective agonist inhibits isoproterenol and formoterol stimulated cAMP formation and PKA phosphorylation in concentration dependent manner. In the presence of SSTR2 agonist, the expression of PKCα and PKCβ was comparable to the basal condition, however SSTR2 agonist inhibits isoproterenol or formoterol induced PKCα and PKCβ expression, respectively. Furthermore, the activation of SSTR2 not only inhibits calcineurin expression and its activity, but also blocks NFAT dephosphorylation and its nuclear translocation. SSTR2 selective agonist abrogates isoproterenol mediated increase in cell size and protein content (an index of hypertrophy). Taken together, the results described here provide direct evidence in support of cardiac protective role of SSTR2 via modulation of Ca(2+) associated signaling pathways attributed to cardiac hypertrophy.
Collapse
Affiliation(s)
- Rishi K Somvanshi
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Shenglong Zou
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Xiaofan Qiu
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
12
|
|
13
|
Lambertini C, Barzaghi-Rinaudo P, D'Amato L, Schulz S, Nuciforo P, Schmid HA. Evaluation of somatostatin receptor subtype expression in human neuroendocrine tumors using two sets of new monoclonal antibodies. ACTA ACUST UNITED AC 2013; 187:35-41. [PMID: 24188818 DOI: 10.1016/j.regpep.2013.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The expression and reliable detection of somatostatin receptor subtypes (SSTR1-5) is a prerequisite for the successful use of somatostatin analogs in neuroendocrine tumors (NETs). Two sets of monoclonal antibodies (mAbs) against human SSTR1, 2A, 3 and 5 have recently been developed by two independent laboratories using rabbit and mouse hybridomas. Our aim was to evaluate the usefulness of both sets of mAbs for detection of SSTRs in NET samples as they are routinely collected in clinical practice. METHODS Mouse and rabbit mAbs were characterized in SSTR1, 2A, 3 and 5-transfected HEK293 cells and human archival samples of pancreatic tissue and NET. Comparative analysis of mAbs was also conducted by immunostaining of a tissue microarray composed of 75 cores of NET. RESULTS Immunohistochemical analysis of HEK293 cells showed that both rabbit and mouse mAbs specifically detect their cognate receptor subtype, with mild cytoplasmic cross-reactivity observed for rabbit mAbs. Both sets of mAbs labeled normal pancreatic islets and showed similar patterns of immunoreactivity in NET controls. Direct comparison of mAb sets using a NET tissue microarray revealed strong correlation between rabbit and mouse mAbs against SSTR1 and 5, and moderate correlation for SSTR3. The rabbit mAb against SSTR2A showed higher affinity for its cognate receptor than the corresponding mouse mAb, resulting in a more reliable detection of this SSTR. CONCLUSIONS mAbs from both sets are reliable tools for the detection of SSTR1, 3 and 5, whereas the rabbit mAb against SSTR2A is recommended for use in routine clinical testing due to its superior binding affinity.
Collapse
|
14
|
Zhao R, Zhang R, Li W, Liao Y, Tang J, Miao Q, Hao W. Genome-wide DNA methylation patterns in discordant sib pairs with alcohol dependence. Asia Pac Psychiatry 2013; 5:39-50. [PMID: 23857790 DOI: 10.1111/appy.12010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/10/2012] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Alcohol dependence is a complex disease caused by a confluence of environmental and genetic factors. Epigenetic mechanisms have been shown to play an important role in the pathogenesis of alcohol dependence. METHODS To determine if alterations in gene-specific methylation were associated with alcohol dependence, a genome-wide DNA methylation analysis was performed on peripheral blood mononuclear cells from alcohol-dependent patients and siblings without alcohol dependence as controls. The Illumina Infinium Human Methylation450 BeadChip was used and gene-specific methylation of DNA isolated from peripheral blood mononuclear cells was assessed. Genes ALDH1L2, GAD1, DBH and GABRP were selected to validate beadchip results by pyrosequencing. RESULTS Compared to normal controls, 865 hypomethylated and 716 hypermethylated CG sites in peripheral blood mononuclear cell DNA in alcohol-dependent patients were identified. The most hypomethylated CG site is located in the promoter of SSTR4 (somatostatin receptor 4) and the most hypermethylated CG site is GABRP (gamma-aminobutyric acid A receptor). The results from beadchip analysis were consistent with that of pyrosequencing. DISCUSSION DNA methylation might be associated with alcohol dependence. Genes SSTR4, ALDH1L2, GAD1, DBH and GABRP may participate in the biological process of alcohol dependence.
Collapse
Affiliation(s)
- Rongrong Zhao
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Honda M, Yoshimura N, Inoue S, Hinata N, Chancellor MB, Takenaka A. Inhibitory effect of somatostatin receptor subtype-4 agonist NNC 26-9100 on micturition reflex in rats. Urology 2012; 80:1391.e9-13. [PMID: 22951005 DOI: 10.1016/j.urology.2012.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/29/2012] [Accepted: 07/05/2012] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate the effects of activation of somatostatin subtype 4 (SST4) on the micturition reflex in rats. METHODS Continuous cystometrograms (0.04 mL/min infusion rate) were performed in female Sprague-Dawley rats (242-265 g) under urethane anesthesia. After stable micturition cycles were established, a selective SST4 receptor agonist, NNC 26-9100, was administered intravenously in normal rats or rats pretreated with capsaicin 4 days before the experiments. The micturition parameters were recorded and compared before and after drug administration. RESULTS Intravenous administration of NNC 26-9100 (10-300 μg/kg) significantly increased the intercontraction interval in a dose-dependent fashion. Intravenous administration of NNC 26-9100 (10-300 μg/kg) also significantly increased the pressure threshold in a dose-dependent fashion. No significant changes were seen in the baseline pressure, maximum voiding pressure, or postvoid residual urine volume. However, NNC 26-9100-induced increases in the intercontraction intervals and pressure threshold were not seen in rats with C-fiber desensitization induced by capsaicin pretreatment. CONCLUSION These results indicate that in urethane-anesthetized rats, activation of the SST4 receptor can inhibit the micturition reflex by suppression of capsaicin-sensitive C-fiber afferent pathways. Thus, the SST4 receptor could be a potential target for the treatment of C-fiber afferent-mediated bladder dysfunction.
Collapse
Affiliation(s)
- Masashi Honda
- Department of Urology, Tottori University Faculty of Medicine, Yonago, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Wildemberg LEA, Vieira Neto L, Costa DF, Nasciutti LE, Takiya CM, Alves LM, Gadelha MR. Validation of immunohistochemistry for somatostatin receptor subtype 2A in human somatotropinomas: comparison between quantitative real time RT-PCR and immunohistochemistry. J Endocrinol Invest 2012; 35:580-4. [PMID: 21897115 DOI: 10.3275/7906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Somatostatin receptors subtype 2 (SSTR2) expression in somatotropinomas is recognized as a predictor of response to the currently available somatostatin analogs and may be analyzed, mainly, by quantitative RT-PCR or immunohistochemistry (IHC). The former has the advantages of a higher sensitivity and of being quantitative, while the latter, although semi-quantitative, evaluates protein expression and is routinely used in the evaluation of pituitary adenomas. We aimed to evaluate the SSTR2A protein expression in somatotropinomas and to compare it to our previous data regarding mRNA expression, assessed by quantitative real time RTPCR. Thirteen somatotropinomas were analyzed by IHC and the tumors were scored according to percent of immunostained cells: 0 (<25%), 1 (25-50%) and 2 (>50%). SSTR2A immunostaining was present in all but one somatotropinoma, 4 (31%) tumors were classified as score 0, 4 (31%) as score 1, and 5 (38%) as score 2. Median SSTR2 mRNA content was significantly different among the three IHC scores (p=0.036) and was lower in the score 0 than in the score 2 (p=0.016). The finding that there is a positive correlation between RT-PCR and IHC indicates that IHC can be applied in order to assess the SSTR2A content in somatotropinomas.
