1
|
Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Romano A, Gaetani S, Micioni Di Bonaventura MV, Cifani C. Investigating the role of the central melanocortin system in stress and stress-related disorders. Pharmacol Res 2022; 185:106521. [DOI: 10.1016/j.phrs.2022.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
2
|
Balkan B, Pogun S. Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides During the Stress Response. Curr Neuropharmacol 2018; 16:371-387. [PMID: 28730966 PMCID: PMC6018196 DOI: 10.2174/1570159x15666170720092442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The hypothalamus harbors high levels of cholinergic neurons and axon terminals. Nicotinic acetylcholine receptors, which play an important role in cholinergic neurotransmission, are expressed abundantly in the hypothalamus. Accumulating evidence reveals a regulatory role for nicotine in the regulation of the stress responses. The present review will discuss the hypothalamic neuropeptides and their interaction with the nicotinic cholinergic system. The anatomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete hypothalamic nuclei will be described. The effect of nicotinic cholinergic neurotransmission and nicotine exposure on hypothalamic-pituitaryadrenal (HPA) axis regulation at the hypothalamic level will be analyzed in view of the different neuropeptides involved. METHODS Published research related to nicotinic cholinergic regulation of the HPA axis activity at the hypothalamic level is reviewed. RESULTS The nicotinic cholinergic system is one of the major modulators of the HPA axis activity. There is substantial evidence supporting the regulation of hypothalamic neuropeptides by nicotinic acetylcholine receptors. However, most of the studies showing the nicotinic regulation of hypothalamic neuropeptides have employed systemic administration of nicotine. Additionally, we know little about the nicotinic receptor distribution on neuropeptide-synthesizing neurons in the hypothalamus and the physiological responses they trigger in these neurons. CONCLUSION Disturbed functioning of the HPA axis and hypothalamic neuropeptides results in pathologies such as depression, anxiety disorders and obesity, which are common and significant health problems. A better understanding of the nicotinic regulation of hypothalamic neuropeptides will aid in drug development and provide means to cope with these diseases. Considering that nicotine is also an abused substance, a better understanding of the role of the nicotinic cholinergic system on the HPA axis will aid in developing improved therapeutic strategies for smoking cessation.
Collapse
Affiliation(s)
- Burcu Balkan
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey.,Department of Physiology, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sakire Pogun
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
3
|
Comparative effects of intranasal neuropeptide Y and HS014 in preventing anxiety and depressive-like behavior elicited by single prolonged stress. Behav Brain Res 2014; 295:9-16. [PMID: 25542511 DOI: 10.1016/j.bbr.2014.12.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/01/2014] [Accepted: 12/16/2014] [Indexed: 01/29/2023]
Abstract
Stress triggered neuropsychiatric disorders are a serious societal problem. Prophylactic treatment or early intervention has great potential in increasing resilience to traumatic stress and reducing its harmful impact. Previously, we demonstrated proof of concept that intranasal administration of neuropeptide Y (NPY) or the melanocortin receptor four (MC4R) antagonist, HS014, prior to single prolonged stress (SPS) rodent post-traumatic stress disorder (PTSD) model, can prevent or attenuate many PTSD associated impairments. Here, we compare effects of NPY or HS014 given 30 min before or immediately after SPS stressors on development of anxiety, depressive-like behavior and associated biochemical abnormalities. SPS triggered anxiety on elevated plus maze (EPM) was reduced by intranasal administration of 100 μg NPY and to even greater extent HS014 (3.5 ng or 100 μg). The SPS-elicited depressive-like behavior on forced swim test was prevented with 100 μg NPY or the high dose HS014. Combined administration of low HS014 and NPY, ineffective by themselves, prevented development of depressive-like behavior. Reductions in stress triggered activation of locus coeruleus/noradrenergic system and HPA axis were observed with both HS014 and NPY. In contrast to NPY which has been showed earlier, infusion of HS014 immediately after SPS did not prevent the development of anxiogenic behavior on EPM. However, HS014 given after SPS stressors effectively even at very low dose, prevented development of depressive-like behavior. Thus, both MC4R antagonist and NPY, alone or combined, have potential for prophylactic treatment against traumatic stress triggered anxiety or depressive-like behaviors, while NPY has more widespread potential for early intervention.
