1
|
Bader KB, Padilla F, Haworth KJ, Ellens N, Dalecki D, Miller DL, Wear KA. Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024. [PMID: 39526313 DOI: 10.1002/jum.16611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
A 2012 review of therapeutic ultrasound was published to educate researchers and physicians on potential applications and concerns for unintended bioeffects (doi: 10.7863/jum.2012.31.4.623). This review serves as an update to the parent article, highlighting advances in therapeutic ultrasound over the past 12 years. In addition to general mechanisms for bioeffects produced by therapeutic ultrasound, current applications, and the pre-clinical and clinical stages are outlined. An overview is provided for image guidance methods to monitor and assess treatment progress. Finally, other topics relevant for the translation of therapeutic ultrasound are discussed, including computational modeling, tissue-mimicking phantoms, and quality assurance protocols.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Frederic Padilla
- Gene Therapy Program, Focused Ultrasound Foundation, Charlottesville, Virginia, USA
- Department of Radiology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Kevin J Haworth
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, United States
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Douglas L Miller
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Keith A Wear
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Zhu W, Pan S, Zhang J, Xu J, Zhang R, Zhang Y, Fu Z, Wang Y, Hu C, Xu Z. The role of hyperthermia in the treatment of tumor. Crit Rev Oncol Hematol 2024; 204:104541. [PMID: 39461607 DOI: 10.1016/j.critrevonc.2024.104541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Despite recent advancements in the diagnosis and treatment options for cancer, it remains one of the most serious threats to health. Hyperthermia (HT) has emerged as a highly promising area of research due to its safety and cost-effectiveness. Currently, based on temperature, HT can be categorized into thermal ablation and mild hyperthermia. Thermal ablation involves raising the temperature within the tumor to over 60°C, resulting in direct necrosis in the central region of the tumor. In contrast, mild hyperthermia operates at relatively lower temperatures, typically in the range of 41-45°C, to induce damage to tumor cells. Furthermore, HT also serves as an immune adjuvant strategy in radiotherapy, chemotherapy, and immunotherapy, enhancing the effectiveness of radiotherapy, increasing the uptake of chemotherapy drugs, and reprogramming the tumor microenvironment through the induction of immunogenic cell death, thereby promoting the recruitment of endogenous immune cells. This article reviews the current status and development of hyperthermia, outlines potential mechanisms by which hyperthermia inhibits tumors, describes clinical trial attempts combining hyperthermia with radiotherapy, chemotherapy, and immunotherapy, and discusses the relationship between nanoparticles and hyperthermia.
Collapse
Affiliation(s)
- Weiwei Zhu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Siwei Pan
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jiaqing Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jingli Xu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ruolan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yanqiang Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zhenjie Fu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Yuqi Wang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Can Hu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| | - Zhiyuan Xu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| |
Collapse
|
3
|
Dharnipragada R, Shah RA, Reynolds M, Dusenbery K, Chen CC. Laser interstitial thermal therapy followed by consolidation stereotactic radiosurgery (LITT-cSRS) in patients with newly diagnosed brain metastasis. J Neurooncol 2024; 169:155-163. [PMID: 38865010 DOI: 10.1007/s11060-024-04712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024]
Abstract
INTRODUCTION The efficacy and safety of laser interstitial thermal therapy followed by consolidation radiosurgery (LITT-cSRS) was previously studied in brain metastasis that recurs locally after initial radiosurgery (BMRS). Here, we characterize the clinical outcome of LITT-cSRS in patients with newly diagnosed brain metastasis. METHODS Between 2017 and 2023, ten consecutive cancer patients with newly diagnosed brain mass of unclear etiology who underwent stereotactic needle biopsy (SNB) and LITT in the same setting followed by consolidation SRS (cSRS) with > 6 months follow-up were identified retrospectively. Clinical and imaging outcomes were collected. RESULTS The histology of the BM were: breast cancer (n = 3), melanoma (n = 3), non-cell cell lung cancer (n = 3), colon (n = 1). There were no wound or procedural complications. All patients were discharged home, with a median one-day hospital stay (range: 1-2 days). All patients were off corticosteroid therapy by the one-month follow-up. cSRS were carried out 12-27 days (median of 19 days) after SNB + LITT. There were no subsequent emergency room presentation, 30-day or 90-day re-admission. The Karnofsky Performance Score (KPS) remains stable or improved at the 3 months-follow-up. With a median follow-up of 416 days (13.8 mo; range: 199-1,096 days), there was one local recurrence at 384 days (12.8 mo) post-LITT-cSRS. With exception of this patient with local recurrence, all patients showed decreased FLAIR volume surrounding the LITT-cSRS treated BMRS by the six-month follow-up. CONCLUSIONS To our awareness, this case series represent the first to describe LITT-cSRS in the setting of newly diagnosed BM. The results presented here provide pilot data to support the safety and efficacy of LITT-cSRS and lay the foundation for future studies.
