1
|
El Daibani A, Madasu MK, Al-Hasani R, Che T. Limitations and potential of κOR biased agonists for pain and itch management. Neuropharmacology 2024; 258:110061. [PMID: 38960136 DOI: 10.1016/j.neuropharm.2024.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
The concept of ligand bias is based on the premise that different agonists can elicit distinct responses by selectively activating the same receptor. These responses often determine whether an agonist has therapeutic or undesirable effects. Therefore, it would be highly advantageous to have agonists that specifically trigger the therapeutic response. The last two decades have seen a growing trend towards the consideration of ligand bias in the development of ligands to target the κ-opioid receptor (κOR). Most of these ligands selectively favor G-protein signaling over β-arrestin signaling to potentially provide effective pain and itch relief without adverse side effects associated with κOR activation. Importantly, the specific role of β-arrestin 2 in mediating κOR agonist-induced side effects remains unknown, and similarly the therapeutic and side-effect profiles of G-protein-biased κOR agonists have not been established. Furthermore, some drugs previously labeled as G-protein-biased may not exhibit true bias but may instead be either low-intrinsic-efficacy or partial agonists. In this review, we discuss the established methods to test ligand bias, their limitations in measuring bias factors for κOR agonists, as well as recommend the consideration of other systematic factors to correlate the degree of bias signaling and pharmacological effects. This article is part of the Special Issue on "Ligand Bias".
Collapse
Affiliation(s)
- Amal El Daibani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Manish K Madasu
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ream Al-Hasani
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Tao Che
- Center for Clinical Pharmacology, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Todorov J, Calhoun SE, McCarty GS, Sombers LA. Electrochemical Quantification of Enkephalin Peptides Using Fast-Scan Cyclic Voltammetry. Anal Chem 2024. [PMID: 39138126 DOI: 10.1021/acs.analchem.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Endogenous opioid neuropeptides serve as important chemical signaling molecules in both the central and peripheral nervous systems, but there are few analytical tools for directly monitoring these molecules in situ. The opioid peptides share the amino acid motif, Tyr-Gly-Gly-Phe-, at the N-terminus. Met-enkephalin is a small opioid peptide comprised of only five amino acids with methionine (Met) incorporated at the C-terminus. Tyrosine (Tyr) and Met are electroactive, and their distinct electrochemical signatures can be utilized for quantitative molecular monitoring. This work encompasses a thorough voltammetric characterization of Tyr and Met redox chemistry as individual amino acids and when incorporated into small peptide fragments containing the shared Tyr-Gly-Gly-Phe- motif. NMR spectroscopy was used to determine the structure and conformation at near-physiological conditions. Voltammetric data demonstrate how the peak oxidation potential and the rate of electron transfer are dependent on the local chemical environment. Both the proximity of the electroactive residue to the C- or N-terminus and the hydrophobicity of the additional nonelectroactive amino acids profoundly affect sensitivity. Finally, the work uses the electrochemical signal for individual amino acids in a "training set", with a combination of principal component analysis and least-squares regression to accurately predict the voltammetric signal for short peptides comprising different combinations of those amino acids. Overall, this study demonstrates how fast-scan cyclic voltammetry can be utilized to discriminate between peptides with small differences in the chemical structure, thus establishing a framework for reliable quantification of small peptides in a complex signal, broadly speaking.
Collapse
|
3
|
Denison JD, De Alwis AC, Shah R, McCarty GS, Sombers LA. Untapped Potential: Real-Time Measurements of Opioid Exocytosis at Single Cells. J Am Chem Soc 2023; 145:24071-24080. [PMID: 37857375 PMCID: PMC10637323 DOI: 10.1021/jacs.3c07487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 10/21/2023]
Abstract
The endogenous opioid system is commonly targeted in pain treatment, but the fundamental nature of neuropeptide release remains poorly understood due to a lack of methods for direct detection of specific opioid neuropeptides in situ. These peptides are concentrated in, and released from, large dense-core vesicles in chromaffin cells. Although catecholamine release from these neuroendocrine cells is well characterized, the direct quantification of opioid peptide exocytosis events has not previously been achieved. In this work, a planar carbon-fiber microelectrode served as a "postsynaptic" sensor for probing catecholamine and neuropeptide release dynamics via amperometric monitoring. A constant potential of 500 mV was employed for quantification of catecholamine release, and a higher potential of 1000 mV was used to drive oxidation of tyrosine, the N-terminal amino acid in the opioid neuropeptides released from chromaffin cells. By discriminating the results collected at the two potentials, the data reveal unique kinetics for these two neurochemical classes at the single-vesicle level. The amplitude of the peptidergic signals decreased with repeat stimulation, as the halfwidth of these signals simultaneously increased. By contrast, the amplitude of catecholamine release events increased with repeat stimulation, but the halfwidth of each event did not vary. The chromogranin dense core was identified as an important mechanistic handle by which separate classes of transmitter can be kinetically modulated when released from the same population of vesicles. Overall, the data provide unprecedented insight into key differences between catecholamine and opioid neuropeptide release from isolated chromaffin cells.
Collapse
Affiliation(s)
- J. Dylan Denison
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - A. Chathuri De Alwis
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ruby Shah
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gregory S. McCarty
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Comparative
Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
5
|
Escobar AP, Meza R, Gonzalez M, Henny P, Andrés ME. Immunolocalization of kappa opioid receptors in the axon initial segment of a group of embryonic mesencephalic dopamine neurons. IBRO Neurosci Rep 2022; 12:411-418. [PMID: 35746971 PMCID: PMC9210487 DOI: 10.1016/j.ibneur.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 11/13/2022] Open
Abstract
The dopamine mesolimbic system is a major circuit involved in controlling goal-directed behaviors. Dopamine D2 receptors (D2R) and kappa opioid receptors (KOR) are abundant Gi protein-coupled receptors in the mesolimbic system. D2R and KOR share several functions in dopamine mesencephalic neurons, such as regulation of dopamine release and uptake, and firing of dopamine neurons. In addition, KOR and D2R modulate each other functioning. This evidence indicates that both receptors functionally interact, however, their colocalization in the mesostriatal system has not been addressed. Immunofluorescent assays were performed in cultured dopamine neurons and adult mice’s brain tissue to answer this question. We observed that KOR and D2R are present in similar density in dendrites and soma of cultured dopamine neurons, but in a segregated manner. Interestingly, KOR immunolabelling was observed in the first part of the axon, colocalizing with Ankyrin in 20% of cultured dopamine neurons, indicative that KOR is present in the axon initial segment (AIS) of a group of dopaminergic neurons. In the adult brain, KOR and D2R are also segregated in striatal tissue. While the KOR label is in fiber tracts such as the striatal streaks, corpus callosum, and anterior commissure, D2R is located mainly within the striatum and nucleus accumbens, surrounding fiber tracts. D2R is also localized in some fibers that are mostly different from those positives for KOR. In conclusion, KOR and D2R are present in the soma and dendrites of mesencephalic dopaminergic neurons, but KOR is also found in the AIS of a subpopulation of these neurons. KOR and D2R localize in cell bodies of primary cultured TH neurons. In primary cultured TH neurons KOR localizes in axon initial segment. KOR and D2R co-localize in cell bodies of the CPu and NAc.
Collapse
|
6
|
Cox BM, Toll L. Contributions of the International Narcotics Research Conference to Opioid Research Over the Past 50 years. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10115. [PMID: 38390618 PMCID: PMC10880772 DOI: 10.3389/adar.2022.10115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 02/24/2024]
Abstract
The International Narcotics Research Conference (INRC), founded in 1969, has been a successful forum for research into the actions of opiates, with an annual conference since 1971. Every year, scientists from around the world have congregated to present the latest data on novel opiates, opiate receptors and endogenous ligands, mechanisms of analgesic activity and unwanted side effects, etc. All the important discoveries in the opiate field were discussed, often first, at the annual INRC meeting. With an apology to important events and participants not discussed, this review presents a short history of INRC with a discussion of groundbreaking discoveries in the opiate field and the researchers who presented from the first meeting up to the present.
Collapse
Affiliation(s)
- Brian M. Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lawrence Toll
- Department of Biomedical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
7
|
Fundamentals of the Dynorphins/Kappa Opioid Receptor System: From Distribution to Signaling and Function. Handb Exp Pharmacol 2022; 271:3-21. [PMID: 33754230 PMCID: PMC9013522 DOI: 10.1007/164_2021_433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This chapter provides a general introduction to the dynorphins (DYNs)/kappa opioid receptor (KOR) system, including DYN peptides, neuroanatomy of the DYNs/KOR system, cellular signaling, and in vivo behavioral effects of KOR activation and inhibition. It is intended to serve as a primer for the book and to provide a basic background for the chapters in the book.
Collapse
|
8
|
Considerations on Using Antibodies for Studying the Dynorphins/Kappa Opioid Receptor System. Handb Exp Pharmacol 2022; 271:23-38. [PMID: 34085120 PMCID: PMC9125580 DOI: 10.1007/164_2021_467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antibodies are important tools for protein and peptide research, including for the kappa opioid receptor (KOR) and dynorphins (Dyns). Well-characterized antibodies are essential for rigorous and reproducible research. However, lack of validation of antibody specificity has been thought to contribute significantly to the reproducibility crisis in biomedical research. Since 2003, many scientific journals have required documentation of validation of antibody specificity and use of knockout mouse tissues as a negative control is strongly recommended. Lack of specificity of antibodies against many G protein-coupled receptors (GPCRs) after extensive testing has been well-documented, but antibodies generated against partial sequences of the KOR have not been similarly investigated. For the dynorphins, differential processing has been described in distinct brain areas, resulting in controversial findings in immunohistochemistry (IHC) when different antibodies were used. In this chapter, we summarized accepted approaches for validation of antibody specificity. We discussed two KOR antibodies most commonly used in IHC and described generation and characterization of KOR antibodies and phospho-KOR specific antibodies in western blotting or immunoblotting (IB). In addition, applying antibodies targeting prodynorphin or mature dynorphin A illustrates the diversity of results obtained regarding the distribution of dynorphins in distinct brain areas.
Collapse
|
9
|
Fillesoye F, Ibazizène M, Marie N, Noble F, Perrio C. Evaluation of Specific Binding of [ 11C]RTI-97 to Kappa Opioid Receptor by Autoradiography and PET Imaging in Rat. ACS Med Chem Lett 2021; 12:1739-1744. [PMID: 34795862 DOI: 10.1021/acsmedchemlett.1c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022] Open
Abstract
Kappa opioid receptor (KOR) PET imaging remains attractive to understand the role of KOR in health and diseases and to help the development of drugs especially for psychiatric disorders such as depression, anxiety, and addiction. The potent and selective KOR antagonist RTI-97 labeled with carbon-11 was previously demonstrated to display specific KOR binding in mouse brain by ex vivo autoradiography studies. Herein, we evaluated [11C]RTI-97 in rat by in vitro autoradiography and by in vivo PET imaging. The radiosynthesis of [11C]RTI-97 was optimized to obtain high molar activities. Despite a low cerebral uptake, the overall results showed a heterogeneous repartition and specific KOR binding of [11C]RTI-97 in brain and a high and specific accumulation of [11C]RTI-97 in pituitary in accordance with KOR expression.