Collapse
|
4
|
Laukova M, Alaluf LG, Serova LI, Arango V, Sabban EL. Early intervention with intranasal NPY prevents single prolonged stress-triggered impairments in hypothalamus and ventral hippocampus in male rats. Endocrinology 2014; 155:3920-33. [PMID: 25057792 DOI: 10.1210/en.2014-1192] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intranasal administration of neuropeptide Y (NPY) is a promising treatment strategy to reduce traumatic stress-induced neuropsychiatric symptoms of posttraumatic stress disorder (PTSD). We evaluated the potential of intranasal NPY to prevent dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, a core neuroendocrine feature of PTSD. Rats were exposed to single prolonged stress (SPS), a PTSD animal model, and infused intranasally with vehicle or NPY immediately after SPS stressors. After 7 days undisturbed, hypothalamus and hippocampus, 2 structures regulating the HPA axis activity, were examined for changes in glucocorticoid receptor (GR) and CRH expression. Plasma ACTH and corticosterone, and hypothalamic CRH mRNA, were significantly higher in the vehicle but not NPY-treated group, compared with unstressed controls. Although total GR levels were not altered in hypothalamus, a significant decrease of GR phosphorylated on Ser232 and increased FK506-binding protein 5 mRNA were observed with the vehicle but not in animals infused with intranasal NPY. In contrast, in the ventral hippocampus, only vehicle-treated animals demonstrated elevated GR protein expression and increased GR phosphorylation on Ser232, specifically in the nuclear fraction. Additionally, SPS-induced increase of CRH mRNA in the ventral hippocampus was accompanied by apparent decrease of CRH peptide particularly in the CA3 subfield, both prevented by NPY. The results show that early intervention with intranasal NPY can prevent traumatic stress-triggered dysregulation of the HPA axis likely by restoring HPA axis proper negative feedback inhibition via GR. Thus, intranasal NPY has a potential as a noninvasive therapy to prevent negative effects of traumatic stress.
Collapse
Affiliation(s)
- Marcela Laukova
- Department of Biochemistry and Molecular Biology (M.L., L.G.A., L.I.S., E.L.S.), New York Medical College, Valhalla, New York 10595; and Molecular Imaging and Neuropathology Division (V.A.), New York State Psychiatric Institute, New York, New York 10032
| | | | | | | | | |
Collapse
|
5
|
Goyal SN, Upadhya MA, Kokare DM, Bhisikar SM, Subhedar NK. Neuropeptide Y modulates the antidepressant activity of imipramine in olfactory bulbectomized rats: involvement of NPY Y1 receptors. Brain Res 2009; 1266:45-53. [PMID: 19254701 DOI: 10.1016/j.brainres.2009.02.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 02/07/2009] [Accepted: 02/15/2009] [Indexed: 10/21/2022]
Abstract
Since long-term treatment with imipramine increases the neuropeptide Y (NPY) levels in the frontal cortex and hypothalamus, the possibility exists that the antidepressant action of imipramine may be mediated via the NPY Y1 receptors. Bilateral olfactory bulbectomy (OBX) resulted in hyperactivity (increased number of ambulation, rearing and grooming episodes) in open field test (OFT) suggesting a depression-like condition. Chronic (14 days) administration of NPY, NPY Y1/Y5 receptor agonist [Leu(31), Pro(34)]-NPY (intracerebroventricular, i.c.v.) or tricyclic antidepressant imipramine (intraperitoneal) to OBX rats dose-dependently resulted in decreased hyperactivity in OFT, while selective NPY Y1 receptor antagonist BIBP3226 (i.c.v.) produced opposite effects. The antidepressant actions of imipramine were enhanced by co-administration of NPY or [Leu(31), Pro(34)]-NPY, and antagonized by BIBP3226 given at sub-effective doses. The data suggest that NPY, acting via NPY Y1 receptors, may be involved in antidepressant action of imipramine in OBX rats.
Collapse
Affiliation(s)
- Sameer N Goyal
- Department of Pharmacology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110 029, India
| | | | | | | | | |
Collapse
|
6
|
Cline MA, Smith ML. Central alpha-melanocyte stimulating hormone attenuates behavioral effects of neuropeptide Y in chicks. Physiol Behav 2007; 91:588-92. [PMID: 17482219 DOI: 10.1016/j.physbeh.2007.03.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 03/04/2007] [Accepted: 03/26/2007] [Indexed: 01/08/2023]
Abstract
This experiment was conducted to determine the effects of central alpha-melanocyte stimulating hormone (alpha-MSH) and its interaction with neuropeptide Y (NPY) on ingestive and non-ingestive behaviors in chicks. Chicks received intracerebroventricular injections of either 0, 0.12 nM alpha-MSH, 0.06 nM NPY, or 0.12 nM alpha-MSH+0.06 nM NPY. Immediately following injection, chicks were placed in an observation arena and the number of steps, jumps, feed pecks, drinks, exploratory pecks, escape attempts, the total distance traveled, and the amount of time spent standing, sitting, sleeping, and preening were monitored for 60 min. Chicks treated with NPY consumed 69% more feed than controls whereas alpha-MSH-treated chicks consumed 71% less. Feed intake of the NPY+alpha-MSH groups was similar to alpha-MSH-treated chicks at 66% less than aCSF-treated chicks. Differences in pecking were found and followed a similar pattern as feed intake. All treatments increased the amount of time chicks were in a sitting posture, and the alpha-MSH+NPY group spent more time sitting than alpha-MSH and NPY alone. The sitting response after alpha-MSH+NPY treatment was similar to the alpha-MSH group but not the NPY group. Other behaviors were not affected by treatment. Thus, we conclude that alpha-MSH, at a concentration that causes a similar magnitude decrease in feed intake as NPY increases feed intake, is a more potent appetite-related signal than NPY. alpha-MSH causes behavioral effects that may secondarily affect feed intake at a low magnitude and may modulate the behavioral effects of NPY in chicks, contributing to the overall effect on feed intake.