Collapse
Affiliation(s)
- L E A Wildemberg
- Endocrinology Section, Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Lobachevsky P, Smith J, Denoyer D, Skene C, White J, Flynn BL, Kerr DJ, Hicks RJ, Martin RF. Tumour targeting of Auger emitters using DNA ligands conjugated to octreotate. Int J Radiat Biol 2012; 88:1009-18. [DOI: 10.3109/09553002.2012.666375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Gardner-Roehnelt NM. Update on the Management of Neuroendocrine Tumors: Focus on Somatostatin Antitumor Effects. Clin J Oncol Nurs 2012; 16:56-64. [DOI: 10.1188/12.cjon.56-64] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
|
20
|
Chatterjee J, Laufer B, Beck JG, Helyes Z, Pintér E, Szolcsányi J, Horvath A, Mandl J, Reubi JC, Kéri G, Kessler H. N-Methylated sst2 Selective Somatostatin Cyclic Peptide Analogue as a Potent Candidate for Treating Neurogenic Inflammation. ACS Med Chem Lett 2011; 2:509-14. [PMID: 24900340 DOI: 10.1021/ml200032v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/04/2011] [Indexed: 11/29/2022] Open
Abstract
A focused multiply N-methylated library of a cyclic hexapeptidic somatostatin analogue: MK678 cyclo(-MeAYwKVF-) was generated, which resulted in the unexpected observation of an efficacious tetra-N-methylated analogue, cyclo(-MeAYMewMeKVMeF-) with a potent inhibitory action on sensory neuropeptide release in vitro and on acute neurogenic inflammatory response in vivo. The analogue shows selectivity toward somatostatin receptor subtype 2 (sst2). Extensive 2D NMR spectroscopy and molecular dynamics simulation revealed the solution conformation of the analogue, which can be adopted as a lead for the further structure-activity relationship studies targeting neurogenic inflammation.
Collapse
Affiliation(s)
- Jayanta Chatterjee
- Institute for Advanced Study and Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Burkhardt Laufer
- Institute for Advanced Study and Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Johannes G. Beck
- Institute for Advanced Study and Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs, H-7624, Hungary
| | - Aniko Horvath
- Pathobiochemistry Research Group of Hungarian Academy of Sciences in Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, H-1094, Hungary
| | - Jozsef Mandl
- Pathobiochemistry Research Group of Hungarian Academy of Sciences in Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, H-1094, Hungary
| | - Jean C. Reubi
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Bern, Bern, CH-3010 Switzerland
| | - György Kéri
- Pathobiochemistry Research Group of Hungarian Academy of Sciences in Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, H-1094, Hungary
| | - Horst Kessler
- Institute for Advanced Study and Center for Integrated Protein Science at the Department Chemie, Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| |
Collapse
|
21
|
Markovics A, Szoke É, Sándor K, Börzsei R, Bagoly T, Kemény Á, Elekes K, Pintér E, Szolcsányi J, Helyes Z. Comparison of the anti-inflammatory and anti-nociceptive effects of cortistatin-14 and somatostatin-14 in distinct in vitro and in vivo model systems. J Mol Neurosci 2011; 46:40-50. [PMID: 21695504 DOI: 10.1007/s12031-011-9577-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 06/08/2011] [Indexed: 10/18/2022]
Abstract
We showed that somatostatin (SST) exerts anti-inflammatory and anti-nociceptive effects through somatostatin receptor subtypes 4 and 1 (sst(4)/sst(1)). Since cortistatin (CST) is a structurally similar peptide, we aimed at comparing the sst(1)- and sst(4)-binding and activating abilities, as well as the effects of SST-14 and CST-14 on inflammatory and nociceptive processes. CST-14 concentration-dependently displaced radiolabeled SST-14 binding, induced similar sst(1) and sst(4)-activation with a less potency, and exerted significantly greater inhibitory effect on endotoxin-stimulated interleukin (IL)-1β production of murine peritoneal macrophages. Capsaicin-induced calcitonin gene-related peptide release from peripheral sensory nerve terminals of isolated rat tracheae was significantly decreased by 2 μM CST and 100 nM SST, but concentration-response correlation was not found. Mustard oil-evoked acute neurogenic plasma protein extravasation in the rat hindpaw skin, carrageenan-induced mouse paw edema, mechanical hyperalgesia, and IL-1β, tumor necrosis factor-α production, as well as mild heat injury-evoked thermal hyperalgesia were similarly attenuated by both peptides. In the latter case, i.pl. and i.p. injections exerted equal inhibitory actions. CST-14 and SST-14 similarly diminish both acute neurogenic and cellular inflammatory processes, as well as mechanical and heat hyperalgesia, in which their inhibitory effect on sensory nerve endings is likely to be involved. However, CST-14 exerts remarkably greater inhibition on cytokine production.
Collapse
Affiliation(s)
- Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti str. 12, 7624, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
BACKGROUND Acromegaly is characterized by overproduction of growth hormone (GH) by the pituitary gland. GH stimulates the synthesis of insulin-like growth factor-I (IGF-I), and the somatic growth and metabolic dysfunction that characterize acromegaly are a consequence of elevated GH and IGF-I levels. Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare, slow-growing neoplasms that have usually metastasized by the time of diagnosis. The majority of GEP-NETs are carcinoid tumors whose syndrome is caused by the hypersecretion of biogenic amines, peptides and polypeptides responsible for the principal symptoms of diarrhea and flushing. METHODS The MEDLINE and EMBASE databases were searched for preclinical and clinical studies of octreotide (Sandostatin* ), a potent synthetic somatostatin analogue, in patients with acromegaly or GEP-NETs. OBJECTIVE This article reviews the 20 years of clinical experience with octreotide and the impact it has made in patients with acromegaly or GEP-NETs. RESULTS Octreotide has proven to be an essential component in the management strategy of acromegaly and GEP-NETs over the past 20 years. The multiple beneficial effects of octreotide throughout the body, combined with its established safety profile (the most common adverse effects are injection-site pain and gastrointestinal events), have made it an appealing option for clinicians. The advent of the long-acting release (LAR) formulation of octreotide provided additional benefits to patients through monthly administration, while maintaining the efficacy and tolerability profile of the daily subcutaneous formulation. CONCLUSIONS Octreotide is a potent synthetic somatostatin analogue that has become the mainstay of medical therapy for tumor control in neuroendocrine disorders such as acromegaly and GEP-NETs. The development of octreotide LAR offered a further advancement; less frequent dosing provided valuable benefits in quality of life to patients, with equivalent efficacy and tolerability. Moreover, recent results from the PROMID study have confirmed the antiproliferative effect of octreotide LAR in patients with well-differentiated metastatic GEP-NETs of the midgut. New therapeutic uses of octreotide are currently under investigation in a variety of clinical settings.