Collapse
Affiliation(s)
- Fabien Fillesoye
- Normandie Univ, UNICAEN, CEA, CNRS, UMR 6030, LDM-TEP, Cyceron, Boulevard Henri, Becquerel, 14074 Caen, France
| | - Méziane Ibazizène
- Normandie Univ, UNICAEN, CEA, CNRS, UMR 6030, LDM-TEP, Cyceron, Boulevard Henri, Becquerel, 14074 Caen, France
| | - Nicolas Marie
- Université de Paris, CNRS, ERL 3649, Inserm, UMR-S 1124, Pharmacologie et thérapies des addictions, 75006 Paris, France
| | - Florence Noble
- Université de Paris, CNRS, ERL 3649, Inserm, UMR-S 1124, Pharmacologie et thérapies des addictions, 75006 Paris, France
| | - Cécile Perrio
- Normandie Univ, UNICAEN, CEA, CNRS, UMR 6030, LDM-TEP, Cyceron, Boulevard Henri, Becquerel, 14074 Caen, France
| |
Collapse
|
10
|
Barker KE, Lecznar AJ, Schumacher JM, Morris JS, Gutstein HB. Subanalgesic morphine doses augment fentanyl analgesia by interacting with delta opioid receptors in male rats. J Neurosci Res 2021; 100:149-164. [PMID: 34520585 DOI: 10.1002/jnr.24944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Opioids are commonly used for the treatment of postoperative and post-traumatic pain; however, their therapeutic effectiveness is limited by undesirable and life-threatening side effects. Researchers have long attempted to develop opioid co-administration therapies that enhance analgesia, but the complexity of opioid analgesia and our incomplete mechanistic understanding has made this a daunting task. We discovered that subanalgesic morphine doses (100 ng/kg-10 µg/kg) augmented the acute analgesic effect of fentanyl (20 µg/kg) following subcutaneous drug co-administration to male rats. In addition, administration of equivalent drug ratios to naïve rat spinal cord membranes induced a twofold increase in G protein activation. The rate of GTP hydrolysis remained unchanged. We demonstrated that these behavioral and biochemical effects were mediated by the delta opioid receptor (DOP). Subanalgesic doses of the DOP-selective agonist SNC80 also augmented the acute analgesic effect of fentanyl. Furthermore, co-administration of the DOP antagonist naltrindole with both fentanyl-morphine and fentanyl-SNC80 combinations prevented augmentation of both analgesia and G protein activation. The mu opioid receptor (MOP) antagonist cyprodime did not block augmentation. Confocal microscopy of the substantia gelatinosa of rats treated with fentanyl, subanalgesic morphine, or this combination showed that changes in MOP internalization did not account for augmentation effects. Together, these findings suggest that augmentation of fentanyl analgesia by subanalgesic morphine is mediated by increased G protein activation resulting from a synergistic interaction between or heterodimerization of MOPs and DOPs. This finding is of great therapeutic significance because it suggests a strategy for the development of DOP-selective ligands that can enhance the therapeutic index of clinically used MOP drugs.
Collapse
Affiliation(s)
- Katherine E Barker
- Department of Anesthesiology, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Alynn J Lecznar
- Department of Anesthesiology, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Jill M Schumacher
- Department of Genetics, The University of Texas - MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey S Morris
- Biostatistics Division, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA
| | - Howard B Gutstein
- Anesthesiology Institute, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Cameron CM, Nieto S, Bosler L, Wong M, Bishop I, Mooney L, Cahill CM. Mechanisms Underlying the Anti-Suicidal Treatment Potential of Buprenorphine. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1. [PMID: 35265942 PMCID: PMC8903193 DOI: 10.3389/adar.2021.10009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Death by suicide is a global epidemic with over 800 K suicidal deaths worlwide in 2012. Suicide is the 10th leading cause of death among Americans and more than 44 K people died by suicide in 2019 in the United States. Patients with chronic pain, including, but not limited to, those with substance use disorders, are particularly vulnerable. Chronic pain patients have twice the risk of death by suicide compared to those without pain, and 50% of chronic pain patients report that they have considered suicide at some point due to their pain. The kappa opioid system is implicated in negative mood states including dysphoria, depression, and anxiety, and recent evidence shows that chronic pain increases the function of this system in limbic brain regions important for affect and motivation. Additionally, dynorphin, the endogenous ligand that activates the kappa opioid receptor is increased in the caudate putamen of human suicide victims. A potential treatment for reducing suicidal ideation and suicidal attempts is buprenorphine. Buprenorphine, a partial mu opioid agonist with kappa opioid antagonist properties, reduced suicidal ideation in chronic pain patients with and without an opioid use disorder. This review will highlight the clinical and preclinical evidence to support the use of buprenorphine in mitigating pain-induced negative affective states and suicidal thoughts, where these effects are at least partially mediated via its kappa antagonist properties.
Collapse
Affiliation(s)
- Courtney M. Cameron
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Nieto
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lucienne Bosler
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Megan Wong
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Isabel Bishop
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Larissa Mooney
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Catherine M. Cahill
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Shirley and Stefan Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA, United States
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Correspondence: Catherine M. Cahill,
| |
Collapse
|
12
|
Rossi GC, Bodnar RJ. Interactive Mechanisms of Supraspinal Sites of Opioid Analgesic Action: A Festschrift to Dr. Gavril W. Pasternak. Cell Mol Neurobiol 2021; 41:863-897. [PMID: 32970288 DOI: 10.1007/s10571-020-00961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
Almost a half century of research has elaborated the discoveries of the central mechanisms governing the analgesic responses of opiates, including their receptors, endogenous peptides, genes and their putative spinal and supraspinal sites of action. One of the central tenets of "gate-control theories of pain" was the activation of descending supraspinal sites by opiate drugs and opioid peptides thereby controlling further noxious input. This review in the Special Issue dedicated to the research of Dr. Gavril Pasternak indicates his contributions to the understanding of supraspinal mediation of opioid analgesic action within the context of the large body of work over this period. This review will examine (a) the relevant supraspinal sites mediating opioid analgesia, (b) the opioid receptor subtypes and opioid peptides involved, (c) supraspinal site analgesic interactions and their underlying neurophysiology, (d) molecular (particularly AS) tools identifying opioid receptor actions, and (e) relevant physiological variables affecting site-specific opioid analgesia. This review will build on classic initial studies, specify the contributions that Gavril Pasternak and his colleagues did in this specific area, and follow through with studies up to the present.
Collapse
Affiliation(s)
- Grace C Rossi
- Department of Psychology, C.W. Post College, Long Island University, Post Campus, Brookville, NY, USA.
| | - Richard J Bodnar
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
- CUNY Neuroscience Collaborative, Graduate Center, CUNY, New York, NY, USA
| |
Collapse
|
13
|
De Neve J, Barlow TMA, Tourwé D, Bihel F, Simonin F, Ballet S. Comprehensive overview of biased pharmacology at the opioid receptors: biased ligands and bias factors. RSC Med Chem 2021; 12:828-870. [PMID: 34223156 PMCID: PMC8221262 DOI: 10.1039/d1md00041a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022] Open
Abstract
One of the main challenges in contemporary medicinal chemistry is the development of safer analgesics, used in the treatment of pain. Currently, moderate to severe pain is still treated with the "gold standard" opioids whose long-term often leads to severe side effects. With the discovery of biased agonism, the importance of this area of pharmacology has grown exponentially over the past decade. Of these side effects, tolerance, opioid misuse, physical dependence and substance use disorder (SUD) stand out, since these have led to many deaths over the past decades in both USA and Europe. New therapeutic molecules that induce a biased response at the opioid receptors (MOR, DOR, KOR and NOP receptor) are able to circumvent these side effects and, consequently, serve as more advantageous therapies with great promise. The concept of biased signaling extends far beyond the already sizeable field of GPCR pharmacology and covering everything would be vastly outside the scope of this review which consequently covers the biased ligands acting at the opioid family of receptors. The limitation of quantifying bias, however, makes this a controversial subject, where it is dependent on the reference ligand, the equation or the assay used for the quantification. Hence, the major issue in the field of biased ligands remains the translation of the in vitro profiles of biased signaling, with corresponding bias factors to in vivo profiles showing the presence or the lack of specific side effects. This review comprises a comprehensive overview of biased ligands in addition to their bias factors at individual members of the opioid family of receptors, as well as bifunctional ligands.