Collapse
Affiliation(s)
- Mark A Cline
- Department of Biology (6931), Radford University, Radford, VA 24142, USA.
| | | |
Collapse
|
7
|
Menyhért J, Wittmann G, Hrabovszky E, Keller E, Liposits Z, Fekete C. Interconnection between orexigenic neuropeptide Y- and anorexigenic α-melanocyte stimulating hormone-synthesizing neuronal systems of the human hypothalamus. Brain Res 2006; 1076:101-5. [PMID: 16473335 DOI: 10.1016/j.brainres.2005.12.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 12/21/2005] [Accepted: 12/27/2005] [Indexed: 11/21/2022]
Abstract
Peripheral feeding-related hormones such as leptin, insulin, and ghrelin exert their main central effects through neuropeptide Y- (NPY) synthesizing and alpha-melanocyte-stimulating hormone- (alpha-MSH) synthesizing neurons of the hypothalamic arcuate nucleus. In rodents, recent reports have described an asymmetric signaling between these neuron populations by showing that while NPY influences alpha-MSH-synthesizing neurons, the melanocortin-receptor agonist Melanotan II (MTII) does not modulate the electrophysiological properties of NPY neurons. The functional neuroanatomy of the relationship between these cell populations is unknown in humans. The aim of the current study was to analyze the putative relationship of the orexigenic NPY and anorexigenic alpha-MSH systems in the infundibular nucleus of the human hypothalamus, the analogue of the rodent arcuate nucleus. Double-labeling fluorescent immunocytochemistry for NPY and alpha-MSH was performed on postmortem sections of the human hypothalamus. The sections were analyzed by confocal laser microscopy. Both NPY- and alpha-MSH-immunoreactive (IR) neurons were embedded in dense, intermingling networks of NPY- and alpha-MSH-IR axons in the human infundibular nucleus. NPY-IR varicosities were observed in juxtaposition to all alpha-MSH-IR neurons. The mean number of NPY-IR axon varicosities on the surface of an alpha-MSH-IR neuron was approximately six. The majority of NPY-IR neurons were also contacted by alpha-MSH-IR varicosities, although, the number of such contacts was lower (two alpha-MSH-IR varicosities per NPY neuron). In summary, the present data demonstrate that these two antagonistic, feeding-related neuronal systems are interconnected in the infundibular nucleus, and the neuronal wiring possesses an asymmetric character in the human hypothalamus.
Collapse
Affiliation(s)
- Judit Menyhért
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony Street, Budapest 1083, Hungary
| | | | | | | | | | | |
Collapse
|
8
|
Kokare DM, Dandekar MP, Chopde CT, Subhedar N. Interaction between neuropeptide Y and alpha-melanocyte stimulating hormone in amygdala regulates anxiety in rats. Brain Res 2005; 1043:107-14. [PMID: 15862523 DOI: 10.1016/j.brainres.2005.02.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 02/08/2005] [Accepted: 02/15/2005] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY) and alpha-melanocyte stimulating hormone (alpha-MSH) have been implicated in pathophysiology of feeding and certain mood disorders, including anxiety and depression. Both the peptides are abundantly present in CNS, especially in the hypothalamus and amygdala. Although they are known to exert opposite effects, particularly with reference to anxiety, the underlying mechanisms are not known. We were interested in studying the interaction between these two peptides in the regulation of anxiety, within the framework of amygdala. We administered agents like NPY, alpha-MSH, selective melanocortin-4 receptor (MC4-R) antagonist HS014 and NPY Y1 receptor agonist [Leu(31), Pro(34)]-NPY, alone and in combinations, unilaterally in right amygdala of rats and measured the response using elevated plus maze test. While NPY and [Leu(31), Pro(34)]-NPY increased the time spent and number of entries in the open arms suggesting anxiolytic-like effects, alpha-MSH resulted in opposite responses. Anxiolytic-like effect of NPY (10 nM) or [Leu(31), Pro(34)]-NPY (5 nM) was significantly reduced following prior alpha-MSH (250 ng) administration. Co-administration of HS014 (1 nM) and NPY (5 nM) or [Leu(31), Pro(34)]-NPY (1 nM) at subeffective doses evoked synergistic anxiolysis. Since the closed arm entries displayed by animals of all the groups were in a similar range, the effects might not be ascribed to the changes in general locomotor activity. These results suggest that endogenous alpha-MSH and NPY containing systems may interact in the amygdala and regulate exploratory behavior in an animal model of anxiety.