Collapse
Affiliation(s)
- Rajiv Dharnipragada
- Medical School, University of Minnesota, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - Rena A Shah
- Oncology & Hematology, Health Partners Park Nicollet, Minneapolis, MN, USA
| | - Margaret Reynolds
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Kathryn Dusenbery
- Department of Radiation Oncology, University of Minnesota Twin Cities, Minneapolis, MN, 55455, USA
| | - Clark C Chen
- Department of Neurosurgery, Rhode Island Hospital, Warren Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI, 02903, USA.
| |
Collapse
|
4
|
Wang X, Allen C. Synergistic effects of thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy in breast cancer management: an orthotopic mouse model study. Drug Deliv Transl Res 2024:10.1007/s13346-024-01654-2. [PMID: 38977541 DOI: 10.1007/s13346-024-01654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/10/2024]
Abstract
Liposome formulations of the cancer drug doxorubicin have been developed to address the severe side effects that result from administration of this drug in a conventional formulation. Among them, thermosensitive liposomal doxorubicin presents enhanced tumor targeting and efficient drug release when combined with mild hyperthermia localized to the tumor site. Exploiting the radiosensitizing benefits of localized thermal therapy, the integration of radiation therapy with the thermally activated liposomal system is posited to amplify the anti-tumor efficacy. This study explored a synergistic therapeutic strategy that combines thermosensitive liposomal doxorubicin, mild hyperthermia, and radiotherapy, using an orthotopic murine model of breast cancer. The protocol of sequential multi-modal treatment, incorporating low-dose chemotherapy and radiotherapy, substantially postponed the progression of primary tumor growth in comparison to the application of monotherapy at elevated dosages. Improvements in unheated distant lesions were also observed. Furthermore, the toxicity associated with the combination treatment was comparable to that of either thermosensitive liposome treatment or radiation alone at low doses. These outcomes underscore the potential of multi-modal therapeutic strategies to refine treatment efficacy while concurrently diminishing adverse effects in the management of breast cancer, providing valuable insight for the future refinement of thermosensitive liposomal doxorubicin applications.
Collapse
Affiliation(s)
- Xuehan Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Overgaard J, Ccm Hulshof M, Dahl O, Arcangeli G. ESHO 1-85. Hyperthermia as an adjuvant to radiation therapy in the treatment of locally advanced breast carcinoma. A randomized multicenter study by the European Society for Hyperthermic Oncology. Radiother Oncol 2024; 196:110313. [PMID: 38670266 DOI: 10.1016/j.radonc.2024.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The ESHO protocol 1-85 is a multicenter randomized trial initiated by the European Society for Hyperthermic Oncology with the aim to investigate the value of hyperthermia (HT) as an adjuvant to radiotherapy (RT) in treatment of locally advanced breast carcinoma. The trial is one of the largest studies of hyperthermia in radiotherapy but has not been previously published. PATIENTS AND METHODS Between February 1987 and November 1993, 155 tumors in 151 patients were included. Tumors were stratified according to institution and size (T2-3/T4) and randomly assigned to receive radiotherapy alone (2 Gy/fx, 5 fx/wk) to a total dose of 65-70 Gy, incl. boost, or the same radiotherapy followed once weekly by hyperthermia (aimed for 43 °C for 60 min). Radiation was given with high voltage photons or electrons. The primary endpoint was persistent complete response (local control) in the treated area. RESULTS A total of 146 tumors in 142 patients were evaluable, with a median observation time of 19 (range 1-134) months. Seventy tumors were randomized to RT alone and 76 to RT + HT. Size was T4 in 92, and T2-3 in 54 tumors, respectively. The compliance to RT was good with all but 4 patients fulfilling the planned RT treatment. The tolerance to HT was fair, but associated with moderate to severe pain and discomfort in 15 % of the treatments. In 84 % of the heated patients a least one heat treatment achieved the target temperature, but the temperature variation was large. Addition of heat did not significantly increase the acute nor late radiation reactions. Overall, the 5-year actuarial local failure rate was 57 %. Univariate analysis showed a significant influence of hyperthermia (RT alone 68 % versus RT + HT 50 %, p = 0.04, and T-size (T4 75 % versus T2-3 36 %, p < 0.01). A Cox multivariate analysis showed the same factors to be the only significant prognostic parameters: hyperthermia (HR: 0.61 [0.38-0.98], and small tumor strata (HR: 0.46 [0.26-0.92]. Consequentially, more patients given RT + HT (36 %) survived without disease (DFS), than after RT alone (19 %), p = 0.021) CONCLUSION: A randomized multicenter trial investigating the addition of a weekly hyperthermia treatment to radiotherapy of patients with locally advanced breast cancer significantly enhanced the 5-year tumor control and yielded more patients surviving free from cancer. The results substantiate the potential clinical benefit of hyperthermic oncology.
Collapse
Affiliation(s)
- Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark.
| | - Maarten Ccm Hulshof
- Amsterdam University Medical Centers, Department of Radiotherapy, University of Amsterdam, the Netherlands
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University, Hospital, Bergen, Norway.
| | | |
Collapse
|
6
|
Wan S, Rodrigues DB, Kwiatkowski J, Khanna O, Judy KD, Goldstein RC, Overbeek Bloem M, Yu Y, Rooks SE, Shi W, Hurwitz MD, Stauffer PR. Evaluation of a Balloon Implant for Simultaneous Magnetic Nanoparticle Hyperthermia and High-Dose-Rate Brachytherapy of Brain Tumor Resection Cavities. Cancers (Basel) 2023; 15:5683. [PMID: 38067387 PMCID: PMC10705301 DOI: 10.3390/cancers15235683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/12/2024] Open
Abstract
Previous work has reported the design of a novel thermobrachytherapy (TBT) balloon implant to deliver magnetic nanoparticle (MNP) hyperthermia and high-dose-rate (HDR) brachytherapy simultaneously after brain tumor resection, thereby maximizing their synergistic effect. This paper presents an evaluation of the robustness of the balloon device, compatibility of its heat and radiation delivery components, as well as thermal and radiation dosimetry of the TBT balloon. TBT balloon devices with 1 and 3 cm diameter were evaluated when placed in an external magnetic field with a maximal strength of 8.1 kA/m at 133 kHz. The MNP solution (nanofluid) in the balloon absorbs energy, thereby generating heat, while an HDR source travels to the center of the balloon via a catheter to deliver the radiation dose. A 3D-printed human skull model was filled with brain-tissue-equivalent gel for in-phantom heating and radiation measurements around four 3 cm balloons. For the in vivo experiments, a 1 cm diameter balloon was surgically implanted in the brains of three living pigs (40-50 kg). The durability and robustness of TBT balloon implants, as well as the compatibility of their heat and radiation delivery components, were demonstrated in laboratory studies. The presence of the nanofluid, magnetic field, and heating up to 77 °C did not affect the radiation dose significantly. Thermal mapping and 2D infrared images demonstrated spherically symmetric heating in phantom as well as in brain tissue. In vivo pig experiments showed the ability to heat well-perfused brain tissue to hyperthermic levels (≥40 °C) at a 5 mm distance from the 60 °C balloon surface.