Collapse
|
24
|
Varecza Z, Elekes K, László T, Perkecz A, Pintér E, Sándor Z, Szolcsányi J, Keszthelyi D, Szabó A, Sándor K, Molnár TF, Szántó Z, Pongrácz JE, Helyes Z. Expression of the somatostatin receptor subtype 4 in intact and inflamed pulmonary tissues. J Histochem Cytochem 2009; 57:1127-37. [PMID: 19687471 DOI: 10.1369/jhc.2009.953919] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Somatostatin released from capsaicin-sensitive sensory nerves of the lung during endotoxin-induced murine pneumonitis inhibits inflammation and hyperresponsiveness, presumably via somatostatin receptor subtype 4 (sst(4)). The goal of the present study was to identify sst(4) receptors in mouse and human lungs and to reveal its inflammation-induced alterations with real-time quantitative PCR, Western blot, and immunohistochemistry. In non-inflamed mouse and human lungs, mRNA expression and immunolocalization of sst(4) are very similar. They are present on bronchial epithelial, vascular endothelial, and smooth-muscle cells. The sst(4) receptor protein in the mouse lung significantly increases 24 hr after intranasal endotoxin administration as well as in response to 3 months of whole-body cigarette smoke exposure, owing to the infiltrating sst(4)-positive mononuclear cells and neutrophils. In the chronically inflamed human lung, the large number of activated macrophages markedly elevate sst(4) mRNA levels, although there is no change in acute purulent pneumonia, in which granulocytes accumulate. Despite mouse granulocytes, human neutrophils do not show sst(4) immunopositivity. We provide the first evidence for the expression, localization, and inflammation-induced alterations of sst(4) receptors in murine and human lungs. Inasmuch as tissue distribution of this receptor is highly similar, extrapolation of murine experimental results to human conditions might be possible.
Collapse
Affiliation(s)
- Zoltán Varecza
- Department of Immunology and Biotechnology, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hippocampal SSTR4 somatostatin receptors control the selection of memory strategies. Psychopharmacology (Berl) 2009; 202:153-63. [PMID: 18521573 DOI: 10.1007/s00213-008-1204-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 05/12/2008] [Indexed: 02/01/2023]
Abstract
RATIONALE Somatostatin (SS14) has been implicated in various cognitive disorders, and converging evidence from animal studies suggests that SS14 neurons differentially regulate hippocampal- and striatal-dependent memory formation. Four SS14 receptor subtypes (SSTR1-4) are expressed in the hippocampus, but their respective roles in memory processes remain to be determined. OBJECTIVES In the present study, effects of selective SSTR1-4 agonists on memory formation were assessed in a water-maze task which can engage either hippocampus-dependent "place" and/or striatum-dependent "cue" memory formation. MATERIALS AND METHODS Mice received an intrahippocampal injection of one of each of the selective agonists and were then trained to locate an escape platform based on either distal cues (place memory) or a visible proximal cue (cue memory). Retention was tested 24 h later on probe trials aimed at identifying which memory strategy was preferentially retained. RESULTS Both SS14 and the SSTR4 agonist (L-803,087) dramatically impaired place memory formation in a dose-dependent manner, whereas SSTR1 (L-797,591), SSTR2 (L-779,976), or SSTR3 (L-796,778) agonists did not yield any behavioral effects. However, unlike SS14, the SSTR4 agonist also dose-dependently enhanced cue-based memory formation. This effect was confirmed in another striatal-dependent memory task, the bar-pressing task, where L-803,087 improved memory of the instrumental response, whereas SS14 was once again ineffective. CONCLUSIONS These data suggest that hippocampal SSTR4 are selectively involved in the selection of memory strategies by switching from the use of hippocampus-based multiple associations to the use of simple dorsal striatum-based behavioral responses. Possible neural mechanisms and functional implications are discussed.
Collapse
|
26
|
Somatostatin as an Anti-Inflammatory Neuropeptide. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1567-7443(08)10406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Abstract
This review gives an introduction to the classification and staging of neuroendocrine tumors, as the prognostic implications of these classifications influence therapeutic decisions. The indications for biotherapy are given, together with a short update on the mechanism of somatostatin analogs and interferon-alpha therapy. This is followed by an in-depth description of the use of biotherapy, its results with respect to symptomatic and antiproliferative treatment, as well as its side-effects.
Collapse
Affiliation(s)
- U Plöckinger
- Interdisziplinäres Stoffwechsel-Centrum, Med. Klinik m. S. Hepatologie und Gastroenterologie, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, 13353 Berlin, Germany.
| | | |
Collapse
|
28
|
Pintér E, Helyes Z, Szolcsányi J. Inhibitory effect of somatostatin on inflammation and nociception. Pharmacol Ther 2006; 112:440-56. [PMID: 16764934 DOI: 10.1016/j.pharmthera.2006.04.010] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 04/27/2006] [Indexed: 10/24/2022]
Abstract
The present review focuses on promising new opportunities for anti-inflammatory and analgesic therapy. The theoretical background is an original observation based on our own experimental results. These data demonstrate that somatostatin is released from capsaicin-sensitive, peptidergic sensory nerve endings in response to noxious heat and chemical stimuli such as vanilloids, protons or lipoxygenase products. It reaches distant parts of the body via the circulation and exerts systemic anti-inflammatory and analgesic effects. Somatostatin binds to G-protein-coupled membrane receptors (sst(1)-sst(5)) and diminishes neurogenic inflammation by prejunctional action on sensory-efferent nerve terminals, as well as by postjunctional mechanisms on target cells. It decreases the release of pro-inflammatory neuropeptides from sensory nerve endings and also acts on receptors of vascular endothelial, inflammatory and immune cells. Analgesic effect is mediated by an inhibitory action on peripheral terminals of nociceptive neurons, since circulating somatostatin cannot exert central action. Somatostatin itself is not suitable for drug development because of its broad spectrum and short elimination half life, stable, receptor-selective agonists have been synthesized and investigated. The present overview is aimed at summarizing the physiological importance of somatostatin and sst receptors, pharmacological significance of synthetic agonists and their potential in the development of novel anti-inflammatory and analgesic drugs. These compounds might provide novel perspectives in the pharmacotherapy of acute and chronic painful inflammatory diseases, as well as neuropathic conditions.
Collapse
Affiliation(s)
- Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, H-7624 Pécs, Szigeti u. 12, Hungary.