Collapse
Affiliation(s)
- Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, Faculté de Pharmacie, UMR 7200, CNRS Université de Strasbourg Illkirch France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, CNRS, Université de Strasbourg Illkirch France
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel Brussels Belgium
| |
Collapse
|
14
|
Hein M, Ji G, Tidwell D, D'Souza P, Kiritoshi T, Yakhnitsa V, Navratilova E, Porreca F, Neugebauer V. Kappa opioid receptor activation in the amygdala disinhibits CRF neurons to generate pain-like behaviors. Neuropharmacology 2021; 185:108456. [PMID: 33444637 PMCID: PMC7887082 DOI: 10.1016/j.neuropharm.2021.108456] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that kappa opioid receptors (KOR) in limbic brain regions such as the amygdala contribute to pain conditions, but underlying mechanisms remain to be determined. The amygdala is an important player in averse-affective aspects of pain and pain modulation. The central nucleus (CeA) serves output functions through projection neurons that include corticotropin releasing factor (CRF) expressing neurons. The CeA is also rich in KOR. Here we tested the novel hypothesis that KOR activation in the CeA generates pain-like behaviors through a mechanism that involves inhibition of synaptic inhibition (disinhibition) of CRF neurons. Intra-CeA administration of a KOR agonist (U-69,593) increased vocalizations of naïve rats to noxious stimuli, and induced anxiety-like behaviors in the open field test (OFT) and avoidance in the conditioned place preference test, without affecting mechanosensory thresholds. Optogenetic silencing of CeA-CRF neurons blocked the facilitatory effects of systemically applied U-69,593 in naïve rats. Patch-clamp recordings of CRF neurons in rat brain slices found that U-69,593 decreased feedforward inhibitory transmission evoked by optogenetic stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. U-69,593 decreased frequency, but not amplitude, of inhibitory synaptic currents, suggesting a presynaptic action. Multiphoton imaging of CeA-CRF neurons in rat brain slices showed that U-69,593 increased calcium signals evoked by electrical stimulation of presumed parabrachial input. This study shows for the first time that KOR activation increases activity of amygdala CRF neurons through synaptic disinhibition, resulting in averse-affective pain-like behaviors. Blocking KOR receptors may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dalton Tidwell
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Preston D'Souza
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
15
|
Dehe L, Shaqura M, Nordine M, Habazettl H, von Kwiatkowski P, Schluchter H, Shakibaei M, Mousa SA, Schäfer M, Treskatsch S. Chronic Naltrexone Therapy Is Associated with Improved Cardiac Function in Volume Overloaded Rats. Cardiovasc Drugs Ther 2021; 35:733-743. [PMID: 33484395 PMCID: PMC8266787 DOI: 10.1007/s10557-020-07132-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Myocardial opioid receptors were demonstrated in animals and humans and seem to colocalize with membranous and sarcolemmal calcium channels of the excitation-contraction coupling in the left ventricle (LV). Therefore, this study investigated whether blockade of the cardiac opioid system by naltrexone would affect cardiac function and neurohumoral parameters in Wistar rats with volume overload-induced heart failure. METHODS Volume overload in Wistar rats was induced by an aortocaval fistula (ACF). Left ventricular cardiac opioid receptors were identified by immunohistochemistry and their messenger ribonucleic acid (mRNA) as well as their endogenous ligand mRNA quantified by real-time polymerase chain reaction (RT-PCR). Following continuous delivery of either the opioid receptor antagonist naltrexone or vehicle via minipumps (n = 5 rats each), hemodynamic and humoral parameters were assessed 28 days after ACF induction. Sham-operated animals served as controls. RESULTS In ACF rats mu-, delta-, and kappa-opioid receptors colocalized with voltage-gated L-type Ca2+ channels in left ventricular cardiomyocytes. Chronic naltrexone treatment of ACF rats reduced central venous pressure (CVP) and left ventricular end-diastolic pressure (LVEDP), and improved systolic and diastolic left ventricular functions. Concomitantly, rat brain natriuretic peptide (rBNP-45) and angiotensin-2 plasma concentrations which were elevated during ACF were significantly diminished following naltrexone treatment. In parallel, chronic naltrexone significantly reduced mu-, delta-, and kappa-opioid receptor mRNA, while it increased the endogenous opioid peptide mRNA compared to controls. CONCLUSION Opioid receptor blockade by naltrexone leads to improved LV function and decreases in rBNP-45 and angiotensin-2 plasma levels. In parallel, naltrexone resulted in opioid receptor mRNA downregulation and an elevated intrinsic tone of endogenous opioid peptides possibly reflecting a potentially cardiodepressant effect of the cardiac opioid system during volume overload.
Collapse
Affiliation(s)
- Lukas Dehe
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Mohammed Shaqura
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Michael Nordine
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Helmut Habazettl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology Campus Charité Mitte, Chariteplatz 1, 10117, Berlin, Germany
| | - Petra von Kwiatkowski
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Helena Schluchter
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-Universität München, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Shaaban A Mousa
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Michael Schäfer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Sascha Treskatsch
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Anesthesiology and Operative Intensive Care Medicine, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
16
|
Brockway DF, Crowley NA. Turning the 'Tides on Neuropsychiatric Diseases: The Role of Peptides in the Prefrontal Cortex. Front Behav Neurosci 2020; 14:588400. [PMID: 33192369 PMCID: PMC7606924 DOI: 10.3389/fnbeh.2020.588400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recent advancements in technology have enabled researchers to probe the brain with the greater region, cell, and receptor specificity. These developments have allowed for a more thorough understanding of how regulation of the neurophysiology within a region is essential for maintaining healthy brain function. Stress has been shown to alter the prefrontal cortex (PFC) functioning, and evidence links functional impairments in PFC brain activity with neuropsychiatric disorders. Moreover, a growing body of literature highlights the importance of neuropeptides in the PFC to modulate neural signaling and to influence behavior. The converging evidence outlined in this review indicates that neuropeptides in the PFC are specifically impacted by stress, and are found to be dysregulated in numerous stress-related neuropsychiatric disorders including substance use disorder, major depressive disorder (MDD), posttraumatic stress disorder, and schizophrenia. This review explores how neuropeptides in the PFC function to regulate the neural activity, and how genetic and environmental factors, such as stress, lead to dysregulation in neuropeptide systems, which may ultimately contribute to the pathology of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Dakota F Brockway
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States
| | - Nicole A Crowley
- Neuroscience Curriculum, Pennsylvania State University, University Park, PA, United States.,The Department of Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
17
|
Chen C, Willhouse AH, Huang P, Ko N, Wang Y, Xu B, Huang LHM, Kieffer B, Barbe MF, Liu-Chen LY. Characterization of a Knock-In Mouse Line Expressing a Fusion Protein of κ Opioid Receptor Conjugated with tdTomato: 3-Dimensional Brain Imaging via CLARITY. eNeuro 2020; 7:ENEURO.0028-20.2020. [PMID: 32561573 PMCID: PMC7385665 DOI: 10.1523/eneuro.0028-20.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022] Open
Abstract
Activation of κ opioid receptor (KOR) produces analgesia, antipruritic effect, sedation and dysphoria. To characterize neuroanatomy of KOR at high resolutions and circumvent issues of specificity of KOR antibodies, we generated a knock-in mouse line expressing KOR fused at the C terminus with the fluorescent protein tdTomato (KtdT). The selective KOR agonist U50,488H caused anti-scratch effect and hypolocomotion, indicating intact KOR neuronal circuitries. Clearing of brains with CLARITY revealed three-dimensional (3-D) images of distribution of KOR, and any G-protein-coupled receptors, for the first time. 3-D brain images of KtdT and immunohistochemistry (IHC) on brain sections with antibodies against tdTomato show similar distribution to that of autoradiography of [3H]U69,593 binding to KOR in wild-type mice. KtdT was observed in regions involved in reward and aversion, pain modulation, and neuroendocrine regulation. KOR is present in several areas with unknown roles, including the claustrum (CLA), dorsal endopiriform nucleus, paraventricular nucleus of the thalamus (PVT), lateral habenula (LHb), and substantia nigra pars reticulata (SNr), which are discussed. Prominent KtdT-containing fibers were observed to project from caudate putamen (CP) and nucleus accumbens (ACB) to substantia innominata (SI) and SNr. Double IHC revealed co-localization of KtdT with tyrosine hydroxylase (TH) in brain regions, including CP, ACB, and ventral tegmental area (VTA). KOR was visualized at the cellular level, such as co-localization with TH and agonist-induced KOR translocation into intracellular space in some VTA neurons. These mice thus represent a powerful and heretofore unparalleled tool for neuroanatomy of KOR at both the 3-D and cellular levels.
Collapse
Affiliation(s)
- Chongguang Chen
- Center for Substance Abuse Research and Department of Pharmacology
| | - Alex H Willhouse
- Center for Substance Abuse Research and Department of Pharmacology
| | - Peng Huang
- Center for Substance Abuse Research and Department of Pharmacology
| | - Nora Ko
- Center for Substance Abuse Research and Department of Pharmacology
| | - Yujun Wang
- Center for Substance Abuse Research and Department of Pharmacology
| | - Bin Xu
- Cardiovascular Research Center
| | | | - Brigitte Kieffer
- Douglas Hospital, McGill University, Verdun, Quebec H4H 1R3, Canada
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140
| | | |
Collapse
|
18
|
Tashiro A, Bereiter DA. The effects of estrogen on temporomandibular joint pain as influenced by trigeminal caudalis neurons. J Oral Sci 2020; 62:150-155. [PMID: 32132330 DOI: 10.2334/josnusd.19-0405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The signs and symptoms of persistent temporomandibular joint (TMJ)/muscle disorder (TMJD) pain suggest the existence of a central neural dysfunction or a problem of pain amplification. The etiology of chronic TMJD is not known; however, female sex hormones have been identified as significant risk factors. Converging lines of evidence indicate that the junctional region between the trigeminal subnucleus caudalis (Vc) and the upper cervical spinal cord, termed the Vc/C1-2 region, is the primary site for the synaptic integration of sensory input from TMJ nociceptors. In this paper, the mechanisms behind the estrogen effects on the processing of nociceptive inputs by neurons in the Vc/C1-2 region reported by human and animal studies are reviewed. The Vc/C1-2 region has direct connections to endogenous pain and autonomic control pathways, which are modified by estrogen status and are suggested to be critical for somatomotor and autonomic reflex responses of TMJ-related sensory signals.
Collapse
Affiliation(s)
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry
| |
Collapse
|
19
|
Escobar ADP, Casanova JP, Andrés ME, Fuentealba JA. Crosstalk Between Kappa Opioid and Dopamine Systems in Compulsive Behaviors. Front Pharmacol 2020; 11:57. [PMID: 32132923 PMCID: PMC7040183 DOI: 10.3389/fphar.2020.00057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/22/2020] [Indexed: 12/02/2022] Open
Abstract
The strength of goal-oriented behaviors is regulated by midbrain dopamine neurons. Dysfunctions of dopaminergic circuits are observed in drug addiction and obsessive-compulsive disorder. Compulsive behavior is a feature that both disorders share, which is associated to a heightened dopamine neurotransmission. The activity of midbrain dopamine neurons is principally regulated by the homeostatic action of dopamine through D2 receptors (D2R) that decrease the firing of neurons as well as dopamine synthesis and release. Dopamine transmission is also regulated by heterologous neurotransmitter systems such as the kappa opioid system, among others. Much of our current knowledge of the kappa opioid system and its influence on dopamine transmission comes from preclinical animal models of brain diseases. In 1988, using cerebral microdialysis, it was shown that the acute activation of the Kappa Opioid Receptors (KOR) decreases synaptic levels of dopamine in the striatum. This inhibitory effect of KOR opposes to the facilitating influence of drugs of abuse on dopamine release, leading to the proposition of the use of KOR agonists as pharmacological therapy for compulsive drug intake. Surprisingly, 30 years later, KOR antagonists are instead proposed to treat drug addiction. What may have happened during these years that generated this drastic change of paradigm? The collected evidence suggested that the effect of KOR on synaptic dopamine levels is complex, depending on the frequency of KOR activation and timing with other incoming stimuli to dopamine neurons, as well as sex and species differences. Conversely to its acute effect, chronic KOR activation seems to facilitate dopamine neurotransmission and dopamine-mediated behaviors. The opposing actions exerted by acute versus chronic KOR activation have been associated with an initial aversive and a delayed rewarding effect, during the exposure to drugs of abuse. Compulsive behaviors induced by repeated activation of D2R are also potentiated by the sustained co-activation of KOR, which correlates with decreased synaptic levels of dopamine and sensitized D2R. Thus, the time-dependent activation of KOR impacts directly on dopamine levels affecting the tuning of motivated behaviors. This review analyzes the contribution of the kappa opioid system to the dopaminergic correlates of compulsive behaviors.