Collapse
Affiliation(s)
- Shuying Wan
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (Y.Y.); (S.E.R.); (W.S.); (P.R.S.)
| | - Dario B. Rodrigues
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | | | - Omaditya Khanna
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (O.K.); (K.D.J.)
| | - Kevin D. Judy
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (O.K.); (K.D.J.)
| | | | | | - Yan Yu
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (Y.Y.); (S.E.R.); (W.S.); (P.R.S.)
| | - Sophia E. Rooks
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (Y.Y.); (S.E.R.); (W.S.); (P.R.S.)
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (Y.Y.); (S.E.R.); (W.S.); (P.R.S.)
| | - Mark D. Hurwitz
- Radiation Medicine, Westchester Medical Center University Hospital, Valhalla, NY 10595, USA;
| | - Paul R. Stauffer
- Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA; (Y.Y.); (S.E.R.); (W.S.); (P.R.S.)
| |
Collapse
|
7
|
Shirvalilou S, Tavangari Z, Parsaei MH, Sargazi S, Sheervalilou R, Shirvaliloo M, Ghaznavi H, Khoei S. The future opportunities and remaining challenges in the application of nanoparticle-mediated hyperthermia combined with chemo-radiotherapy in cancer. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1922. [PMID: 37778031 DOI: 10.1002/wnan.1922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 10/03/2023]
Abstract
A pivotal cause of death in the modern world, cancer is an insidious pathology that should be diagnosed at an early stage for successful treatment. Development of therapeutic interventions with minimal invasiveness and high efficacy that can discriminate between tumor and normal cells is of particular interest to the clinical science, as they can enhance patient survival. Nanoparticles are an invaluable asset that can be adopted for development of such diagnostic and therapeutic modalities, since they come in very small sizes with modifiable surface, are highly safe and stable, and can be synthesized in a controlled fashion. To date, different nanoparticles have been incorporated into numerous modalities such as tumor-targeted therapy, thermal therapy, chemotherapy, and radiotherapy. This review article seeks to deliver a brief account of recent advances in research and application of nanoparticles in hyperthermia-based cancer therapies. The most recent investigations are summarized to highlight the latest advances in the development of combined thermo-chemo-radiotherapy, along with the challenges associated with the application of nanoparticles in cancer therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Sakine Shirvalilou
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahed Tavangari
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Parsaei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Androulakis I, Ferrero R, van Oossanen R, Manzin A, Denkova AG, Djanashvili K, Nadar R, van Rhoon GC. Design and Validation of Experimental Setup for Cell Spheroid Radiofrequency-Induced Heating. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094514. [PMID: 37177718 PMCID: PMC10181764 DOI: 10.3390/s23094514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
While hyperthermia has been shown to induce a variety of cytotoxic and sensitizing effects on cancer tissues, the thermal dose-effect relationship is still not well quantified, and it is still unclear how it can be optimally combined with other treatment modalities. Additionally, it is speculated that different methods of applying hyperthermia, such as water bath heating or electromagnetic energy, may have an effect on the resulting biological mechanisms involved in cell death or in sensitizing tumor cells to other oncological treatments. In order to further quantify and characterize hyperthermia treatments on a cellular level, in vitro experiments shifted towards the use of 3D cell spheroids. These are in fact considered a more representative model of the cell environment when compared to 2D cell cultures. In order to perform radiofrequency (RF)-induced heating in vitro, we have recently developed a dedicated electromagnetic field applicator. In this study, using this applicator, we designed and validated an experimental setup which can heat 3D cell spheroids in a conical polypropylene vial, thus providing a reliable instrument for investigating hyperthermia effects at the cellular scale.
Collapse
Affiliation(s)
- Ioannis Androulakis
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Riccardo Ferrero
- Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Turin, Italy
| | - Rogier van Oossanen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiation Science and Technology, TU Delft, 2629 JB Delft, The Netherlands
| | - Alessandra Manzin
- Istituto Nazionale di Ricerca Metrologica (INRIM), 10135 Turin, Italy
| | - Antonia G Denkova
- Department of Radiation Science and Technology, TU Delft, 2629 JB Delft, The Netherlands
| | | | - Robin Nadar
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiation Science and Technology, TU Delft, 2629 JB Delft, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Radiation Science and Technology, TU Delft, 2629 JB Delft, The Netherlands
| |
Collapse
|
9
|
Mohammadi A, Hashemi B, Mehdi Mahdavi SR, Solimani M, Banaei A. Radiosensitization effect of radiofrequency hyperthermia in the presence of PEGylated-gold nanoparticles on the MCF-7 breast cancer cells under 6 MeV electron irradiation. J Cancer Res Ther 2023; 19:S67-S73. [PMID: 37147985 DOI: 10.4103/jcrt.jcrt_1087_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Purpose The purpose of the study was to investigate the radiosensitization effect of radiofrequency (RF) hyperthermia in combination with PEGylated gold nanoparticles (PEG-GNPs) on MCF-7 breast cancer cells under electron beam radiotherapy (EBRT) based on the clonogenic assay. Materials and Methods The cell death of MCF-7 breast cancer cells treated with 13.56 MHz capacitive RF hyperthermia (power: 150W) for 2, 5, 10, and 15 min combined with 6 MeV EBRT, with a dose of 2 Gy, was evaluated in the presence of 20 nm PEG-GNPs with a low nontoxic concentration (20 mg/l). All the treatment groups were incubated for 14 days. Thereafter, survival fractions and viability of the cells were calculated and analyzed against the control group. Results The presence of PEG-GNPs inside the MCF-7 cancer cells during electron irradiation decreased cell survival significantly (16.7%) compared to irradiated cells without GNPs. Applying hyperthermia before electron irradiation with a capacitive RF system decreased cell survival by about 53.7%, while hyperthermia without irradiation did not show any significant effect on cell survival. Combining the hyperthermia with the presence of PEG-GNPs in the cells decreased the cell survival by about 67% at the electron irradiation, showing their additive radiosensitization effect. Conclusion Low nontoxic concentration of 20 nm PEG-GNPs increases the radiosensitization effect of combining 6 MeV EBRT and RF hyperthermia on MCF-7 cancer cells. Combining hyperthermia with PEG-GNPs in electron radiotherapy could be an appropriate method for enhancing radiotherapy effectiveness on cancerous cells which can be studied on different cells and electron energies in future research.