| | | | | |
Collapse
|
29
|
Helyes Z, Pintér E, Németh J, Sándor K, Elekes K, Szabó A, Pozsgai G, Keszthelyi D, Kereskai L, Engström M, Wurster S, Szolcsányi J. Effects of the somatostatin receptor subtype 4 selective agonist J-2156 on sensory neuropeptide release and inflammatory reactions in rodents. Br J Pharmacol 2006; 149:405-15. [PMID: 16953190 PMCID: PMC1978437 DOI: 10.1038/sj.bjp.0706876] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Substance P (SP) and calcitonin gene-related peptide (CGRP) released from capsaicin-sensitive sensory nerves induce local neurogenic inflammation; somatostatin exerts systemic anti-inflammatory actions presumably via sst4/sst1 receptors. This study investigates the effects of a high affinity, sst4-selective, synthetic agonist, J-2156, on sensory neuropeptide release in vitro and inflammatory processes in vivo. EXPERIMENTAL APPROACH Electrically-induced SP, CGRP and somatostatin release from isolated rat tracheae was measured with radioimmunoassay. Mustard oil-induced neurogenic inflammation in rat hindpaw skin was determined by Evans blue leakage and in the mouse ear with micrometry. Dextran-, carrageenan- or bradykinin-induced non-neurogenic inflammation was examined with plethysmometry or Evans blue, respectively. Adjuvant-induced chronic arthritis was assessed by plethysmometry and histological scoring. Granulocyte accumulation was determined with myeloperoxidase assay and IL-1beta with ELISA. KEY RESULTS J-2156 (10-2000 nM) diminished electrically-evoked neuropeptide release in a concentration-dependent manner. EC50 for the inhibition of substance P, CGRP and somatostatin release were 11.6 nM, 14.3 nM and 110.7 nM, respectively. J-2156 (1-100 microg kg(-1) i.p.) significantly, but not dose-dependently, inhibited neurogenic and non-neurogenic acute inflammatory processes and adjuvant-induced chronic oedema and arthritic changes. Endotoxin-evoked myeloperoxidase activity and IL-1beta production in the lung, but not IL-1beta- or zymosan-induced leukocyte accumulation in the skin were significantly diminished by J-2156. CONCLUSIONS AND IMPLICATIONS J-2156 acting on sst4 receptors inhibits neuropeptide release, vascular components of acute inflammatory processes, endotoxin-induced granulocyte accumulation and IL-1beta synthesis in the lung and synovial and inflammatory cells in chronic arthritis. Therefore it might be a promising lead for the development of novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Z Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Pécs, Szigeti u. 12, Hungary.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Alexander SPH, Mathie A, Peters JA. Somatostatin. Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
31
|
Abstract
Somatostatin potently inhibits insulin secretion from pancreatic beta-cells. It does so via activation of ATP-sensitive K+-channels (KATP) and G protein-regulated inwardly rectifying K+-channels, which act to decrease voltage-gated Ca2+-influx, a process central to exocytosis. Because KATP channels, and indeed insulin secretion, is controlled by glucose oxidation, we investigated whether somatostatin inhibits insulin secretion by direct effects on glucose metabolism. Oxidative metabolism in beta-cells was monitored by measuring changes in the O2 consumption (DeltaO2) of isolated mouse islets and MIN6 cells, a murine-derived beta-cell line. In both models, glucose-stimulated DeltaO2, an effect closely associated with inhibition of KATP channel activity and induction of electrical activity (r > 0.98). At 100 nm, somatostatin abolished glucose-stimulated DeltaO2 in mouse islets (n = 5, P < 0.05) and inhibited it by 80 +/- 28% (n = 17, P < 0.01) in MIN6 cells. Removal of extracellular Ca2+, 5 mm Co2+, or 20 microm nifedipine, conditions that inhibit voltage-gated Ca2+ influx, did not mimic but either blocked or reduced the effect of the peptide on DeltaO2. The nutrient secretagogues, methylpyruvate (10 mm) and alpha-ketoisocaproate (20 mm), also stimulated DeltaO2, but this was unaffected by somatostatin. Somatostatin also reversed glucose-induced hyperpolarization of the mitochondrial membrane potential monitored using rhodamine-123. Application of somatostatin receptor selective agonists demonstrated that the peptide worked through activation of the type 5 somatostatin receptor. In conclusion, somatostatin inhibits glucose metabolism in murine beta-cells by an unidentified Ca2+-dependent mechanism. This represents a new signaling pathway by which somatostatin can inhibit cellular functions regulated by glucose metabolism.
Collapse
Affiliation(s)
- Mathew Daunt
- Institute of Cell Signalling, School of Biomedical Sciences, University of Nottingham, Medical School, Nottingham NG7 2UH, United Kingdom
| | | | | |
Collapse
|
32
|
Capello A, Krenning E, Bernard B, Reubi JC, Breeman W, de Jong M. 111In-labelled somatostatin analogues in a rat tumour model: somatostatin receptor status and effects of peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging 2005; 32:1288-95. [PMID: 16021448 DOI: 10.1007/s00259-005-1877-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 05/30/2005] [Indexed: 02/07/2023]
Abstract
PURPOSE Peptide receptor scintigraphy with the radioactive somatostatin analogue 111In-DTPA-octreotide is a sensitive and specific technique to show in vivo the presence of somatostatin receptors on various tumours. Since 111In emits not only gamma rays but also therapeutic Auger and internal conversion electrons with a medium to short tissue penetration (0.02-10 microm and 200-550 microm, respectively), 111In-DTPA-octreotide is also being used for peptide receptor radionuclide therapy (PRRT). In this study we investigated the therapeutic effects of 111In-DTPA-octreotide in tumours of various sizes. Regrowth of a tumour despite PRRT with 111In-DTPA-octreotide may be due to the lack of crossfire from 111In, whereby any possible receptor-negative tumour cell can multiply. We therefore also investigated the somatostatin receptor status of the tumour before and after PRRT. METHODS The radiotherapeutic effects of different doses of 111In-DTPA-octreotide in vivo were investigated in Lewis rats bearing small (< or = 1 cm2) or large (> or = 8 cm2) somatostatin receptor-positive rat pancreatic CA20948 tumours expressing the somatostatin receptor subtype 2 (sst2). In addition, the somatostatin receptor density on the tumour after injection of a therapeutic labelled somatostatin analogue was investigated when the tumour was either declining in size or regrowing after an initial reduction in size. To initiate a partial response of the tumour (so that regrowth would follow) and not a complete response, a relatively low dose was administered. RESULTS Impressive radiotherapeutic effects of 111In-labelled octreotide were observed in this rat tumour model. Complete responses (up to 50%) were found in the animals bearing small (< or 1 cm2) tumours after at least three injections of 111 MBq or a single injection of 370 MBq 111In-DTPA-octreotide, leading to a dose of 6.3-7.8 mGy/MBq (1-10 g tumour). In the rats bearing the larger (> or = 8 cm2) tumours, the effects were much less pronounced and only partial responses were achieved in these groups. Clear sst2 expression was found in the control as well as in the treated tumours. A significantly higher tumour receptor density (p<0.001) was found when the tumours regrew after an initial decline in size after low-dose PRRT in comparison with the untreated tumours. CONCLUSION Therapy with 111In-labelled somatostatin analogues is feasible but should preferably start as early as possible during tumour development. One might also consider the use of radiolabelled somatostatin analogues in an adjuvant setting after surgery of somatostatin receptor-positive tumours in order to eradicate occult metastases. We showed that PRRT led to an increase in the density of somatostatin receptors when the tumours regrew after an initial decline in size because of PRRT. Upregulation of the somatostatin receptor may lead to higher uptake of radiolabelled peptides in therapeutic applications, which would probably make repeated injections of radiolabelled peptides more effective.
Collapse
Affiliation(s)
- Astrid Capello
- Nuclear Medicine, Erasmus MC, Dr Molewaterplein 40, 3015 Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Halem HA, Taylor JE, Dong JZ, Shen Y, Datta R, Abizaid A, Diano S, Horvath TL, Culler MD. A novel growth hormone secretagogue-1a receptor antagonist that blocks ghrelin-induced growth hormone secretion but induces increased body weight gain. Neuroendocrinology 2005; 81:339-49. [PMID: 16210868 DOI: 10.1159/000088796] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 05/13/2005] [Indexed: 12/25/2022]
Abstract
Ghrelin, the natural ligand for the growth hormone secretagogue-1a (GHS-1a) receptor, has received a great deal of attention due to its ability to stimulate weight gain and the hope that an antagonist of the GHS-1a receptor could be a treatment for obesity. We have discovered an analog of full-length human ghrelin, BIM-28163, which fully antagonizes GHS-1a by binding to but not activating the receptor. We further demonstrate that BIM-28163 blocks ghrelin activation of the GHS-1a receptor, and inhibits ghrelin-induced GH secretion in vivo. Unexpectedly, however, BIM-28163 acts as an agonist with regard to stimulating weight gain. These results may suggest the presence of an unknown ghrelin receptor that modulates ghrelin actions on weight gain. In keeping with our results on growth hormone (GH) secretion, BIM-28163 acts as an antagonist of ghrelin-induced Fos protein immunoreactivity (Fos-IR) in the medial arcuate nucleus, an area involved in the ghrelin modulation of GH secretion. However, in the dorsal medial hypothalamus (DMH), a region associated with regulation of food intake, both ghrelin and BIM-28163 act as agonists to upregulate Fos-IR. The observation that ghrelin and BIM-28163 have different efficacies in inducing Fos-IR in the DMH, and that concomitant administration of ghrelin and an excess of BIM-28163 results in the same level of Fos-IR as BIM-28163 administered alone may demonstrate that in the DMH both ghrelin and BIM-28163 act via the same receptor. If so, it is unlikely that this receptor is GHS-1a. Collectively, our findings suggest that the action of ghrelin to stimulate increased weight gain may be mediated by a novel receptor other than GHS-1a, and further imply that GHS-1a may not be the appropriate target for anti-obesity strategies.