Collapse
|
9
|
Mounien L, Bizet P, Boutelet I, Vaudry H, Jégou S. Expression of melanocortin MC3 and MC4 receptor mRNAs by neuropeptide Y neurons in the rat arcuate nucleus. Neuroendocrinology 2005; 82:164-70. [PMID: 16508337 DOI: 10.1159/000091737] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 11/07/2005] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) and alpha-melanocyte-stimulating hormone (alpha-MSH), two neuropeptides that are synthesized in neurons of the arcuate nucleus of the hypothalamus, exert opposite actions on food intake and body weight. NPY is orexigenic and decreases energy expenditure whereas alpha-MSH reduces food consumption and stimulates catabolism. alpha-MSH is an endogenous ligand for the central melanocortin receptors, MC3-R and MC4-R. In order to determine whether alpha-MSH may act directly on NPY neurons in the arcuate nucleus, we have investigated the possible occurrence of MC3-R and MC4-R mRNA in NPY-expressing cell bodies in the rat hypothalamus. Double-labeling in situ hybridization histochemistry using (35)S-labeled (MC3-R or MC4-R) and digoxigenin-labeled (NPY) riboprobes revealed that 38 +/- 1% of the NPY mRNA-positive perikarya expressed MC3-R mRNA while only 9 +/- 2% of the NPY-producing neurons contained MC4-R mRNA. The proportions of NPY neurons that express MC3-R mRNA or MC4-R mRNA were not significatively different in the anterior and posterior aspects of the arcuate nucleus. The present study shows that a large proportion of NPY neurons in the rat hypothalamus express MC3-R mRNA while a much lower number of NPY neurons express MC4-R mRNA, suggesting that melanocortins may directly modulate the activity of the hypothalamic NPY system, mainly through activation of MC3-R. These data provide additional evidence for the complex interactions between the stimulatory (NPY) and inhibitory (alpha-MSH) pathways controlling feeding behavior and energy homeostasis.
Collapse
Affiliation(s)
- Lourdes Mounien
- Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research, UA CNRS, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | | | |
Collapse
|
10
|
Rao TL, Kokare DM, Sarkar S, Khisti RT, Chopde CT, Subhedar N. GABAergic agents prevent alpha-melanocyte stimulating hormone induced anxiety and anorexia in rats. Pharmacol Biochem Behav 2004; 76:417-23. [PMID: 14643840 DOI: 10.1016/j.pbb.2003.08.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alpha-melanocyte stimulating hormone (alpha-MSH) is a hypothalamic peptide believed to play a tonic inhibitory role in feeding and energy homeostasis. Systemic administration of alpha-MSH is known to produce anorexia and anxiety. Since synaptic contacts between gamma-aminobutyric acid (GABA)ergic terminals and alpha-MSH neurons in the hypothalamus have been reported, the present work was undertaken to refine our knowledge on the role of GABAergic systems in anxiety and anorexia induced by intracerebroventricular (icv) administration of alpha-MSH in rats. The anxiety was assessed by elevated plus maze, and spontaneous food consumption was monitored during dark cycle. Prior administration of diazepam and muscimol that promote the function of GABA(A) receptors reversed the anxiogenic response and decreased food intake elicited by alpha-MSH. In contrast, bicuculline, the GABA(A) receptor antagonist, not only enhanced the effects of alpha-MSH but also prevented the influence of GABAergic drugs on alpha-MSH-induced anorexia and anxiety. These findings suggest that alpha-MSH-induced anxiety and anorexia are due to its negative influence on GABAergic system.