Collapse
Affiliation(s)
- Angélica Del Pilar Escobar
- Centro Interdisciplinario de Neurociencias de Valparaíso, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - José Patricio Casanova
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Núcleo Milenio NUMIND Biology of Neuropsychiatric Disorders, Universidad de Valparaíso, Valparaíso, Chile
| | - María Estela Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José Antonio Fuentealba
- Department of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
20
|
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
21
|
Calhoun SE, Meunier CJ, Lee CA, McCarty GS, Sombers LA. Characterization of a Multiple-Scan-Rate Voltammetric Waveform for Real-Time Detection of Met-Enkephalin. ACS Chem Neurosci 2019; 10:2022-2032. [PMID: 30571911 PMCID: PMC6473485 DOI: 10.1021/acschemneuro.8b00351] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Opioid peptides are critically involved in a variety of physiological functions necessary for adaptation and survival, and as such, understanding the precise actions of endogenous opioid peptides will aid in identification of potential therapeutic strategies to treat a variety of disorders. However, few analytical tools are currently available that offer both the sensitivity and spatial resolution required to monitor peptidergic concentration fluctuations in situ on a time scale commensurate with that of neuronal communication. Our group has developed a multiple-scan-rate waveform to enable real-time voltammetric detection of tyrosine containing neuropeptides. Herein, we have evaluated the waveform parameters to increase sensitivity to methionine-enkephalin (M-ENK), an endogenous opioid neuropeptide implicated in pain, stress, and reward circuits. M-ENK dynamics were monitored in adrenal gland tissue, as well as in the dorsal striatum of anesthetized and freely behaving animals. The data reveal cofluctuations of catecholamine and M-ENK in both locations and provide measurements of M-ENK dynamics in the brain with subsecond temporal resolution. Importantly, this work also demonstrates how voltammetric waveforms can be customized to enhance detection of specific target analytes, broadly speaking.
Collapse
Affiliation(s)
- S. E. Calhoun
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. J. Meunier
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. A. Lee
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - G. S. McCarty
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - L. A. Sombers
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
22
|
Smith JB, Alloway KD, Hof PR, Orman R, Reser DH, Watakabe A, Watson GDR. The relationship between the claustrum and endopiriform nucleus: A perspective towards consensus on cross-species homology. J Comp Neurol 2019; 527:476-499. [PMID: 30225888 PMCID: PMC6421118 DOI: 10.1002/cne.24537] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
With the emergence of interest in studying the claustrum, a recent special issue of the Journal of Comparative Neurology dedicated to the claustrum (Volume 525, Issue 6, pp. 1313-1513) brought to light questions concerning the relationship between the claustrum (CLA) and a region immediately ventral known as the endopiriform nucleus (En). These structures have been identified as separate entities in rodents but appear as a single continuous structure in primates. During the recent Society for Claustrum Research meeting, a panel of experts presented data pertaining to the relationship of these regions and held a discussion on whether the CLA and En should be considered (a) separate unrelated structures, (b) separate nuclei within the same formation, or (c) subregions of a continuous structure. This review article summarizes that discussion, presenting comparisons of the cytoarchitecture, neurochemical profiles, genetic markers, and anatomical connectivity of the CLA and En across several mammalian species. In rodents, we conclude that the CLA and the dorsal endopiriform nucleus (DEn) are subregions of a larger complex, which likely performs analogous computations and exert similar effects on their respective cortical targets (e.g., sensorimotor versus limbic). Moving forward, we recommend that the field retain the nomenclature currently employed for this region but should continue to examine the delineation of these structures across different species. Using thorough descriptions of a variety of anatomical features, this review offers a clear definition of the CLA and En in rodents, which provides a framework for identifying homologous structures in primates.
Collapse
Affiliation(s)
- Jared B. Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kevin D. Alloway
- Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rena Orman
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, 11203 USA
| | - David H. Reser
- Graduate Entry Medicine Program, Monash Rural Health Churchill, Monash University, Churchill, Victoria 3842, Australia
- Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | | | - Glenn D. R. Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
23
|
Kappa opioid receptors mediate yohimbine-induced increases in impulsivity in the 5-choice serial reaction time task. Behav Brain Res 2018; 359:258-265. [PMID: 30414973 DOI: 10.1016/j.bbr.2018.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022]
Abstract
Dynorphin (DYN), and its receptor, the kappa opioid receptor (KOR) are involved in drug seeking and relapse but the mechanisms are poorly understood. One hypothesis is that DYN/KOR activation promotes drug seeking through increased impulsivity, because many stimuli that induce DYN release increase impulsivity. Here, we systematically compare the effects of drugs that activate DYN/KOR on performance on the 5-choice serial reaction time task (5-CSRTT), a test of sustained attention and impulsivity. In Experiment 1, we determined the effects of U50,488 (0, 2.5, 5 mg/kg), yohimbine (0, 1.25, 2.5 mg/kg), and nicotine (0, 0.15, 0.3 mg/kg) on 5-CSRTT performance. In Experiment 2, we determined the effects of alcohol (0, 0.5, 1.0, 1.5 g/kg) on 5-CSRTT performance before and after voluntary, intermittent alcohol exposure. In Experiment 3, we determined the potential role of KOR in the pro-impulsive effects of yohimbine (1.25 mg/kg) and nicotine (0.3 mg/kg) by the prior administration of the KOR antagonist nor-BNI (10 mg/kg). Premature responding, the primary measure of impulsivity, was reduced by U50,488 and alcohol, but these drugs had a general suppressive effect. Yohimbine and nicotine increased premature responding. Yohimbine-, but not nicotine-induced increases in premature responding were blocked by nor-BNI, suggesting that impulsivity induced by yohimbine is KOR dependent. This may suggests a potential role for KOR-mediated increases in impulsivity in yohimbine-induced reinstatement.
Collapse
|
24
|
Balkan B, Pogun S. Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides During the Stress Response. Curr Neuropharmacol 2018; 16:371-387. [PMID: 28730966 PMCID: PMC6018196 DOI: 10.2174/1570159x15666170720092442] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The hypothalamus harbors high levels of cholinergic neurons and axon terminals. Nicotinic acetylcholine receptors, which play an important role in cholinergic neurotransmission, are expressed abundantly in the hypothalamus. Accumulating evidence reveals a regulatory role for nicotine in the regulation of the stress responses. The present review will discuss the hypothalamic neuropeptides and their interaction with the nicotinic cholinergic system. The anatomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete hypothalamic nuclei will be described. The effect of nicotinic cholinergic neurotransmission and nicotine exposure on hypothalamic-pituitaryadrenal (HPA) axis regulation at the hypothalamic level will be analyzed in view of the different neuropeptides involved. METHODS Published research related to nicotinic cholinergic regulation of the HPA axis activity at the hypothalamic level is reviewed. RESULTS The nicotinic cholinergic system is one of the major modulators of the HPA axis activity. There is substantial evidence supporting the regulation of hypothalamic neuropeptides by nicotinic acetylcholine receptors. However, most of the studies showing the nicotinic regulation of hypothalamic neuropeptides have employed systemic administration of nicotine. Additionally, we know little about the nicotinic receptor distribution on neuropeptide-synthesizing neurons in the hypothalamus and the physiological responses they trigger in these neurons. CONCLUSION Disturbed functioning of the HPA axis and hypothalamic neuropeptides results in pathologies such as depression, anxiety disorders and obesity, which are common and significant health problems. A better understanding of the nicotinic regulation of hypothalamic neuropeptides will aid in drug development and provide means to cope with these diseases. Considering that nicotine is also an abused substance, a better understanding of the role of the nicotinic cholinergic system on the HPA axis will aid in developing improved therapeutic strategies for smoking cessation.
Collapse
Affiliation(s)
- Burcu Balkan
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey.,Department of Physiology, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sakire Pogun
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
25
|
Dynorphin Counteracts Orexin in the Paraventricular Nucleus of the Thalamus: Cellular and Behavioral Evidence. Neuropsychopharmacology 2018; 43:1010-1020. [PMID: 29052613 PMCID: PMC5854806 DOI: 10.1038/npp.2017.250] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 11/08/2022]
Abstract
The orexin (Orx) system plays a critical role in drug addiction and reward-related behaviors. The dynorphin (Dyn) system promotes depressive-like behavior and plays a key role in the aversive effects of stress. Orx and Dyn are co-released and have opposing functions in reward and motivation in the ventral tegmental area (VTA). Previous studies suggested that OrxA transmission in the posterior paraventricular nucleus of the thalamus (pPVT) participates in cocaine-seeking behavior. This study determined whether Orx and Dyn interact in the pPVT. Using the brain slice preparation for cellular recordings, superfusion of DynA onto pPVT neurons decreased the frequency of spontaneous and miniature excitatory postsynaptic currents (s/mEPSCs). OrxA increased the frequency of sEPSCs but had no effect on mEPSCs, suggesting a network-driven effect of OrxA. The amplitudes of s/mEPSCs were unaffected by the peptides, indicating a presynaptic action on glutamate release. Augmentation of OrxA-induced glutamate release was reversed by DynA. Utilizing a behavioral approach, separate groups of male Wistar rats were trained to self-administer cocaine or sweetened condensed milk (SCM). After extinction, rats received intra-pPVT administration of OrxA±DynA±the κ-opioid receptor antagonist nor-binaltorphimine (NorBNI) under extinction conditions. OrxA reinstated cocaine- and SCM-seeking behavior, with a greater effect in cocaine animals. DynA blocked OrxA-induced cocaine seeking but not SCM seeking. NorBNI did not induce or potentiate cocaine-seeking behavior induced by OrxA but reversed DynA effect. This indicates that the κ-opioid system in the pPVT counteracts OrxA-induced cocaine seeking, suggesting a novel therapeutic target to prevent cocaine relapse.