Collapse
|
35
|
Bär KJ, Schurigt U, Scholze A, Segond Von Banchet G, Stopfel N, Bräuer R, Halbhuber KJ, Schaible HG. The expression and localization of somatostatin receptors in dorsal root ganglion neurons of normal and monoarthritic rats. Neuroscience 2004; 127:197-206. [PMID: 15219682 DOI: 10.1016/j.neuroscience.2004.04.051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 04/01/2004] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
Somatostatin has antinociceptive effects by acting on somatostatin (sst) receptors in primary afferent neurons. Five sst receptor subtypes (sst(1-5)) have been identified. In the present study we assessed the expression and localization of the sst receptor subtypes in lumbar dorsal root ganglia of normal rats and of rats with unilateral antigen-induced arthritis (AIA) in the knee joint. We used polymerase chain reaction (PCR) of material from dorsal root ganglia and immunohistochemistry in dorsal root ganglion paraffin sections. PCR data show that sst(1), sst(2(a)), sst(2(b)), sst(3), and sst(4) receptors are expressed in lumbar dorsal root ganglia of the rat. The sst(5) receptor was expressed in a few samples. Available antibodies revealed sst(2(a)) and sst(2(b)) receptor-like immunoreactivity in the vast majority of neurons, and sst(4) receptor-like immunoreactivity in about 40% of the dorsal root ganglion neurons and in some satellite cells. Real time PCR at 3, 10 and 21 days after induction of AIA did not reveal changes in receptor expression. Immunohistochemistry showed that a similar high proportion of neuronal profiles expressed sst(2(b)) receptor-like IR in control and AIA rats, but the proportion of neuronal profiles with sst(2(a)) receptor-like IR was significantly lower in acute and chronic AIA rats than in control rats. Although the proportion of neuronal profiles with sst(4) receptor-like IR was significantly higher at 21 days than at 3 days values at 3 or at 21 days were not significantly different from control. These data show that the majority of dorsal root ganglion neurons exhibit somatostatin receptor-like IR thus suggesting a high potential for inhibition by somatostatin. The reduction in the proportion of neuronal profiles with sst(2(a)) immunoreactivity suggests that inhibition of neuronal activity by somatostatin is reduced during painful arthritis.
Collapse
MESH Headings
- Animals
- Arthralgia/metabolism
- Arthralgia/physiopathology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/physiopathology
- Disease Models, Animal
- Down-Regulation/genetics
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Knee Joint/innervation
- Knee Joint/physiopathology
- Neural Inhibition/genetics
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Nociceptors/cytology
- Nociceptors/metabolism
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Lew
- Reaction Time/genetics
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Somatostatin/metabolism
- Up-Regulation/genetics
Collapse
Affiliation(s)
- K-J Bär
- Klinik für Psychiatrie, Friedrich-Schiller-Universität Jena, Philosophenweg 3, D-07740 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Capello A, Krenning EP, Breeman WAP, Bernard BF, Konijnenberg MW, de Jong M. Tyr3-octreotide and Tyr3-octreotate radiolabeled with 177Lu or 90Y: peptide receptor radionuclide therapy results in vitro. Cancer Biother Radiopharm 2004; 18:761-8. [PMID: 14629824 DOI: 10.1089/108497803770418300] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Somatostatin analogs promising for peptide receptor scintigraphy (PRS) and peptide receptor radionuclide therapy (PRRT) are D-Phe-c(Cys-Tyr-D-Trp-Lys-Thr-Cys)-Thr(ol) (Tyr 3-octreotide) and D-Phe-c(Cys-Tyr-D-Trp-Lys-Thr-Cys)-Thr (tyr3-octreotate). For radiotherapeutic applications these peptides are being labeled with the beta(-) particle emitters 177Lu or 90Y. We evaluated the therapeutic effects of these analogs chelated with tetra-azacyclododecatatro-acetic acid (DOTA) and labeled with 90Y or 177Lu in an in vitro colony-forming assay using the rat pancreatic tumor cell line CA20948. Furthermore, we investigated the effects of incubation time, radiation dose, and specific activity of [177Lu-DOTA]-D-Phe1-c (Cys-Tyr-D-Trp-Lys-Thr-Cys)-Thr (177Lu-octreotate). 177Lu-octreotate could reduce tumor growth to 100% cell kill and effects were dependent on radiation dose, incubation time, and specific activity used. Similar concentrations of 177Lu-DOTA, which is not bound to the cells, had a less pronounced effect on the tumor cell survival. Both tyr3-octreotide and tyr3-octreotate labeled with either 177Lu or 90Y, using DOTA as chelator, were able to control tumor growth in a dose-dependent manner. In all concentrations used radiolabeled tyr3-octreotate had a higher tumor kill compared to radiolabeled tyr3-octreotide, labeled with 177Lu or 90Y. This is in accordance with the higher affinity of tyr3-octreotate for the subtype 2 (sst2)-receptor compared to tyr3-octreotide, leading to a higher amount of cell-associated radioactivity, resulting in a significantly higher tumor radiation dose. In conclusion, tyr3-octreotate labeled with 177Lu or 90Y is the most promising analog for PRRT.
Collapse
Affiliation(s)
- Astrid Capello
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Badway AC, West FM, Tente SM, Blake AD. Somatostatin regulates intracellular signaling in human carotid endothelial cells. Biochem Biophys Res Commun 2004; 319:1222-7. [PMID: 15194497 DOI: 10.1016/j.bbrc.2004.05.110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Indexed: 10/26/2022]
Abstract
Somatostatin (somatotropin release inhibitory factor; SRIF) is an endogenous peptide produced at sites of inflammation, making the SRIF a candidate in regulating vascular inflammation. We have used primary human coronary artery endothelial cells (hCAEC) as a model to study SRIF's vascular actions. RT-PCR analysis of hCAEC total mRNA demonstrated the presence of the sst(4) receptor subtype, providing a target for SRIF intracellular signaling. Western blotting with phospho-specific ERK1/2 antibodies showed that SRIF-14 acutely inhibited basal phosphorylation of the extracellular regulated kinases (ERK1/2) by 80%. In addition, SRIF-14 treated hCAEC cell lysates showed a 2.6-fold increase in phosphatase activity, which was inhibited by sodium vanadate. Furthermore, SRIF-14 appeared to be anti-inflammatory in hCAEC as IL-1beta-induced adhesion molecule expression was reduced by 50%. Together, these results show that the coronary artery endothelium is a direct target of SRIF action.