Collapse
Affiliation(s)
- T Lakshmi Rao
- Department of Pharmaceutical Sciences, Nagpur University Campus, Amravati Road, Nagpur 440 033, India
| | | | | | | | | | | |
Collapse
|
11
|
Mele P, Oberto A, Serra M, Pisu MG, Floris I, Biggio G, Eva C. Increased expression of the gene for the Y1 receptor of neuropeptide Y in the amygdala and paraventricular nucleus of Y1R/LacZ transgenic mice in response to restraint stress. J Neurochem 2004; 89:1471-8. [PMID: 15189350 DOI: 10.1111/j.1471-4159.2004.02444.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A sustained increase in the brain concentrations of neuroactive steroids was previously shown to induce Y1 receptor gene expression in the amygdala of Y1R/LacZ transgenic mice which harbour a construct comprising the murine Y1 receptor gene promoter and the lacZ reporter gene. We now investigated the effects of restraint stress on both the cerebrocortical concentrations of neuroactive steroids and Y1 receptor gene expression in the amygdala and hypothalamic paraventricular nucleus (PVN) of Y1R/LacZ transgenic mice. The cerebrocortical concentrations of allopregnanolone and allotetrahydrodeoxycorticosterone were significantly increased immediately after a 1-h exposure to restraint stress and had returned to control values within 30 min. Expression of Y1R/LacZ was increased in the amygdala and PVN 6 h after restraint. The 5alpha-reductase inhibitor finasteride, that prevented the increase in neuroactive steroid concentrations, did not block that in transgene expression induced by 1-h restraint. Daily exposure to restraint for 10 days also increased the cerebrocortical concentrations of neuroactive steroids but failed to affect transgene expression. Acute but not repeated restraint thus increases Y1 receptor gene expression in the amygdala and PVN, suggesting that tolerance develops towards this stressor. The effect of acute restraint is not mediated by the increase in the brain concentrations of neuroactive steroids but may rather reflect a ligand-induced increase in Y1 receptor gene transcription. Data support a role of Y1 receptors in the behavioural and neuroendocrine responses to stress.
Collapse
Affiliation(s)
- Paolo Mele
- Dipartimento di Anatomia, Farmacologia e Medicina Legale, Sezione di Farmacologia, Università di Torino, Via Pietro Giuria 12, 10125 Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Raposinho PD, White RB, Aubert ML. The melanocortin agonist Melanotan-II reduces the orexigenic and adipogenic effects of neuropeptide Y (NPY) but does not affect the NPY-driven suppressive effects on the gonadotropic and somatotropic axes in the male rat. J Neuroendocrinol 2003; 15:173-81. [PMID: 12535159 DOI: 10.1046/j.1365-2826.2003.00962.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuropeptide Y (NPY) is a strong orexigenic neurotransmitter also known to modulate several neuroendocrine axes. alpha-Melanocyte-stimulating hormone (MSH) is an essential anorectic neuropeptide, acting on hypothalamic MC3/4 receptor subtypes. When given as an intracerebroventricular bolus injection, Melanotan-II (MT-II), a non selective MC receptor agonist, inhibits feeding, suppresses the NPY orexigenic action, and reduces basal insulinaemia. We evaluated the effects of a 7-day central infusion of MT-II (15 nmol/day) given either alone or in association with NPY (5 nmol/day) in male Sprague-Dawley rats. MT-II produced almost full anorexia for 1-2 days but then feeding gradually returned to normal despite continued MT-II infusion. When coinfused with NPY, MT-II also produced the same initial anorectic episode but then maintained feeding to upper normal levels, thus cancelling the hyperphagia driven by NPY. Whereas NPY infusion produced a doubling of fat pad weight, MT-II reduced adiposity by a factor of two compared to pair-fed rats, and vastly curtailed the NPY-driven increase in fat pad weight. MT-II infusion also significantly curtailed the NPY-induced rise in insulin and leptin secretions. NPY infusion significantly inhibited hypothalamic pro-opiomelanocortin mRNA expression, most likely cancelling the alpha-MSH anorectic activity. As expected from previous studies, chronic NPY infusion strongly inhibited both the gonadotropic and somatotropic axes, and coinfusion of MT-II did not reverse these NPY-driven effects, in sharp contrast with that seen for the metabolic data. MT-II infusion alone had little effect on these axes. In conclusion, chronic MT-II infusion generated a severe but transient reduction in feeding, suggesting an escape phenomenon, and clearly reduced fat pad size. When coinfused with NPY, MT-II was able to cancel most of the NPY effects on feeding, but not those on the neuroendocrine axes. It appears therefore that, as expected, NPY and alpha-MSH closely interact in the control of feeding, whereas the neural pathways by which NPY affects growth and reproduction are distinct and not sensitive to MC peptide modulation.
Collapse
Affiliation(s)
- P D Raposinho
- Division of Development and Growth, Department of Pediatrics, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | |
Collapse
|
13
|
Hansen MJ, Morris MJ. Evidence for an interaction between neuropeptide Y and the melanocortin-4 receptor on feeding in the rat. Neuropharmacology 2002; 42:792-7. [PMID: 12015205 DOI: 10.1016/s0028-3908(02)00025-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamus is a critical centre for the control of appetite. Neuropeptide Y (NPY) and alpha-melanocyte stimulating hormone (alpha-MSH) exert opposing effects on feeding and substantial neuroanatomical evidence exists to suggest these hypothalamic peptides may interact to alter feeding behaviour. We have examined central interactions between these two peptide systems on food intake in satiated male Sprague-Dawley rats. NPY-induced (1 nmol; i.c.v.) food intake was significantly attenuated by subsequent alpha-MSH administration (1 and 4 nmol; i.c.v.) at 1 h post-injection and persisted for the entire 4 h observation period (P<0.05). Central administration of the selective MC4-R antagonist HS014 (0.5 nmol) significantly increased food intake compared to saline-vehicle (P<0.05). However, co-administration of HS014 (0.5 nmol) and NPY (0.5 and 1 nmol) did not increase feeding compared to either dose of NPY alone. These results taken together provide some evidence for an interaction between these mediators in the control of food intake.