Collapse
Affiliation(s)
- Akram Mohammadi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bijan Hashemi
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seied Rabi Mehdi Mahdavi
- Department of Medical Physics, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Solimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amin Banaei
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
De-Colle C, Beller A, Gani C, Weidner N, Heinrich V, Lamprecht U, Gaupp S, Voigt O, Dohm O, Zips D, Müller AC. Radiotherapy and hyperthermia for breast cancer patients at high risk of recurrence. Int J Hyperthermia 2022; 39:1010-1016. [PMID: 35902116 DOI: 10.1080/02656736.2022.2103593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
PURPOSE To evaluate the long-term efficacy of combined radiotherapy (RT) and hyperthermia (HT) in a large mono-institutional cohort of breast cancer (BC) patients affected by recurrent, newly diagnosed non-resectable or high risk resected tumor. MATERIALS AND METHODS Records of BC patients treated with RT + HT between 1995 and 2018 were retrospectively analyzed. RT doses of 50-70 Gy concurrent to a twice per week superficial HT were applied. For HT, a temperature between 41 and 42 °C was applied for approximately 1 h. Primary endpoint was local control (LC), secondary endpoints comprised toxicity, overall survival (OS), and progression-free survival (PFS). RESULTS A total of 191 patients and 196 RT + HT treatments were analyzed. In 154 cases (78.6%) RT + HT was performed for patients with recurrent BC. Among these, 93 (47.4% of the entire cohort) had received RT prior to RT + HT. Median follow up was 12.7 years. LC at 2, 5, and 10 years was 76.4, 72.8, and 69.5%, respectively. OS at 2, 5, and 10 years was 73.5, 52.3, and 35.5%, respectively. PFS at 2, 5, and 10 years was 55.6, 41, and 33.6%, respectively. Predictive factors for LC were tumor stage, distant metastases, estrogen/progesterone receptor expression, resection status and number of HT fractions. At multivariate analysis tumor stage and receptor expression were significant. No acute or late toxicities higher than grade 3 were observed. CONCLUSION Combined RT + HT offers long-term high LC rates with acceptable toxicity for patients with recurrent, newly diagnosed non-resectable or resected BC at high risk of relapse.
Collapse
Affiliation(s)
- Chiara De-Colle
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Anna Beller
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Nicola Weidner
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Vanessa Heinrich
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ulf Lamprecht
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephan Gaupp
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Otilia Voigt
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Oliver Dohm
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site Tübingen, Tübingen, Germany
| | - Arndt-Christian Müller
- Department of Radiation Oncology, University Hospital and Medical Faculty Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Clinic of Radiation Oncology, Ludwisburg Hospital, Ludwisburg, Germany
| |
Collapse
|
11
|
Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers (Basel) 2022; 14:cancers14040901. [PMID: 35205649 PMCID: PMC8870118 DOI: 10.3390/cancers14040901] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2022] [Accepted: 01/30/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This review shows the advantages of heterogeneous heating of selected malignant cells in harmonic synergy with radiotherapy. The main clinical achievement of this complementary therapy is its extreme safety and minimal adverse effects. Combining the two methods opens a bright perspective, transforming the local radiotherapy to the antitumoral impact on the whole body, destroying the distant metastases by “teaching” the immune system about the overall danger of malignancy. Abstract (1) Background: Hyperthermia in oncology conventionally seeks the homogeneous heating of the tumor mass. The expected isothermal condition is the basis of the dose calculation in clinical practice. My objective is to study and apply a heterogenic temperature pattern during the heating process and show how it supports radiotherapy. (2) Methods: The targeted tissue’s natural electric and thermal heterogeneity is used for the selective heating of the cancer cells. The amplitude-modulated radiofrequency current focuses the energy absorption on the membrane rafts of the malignant cells. The energy partly “nonthermally” excites and partly heats the absorbing protein complexes. (3) Results: The excitation of the transmembrane proteins induces an extrinsic caspase-dependent apoptotic pathway, while the heat stress promotes the intrinsic caspase-dependent and independent apoptotic signals generated by mitochondria. The molecular changes synergize the method with radiotherapy and promote the abscopal effect. The mild average temperature (39–41 °C) intensifies the blood flow for promoting oxygenation in combination with radiotherapy. The preclinical experiences verify, and the clinical studies validate the method. (4) Conclusions: The heterogenic, molecular targeting has similarities with DNA strand-breaking in radiotherapy. The controlled energy absorption allows using a similar energy dose to radiotherapy (J/kg). The two therapies are synergistically combined.