Collapse
Affiliation(s)
- Amy C Badway
- Department of Biology, Seton Hall University, South Orange, NJ 07079, USA
| | | | | | | |
Collapse
|
38
|
Pillon D, Caraty A, Fabre-Nys C, Lomet D, Cateau M, Bruneau G. Regulation by estradiol of hypothalamic somatostatin gene expression: possible involvement of somatostatin in the control of luteinizing hormone secretion in the ewe. Biol Reprod 2004; 71:38-44. [PMID: 14985243 DOI: 10.1095/biolreprod.103.023689] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In the ewe, the mediobasal hypothalamus (MBH) is the primary central site for estradiol to generate the preovulatory GnRH/LH surges and sexual behavior. This area contains numerous neurons expressing the estradiol receptor alpha, distributed in the ventromedial nucleus (VMN) and the infundibular nucleus (IN). A large proportion of these neurons express somatostatin, making this neuropeptide a potential candidate for transmission of the estradiol signal to the GnRH neurons located in the preoptic area. We tested this hypothesis using ovariectomized ewes that had been subjected to an artificial estrous cycle. In the first experiment, 22 h after progesterone removal, ewes received estradiol (treated ewes) or empty implants (control ewes) for 4 h and then were killed. Using in situ hybridization, we showed that this short estradiol treatment increased the somatostatin mRNA amount by about 50% in the VMN and 42% in the IN. In the second experiment, preovulatory estradiol signal was replaced by somatostatin intracerebroventricular (ICV) administration. This treatment abolished LH pulsatility and dramatically decreased the mean basal level of LH secretion while it did not affect the mean plasma GH concentration. We demonstrated that an increase in somatostatin mRNA occurs at the time of the negative feedback effect of estradiol on LH secretion during the early stage of the GnRH surge induction. As ICV somatostatin administration inhibits the pulsatile LH secretion by acting on the central nervous system, we suggest that somatostatin synthesized in the MBH could be involved in the estradiol negative feedback before the onset of the preovulatory surge.
Collapse
Affiliation(s)
- Delphine Pillon
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Universite Francois Rabelais de Tours, 37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
39
|
Corleto VD, Nasoni S, Panzuto F, Cassetta S, Delle Fave G. Somatostatin receptor subtypes: basic pharmacology and tissue distribution. Dig Liver Dis 2004; 36 Suppl 1:S8-16. [PMID: 15077906 DOI: 10.1016/j.dld.2003.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The heptahelical receptor superfamily constitutes the largest single family of transmembrane-signalling molecules that regulate a wide range of physiological processes. The five somatostatin receptors represent a distinct subgroup of this seven transmembrane receptor superfamily. They range in size from 356 to 391 amino acids with 39-57% protein identity between the subtypes with 100 residues strictly conserved among the somatostatin receptor sequences. A high grade of mRNA homology exists in somatostatin receptor subtypes cloned from different species. Following somatostatin receptor binding and functional activity studies, two alternative models of ligand-binding interaction have been hypothesised. One relies on the presence of a binding pocket within the receptor structure constituted by specific amino acids residues, the other denies the presence of such binding structures and suggests that it is the interaction of agonists with specific extracellular and/or transmembrane domains that determine stable receptor structure conformation. Somatostatin receptors, as, indeed, all G-protein-coupled receptors are able to regulate their responsiveness to agonist exposure. This agonist-specific regulation includes three main events, namely, desensitisation, receptor internalisation and receptor degradation. The cell expression of somatostatin receptor subtypes, at the mRNA level, has been characterised in rodent and in human organs with multiple subtype expression in brain and peripheral tissues.
Collapse
Affiliation(s)
- V D Corleto
- Department of Digestive and Liver Diseases, II School of Medicine and Surgery, University of La Sapienza, S. Andrea Hospital, Via di Grottarossa 1035, 00189 Rome, Italy.
| | | | | | | | | |
Collapse
|
40
|
Møller LN, Stidsen CE, Hartmann B, Holst JJ. Somatostatin receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2003; 1616:1-84. [PMID: 14507421 DOI: 10.1016/s0005-2736(03)00235-9] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced that a neuropeptide, to be named cortistatin (CST), had been cloned, bearing strong resemblance to SRIF. Evidence of special CST receptors never emerged, however. CST rather competed with both SRIF isoforms for specific receptor binding. And binding to the known subtypes with affinities in the nanomolar range, it has therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing the characteristic seven-transmembrane-segment (STMS) topography. Years of intensive research have resulted in cloning of five receptor subtypes (sst(1)-sst(5)), one of which is represented by two splice variants (sst(2A) and sst(2B)). The individual subtypes, functionally coupled to the effectors of signal transduction, are differentially expressed throughout the mammalian organism, with corresponding differences in physiological impact. It is evident that receptor function, from a physiological point of view, cannot simply be reduced to the accumulated operations of individual receptors. Far from being isolated functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst(2) and sst(5) receptors) in characteristic proportions. In other words, levels of individual receptor subtypes are highly cell-specific and vary with the co-expression of different-ligand receptors. However, the question is how to quantify the relative contributions of individual receptor subtypes to the integration of transduced signals, ultimately the result of collective receptor activity. The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype-selective analogues. Several have become available.
Collapse
Affiliation(s)
- Lars Neisig Møller
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | |
Collapse
|
41
|
Brunicardi FC, Atiya A, Moldovan S, Lee TC, Fagan SP, Kleinman RM, Adrian TE, Coy DH, Walsh JH, Fisher WE. Activation of somatostatin receptor subtype 2 inhibits insulin secretion in the isolated perfused human pancreas. Pancreas 2003; 27:e84-9. [PMID: 14576502 DOI: 10.1097/00006676-200311000-00019] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES Five distinct somatostatin receptors (SSTRs) have been cloned, characterized, and designated SSTRs 1-5. The role of these receptors in B-cell signaling has not been well characterized. METHODS In the current study, the isolated perfused human pancreas model was used to determine the specific effect of 4 different somatostatin receptor agonists on insulin secretion. CONCLUSION We demonstrated that the SSTR 2 agonist and octreotide significantly suppressed insulin secretion. Furthermore, even during the immunoneutralization of endogenous intrapancreatic somatostatin, the SSTR 2 agonist was able to reverse the effect of somatostatin immunoneutralization by suppressing insulin secretion. These results demonstrate that activation of SSTR 2 suppresses insulin secretion in the isolated perfused human pancreas.
Collapse
Affiliation(s)
- F Charles Brunicardi
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lewis I, Bauer W, Albert R, Chandramouli N, Pless J, Weckbecker G, Bruns C. A novel somatostatin mimic with broad somatotropin release inhibitory factor receptor binding and superior therapeutic potential. J Med Chem 2003; 46:2334-44. [PMID: 12773038 DOI: 10.1021/jm021093t] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A rational drug design approach, capitalizing on structure-activity relationships and involving transposition of functional groups from somatotropin release inhibitory factor (SRIF) into a reduced size cyclohexapeptide template, has led to the discovery of SOM230 (25), a novel, stable cyclohexapeptide somatostatin mimic that exhibits unique high-affinity binding to human somatostatin receptors (subtypes sst1-sst5). SOM230 has potent, long-lasting inhibitory effects on growth hormone and insulin-like growth factor-1 release and is a promising development candidate currently under evaluation in phase I clinical trials.
Collapse
Affiliation(s)
- Ian Lewis
- Transplantation Research Department, Novartis Pharma, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
43
|
Koeslag JH, Saunders PT, Terblanche E. A reappraisal of the blood glucose homeostat which comprehensively explains the type 2 diabetes mellitus-syndrome X complex. J Physiol 2003; 549:333-46. [PMID: 12717005 PMCID: PMC2342944 DOI: 10.1113/jphysiol.2002.037895] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/17/2002] [Accepted: 04/16/2003] [Indexed: 12/18/2022] Open
Abstract
Blood glucose concentrations are unaffected by exercise despite very high rates of glucose flux. The plasma ionised calcium levels are even more tightly controlled after meals and during lactation. This implies 'integral control'. However, pairs of integral counterregulatory controllers (e.g. insulin and glucagon, or calcitonin and parathyroid hormone) cannot operate on the same controlled variable, unless there is some form of mutual inhibition. Flip-flop functional coupling between pancreatic alpha- and beta-cells via gap junctions may provide such a mechanism. Secretion of a common inhibitory chromogranin by the parathyroids and the thyroidal C-cells provides another. Here we describe how the insulin:glucagon flip-flop controller can be complemented by growth hormone, despite both being integral controllers. Homeostatic conflict is prevented by somatostatin-28 secretion from both the hypothalamus and the pancreatic islets. Our synthesis of the information pertaining to the glucose homeostat that has accumulated in the literature predicts that disruption of the flip-flop mechanism by the accumulation of amyloid in the pancreatic islets in type 2 diabetes mellitus will lead to hyperglucagonaemia, hyperinsulinaemia, insulin resistance, glucose intolerance and impaired insulin responsiveness to elevated blood glucose levels. It explains syndrome X (or metabolic syndrome) as incipient type 2 diabetes in which the glucose control system, while impaired, can still maintain blood glucose at the desired level. It also explains why it is characterised by high plasma insulin levels and low plasma growth hormone levels, despite normoglycaemia, and how this leads to central obesity, dyslipidaemia and cardiovascular disease in both syndrome X and type 2 diabetes.