Collapse
|
26
|
da Silva JA, Biagioni AF, Almada RC, de Freitas RL, Coimbra NC. Panicolytic-like effects caused by substantia nigra pars reticulata pretreatment with low doses of endomorphin-1 and high doses of CTOP or the NOP receptors antagonist JTC-801 in male Rattus norvegicus. Psychopharmacology (Berl) 2017; 234:3009-3025. [PMID: 28856406 DOI: 10.1007/s00213-017-4678-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022]
Abstract
RATIONALE Gamma-aminobutyric acid (GABA)ergic neurons of the substantia nigra pars reticulata (SNpr) are connected to the deep layers of the superior colliculus (dlSC). The dlSC, in turn, connect with the SNpr through opioid projections. Nociceptin/orphanin FQ peptide (N/OFQ) is a natural ligand of a Gi protein-coupled nociceptin receptor (ORL1; NOP) that is also found in the SNpr. Our hypothesis is that tectonigral opioid pathways and intranigral orphanin-mediated mechanisms modulate GABAergic nigrotectal connections. OBJECTIVES Therefore, the aim of this work was to study the role of opioid and NOP receptors in the SNpr during the modulation of defence reactions organised by the dlSC. METHODS The SNpr was pretreated with either opioid or NOP receptor agonists and antagonists, followed by dlSC treatment with bicuculline. RESULTS Blockade of GABAA receptors in the dlSC elicited fear-related defensive behaviour. Pretreatment of the SNpr with naloxone benzoylhydrazone (NalBzoH), a μ-, δ-, and κ1-opioid receptor antagonist as well as a NOP receptor antagonist, decreased the aversive effect of bicuculline treatment on the dlSC. Either μ-opioid receptor activation or blockade by SNpr microinjection of endomorphin-1 (EM-1) and CTOP promoted pro-aversive and anti-aversive actions, respectively, that modulated the defensive responses elicited by bicuculline injection into the dlSC. Pretreatment of the SNpr with the selective NOP receptor antagonist JTC801 decreased the aversive effect of bicuculline, and microinjections of the selective NOP receptor agonist NNC 63-0532 promoted the opposite effect. CONCLUSIONS These results demonstrate that opioid pathways and orphanin-mediated mechanisms have a critical role in modulating the activity of nigrotectal GABAergic pathways during the organisation of defensive behaviours.
Collapse
Affiliation(s)
- Juliana Almeida da Silva
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo, 14050-220, Brazil
| | - Audrey Franceschi Biagioni
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rafael Carvalho Almada
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo, 14050-220, Brazil
| | - Renato Leonardo de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo, 14050-220, Brazil
- Multiuser Centre of Neuroelectrophysiology, Department of Anatomy and Surgery, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory of Pain and Emotions, Department of Anatomy and Surgery, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Behavioural Neurosciences Institute (INeC), Av. do Café, 2450, Monte Alegre, Ribeirão Preto, São Paulo, 14050-220, Brazil.
- NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo, Av Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Multiuser Centre of Neuroelectrophysiology, Department of Anatomy and Surgery, Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| |
Collapse
|
27
|
Naloxone effects on extinction of ethanol- and cocaine-induced conditioned place preference in mice. Psychopharmacology (Berl) 2017; 234:2747-2759. [PMID: 28653079 PMCID: PMC5709191 DOI: 10.1007/s00213-017-4672-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023]
Abstract
RATIONALE Previous studies found that naloxone (NLX) facilitated choice extinction of ethanol conditioned place preference (CPP) using long (60 min) test sessions, but there is little information on the variables determining this effect. OBJECTIVES These studies examined repeated exposure to NLX during extinction of ethanol- or cocaine-induced CPP using both short and long tests. METHODS DBA/2J mice were injected with NLX (0 or 10 mg/kg) before three 10- or 60-min choice extinction tests (experiment 1). All mice received a final 60-min test without NLX. Post-test NLX was given in experiment 2. Experiment 3 tested whether NLX would affect a forced extinction procedure. Experiment 4 tested its effect on extinction of cocaine-induced CPP. RESULTS Pre-test (but not post-test) injections of NLX-facilitated choice extinction of ethanol CPP at both test durations. Pre-test NLX also facilitated forced extinction. However, pre-test NLX had no effect on choice extinction of cocaine CPP. CONCLUSIONS Extinction test duration is not critical for engaging the opioid system during ethanol CPP extinction (experiment 1). Moreover, NLX's effect does not depend on CPP expression during extinction, just exposure to previously conditioned cues (experiment 3). The null effect of post-test NLX eliminates a memory consolidation interpretation (experiment 2) and the failure to alter cocaine CPP extinction argues against alteration of general learning or memory processes (experiment 4). Overall, these data suggest that the endogenous opioid system mediates a conditioned motivational effect that normally maintains alcohol-induced seeking behavior, which may underlie the efficacy of opiate antagonists in the treatment of alcoholism.
Collapse
|
28
|
Norman H, D'Souza MS. Endogenous opioid system: a promising target for future smoking cessation medications. Psychopharmacology (Berl) 2017; 234:1371-1394. [PMID: 28285326 DOI: 10.1007/s00213-017-4582-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/24/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Nicotine addiction continues to be a health challenge across the world. Despite several approved medications, smokers continue to relapse. Several human and animal studies have evaluated the role of the endogenous opioid system as a potential target for smoking cessation medications. METHODS In this review, studies that have elucidated the role of the mu (MORs), delta (DORs), and kappa (KORs) opioid receptors in nicotine reward, nicotine withdrawal, and reinstatement of nicotine seeking will be discussed. Additionally, the review will discuss discrepancies in the literature and therapeutic potential of the endogenous opioid system, and suggest studies to address gaps in knowledge with respect to the role of the opioid receptors in nicotine dependence. RESULTS Data available till date suggest that blockade of the MORs and DORs decreased the rewarding effects of nicotine, while activation of the MORs and DORs decreased nicotine withdrawal-induced aversive effects. In contrast, activation of the KORs decreased the rewarding effects of nicotine, while blockade of the KORs decreased nicotine withdrawal-induced aversive effects. Interestingly, blockade of the MORs and KORs attenuated reinstatement of nicotine seeking. In humans, MOR antagonists have shown benefits in select subpopulations of smokers and further investigation is required to realize their full therapeutic potential. CONCLUSION Future work must assess the influence of polymorphisms in opioid receptor-linked genes in nicotine dependence, which will help in both identifying individuals vulnerable to nicotine addiction and the development of opioid-based smoking cessation medications. Overall, the endogenous opioid system continues to be a promising target for future smoking cessation medications.
Collapse
Affiliation(s)
- Haval Norman
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH, 45810, USA
| | - Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH, 45810, USA.
| |
Collapse
|
29
|
Watson GDR, Smith JB, Alloway KD. Interhemispheric connections between the infralimbic and entorhinal cortices: The endopiriform nucleus has limbic connections that parallel the sensory and motor connections of the claustrum. J Comp Neurol 2016; 525:1363-1380. [PMID: 26860547 DOI: 10.1002/cne.23981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/17/2022]
Abstract
We have previously shown that the claustrum is part of an interhemispheric circuit that interconnects somesthetic-motor and visual-motor cortical regions. The role of the claustrum in processing limbic information, however, is poorly understood. Some evidence suggests that the dorsal endopiriform nucleus (DEn), which lies immediately ventral to the claustrum, has connections with limbic cortical areas and should be considered part of a claustrum-DEn complex. To determine whether DEn has similar patterns of cortical connections as the claustrum, we used anterograde and retrograde tracing techniques to elucidate the connectivity of DEn. Following injections of retrograde tracers into DEn, labeled neurons appeared bilaterally in the infralimbic (IL) cortex and ipsilaterally in the entorhinal and piriform cortices. Anterograde tracer injections in DEn revealed labeled terminals in the same cortical regions, but only in the ipsilateral hemisphere. These tracer injections also revealed extensive longitudinal projections throughout the rostrocaudal extent of the nucleus. Dual retrograde tracer injections into IL and lateral entorhinal cortex (LEnt) revealed intermingling of labeled neurons in ipsilateral DEn, including many double-labeled neurons. In other experiments, anterograde and retrograde tracers were separately injected into IL of each hemisphere of the same animal. This revealed an interhemispheric circuit in which IL projects bilaterally to DEn, with the densest terminal labeling appearing in the contralateral hemisphere around retrogradely labeled neurons that project to IL in that hemisphere. By showing that DEn and claustrum have parallel sets of connections, these results suggest that DEn and claustrum perform similar functions in processing limbic and sensorimotor information, respectively. J. Comp. Neurol. 525:1363-1380, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Glenn D R Watson
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033.,Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802
| | - Jared B Smith
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802.,Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802
| | - Kevin D Alloway
- Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA 17033.,Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
30
|
Jiang QY, Wang MY, Li L, Mo HX, Song JL, Tang QL, Feng XT. Electroacupuncture relieves labour pain and influences the spinal dynorphin/κ-opioid receptor system in rats. Acupunct Med 2016; 34:223-8. [PMID: 26732307 DOI: 10.1136/acupmed-2015-010951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND The dynorphin (DYN)/κ-opioid receptor (KOR) system plays a key role in the control of labour pain. Our previous clinical study reported that electroacupuncture (EA) provided intrapartum analgesia, but the underlying mechanisms of action have not been fully elucidated. AIMS To observe the effect of EA on labour pain and to explore the underlying mechanisms of action in a rat model. METHODS Copulation-confirmed pregnant rats (n=120) were given castor oil to induce labour. Rats remained untreated (control group, n=20) or received either meperidine (an opioid that is commonly used to treat labour pain, n=20) or EA at SP6, LI4, SP6+LI4 or SP10 (four groups, n=20 each). Labour pain was evaluated by the warm water tail-flick test. Serum DYN values were measured by ELISA. Protein and mRNA expression of prodynorphin (PDYN, the precursor protein of DYN) and KOR were analysed by Western blotting and real-time PCR, respectively. RESULTS EA treatment at all acupuncture point combinations studied significantly relieved labour pain and increased serum DYN concentrations, to a degree similar to that achieved with meperidine. EA notably enhanced protein expression of KOR and PDYN and mRNA expression in the lumbar spinal cord but not in the cerebral cortex. The size of effect varied by EA group in the order: SP6>LI4>SP6+LI4>SP10 for all parameters measured, indicating differential effects relating to acupuncture point selection/combination. CONCLUSIONS The present study indicates that EA relieves labour pain, at least in part, by regulation of the spinal DYN/KOR system in a rat model.