Collapse
|
12
|
Stereotactic Laser Ablation (SLA) followed by consolidation stereotactic radiosurgery (cSRS) as treatment for brain metastasis that recurred locally after initial radiosurgery (BMRS): a multi-institutional experience. J Neurooncol 2022; 156:295-306. [PMID: 35001245 DOI: 10.1007/s11060-021-03893-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The optimal treatment paradigm for brain metastasis that recurs locally after initial radiosurgery remains an area of active investigation. Here, we report outcomes for patients with BMRS treated with stereotactic laser ablation (SLA, also known as laser interstitial thermal therapy, LITT) followed by consolidation radiosurgery. METHODS Clinical outcomes of 20 patients with 21 histologically confirmed BMRS treated with SLA followed by consolidation SRS and > 6 months follow-up were collected retrospectively across three participating institutions. RESULTS Consolidation SRS (5 Gy × 5 or 6 Gy × 5) was carried out 16-73 days (median of 26 days) post-SLA in patients with BMRS. There were no new neurological deficits after SLA/cSRS. While 3/21 (14.3%) patients suffered temporary Karnofsky Performance Score (KPS) decline after SLA, no KPS decline was observed after cSRS. There were no 30-day mortalities or wound complications. Two patients required re-admission within 30 days of cSRS (severe headache that resolved with steroid therapy (n = 1) and new onset seizure (n = 1)). With a median follow-up of 228 days (range: 178-1367 days), the local control rate at 6 and 12 months (LC6, LC12) was 100%. All showed diminished FLAIR volume surrounding the SLA/cSRS treated BMRS at the six-month follow-up; none of the patients required steroid for symptoms attributable to these BMRS. These results compare favorably to the available literature for repeat SRS or SLA-only treatment of BMRS. CONCLUSIONS This multi-institutional experience supports further investigations of SLA/cSRS as a treatment strategy for BMRS.
Collapse
|
13
|
Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, Chantrell R, Pellegrino T. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer. Chem Soc Rev 2021; 50:11614-11667. [PMID: 34661212 DOI: 10.1039/d1cs00427a] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic hyperthermia (MHT) is a therapeutic modality for the treatment of solid tumors that has now accumulated more than 30 years of experience. In the ongoing MHT clinical trials for the treatment of brain and prostate tumors, iron oxide nanoparticles are employed as intra-tumoral MHT agents under a patient-safe 100 kHz alternating magnetic field (AMF) applicator. Although iron oxide nanoparticles are currently approved by FDA for imaging purposes and for the treatment of anemia, magnetic nanoparticles (MNPs) designed for the efficient treatment of MHT must respond to specific physical-chemical properties in terms of magneto-energy conversion, heat dose production, surface chemistry and aggregation state. Accordingly, in the past few decades, these requirements have boosted the development of a new generation of MNPs specifically aimed for MHT. In this review, we present an overview on MNPs and their assemblies produced via different synthetic routes, focusing on which MNP features have allowed unprecedented heating efficiency levels to be achieved in MHT and highlighting nanoplatforms that prevent magnetic heat loss in the intracellular environment. Moreover, we review the advances on MNP-based nanoplatforms that embrace the concept of multimodal therapy, which aims to combine MHT with chemotherapy, radiotherapy, immunotherapy, photodynamic or phototherapy. Next, for a better control of the therapeutic temperature at the tumor, we focus on the studies that have optimized MNPs to maintain gold-standard MHT performance and are also tackling MNP imaging with the aim to quantitatively assess the amount of nanoparticles accumulated at the tumor site and regulate the MHT field conditions. To conclude, future perspectives with guidance on how to advance MHT therapy will be provided.
Collapse
Affiliation(s)
- Helena Gavilán
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | | | | | - Nisarg Soni
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marco Cassani
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Binh T Mai
- Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Roy Chantrell
- Department of Physics, University of York, York YO10 5DD, UK
| | | |
Collapse
|
14
|
Tretbar SH, Fournelle M, Speicher D, Becker FJ, Anastasiadis P, Landgraf L, Roy U, Melzer A. A novel matrix-array-based MR-conditional ultrasound system for local hyperthermia of small animals. IEEE Trans Biomed Eng 2021; 69:758-770. [PMID: 34398748 DOI: 10.1109/tbme.2021.3104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The goal of this work was to develop a novel modular focused ultrasound hyperthermia (FUS-HT) system for preclinical applications with the following characteristics: MR-compatible, compact probe for integration into a PET/MR small animal scanner, 3D-beam steering capabilities, high resolution focusing for generation of spatially confined FUS-HT effects. METHODS For 3D-beam steering capabilities, a matrix array approach with 11 11 elements was chosen. For reaching the required level of integration, the array was mounted with a conductive backing directly on the interconnection PCB. The array is driven by a modified version of our 128 channel ultrasound research platform DiPhAS. The system was characterized using sound field measurements and validated using tissue-mimicking phantoms. Preliminary MR-compatibility tests were performed using a 7T Bruker MRI scanner. RESULTS Four 11 11 arrays between 0.5 and 2 MHz were developed and characterized with respect to sound field properties and HT generation. Focus sizes between 1 and 4 mm were reached depending on depth and frequency. We showed heating by 4C within 60 s in phantoms. The integration concept allows a probe thickness of less than 12 mm. CONCLUSION We demonstrated FUS-HT capabilities of our modular system based on matrix arrays and a 128 channel electronics system within a 3D-steering range of up to 30. The suitability for integration into a small animal MR could be demonstrated in basic MR-compatibility tests. SIGNIFICANCE The developed system presents a new generation of FUS-HT for preclinical and translational work providing safe, reversible, localized, and controlled HT.