Collapse
Affiliation(s)
- Johan H Koeslag
- Department of Medical Physiology, University of Stellenbosch, Tygerberg 7505, South Africa.
| | | | | |
Collapse
|
44
|
Bates CM, Kegg H, Petrevski C, Grady S. Expression of somatostatin receptors 3, 4, and 5 in mouse kidney proximal tubules. Kidney Int 2003; 63:53-63. [PMID: 12472768 DOI: 10.1046/j.1523-1755.2003.00716.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Systemic infusion of somatostatin (SRIF) induces many physiological changes in human and rodent kidneys, including alterations in glomerular filtration, solute transport, and water clearance. Although somatostatin can bind to five different G-protein coupled receptors (SSTRs), only SSTR1 and SSTR2A proteins have been described convincingly in rat and/or human kidneys. Both are expressed primarily in collecting ducts, despite clear evidence that somatostatin also can bind to proximal tubules. Our aim was to characterize the expression of somatostatin receptors three to five in adult mouse kidneys. METHODS Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed followed by Southern blotting on mouse kidney RNA for SSTR3, SSTR4, and SSTR5. Immunohistochemistry and dual-labeling immunofluorescence also were performed to localize the receptors in the kidney. RESULTS Messenger RNA was detected for somatostatin receptors 3 to 5 in the mouse kidney by RT-PCR, with confirmation by Southern blotting. By immunohistochemistry and dual-labeling immunofluorescence, the proteins for all three receptors were abundantly expressed, but exclusively localized to the proximal tubules. SSTR3 was present in intracellular granules, while SSTR4 and SSTR5 were expressed on the lumenal membranes of the tubules. CONCLUSIONS Expression of SSTR3, SSTR4, and SSTR5 in mouse proximal tubules complements the expression of SSTR1 and SSTR2 in collecting ducts as seen in other species. Taken together, the kidney is one of few organs expressing all five somatostatin receptors outside of the nervous system and pancreas.
Collapse
Affiliation(s)
- Carlton M Bates
- Department of Pediatrics, College of Medicine & Public Health, The Ohio State University, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
45
|
Binaschi A, Bregola G, Simonato M. On the Role of Somatostatin in Seizure Control: Clues from the Hippocampus. Rev Neurosci 2003; 14:285-301. [PMID: 14513869 DOI: 10.1515/revneuro.2003.14.3.285] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The role of the hippocampal somatostatin (somatotropin release-inhibiting factor, SRIF) system in the control of partial complex seizures is discussed in this review. The SRIF system plays a role in the inhibitory modulation of hippocampal circuitries under normal conditions: 1) SRIF neurons in the dentate gyrus are part of a negative feedback circuit modulating the firing rate of granule cells; 2) SRIF released in CA3 interacts both with presynaptic receptors located on associational/commissural terminals and with postsynaptic receptors located on pyramidal cell dendrites, reducing excitability of pyramidal neurons; 3) in CA1, SRIF exerts a feedback inhibition and reduces the excitatory drive on pyramidal neurons. Significant changes in the hippocampal SRIF system have been documented in experimental models of temporal lobe epilepsy (TLE), in particular in the kindling and in the kainate models. SRIF biosynthesis and release are increased in the kindled hippocampus, especially in the dentate gyrus. This hyper-function may be instrumental to control the latent hyperexcitability of the kindled brain, preventing excessive discharge of the principal neurons and the occurrence of spontaneous seizures. In contrast, the hippocampal SRIF system undergoes damage in the dentate gyrus following kainate-induced status epilepticus. Although surviving SRIF neurons appear to hyperfunction, the loss of hilar SRIF interneurons may compromise inhibitory mechanisms in the dentate gyrus, facilitating the occurrence of spontaneous seizures. In keeping with these data, pharmacological activation of SRIF1 (sst2) receptors, i.e. of the prominent receptor subtype on granule cells, exerts antiseizure effects. Taken together, the data presented suggest that the hippocampal SRIF system plays a role in the control of partial complex seizures and, therefore, that it may be proposed as a therapeutic target for TLE.
Collapse
Affiliation(s)
- Anna Binaschi
- Department of Clinical and Experimental Medicine, Section of Pharmacology, and Neuroscience Center, University of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
46
|
Saha S, Henderson Z, Batten TFC. Somatostatin immunoreactivity in axon terminals in rat nucleus tractus solitarii arising from central nucleus of amygdala: coexistence with GABA and postsynaptic expression of sst2A receptor. J Chem Neuroanat 2002; 24:1-13. [PMID: 12084407 DOI: 10.1016/s0891-0618(02)00013-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Axon terminals synapsing on neurones in the nucleus tractus solitarii (NTS) that originate from the central nucleus of the amygdala (CeA) have been shown to contain gamma-aminobutyric acid (GABA) immunoreactivity. Here we investigated whether such terminals also contain somatostatin (SOM), a neuropeptide found in axons distributed throughout the NTS and in somata in the CeA, and known to modulate cardiovascular reflexes when microinjected into the NTS. With fluorescence microscopy, SOM immunoreactivity was seen in the varicosities of some axons throughout the NTS that were anterogradely labelled with biotin dextran amine injected into the CeA. Such varicosities were frequently observed in close proximity to dendrites of NTS neurones that were immunoreactive for the SOM receptor sst(2A) subtype, and in many cases also for catecholamine synthesising enzymes. In the caudal, cardioregulatory zone of NTS, SOM immunoreactivity was localised by electron microscopic pre-embedding gold labelling to boutons containing dense-cored and clear pleomorphic vesicles and forming symmetrical synapses, mostly onto dendrites. Additional post-embedding gold labelling for GABA suggested that a subpopulation (29%) of GABAergic terminals sampled in this area of NTS contained SOM. Almost all boutons anterogradely labelled from the amygdala were GABA-immunoreactive (-IR) and 21% of these were SOM-IR. A similar proportion of these boutons (22%) formed synapses onto dendrites containing immunoreactivity for the SOM receptor sst(2A) subtype. These observations provide evidence that some of the GABAergic projection neurones in the CeA that inhibit baroreceptor reflex responses in the NTS in response to fear or emotional stimuli could release SOM, which might modulate the activity of NTS neurones via an action on sst(2A) receptors.