Collapse
Affiliation(s)
- Qiu-Yan Jiang
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Meng-Ying Wang
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Li Li
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hai-Xia Mo
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jin-Ling Song
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qian-Li Tang
- Scientific Experimental Center, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xiao-Tao Feng
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
31
|
Chartoff EH, Mavrikaki M. Sex Differences in Kappa Opioid Receptor Function and Their Potential Impact on Addiction. Front Neurosci 2015; 9:466. [PMID: 26733781 PMCID: PMC4679873 DOI: 10.3389/fnins.2015.00466] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/23/2015] [Indexed: 11/23/2022] Open
Abstract
Behavioral, biological, and social sequelae that lead to drug addiction differ between men and women. Our efforts to understand addiction on a mechanistic level must include studies in both males and females. Stress, anxiety, and depression are tightly linked to addiction, and whether they precede or result from compulsive drug use depends on many factors, including biological sex. The neuropeptide dynorphin (DYN), an endogenous ligand at kappa opioid receptors (KORs), is necessary for stress-induced aversive states and is upregulated in the brain after chronic exposure to drugs of abuse. KOR agonists produce signs of anxiety, fear, and depression in laboratory animals and humans, findings that have led to the hypothesis that drug withdrawal-induced DYN release is instrumental in negative reinforcement processes that drive addiction. However, these studies were almost exclusively conducted in males. Only recently is evidence available that there are sex differences in the effects of KOR activation on affective state. This review focuses on sex differences in DYN and KOR systems and how these might contribute to sex differences in addictive behavior. Much of what is known about how biological sex influences KOR systems is from research on pain systems. The basic molecular and genetic mechanisms that have been discovered to underlie sex differences in KOR function in pain systems may apply to sex differences in KOR function in reward systems. Our goals are to discuss the current state of knowledge on how biological sex contributes to KOR function in the context of pain, mood, and addiction and to explore potential mechanisms for sex differences in KOR function. We will highlight evidence that the function of DYN-KOR systems is influenced in a sex-dependent manner by: polymorphisms in the prodynorphin (pDYN) gene, genetic linkage with the melanocortin-1 receptor (MC1R), heterodimerization of KORs and mu opioid receptors (MORs), and gonadal hormones. Finally, we identify several gaps in our understanding of “if” and “how” DYN and KORs modulate addictive behavior in a sex-dependent manner. Future work may address these gaps by building on the mechanistic studies outlined in this review. Ultimately this will enable the development of novel and effective addiction treatments tailored to either males or females.
Collapse
Affiliation(s)
- Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital Belmont, MA, USA
| | - Maria Mavrikaki
- Department of Psychiatry, Harvard Medical School, McLean Hospital Belmont, MA, USA
| |
Collapse
|
32
|
Treskatsch S, Shaqura M, Dehe L, Feldheiser A, Roepke TK, Shakibaei M, Spies CD, Schäfer M, Mousa SA. Upregulation of the kappa opioidergic system in left ventricular rat myocardium in response to volume overload: Adaptive changes of the cardiac kappa opioid system in heart failure. Pharmacol Res 2015; 102:33-41. [PMID: 26365878 DOI: 10.1016/j.phrs.2015.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/21/2015] [Accepted: 09/06/2015] [Indexed: 12/30/2022]
Abstract
Opioids have long been known for their analgesic effects and are therefore widely used in anesthesia and intensive care medicine. However, in the last decade research has focused on the opioidergic influence on cardiovascular function. This project thus aimed to detect the precise cellular localization of kappa opioid receptors (KOR) in left ventricular cardiomyocytes and to investigate putative changes in KOR and its endogenous ligand precursor peptide prodynorphin (PDYN) in response to heart failure. After IRB approval, heart failure was induced using a modified infrarenal aortocaval fistula (ACF) in male Wistar rats. All rats of the control and ACF group were characterized by their morphometrics and hemodynamics. In addition, the existence and localization as well as adaptive changes of KOR and PDYN were investigated using radioligand binding, double immunofluorescence confocal analysis, RT-PCR and Western blot. Similar to the brain and spinal cord, [(3)H]U-69593 KOR selective binding sites were detected the left ventricle (LV). KOR colocalized with Cav1.2 of the outer plasma membrane and invaginated T-tubules and intracellular with the ryanodine receptor of the sarcoplasmatic reticulum. Interestingly, KOR could also be detected in mitochondria of rat LV cardiomyocytes. As a consequence of heart failure, KOR and PDYN were up-regulated on the mRNA and protein level in the LV. These findings suggest that the cardiac kappa opioidergic system might modulate rat cardiomyocyte function during heart failure.
Collapse
Affiliation(s)
- Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Mohammed Shaqura
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Lukas Dehe
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Aarne Feldheiser
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Torsten K Roepke
- Department of Cardiology, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Mehdi Shakibaei
- Institute of Anatomy, Ludwig-Maximilians-Universität München, Pettenkoferstraße 11, 80336 München, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michael Schäfer
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Shaaban A Mousa
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
33
|
Opioid receptor-dependent sex differences in synaptic plasticity in the hippocampal mossy fiber pathway of the adult rat. J Neurosci 2015; 35:1723-38. [PMID: 25632146 DOI: 10.1523/jneurosci.0820-14.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mossy fiber (MF) pathway is critical to hippocampal function and influenced by gonadal hormones. Physiological data are limited, so we asked whether basal transmission and long-term potentiation (LTP) differed in slices of adult male and female rats. The results showed small sex differences in basal transmission but striking sex differences in opioid receptor sensitivity and LTP. When slices were made from females on proestrous morning, when serum levels of 17β-estradiol peak, the nonspecific opioid receptor antagonist naloxone (1 μm) enhanced MF transmission but there was no effect in males, suggesting preferential opioid receptor-dependent inhibition in females when 17β-estradiol levels are elevated. The μ-opioid receptor (MOR) antagonist Cys2,Tyr3,Orn5,Pen7-amide (CTOP; 300 nm) had a similar effect but the δ-opioid receptor (DOR) antagonist naltrindole (NTI; 1 μm) did not, implicating MORs in female MF transmission. The GABAB receptor antagonist saclofen (200 μm) occluded effects of CTOP but the GABAA receptor antagonist bicuculline (10 μm) did not. For LTP, a low-frequency (LF) protocol was used because higher frequencies elicited hyperexcitability in females. Proestrous females exhibited LF-LTP but males did not, suggesting a lower threshold for synaptic plasticity when 17β-estradiol is elevated. NTI blocked LF-LTP in proestrous females, but CTOP did not. Electron microscopy revealed more DOR-labeled spines of pyramidal cells in proestrous females than males. Therefore, we suggest that increased postsynaptic DORs mediate LF-LTP in proestrous females. The results show strong MOR regulation of MF transmission only in females and identify a novel DOR-dependent form of MF LTP specific to proestrus.
Collapse
|
34
|
Franklin C, Fortepiani L, Nguyen T, Rangel Y, Strong R, Gottlieb HB. Renal responses produced by microinjection of the kappa opioid receptor agonist, U50-488H, into sites within the rat lamina terminalis. Pharmacol Res Perspect 2015; 3:e00117. [PMID: 26038693 PMCID: PMC4448977 DOI: 10.1002/prp2.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 01/01/2023] Open
Abstract
Activation of central kappa opioid receptors (KOR) has been demonstrated to produce marked free water diuresis with a concurrent increase in renal sympathetic nerve activity (RSNA). This study investigated the cardiovascular (CV) and renal effects evoked by central activation of KOR in two lamina terminalis sites, the median preoptic area (MPA) and anterolateral division of the bed nuclei of the stria terminalis (BST). Rats anesthetized with urethane alpha-chloralose were instrumented to record mean arterial pressure, heart rate, RSNA, and urine output (V). Rats were infused with isotonic saline (25 μL/min) and urine samples were collected during two 10-min control periods and six consecutive 10-min experimental periods following microinjection of vehicle, U50-448H (U50, KOR agonist) alone or norbinaltorphimine (nor-BNI, KOR antagonist) plus U50. Microinjection of U50 into the BST increased V (peak at 30 min, 84.8 ± 12.9 μL/min) as compared to its respective control, vehicle, or nor-BNI plus U50. This diuretic effect occurred without any significant changes in CV parameters, RSNA, or urinary sodium excretion. In contrast, U50 injection into the MPA significantly increased RSNA (peak at 20 mins: 129 ± 9.9) without increasing the other parameters. This study demonstrated novel sites through which activation of KOR selectively increases V and RSNA. The ability of U50 to increase V without affecting sodium excretion and RSNA raises the possibility that LT neurons could be an important substrate through which drugs targeting KOR could selectively facilitate water excretion in sodium-retaining diseases such as congestive heart failure.
Collapse
Affiliation(s)
- Cynthia Franklin
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of Incarnate Word San Antonio, Texas, 78209
| | - Lourdes Fortepiani
- Rosenberg School of Optometry, University of Incarnate Word San Antonio, Texas, 78209
| | - Tin Nguyen
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of Incarnate Word San Antonio, Texas, 78209
| | - Yolanda Rangel
- Department of Physical Therapy, University of Texas Health Science Center at San Antonio San Antonio, Texas, 78229
| | - Randy Strong
- Department of Pharmacology and the Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio and the South Texas Veterans Health Care System San Antonio, Texas, 78229
| | - Helmut B Gottlieb
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of Incarnate Word San Antonio, Texas, 78209
| |
Collapse
|
35
|
Polter AM, Kauer JA. Stress and VTA synapses: implications for addiction and depression. Eur J Neurosci 2014; 39:1179-88. [PMID: 24712997 DOI: 10.1111/ejn.12490] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 02/06/2023]
Abstract
While stressful experiences are a part of everyone's life, they can also exact a major toll on health. Stressful life experiences are associated with increased substance abuse, and there exists significant co-morbidity between mental illness and substance use disorders [N.D. Volkow & T.K. Li (2004) Nat. Rev. Neurosci., 5, 963-970; G. Koob & M.J. Kreek (2007) Am. J. Psych., 164, 1149-1159; R. Sinha (2008) Annals N.Y. Acad. Sci., 1141, 105-130]. The risk for development of mood or anxiety disorders after stress is positively associated with the risk for substance use disorders [R. Sinha (2008) Annals N.Y. Acad. Sci., 1141, 105-130], suggesting that there are common substrates for vulnerability to addictive and affective disorders. Understanding the molecular and physiological substrates of stress may lead to improved therapeutic interventions for the treatment of substance use disorders and mental illnesses.