Collapse
|
15
|
Iron Hydroxide/Oxide-Reduced Graphene Oxide Nanocomposite for Dual-Modality Photodynamic and Photothermal Therapy In Vitro and In Vivo. NANOMATERIALS 2021; 11:nano11081947. [PMID: 34443776 PMCID: PMC8402170 DOI: 10.3390/nano11081947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/14/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022]
Abstract
Minimal invasive phototherapy utilising near-infrared (NIR) laser to generate local reactive oxygen species (ROS) and heat has few associated side effects and is a precise treatment in cancer therapy. However, high-efficiency and safe phototherapeutic tumour agents still need developing. The application of iron hydroxide/oxide immobilised on reduced graphene oxide (FeOxH–rGO) nanocomposites as a therapeutic agent in integration photodynamic cancer therapy (PDT) and photothermal cancer therapy (PTT) was discussed. Under 808 nm NIR irradiation, FeOxH–rGO offers a high ROS generation and light-to-heat conversion efficiency because of its strong NIR absorption. These phototherapeutic effects lead to irreversible damage in FeOxH–rGO-treated T47D cells. Using a tumour-bearing mouse model, NIR ablated the breast tumour effectively in the presence of FeOxH–rGO. The tumour treatment response was evaluated to be 100%. We integrated PDT and PTT into a single nanodevice to facilitate effective cancer therapy. Our FeOxH–rGO, which integrates the merits of FeOxH and rGO, displays an outstanding tumoricidal capacity, suggesting the utilization of this nanocomposites in future medical applications.
Collapse
|
16
|
Bienia A, Wiecheć-Cudak O, Murzyn AA, Krzykawska-Serda M. Photodynamic Therapy and Hyperthermia in Combination Treatment-Neglected Forces in the Fight against Cancer. Pharmaceutics 2021; 13:1147. [PMID: 34452108 PMCID: PMC8399393 DOI: 10.3390/pharmaceutics13081147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/26/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of death in humans. Despite the progress in cancer treatment, and an increase in the effectiveness of diagnostic methods, cancer is still highly lethal and very difficult to treat in many cases. Combination therapy, in the context of cancer treatment, seems to be a promising option that may allow minimizing treatment side effects and may have a significant impact on the cure. It may also increase the effectiveness of anti-cancer therapies. Moreover, combination treatment can significantly increase delivery of drugs to cancerous tissues. Photodynamic therapy and hyperthermia seem to be ideal examples that prove the effectiveness of combination therapy. These two kinds of therapy can kill cancer cells through different mechanisms and activate various signaling pathways. Both PDT and hyperthermia play significant roles in the perfusion of a tumor and the network of blood vessels wrapped around it. The main goal of combination therapy is to combine separate mechanisms of action that will make cancer cells more sensitive to a given therapeutic agent. Such an approach in treatment may contribute toward increasing its effectiveness, optimizing the cancer treatment process in the future.
Collapse
Affiliation(s)
| | | | | | - Martyna Krzykawska-Serda
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland; (A.B.); (O.W.-C.); (A.A.M.)
| |
Collapse
|
17
|
Barr RG, Wilson SR, Lyshchik A, McCarville B, Darge K, Grant E, Robbin M, Wilmann JK, Chong WK, Fleischer A, Paltiel HJ. Contrast -Enhanced Ultrasound: State of the Art in North America. Ultrasound Q 2021; 36:206-217. [PMID: 32890323 DOI: 10.1097/ruq.0000000000000514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Society of Radiologists in Ultrasound convened a panel of specialists in contrast-enhanced ultrasound (CEUS) to produce a white paper on noncardiac CEUS in North America. The panel met in Chicago, Illinois, on October 24 and 25, 2017. The recommendations are based on analysis of current literature and common practice strategies and are thought to represent a reasonable approach to introduce the advantages of this safe and noninvasive technique for the benefit of our patients. Characterization of liver nodules, and pediatric vascular and intravesicular applications comprise the approved indications for CEUS in the United States. They, along with the very successful off-label use of CEUS for the kidney, are included in this publication.Other off-label uses are presented with emphasis on their value and literature support in the online version.
Collapse
Affiliation(s)
| | | | | | | | - Kassa Darge
- Children's Hospital of Philadelphia, Philadelphia, PA
| | - Edward Grant
- University of Southern California, Los Angeles, CA
| | | | | | | | | | | |
Collapse
|
18
|
Cui G, Wu J, Lin J, Liu W, Chen P, Yu M, Zhou D, Yao G. Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. J Nanobiotechnology 2021; 19:211. [PMID: 34266419 PMCID: PMC8281664 DOI: 10.1186/s12951-021-00902-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.
Collapse
Affiliation(s)
- Guangman Cui
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Ferreira MC, Pimentel B, Andrade V, Zverev V, Gimaev RR, Pomorov AS, Pyatakov A, Alekhina Y, Komlev A, Makarova L, Perov N, Reis MS. Understanding the Dependence of Nanoparticles Magnetothermal Properties on Their Size for Hyperthermia Applications: A Case Study for La-Sr Manganites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1826. [PMID: 34361221 PMCID: PMC8308361 DOI: 10.3390/nano11071826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 01/24/2023]
Abstract
Magnetic oxides are promising materials for alternative health diagnoses and treatments. The aim of this work is to understand the dependence of the heating power with the nanoparticle (NP) mean size, for the manganite composition La0.75Sr0.25MnO3 (LSMO)-the one with maximum critical temperature for the whole La/Sr ratio of the series. We have prepared four different samples, each one annealed at different temperatures, in order to produce different mean NP sizes, ranging from 26 nm up to 106 nm. Magnetization measurements revealed a FC-ZFC irreversibility and from the coercive field as function of temperature we determined the blocking temperature. A phase diagram was delivered as a function of the NP mean size and, based on this, the heating mechanism understood. Small NPs (26 nm) is heated up within the paramagnetic range of temperature (T>Tc), and therefore provide low heating efficiency; while bigger NPs are heated up, from room temperature, within the magnetically blocked range of temperature (TT>TB), for intermediate mean diameter size of 37 nm, with maximum efficiency of heat transfer.