Collapse
Affiliation(s)
- S Saha
- Institute for Cardiovascular Research, School of Medicine, Worsley Building, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
47
|
Vilchis C, Bargas J, Pérez-Roselló T, Salgado H, Galarraga E. Somatostatin modulates Ca2+ currents in neostriatal neurons. Neuroscience 2002; 109:555-67. [PMID: 11823066 DOI: 10.1016/s0306-4522(01)00503-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Somatostatin is synthesized and released by aspiny interneurons of the neostriatum. This work investigates the actions of somatostatin on rat neostriatal neurons of medium size (ca. 6 pF). Somatostatin (1 microM) reduces both calcium action potentials (20 mM tetraethylammonium) by ca. 24% and calcium currents by ca. 35%, in all cells tested. This action was produced in the presence of tetrodotoxin and in dissociated cells and was blocked by cyclo(-7-aminoheptanoyl-phe-d-try-lys-O-benzyl-thr) acetate (CPP-1), a somatostatin receptor antagonist. Except for nitrendipine (5 microM), several calcium channel antagonists, 1 microM omega-conotoxin GVIA, 400 nM omega-agatoxin TK, and 1 microM omega-conotoxin MVIIC, partially occluded somatostatin action. According to the calcium channel types known to be blocked by these antagonists, P/Q-type channels appeared to be the channels mainly modulated by somatostatin, followed by N-type channels. Since these channel types generate the afterhyperpolarizing potential in spiny neurons, we investigated the action of somatostatin on this event. Somatostatin reduces the amplitude of the afterhyperpolarizing potential by ca. 39%. This action is occluded by omega-agatoxin TK and omega-conotoxin MVIIC but not by omega-conotoxin GVIA or nicardipine. Thus, the action of somatostatin on the afterhyperpolarizing potential is mainly mediated by P/Q-type calcium channels. The block of the slow afterhyperpolarizing potential made most neurons exhibit an irregular firing mode, suggesting that ion currents other than calcium may also be affected by somatostatin. We conclude that somatostatin exerts a direct postsynaptic effect on neostriatal neurons via the activation of somatostatin receptors. This action affects non-L-type calcium channels and therefore modifies the afterhyperpolarizing potential and the firing pattern. It is proposed that somatostatin and its analogues may have profound effects on the motor functions controlled by the basal ganglia.
Collapse
Affiliation(s)
- C Vilchis
- Departamento de Biofísica, Instituto de Fisiología Celular, UNAM, PO Box 70-253, D.F. 04510, México City, Mexico
| | | | | | | | | |
Collapse
|
48
|
England RJA, Atkin SL. Somatostatins and their role in thyroid cancer. CLINICAL OTOLARYNGOLOGY AND ALLIED SCIENCES 2002; 27:120-3. [PMID: 11994118 DOI: 10.1046/j.1365-2273.2002.00543.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Somatostatins are neuropeptides that exert a downregulatory effect on various physiological processes. Somatostatin analogues are used in the imaging and management of various tumour types. Their role in thyroid cancer has not as yet been fully elucidated. A systematic review of the literature using the keywords thyroid, cancer and somatostatin revealed 263 references. This paper summarizes the current knowledge of the role of somatostatins in thyroid cancer and assesses their future potential.
Collapse
Affiliation(s)
- R J A England
- Department of Otolaryngology Head and Neck Surgery, Hull Royal Infirmary, Hull, UK.
| | | |
Collapse
|
49
|
Helyes Z, Pintér E, Németh J, Kéri G, Thán M, Oroszi G, Horváth A, Szolcsányi J. Anti-inflammatory effect of synthetic somatostatin analogues in the rat. Br J Pharmacol 2001; 134:1571-9. [PMID: 11724765 PMCID: PMC1573085 DOI: 10.1038/sj.bjp.0704396] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Somatostatin (6.11 nmol kg(-1) i.p.) inhibited neurogenic plasma extravasation evoked by 1% mustard oil and non-neurogenic oedema induced by 5% dextran in the rat skin. 2. Cyclic synthetic octapeptide (TT-248 and TT-250) and heptapeptide (TT-232) somatostatin analogues proved to be more effective in reducing neurogenic and non-neurogenic inflammatory reactions but octreotide had no influence on either neurogenic or non-neurogenic inflammation. 3. TT-232 administered i.p. or i.v. (1.06 - 42.40 nmol kg(-1)) inhibited in a dose-dependent manner the plasma extravasation evoked by mustard oil in the rat's paw. Neither diclofenac (15.78 - 315.60 micromol kg(-1)) nor the selective COX-2 inhibitor meloxicam (2.95 - 569.38 micromol kg(-1)) attenuated the mustard oil-induced neurogenic plasma extravasation. 4. TT-232, diclofenac and meloxicam dose-dependently diminished non-neurogenic dextran-oedema of the paw the ED(35) values were 1.73 nmol kg(-1) for TT-232 and 34.37 micromol kg(-1) for diclofenac. 5. TT-232 inhibited in the dose range of 1.06 - 21.21 nmol kg(-1) the bradykinin-induced plasma extravasation in the skin of the chronically denervated paw. 6. Mustard oil-induced cutaneous plasma extravasation was dose-dependently diminished by s.c. TT-232 1, 2, 4, 6 or 16 h after the treatment. TT-232 (2 x 106, 2 x 212 and 2 x 530 nmol kg(-1) per day s.c. for 18 days) caused dose-dependent inhibition of chronic Freund adjuvant-induced arthritis during the experimental period. 7. TT-232 (200 and 500 nM) inhibited the release of SP, CGRP and somatostatin from the rat isolated trachea induced by electrical field stimulation (40 V, 0.1 ms, 10 Hz, 120 s) or by capsaicin (10(-7) M), but did not influence the basal, non-stimulated peptide release. 8. It is concluded that somatostatin analogues without endocrine functions as TT-232 are promising compounds with a novel site of action for inhibition of non-neurogenic and neurogenic inflammatory processes.
Collapse
Affiliation(s)
- Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, H-7643 Pécs, Szigeti u.12., Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, H-7643 Pécs, Szigeti u.12., Hungary
| | - József Németh
- Neuropharmacological Research Group of the Hungarian Academy of Sciences, H-7643 Pécs, Szigeti u.12., Hungary
| | - György Kéri
- Peptide-biochemistry Research Group of Hungarian Academy of Sciences, Department of Medical Chemistry, Semmelweis University, H-1034 Budapest, Puskin u.9., Hungary
| | - Márta Thán
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, H-7643 Pécs, Szigeti u.12., Hungary
| | - Gábor Oroszi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, H-7643 Pécs, Szigeti u.12., Hungary
| | - Anikó Horváth
- Peptide-biochemistry Research Group of Hungarian Academy of Sciences, Department of Medical Chemistry, Semmelweis University, H-1034 Budapest, Puskin u.9., Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, H-7643 Pécs, Szigeti u.12., Hungary
- Author for correspondence:
| |
Collapse
|
50
|
Lamirault L, Guillou JL, Micheau J, Jaffard R. Intrahippocampal injections of somatostatin dissociate acquisition from the flexible use of place responses. Eur J Neurosci 2001; 14:567-70. [PMID: 11553307 DOI: 10.1046/j.0953-816x.2001.01672.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies showed that injections of somatostatin (SS-14) into the hippocampus facilitate the acquisition of spatial tasks in mice. The present study was aimed at better understanding the learning and memory processes that could be affected by hippocampal SS-14 stimulation. Balb/c mice were submitted to a two-stage learning paradigm. In stage 1, they were trained for acquisition of a spatial discrimination task in a radial maze and, in stage 2, were submitted to a probe test aiming at evaluating their ability to use flexibly their previously acquired knowledge. Injections of vehicle or SS-14 were given during the acquisition phase and/or before the probe test using a 2 x 2 factorial design. Mice receiving SS-14 during acquisition failed to succeed in the probe test despite showing a trend to faster acquisition of the initial spatial discrimination task. By contrast, when given only prior to probe trials, SS-14 did not yield any behavioural effects. Thus, SS-14 interfered with the establishment of a flexible form of memory, not with its expression per se, and therefore dissociated the acquisition of place responses from their flexible use. The theoretical issues raised by the present findings are discussed.
Collapse
Affiliation(s)
- L Lamirault
- Laboratoire de Neurosciences Cognitives, CNRS UMR 5106, Université de Bordeaux I, Avenue des facultés, 33405 Talence cedex, France
| | | | | | | |
Collapse
|