Collapse
Affiliation(s)
- M J Hansen
- Department of Pharmacology, The University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
14
|
Kim EM, Grace MK, O'Hare E, Billington CJ, Levine AS. Injection of alpha-MSH, but not beta-endorphin, into the PVN decreases POMC gene expression in the ARC. Neuroreport 2002; 13:497-500. [PMID: 11930169 DOI: 10.1097/00001756-200203250-00028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
beta-Endorphin (beta-END) and alpha-melanocyte stimulating hormone (alpha-MSH), neuropeptides derived from proopiomelanocortin (POMC), have opposite effects on eating behavior. We injected rats with alpha-MSH (0.6 nmol) or beta-END (1 nmol) into the PVN (three times in a 26 h period). These doses of alpha-MSH and beta-END decreased and increased feeding respectively. Following alpha-MSH administration into the PVN, mRNA levels of POMC decreased by 17%, whereas there was no significant change in gene expression of either proDynorphin or proEnkephalin. PVN injection of beta-END failed to alter gene expression of POMC, proDynorphin or proEnkephalin. These data suggest that a feedback pathway exists between the PVN and ARC for alpha-MSH and POMC, but not for beta-END and POMC.
Collapse
Affiliation(s)
- Eun-Mee Kim
- School of Psychology, University of Ulster, Jordanstown, UK
| | | | | | | | | |
Collapse
|
15
|
Goldstone AP, Unmehopa UA, Bloom SR, Swaab DF. Hypothalamic NPY and agouti-related protein are increased in human illness but not in Prader-Willi syndrome and other obese subjects. J Clin Endocrinol Metab 2002; 87:927-37. [PMID: 11836343 DOI: 10.1210/jcem.87.2.8230] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Animal studies have demonstrated the importance of orexigenic NPY and agouti-related protein (AGRP) hypothalamic neurons, which are inhibited by the adipocyte hormone leptin, in the regulation of body weight and neuroendocrine secretion. We have examined NPY and AGRP neurons in postmortem human hypothalami from controls, Prader-Willi syndrome and other obese subjects, using quantitative immunocytochemistry (ICC) and in situ hybridization, to identify causes of leptin resistance in human obesity. Using combined ICC and in situ hybridization, AGRP, but not POMC, was colocalized with NPY in infundibular nucleus neurons. Infundibular nucleus (including median eminence) NPY ICC staining or mRNA expression, and AGRP ICC staining, increased with premorbid illness duration. NPY ICC staining and mRNA expression were reduced in obese subjects, but AGRP ICC staining was unchanged, correcting for illness duration. This suggests normal responses of NPY and AGRP neurons to peripheral signals, such as leptin and insulin, in human illness and obesity. The pathophysiology of obesity and illness-associated anorexia appear to lie in downstream or separate neuronal circuits, but the infundibular neurons may mediate neuroendocrine responses to illness. The implications for pharmacological treatment of human obesity are discussed.
Collapse
Affiliation(s)
- Anthony P Goldstone
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, 1105 AZ Amsterdam ZO, The Netherlands.
| | | | | | | |
Collapse
|
16
|
Sheriff S, Dautzenberg FM, Mulchahey JJ, Pisarska M, Hauger RL, Chance WT, Balasubramaniam A, Kasckow JW. Interaction of neuropeptide Y and corticotropin-releasing factor signaling pathways in AR-5 amygdalar cells. Peptides 2001; 22:2083-9. [PMID: 11786194 DOI: 10.1016/s0196-9781(01)00549-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Corticotropin-releasing factor (CRF) is a 41 amino acid neuropeptide which is involved in the stress response. CRF and neuropeptide Y (NPY) produce reciprocal effects on anxiety in the central nucleus of the amygdala. The molecular mechanisms of possible CRF-NPY interactions in regulating anxiety behavior is not known. In the central nervous system, the action of NPY leads to inhibition of cAMP production while CRF is known to stimulate levels of cAMP in the brain. Consequently, we hypothesized that NPY may antagonize anxiety-like behavior by counter-regulating CRF-stimulated cAMP accumulation and activation of the protein kinase A pathway. We have engineered an immortalized amygdalar cell line (AR-5 cells) which express via RT-PCR, the CRF(2alpha), Y(1) and Y(5) NPY receptor. In addition, in these cells CRF treatment results in significant concentration-dependent increases in cAMP production. Furthermore, incubation of 3 microM CRF with increasing concentrations of NPY was able to significantly inhibit the increases in cAMP compared to that observed with 3 microM CRF treatment alone. These findings suggest that CRF and NPY may counter-regulate each other in amygdalar neurons via reciprocal effects on the protein kinase A pathway.