Collapse
Affiliation(s)
- Abigail M Polter
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
| | | |
Collapse
|
36
|
Cahill CM, Taylor AMW, Cook C, Ong E, Morón JA, Evans CJ. Does the kappa opioid receptor system contribute to pain aversion? Front Pharmacol 2014; 5:253. [PMID: 25452729 PMCID: PMC4233910 DOI: 10.3389/fphar.2014.00253] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/30/2014] [Indexed: 01/18/2023] Open
Abstract
The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Pharmacology, University of California Irvine Irvine, CA, USA ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Anna M W Taylor
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| | - Christopher Cook
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Pharmacology, University of California Irvine Irvine, CA, USA
| | - Edmund Ong
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Jose A Morón
- Department of Anesthesiology, Columbia University Medical Center, New York, NY USA
| | - Christopher J Evans
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| |
Collapse
|
37
|
Schmidt AC, Dunaway LE, Roberts JG, McCarty GS, Sombers LA. Multiple Scan Rate Voltammetry for Selective Quantification of Real-Time Enkephalin Dynamics. Anal Chem 2014; 86:7806-12. [DOI: 10.1021/ac501725u] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andreas C. Schmidt
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lars E. Dunaway
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - James G. Roberts
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gregory S. McCarty
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
38
|
Gilpin NW, Roberto M, Koob GF, Schweitzer P. Kappa opioid receptor activation decreases inhibitory transmission and antagonizes alcohol effects in rat central amygdala. Neuropharmacology 2013; 77:294-302. [PMID: 24157490 DOI: 10.1016/j.neuropharm.2013.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 12/30/2022]
Abstract
Activation of the kappa opioid receptor (KOR) system mediates negative emotional states and considerable evidence suggests that KOR and their natural ligand, dynorphin, are involved in ethanol dependence and reward. The central amygdala (CeA) plays a major role in alcohol dependence and reinforcement. Dynorphin peptide and gene expression are activated in the amygdala during acute and chronic administration of alcohol, but the effects of activation or blockade of KOR on inhibitory transmission and ethanol effects have not been studied. We used the slice preparation to investigate the physiological role of KOR and interaction with ethanol on GABA(A) receptor-mediated synaptic transmission. Superfusion of dynorphin or U69593 onto CeA neurons decreased evoked inhibitory postsynaptic potentials (IPSPs) in a concentration-dependent manner, an effect prevented by the KOR antagonist norbinaltorphimine (norBNI). Applied alone, norBNI increased GABAergic transmission, revealing a tonic endogenous activity at KOR. Paired-pulse analysis suggested a presynaptic KOR mechanism. Superfusion of ethanol increased IPSPs and pretreatment with KOR agonists diminished the ethanol effect. Surprisingly, the ethanol-induced augmentation of IPSPs was completely obliterated by KOR blockade. Our results reveal an important role of the dynorphin/KOR system in the regulation of inhibitory transmission and mediation of ethanol effects in the CeA.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University, Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70130, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders & Pearson Center for Alcoholism and Addiction Research, SP30 2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - George F Koob
- Committee on the Neurobiology of Addictive Disorders & Pearson Center for Alcoholism and Addiction Research, SP30 2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Paul Schweitzer
- Committee on the Neurobiology of Addictive Disorders & Pearson Center for Alcoholism and Addiction Research, SP30 2400, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
McNally GP. Extinction of drug seeking: Neural circuits and approaches to augmentation. Neuropharmacology 2013; 76 Pt B:528-32. [PMID: 23774135 DOI: 10.1016/j.neuropharm.2013.06.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/02/2013] [Accepted: 06/03/2013] [Indexed: 12/23/2022]
Abstract
Extinction training can reduce drug seeking behavior. This article reviews the neural circuits that contribute to extinction and approaches to enhancing the efficacy of extinction. Extinction of drug seeking depends on cortical-striatal-hypothalamic and cortical-hypothalamic-thalamic pathways. These pathways interface, in the hypothalamus and thalamus respectively, with the neural circuits controlling reinstatement of drug seeking. The actions of these pathways at lateral hypothalamic orexin neurons, and of perifornical/dorsomedial hypothalamic derived opioid peptides at kappa opioid receptors in the paraventricular thalamus, are important for inhibiting drug seeking. Despite effectively reducing or inhibiting drug seeking in the short term, extinguished drug seeking is prone to relapse. Three different strategies to augment extinction learning or retrieval are reviewed: pharmacological augmentation, retrieval - extinction training, and provision of extinction memory retrieval cues. These strategies have been used in animal models and with human drug users to enhance extinction or cue exposure treatments. They hold promise as novel strategies to promote abstinence from drug seeking. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Gavan P McNally
- The University of New South Wales, School of Psychology, Sydney, NSW 2052, Australia.
| |
Collapse
|
40
|
Koizumi H, Morigaki R, Okita S, Nagahiro S, Kaji R, Nakagawa M, Goto S. Response of striosomal opioid signaling to dopamine depletion in 6-hydroxydopamine-lesioned rat model of Parkinson's disease: a potential compensatory role. Front Cell Neurosci 2013; 7:74. [PMID: 23730270 PMCID: PMC3656348 DOI: 10.3389/fncel.2013.00074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/02/2013] [Indexed: 12/16/2022] Open
Abstract
The opioid peptide receptors consist of three major subclasses, namely, μ, δ, and κ (MOR, DOR, and KOR, respectively). They are involved in the regulation of striatal dopamine functions, and increased opioid transmissions are thought to play a compensatory role in altered functions of the basal ganglia in Parkinson's disease (PD). In this study, we used an immunohistochemistry with tyramide signal amplification (TSA) protocols to determine the distributional patterns of opioid receptors in the striosome-matrix systems of the rat striatum. As a most striking feature of striatal opioid anatomy, MORs are highly enriched in the striosomes and subcallosal streak. We also found that DORs are localized in a mosaic pattern in the dorsal striatum (caudate-putamen), with heightened labeling for DOR in the striosomes relative to the matrix compartment. In the 6-hydroxydopamine-lesioned rat model of PD, lesions of the nigrostriatal pathways caused a significant reduction of striatal labeling for both the MOR and DOR in the striosomes, but not in the matrix compartment. Our results suggest that the activities of the striosome and matrix compartments are differentially regulated by the opioid signals involving the MORs and DORs, and that the striosomes may be more responsive to opioid peptides (e.g., enkephalin) than the matrix compartment. Based on a model in which the striosome compartment regulates the striatal activity, we propose a potent compensatory role of striosomal opioid signaling under the conditions of the striatal dopamine depletion that occurs in PD.
Collapse
Affiliation(s)
- Hidetaka Koizumi
- Department of Motor Neuroscience and Neurotherapeutics, Graduate School of Medical Sciences, Institute of Health Biosciences, University of Tokushima Tokushima, Japan ; Department of Clinical Neuroscience, Graduate School of Medical Sciences, Institute of Health Biosciences, University of Tokushima Tokushima, Japan ; Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Kappa opioid receptors regulate stress-induced cocaine seeking and synaptic plasticity. Neuron 2013; 77:942-54. [PMID: 23473323 DOI: 10.1016/j.neuron.2012.12.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 12/23/2022]
Abstract
Stress facilitates reinstatement of addictive drug seeking in animals and promotes relapse in humans. Acute stress has marked and long-lasting effects on plasticity at both inhibitory and excitatory synapses on dopamine neurons in the ventral tegmental area (VTA), a key region necessary for drug reinforcement. Stress blocks long-term potentiation at GABAergic synapses on dopamine neurons in the VTA (LTPGABA), potentially removing a normal brake on activity. Here we show that blocking kappa opioid receptors (KORs) prior to forced-swim stress rescues LTPGABA. In contrast, blocking KORs does not prevent stress-induced potentiation of excitatory synapses nor morphine-induced block of LTPGABA. Using a kappa receptor antagonist as a selective tool to test the role of LTPGABA in vivo, we find that blocking KORs within the VTA prior to forced-swim stress prevents reinstatement of cocaine seeking. These results suggest that KORs may represent a useful therapeutic target for treatment of stress-triggered relapse in substance abuse.
Collapse
|
42
|
Sahley TL, Hammonds MD, Musiek FE. Endogenous dynorphins, glutamate and N-methyl-d-aspartate (NMDA) receptors may participate in a stress-mediated Type-I auditory neural exacerbation of tinnitus. Brain Res 2013; 1499:80-108. [DOI: 10.1016/j.brainres.2013.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 12/12/2022]
|
43
|
Olianas MC, Dedoni S, Onali P. Potentiation of dopamine D1-like receptor signaling by concomitant activation of δ- and μ-opioid receptors in mouse medial prefrontal cortex. Neurochem Int 2012; 61:1404-16. [PMID: 23073238 DOI: 10.1016/j.neuint.2012.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/17/2012] [Accepted: 10/07/2012] [Indexed: 01/25/2023]
Abstract
Opioid receptors located in the ventral tegmental area are known to regulate dopamine (DA) release from mesocortical afferents to medial prefrontal cortex (mPFC) but little is known on whether in this cortical region activation of opioid receptors affect DA receptor signaling. In the present study we show that in mouse mPFC concomitant activation of either δ- or μ-opioid receptors, but not κ-opioid receptors, potentiated DA D1-like receptor-induced stimulation of adenylyl cyclase activity through a G protein βγ subunit-dependent mechanism. In tissue slices of mPFC, the combined addition of the opioid agonist leu-enkephalin and the DA D1-like receptor agonist SKF 81297 produced more than additive increase in the phosphorylation state of AMPA and NMDA receptor subunits GluR1 and NR1, respectively. Moreover, in primary cultures of mouse frontal cortex neurons, DA D1-like receptor-induced Ser133 phosphorylation of the transcription factor cyclic AMP responsive element binding protein was potentiated by concurrent stimulation of opioid receptors. Double immunofluorescence analysis of cultured cortical cells indicated that a large percentage of DA D1 receptor positive cells expressed either δ- or μ-opioid receptor immunoreactivity. These data indicate that in mouse mPFC activation of μ- and δ-opioid receptors enhances DA D1-like receptor signaling likely through converging regulatory inputs on βγ-stimulated adenylyl cyclase isoforms. This previously unrecognized synergistic interaction may selectively affect DA D1 transmission at specific postsynaptic sites where the receptors are co-localized and may play a role in prefrontal DA D1 regulation of opioid addiction.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Benzazepines/pharmacology
- Carrier Proteins/metabolism
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dopamine/physiology
- Dopamine Agonists/pharmacology
- Enkephalin, Leucine/pharmacology
- Enzyme Activation/drug effects
- Frontal Lobe/cytology
- GTP-Binding Protein beta Subunits/physiology
- GTP-Binding Protein gamma Subunits/physiology
- Male
- Mice
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Opioid Peptides/physiology
- Phosphorylation/drug effects
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Protein Isoforms/metabolism
- Protein Processing, Post-Translational/drug effects
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/physiology
- Receptors, N-Methyl-D-Aspartate
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Maria C Olianas
- Section of Neurosciences, Department of Biomedical Sciences University of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
44
|
Tejeda HA, Shippenberg TS, Henriksson R. The dynorphin/κ-opioid receptor system and its role in psychiatric disorders. Cell Mol Life Sci 2012; 69:857-96. [PMID: 22002579 PMCID: PMC11114766 DOI: 10.1007/s00018-011-0844-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 10/16/2022]
Abstract
The dynorphin/κ-opioid receptor system has been implicated in the pathogenesis and pathophysiology of several psychiatric disorders. In the present review, we present evidence indicating a key role for this system in modulating neurotransmission in brain circuits that subserve mood, motivation, and cognitive function. We overview the pharmacology, signaling, post-translational, post-transcriptional, transcriptional, epigenetic and cis regulation of the dynorphin/κ-opioid receptor system, and critically review functional neuroanatomical, neurochemical, and pharmacological evidence, suggesting that alterations in this system may contribute to affective disorders, drug addiction, and schizophrenia. We also overview the dynorphin/κ-opioid receptor system in the genetics of psychiatric disorders and discuss implications of the reviewed material for therapeutics development.