Collapse
Affiliation(s)
- Mylla C. Ferreira
- Institute of Physics, Fluminense Federal University, Niterói 24210-346, RJ, Brazil; (M.C.F.); (B.P.)
| | - Bruno Pimentel
- Institute of Physics, Fluminense Federal University, Niterói 24210-346, RJ, Brazil; (M.C.F.); (B.P.)
| | - Vivian Andrade
- IFIMUP—Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, 4169-007 Porto, Portugal;
- ”Gleb Wataghin” Physics Institute, State University of Campinas, Campinas 13083-859, SP, Brazil
| | - Vladimir Zverev
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia; (V.Z.); (R.R.G.); (A.S.P.); (A.P.); (Y.A.); (A.K.); (L.M.); (N.P.)
| | - Radel R. Gimaev
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia; (V.Z.); (R.R.G.); (A.S.P.); (A.P.); (Y.A.); (A.K.); (L.M.); (N.P.)
| | - Andrei S. Pomorov
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia; (V.Z.); (R.R.G.); (A.S.P.); (A.P.); (Y.A.); (A.K.); (L.M.); (N.P.)
| | - Alexander Pyatakov
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia; (V.Z.); (R.R.G.); (A.S.P.); (A.P.); (Y.A.); (A.K.); (L.M.); (N.P.)
| | - Yulia Alekhina
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia; (V.Z.); (R.R.G.); (A.S.P.); (A.P.); (Y.A.); (A.K.); (L.M.); (N.P.)
| | - Aleksei Komlev
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia; (V.Z.); (R.R.G.); (A.S.P.); (A.P.); (Y.A.); (A.K.); (L.M.); (N.P.)
| | - Liudmila Makarova
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia; (V.Z.); (R.R.G.); (A.S.P.); (A.P.); (Y.A.); (A.K.); (L.M.); (N.P.)
| | - Nikolai Perov
- Faculty of Physics, Moscow State University, 119991 Moscow, Russia; (V.Z.); (R.R.G.); (A.S.P.); (A.P.); (Y.A.); (A.K.); (L.M.); (N.P.)
| | - Mario S. Reis
- Institute of Physics, Fluminense Federal University, Niterói 24210-346, RJ, Brazil; (M.C.F.); (B.P.)
| |
Collapse
|
20
|
Ximendes E, Marin R, Shen Y, Ruiz D, Gómez‐Cerezo D, Rodríguez‐Sevilla P, Lifante J, Viveros‐Méndez PX, Gámez F, García‐Soriano D, Salas G, Zalbidea C, Espinosa A, Benayas A, García‐Carrillo N, Cussó L, Desco M, Teran FJ, Juárez BH, Jaque D. Infrared-Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100077. [PMID: 34117667 PMCID: PMC11468761 DOI: 10.1002/adma.202100077] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/10/2021] [Indexed: 05/05/2023]
Abstract
Deliberate and local increase of the temperature within solid tumors represents an effective therapeutic approach. Thermal therapies embrace this concept leveraging the capability of some species to convert the absorbed energy into heat. To that end, magnetic hyperthermia (MHT) uses magnetic nanoparticles (MNPs) that can effectively dissipate the energy absorbed under alternating magnetic fields. However, MNPs fail to provide real-time thermal feedback with the risk of unwanted overheating and impeding on-the-fly adjustment of the therapeutic parameters. Localization of MNPs within a tissue in an accurate, rapid, and cost-effective way represents another challenge for increasing the efficacy of MHT. In this work, MNPs are combined with state-of-the-art infrared luminescent nanothermometers (LNTh; Ag2 S nanoparticles) in a nanocapsule that simultaneously overcomes these limitations. The novel optomagnetic nanocapsule acts as multimodal contrast agents for different imaging techniques (magnetic resonance, photoacoustic and near-infrared fluorescence imaging, optical and X-ray computed tomography). Most crucially, these nanocapsules provide accurate (0.2 °C resolution) and real-time subcutaneous thermal feedback during in vivo MHT, also enabling the attainment of thermal maps of the area of interest. These findings are a milestone on the road toward controlled magnetothermal therapies with minimal side effects.