Collapse
Affiliation(s)
- S Sheriff
- University of Cincinnati College of Medicine, Department of Surgery, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Naveilhan P, Neveu I, Arenas E, Ernfors P. Complementary and overlapping expression of Y1, Y2 and Y5 receptors in the developing and adult mouse nervous system. Neuroscience 1998; 87:289-302. [PMID: 9722158 DOI: 10.1016/s0306-4522(98)00141-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neuropeptide Y, a 36 amino acid peptide, mediates its biological effects by activating the Y1, Y2, Y5 and Y6 receptors, which are also receptors for the structurally related peptide YY. Different classes of receptors have been suggested to be involved in different neuropeptide Y functions. In this report, we have characterized the developmental regulation and compared the cellular localization of these receptors in the developing and in the adult central and peripheral nervous systems of the mouse. RNase protection assays revealed that Y1, Y2 and Y5 messenger RNAs were expressed very early in spinal cord, brain, cerebellum and dorsal root ganglion development and were often down-regulated at times corresponding to their acquirement of the adult function in neurotransmission. In situ hybridization of the adult brain showed that Y1 was widely expressed, Y2 displayed a more restricted pattern, Y5 was expressed at very low levels and only in a few brain nuclei and Y6 was not expressed. Virtually all areas containing neurons positive for Y5 also expressed Y1, whereas many Y1-positive cells clearly did not express Y5. In contrast, Y2 was not expressed by the neurons expressing Y1 or Y5. These findings suggest that neuropeptide Y signaling in the brain could be mediated by simultaneous Y1 and Y5 activation. Similar results were also obtained in peripheral sensory neurons. Furthermore, our results suggest that neuropeptide Y/peptide YY receptors play an important role in nervous system development and that selective receptor combinations are responsible for signaling the different effects of neuropeptide Y in the peripheral and central nervous systems.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Brain/anatomy & histology
- Brain/embryology
- Brain/growth & development
- Brain/metabolism
- Central Nervous System/anatomy & histology
- Central Nervous System/embryology
- Central Nervous System/growth & development
- Central Nervous System/metabolism
- Cerebellum/embryology
- Cerebellum/growth & development
- Cerebellum/metabolism
- Ganglia, Sensory/embryology
- Ganglia, Sensory/growth & development
- Ganglia, Sensory/metabolism
- Ganglia, Sympathetic/embryology
- Ganglia, Sympathetic/growth & development
- Ganglia, Sympathetic/metabolism
- Gene Expression Regulation, Developmental
- In Situ Hybridization
- Mice
- Mice, Inbred BALB C
- Peripheral Nervous System/anatomy & histology
- Peripheral Nervous System/embryology
- Peripheral Nervous System/growth & development
- Peripheral Nervous System/metabolism
- RNA, Messenger/biosynthesis
- Receptors, Neuropeptide Y/biosynthesis
- Receptors, Neuropeptide Y/genetics
- Ribonucleases
- Spinal Cord/embryology
- Spinal Cord/growth & development
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- P Naveilhan
- Department of Medical Biophysics and Biochemistry, Karolinska Institute, Stockholm, Sweden
| | | | | | | |
Collapse
|
18
|
Kask A, Rägo L, Korrovits P, Wikberg JE, Schiöth HB. Evidence that orexigenic effects of melanocortin 4 receptor antagonist HS014 are mediated by neuropeptide Y. Biochem Biophys Res Commun 1998; 248:245-9. [PMID: 9675121 DOI: 10.1006/bbrc.1998.8961] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent studies using melanocortin-4 receptor (MC4R) knockout mice and MC4R antagonists have shown that weakening of MC4R-ergic tone increases food intake and causes obesity. In this study, we used the newly discovered selective MC4R antagonist HS014 for increasing food intake in free-feeding rats and evaluated the effects of the NPY Y1 receptor antagonist 1229U91 and the selective serotonin uptake inhibitor fluoxetine on this increased feeding behavior. 1229U91 (12 nmol, i.c.v.), which alone does not affect food intake, significantly attenuated the orexigenic effects of HS014, whereas 1 and 3 nmol doses of 1229U91 were ineffective. Fluoxetine, which has been shown to inhibit NPY release, inhibited spontaneous food intake and completely blocked the stimulation of food intake by HS014. These data suggest that feeding induced by weakening of the MC4R-ergic tone may be mediated through activation of the NPY-ergic system. This is the first report showing that physiological feeding response evoked by MC4R blockage is influenced by NPY signalling.