Collapse
Affiliation(s)
- H. A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201 USA
| | - T. S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
| | - R. Henriksson
- Integrative Neuroscience Section, Integrative Neuroscience Research Branch, NIDA-IRP, NIH, 333 Cassell Dr., Baltimore, MD 21224 USA
- Department of Clinical Neuroscience, Karolinska Institutet, CMM, L8:04, 17176 Stockholm, Sweden
| |
Collapse
|
45
|
Gilpin NW, Roberto M. Neuropeptide modulation of central amygdala neuroplasticity is a key mediator of alcohol dependence. Neurosci Biobehav Rev 2012; 36:873-88. [PMID: 22101113 PMCID: PMC3325612 DOI: 10.1016/j.neubiorev.2011.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/01/2011] [Accepted: 11/05/2011] [Indexed: 01/08/2023]
Abstract
Alcohol use disorders are characterized by compulsive drug-seeking and drug-taking, loss of control in limiting intake, and withdrawal syndrome in the absence of drug. The central amygdala (CeA) and neighboring regions (extended amygdala) mediate alcohol-related behaviors and chronic alcohol-induced plasticity. Acute alcohol suppresses excitatory (glutamatergic) transmission whereas chronic alcohol enhances glutamatergic transmission in CeA. Acute alcohol facilitates inhibitory (GABAergic) transmission in CeA, and chronic alcohol increases GABAergic transmission. Electrophysiology techniques are used to explore the effects of neuropeptides/neuromodulators (CRF, NPY, nociceptin, dynorphin, endocannabinoids, galanin) on inhibitory transmission in CeA. In general, pro-anxiety peptides increase, and anti-anxiety peptides decrease CeA GABAergic transmission. These neuropeptides facilitate or block the action of acute alcohol in CeA, and chronic alcohol produces plasticity in neuropeptide systems, possibly reflecting recruitment of negative reinforcement mechanisms during the transition to alcohol dependence. A disinhibition model of CeA output is discussed in the context of alcohol dependence- and anxiety-related behaviors.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | | |
Collapse
|
46
|
Marchant NJ, Millan EZ, McNally GP. The hypothalamus and the neurobiology of drug seeking. Cell Mol Life Sci 2012; 69:581-97. [PMID: 21947443 PMCID: PMC11114730 DOI: 10.1007/s00018-011-0817-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/01/2011] [Accepted: 09/06/2011] [Indexed: 01/24/2023]
Abstract
The hypothalamus is a neural structure critical for expression of motivated behaviours that ensure survival of the individual and the species. It is a heterogeneous structure, generally recognised to have four distinct regions in the rostrocaudal axis (preoptic, supraoptic, tuberal and mammillary). The tuberal hypothalamus in particular has been implicated in the neural control of appetitive motivation, including feeding and drug seeking. Here we review the role of the tuberal hypothalamus in appetitive motivation. First, we review evidence that different regions of the hypothalamus exert opposing control over feeding. We then review evidence that a similar bi-directional regulation characterises hypothalamic contributions to drug seeking and reward seeking. Lateral regions of the dorsal tuberal hypothalamus are important for promoting reinstatement of drug seeking, whereas medial regions of the dorsal tuberal hypothalamus are important for inhibiting this drug seeking after extinction training. Finally, we review evidence that these different roles for medial versus lateral dorsal tuberal hypothalamus in promoting or preventing reinstatement of drug seeking are mediated, at least in part, by different populations of hypothalamic neurons as well as the neural circuits in which they are located.
Collapse
Affiliation(s)
- Nathan J. Marchant
- School of Psychology, University of New South Wales, Sydney, NSW 2052 Australia
| | - E. Zayra Millan
- School of Psychology, University of New South Wales, Sydney, NSW 2052 Australia
| | - Gavan P. McNally
- School of Psychology, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
47
|
Smith FG, Qi W. Cardiorenal Effects of Kappa Opioid Peptides During Ontogeny. Pharmaceuticals (Basel) 2011. [PMCID: PMC4052547 DOI: 10.3390/ph4010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This review focuses on the physiological roles for kappa opioid receptors (KORs) in adult animals and humans, as well as in the developing newborn animal. Our recent findings have provided new information that under physiological conditions in conscious newborn animals, activation of KORs with the selective agonist, U-50488H, results in an aquaresis, as previously observed in adult animals and humans. In addition, we have shown in conscious lambs that KORs modulate systemic and renal haemodynamics as well as the arterial baroreflex control of heart rate, providing a previously unidentified role for KORs.
Collapse
|
48
|
Bereiter DA, Okamoto K. Neurobiology of estrogen status in deep craniofacial pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:251-84. [PMID: 21708314 DOI: 10.1016/b978-0-12-385198-7.00010-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pain in the temporomandibular joint (TMJ) region often occurs with no overt signs of injury or inflammation. Although the etiology of TMJ-related pain may involve multiple factors, one likely risk factor is female gender or estrogen status. Evidence is reviewed from human and animal studies, supporting the proposition that estrogen status acts peripherally or centrally to influence TMJ nociceptive processing. A new model termed the "TMJ pain matrix" is proposed as critical for the initial integration of TMJ-related sensory signals in the lower brainstem that is both modified by estrogen status, and closely linked to endogenous pain and autonomic control pathways.
Collapse
Affiliation(s)
- David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| | | |
Collapse
|
49
|
Mousa SA, Shaqura M, Schäper J, Huang W, Treskatsch S, Habazettl H, Abdul-Khaliq H, Schäfer M. Identification of mu- and kappa-opioid receptors as potential targets to regulate parasympathetic, sympathetic, and sensory neurons within rat intracardiac ganglia. J Comp Neurol 2010; 518:3836-47. [PMID: 20653037 DOI: 10.1002/cne.22427] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent interest has been focused on the opioid regulation of heart performance; however, specific allocation of opioid receptors to the parasympathetic, sympathetic, and sensory innervations of the heart is scarce. Therefore, the present study aimed to characterize such specific target sites for opioids in intracardiac ganglia, which act as a complex network for the integration of the heart's neuronal in- and output. Tissue samples from rat heart atria were subjected to RT-PCR, Western blot, radioligand-binding, and double immunofluorescence confocal analysis of mu (M)- and kappa (K)-opioid receptors (ORs) with the neuronal markers vesicular acetylcholine transporter (VAChT), tyrosine hydroxylase (TH), calcitonin gene-related peptide (CGRP), and substance P (SP). Our results demonstrated MOR- and KOR-specific mRNA, receptor protein, and selective membrane ligand binding. By using immunofluorescence confocal microscopy, MOR and KOR immunoreactivity were colocalized with VAChT in large-diameter parasympathetic principal neurons, with TH-immunoreactive small intensely fluorescent (SIF) cells, and on nearby TH-IR varicose terminals. In addition, MOR and KOR immunoreactivity were identified on CGRP- and SP-IR sensory neurons throughout intracardiac ganglia and atrial myocardium. Our findings show that MOR and KOR are expressed as mRNA and translated into specific receptor proteins on cardiac parasympathetic, sympathetic, and sensory neurons as potential binding sites for opioids. Thus, they may well play a role within the complex network for the integration of the heart's neuronal in- and output.
Collapse
Affiliation(s)
- Shaaban A Mousa
- Department of Anesthesiology and Intensive Care Medicine, Charité University Berlin, Campus Virchow Klinikum and Campus Charite Mitte, 13353 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Tejeda HA, Chefer VI, Zapata A, Shippenberg TS. The effects of kappa-opioid receptor ligands on prepulse inhibition and CRF-induced prepulse inhibition deficits in the rat. Psychopharmacology (Berl) 2010; 210:231-40. [PMID: 20232058 PMCID: PMC2946822 DOI: 10.1007/s00213-010-1799-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 02/10/2010] [Indexed: 11/30/2022]
Abstract
RATIONALE Kappa-opioid receptor (KOR) agonists produce dysphoria and psychotomimesis in humans. KORs are enriched in the prefrontal cortex and other brain regions that regulate mood and cognitive function. Dysregulation of the dynorphin/KOR system has been implicated in the pathogenesis of schizophrenia, depression, and bipolar disorder. Prepulse inhibition of the acoustic startle reflex (PPI), a sensorimotor gating process, is disrupted in many psychiatric disorders. OBJECTIVES The present study determined whether KOR ligands alter PPI in rats. RESULTS Utilizing a range of doses of the synthetic KOR agonists (+/-) U50,488, (-) U50,488, and U69,593 and the naturally occurring KOR agonist, Salvinorin A, we demonstrate that KOR activation does not alter PPI or startle reactivity in rats. Similarly, selective KOR blockade using the long-acting antagonist nor-binaltorphimine (nor-BNI) was without effect. In contrast to KOR ligands, MK-801 and quinpirole produced deficits in PPI. Stress and corticotropin-releasing factor (CRF) decrease PPI levels. The dynorphin/KOR system has been suggested to be a key mediator of various behavioral effects produced by stress and CRF. We therefore examined the contribution of KORs to CRF-induced alterations in PPI. Intracerebroventricular infusion of CRF decreased PPI. Administration of nor-BNI failed to affect the CRF-evoked disruption in PPI. CONCLUSIONS Together, these results provide no evidence of a link between the dynorphin/KOR system and deficits in sensory gating processes. Additional studies, however, examining whether dysregulation of this opioid system contributes to cognitive deficits and other behavioral abnormalities associated with psychiatric disorders are warranted.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Benzeneacetamides/pharmacology
- Corticotropin-Releasing Hormone/pharmacology
- Diterpenes, Clerodane/pharmacology
- Dose-Response Relationship, Drug
- Ligands
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Neural Inhibition
- Pyrrolidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Reflex, Startle/drug effects
Collapse
Affiliation(s)
- Hugo A. Tejeda
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
- Program in Neuroscience, University of Maryland, Baltimore, 20 Penn St., Baltimore, MD 21201, USA
| | - Vladimir I. Chefer
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
| | - Agustin Zapata
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
| | - Toni S. Shippenberg
- Integrative Neuroscience Section, Integrative Neuroscience Branch, National Institute on Drug Abuse, National Institutes of Health, NIDA/IRP 333 Cassell Dr., Baltimore, MD 21224, USA
| |
Collapse
|