Collapse
Affiliation(s)
- A Kask
- Department of Pharmacology, University of Tartu, Ulikooli 18, Tartu, EE-2400, Estonia.
| | | | | | | | | |
Collapse
|
19
|
Li C, Chen P, Smith MS. The acute suckling stimulus induces expression of neuropeptide Y (NPY) in cells in the dorsomedial hypothalamus and increases NPY expression in the arcuate nucleus. Endocrinology 1998; 139:1645-52. [PMID: 9528945 DOI: 10.1210/endo.139.4.5905] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elevated neuropeptide Y (NPY) levels in the hypothalamus have been reported during lactation in the rat. The increase in NPY neuronal activity may be important in modulating a number of changes in hypothalamic neuronal function that are associated with lactation. The aims of the present study were to determine 1) if NPY neurons in the hypothalamus can be activated by the suckling stimulus; and 2) the time course of the activation in response to the suckling stimulus. In the first experiment, lactating rats were deprived of their 8-pup litters on day 9 post partum for 48 h. On day 11, the animals were divided into three groups and exposed to the suckling stimulus for varying periods of time up to 24 h. NPY neuronal activity was assessed by measuring changes in NPY messenger RNA (mRNA) levels, using in situ hybridization. NPY mRNA levels in the caudal portion of the hypothalamic arcuate nucleus (ARH) were approximately doubled by 24 h of suckling. NPY mRNA levels in the rostral portion of the ARH were not affected by suckling throughout the time examined. In addition to increased NPY mRNA in the ARH, resuckling for as little as 3 h induced NPY mRNA expression in cells located dorsal and lateral to the compact zone of the dorsomedial nucleus of the hypothalamus (DMH). NPY expression in these cells was not observed in the nonresuckled controls. These data demonstrate that the acute suckling stimulus activates two specific populations of NPY neurons in the hypothalamus: in the caudal portion of the ARH and in the DMH. The increased NPY neuronal activity may play an important role in modulating changes in hypothalamic regulation of hormone secretion and food intake.
Collapse
Affiliation(s)
- C Li
- Division of Neuroscience, Oregon Regional Primate Research Center, Beaverton 97006, USA
| | | | | |
Collapse
|
20
|
Abstract
Melanocortin peptides (adrenocorticotropin (ACTH), alpha-,beta-, and gamma-melanocyte stimulating hormone (MSH), and fragments thereof) derived from proopiomelanocortin (POMC) have a diverse array of biological activities, many of which have yet to be fully elucidated. The recent cloning of a family of five distinct melanocortin receptors through which these peptides act has provided the tools to further our understanding of melanocortin peptide functions. Early work on melanocortin peptides focused on their roles in pigmentation, adrenocortical function, the immune, central and peripheral nervous systems. Although melanocortin peptides have long been known to affect lipolysis, characterisation of the melanocortin receptors has opened up several lines of evidence for important roles in the development of obesity, insulin resistance and type II diabetes. We present here a review of the current evidence for melanocortin peptides playing such a role, and based on this evidence, a model for melanocortin peptides and their receptors in maintaining energy balance.
Collapse
Affiliation(s)
- K G Mountjoy
- Research Centre for Developmental Medicine and Biology, Department of Paediatrics, University of Auckland, New Zealand
| | | |
Collapse
|
21
|
Fuxe K, Tinner B, Caberlotto L, Bunnemann B, Agnati LF. NPY Y1 receptor like immunoreactivity exists in a subpopulation of beta-endorphin immunoreactive nerve cells in the arcuate nucleus: a double immunolabelling analysis in the rat. Neurosci Lett 1997; 225:49-52. [PMID: 9143015 DOI: 10.1016/s0304-3940(97)00184-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Double immunolabelling immunohistochemistry in the arcuate nucleus of the rat demonstrates that neuropeptide Y (NPY) Y1 receptor like immunoreactivity is strongly present in a subpopulation of beta-endorphin immunoreactive nerve cell bodies, while the small NPY immunoreactive nerve cell bodies located medially lack NPY Y1 receptor like immunoreactivity. The NPY Y1 like immunoreactive nerve cell bodies lie in an arcuate area rich in NPY immunoreactive nerve terminals forming an uniform plexus. It is postulated that NPY Y1 receptors in beta-endorphin neurons may mediate some actions of NPY on motivational processes and pain control as well as on hypophyseal hormone secretion, involving at the least in part a regulation of the tubero-infundibular DA neurons.
Collapse
Affiliation(s)
- K Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|