Collapse
Affiliation(s)
- Erving Ximendes
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Yingli Shen
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Diego Ruiz
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Present address:
Madrid Institute of Materials Science(ICMM)CSIC. Sor Juana Inés de la CruzMadridCantoblanco28049Spain
| | | | | | - Jose Lifante
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
| | - Perla X. Viveros‐Méndez
- Universidad Autónoma de ZacatecasUnidad Académica de Ciencia y Tecnología de la Luz y la MateriaCarretera Zacatecas‐Guadalajara km. 6Ejido la escondidaZacatecasZacatecas98160México
| | - Francisco Gámez
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
- Present address:
Department of Physical Chemistry, Faculty of ScienceUniversity of GranadaAvenida de la Fuente Nueva S/NGranada18071Spain
| | | | - Gorka Salas
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Carmen Zalbidea
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
| | - Ana Espinosa
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Antonio Benayas
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| | | | - Lorena Cussó
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadrid28911Spain
- Instituto de Investigación Sanitaria Gregorio MarañónMadrid28007Spain
- Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid28029Spain
| | - Manuel Desco
- Departamento de Bioingeniería e Ingeniería AeroespacialUniversidad Carlos III de MadridMadrid28911Spain
- Instituto de Investigación Sanitaria Gregorio MarañónMadrid28007Spain
- Unidad de Imagen AvanzadaCentro Nacional de Investigaciones Cardiovasculares (CNIC)Madrid28029Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Madrid28029Spain
| | - Francisco J. Teran
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Nanobiotecnología (IMDEA‐Nanociencia)Unidad Asociada al Centro Nacional de Biotecnología (CSIC)Madrid28049Spain
| | - Beatriz H. Juárez
- IMDEA NanocienciaFaraday 9CantoblancoMadrid28049Spain
- Department of Applied Physical ChemistryUniversidad Autónoma de MadridFrancisco Tomás y Valiente, 7CantoblancoMadrid28049Spain
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group (nanoBIG)Universidad Autónoma de MadridMadrid28049Spain
- IRYCISCtra. Colmenar km. 9.100Madrid28034Spain
| |
Collapse
|
21
|
Characterization of Proton-Irradiated Polyaniline Nanoparticles Using Terahertz Thermal Spectroscopy. CRYSTALS 2021. [DOI: 10.3390/cryst11070765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, we investigated the changes in the molecular structure of polyaniline (PANI) nanoparticles illuminated by a proton beam using terahertz (THz) thermal spectroscopy based on the terahertz time-domain spectroscopy technique. PANI nanoparticles in water were exposed to a proton beam of 35 MeV energy with a particle fluence of 1013 particles/cm2. The photothermal properties of this solution of PANI nanoparticles were characterized using THz thermal spectroscopy. We measured the changes in the amplitudes of the reflected THz pulses to identify the variations in temperature induced by the photothermal effects of the PANI nanoparticle solution. The amplitude of a reflected THz pulse of the PANI solution not exposed to the proton beam increased when illuminated by an infrared light source, whereas that of THz signals of the PANI solution exposed to the proton beam hardly exhibited any changes. This implies that the molecular structure of PANI nanoparticles can be varied by a proton beam with a particle fluence above 1013 particles/cm2.
Collapse
|
22
|
Yin Y, Li Y, Wang S, Dong Z, Liang C, Sun J, Wang C, Chai R, Fei W, Zhang J, Qi M, Feng L, Zhang Q. MSCs-engineered biomimetic PMAA nanomedicines for multiple bioimaging-guided and photothermal-enhanced radiotherapy of NSCLC. J Nanobiotechnology 2021; 19:80. [PMID: 33743720 PMCID: PMC7981797 DOI: 10.1186/s12951-021-00823-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 01/09/2023] Open
Abstract
Background The recently developed biomimetic strategy is one of the mostly effective strategies for improving the theranostic efficacy of diverse nanomedicines, because nanoparticles coated with cell membranes can disguise as “self”, evade the surveillance of the immune system, and accumulate to the tumor sites actively. Results Herein, we utilized mesenchymal stem cell memabranes (MSCs) to coat polymethacrylic acid (PMAA) nanoparticles loaded with Fe(III) and cypate—an derivative of indocyanine green to fabricate Cyp-PMAA-Fe@MSCs, which featured high stability, desirable tumor-accumulation and intriguing photothermal conversion efficiency both in vitro and in vivo for the treatment of lung cancer. After intravenous administration of Cyp-PMAA-Fe@MSCs and Cyp-PMAA-Fe@RBCs (RBCs, red blood cell membranes) separately into tumor-bearing mice, the fluorescence signal in the MSCs group was 21% stronger than that in the RBCs group at the tumor sites in an in vivo fluorescence imaging system. Correspondingly, the T1-weighted magnetic resonance imaging (MRI) signal at the tumor site decreased 30% after intravenous injection of Cyp-PMAA-Fe@MSCs. Importantly, the constructed Cyp-PMAA-Fe@MSCs exhibited strong photothermal hyperthermia effect both in vitro and in vivo when exposed to 808 nm laser irradiation, thus it could be used for photothermal therapy. Furthermore, tumors on mice treated with phototermal therapy and radiotherapy shrank 32% more than those treated with only radiotherapy. Conclusions These results proved that Cyp-PMAA-Fe@MSCs could realize fluorescence/MRI bimodal imaging, while be used in phototermal-therapy-enhanced radiotherapy, providing desirable nanoplatforms for tumor diagnosis and precise treatment of non-small cell lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00823-6.
Collapse
Affiliation(s)
- Yipengchen Yin
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yongjing Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Sheng Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Ziliang Dong
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Chao Liang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Jiaxin Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Rong Chai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Weiwei Fei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Jianping Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China
| | - Ming Qi
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.,Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Fudan University, Shanghai, 200433, P. R. China
| | - Liangzhu Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.
| |
Collapse
|
23
|
Elming PB, Sørensen BS, Spejlborg H, Overgaard J, Horsman MR. Does the combination of hyperthermia with low LET (linear energy transfer) radiation induce anti-tumor effects equivalent to those seen with high LET radiation alone? Int J Hyperthermia 2021; 38:105-110. [PMID: 33530766 DOI: 10.1080/02656736.2021.1876929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
INTRODUCTION The combination of hyperthermia with low LET (linear energy transfer) radiation may have similar anti-tumor effects as high LET radiation alone. This pre-clinical study determined the optimal heating temperature and time interval between radiation and heat to achieve this equivalent effect. METHODS C3H mammary carcinomas (200 mm3 in size) growing in the right rear foot of CDF1 mice was used in all experiments. Tumors were locally irradiated with graded doses of either 240 kV ortho- or 6 MV mega-voltage X-rays to produce full dose-response curves. Heating (41.0-43.5 °C; 60 min) was achieved by immersing the tumor bearing foot in a water-bath applied at the same time, or up to 4-hours after, irradiating. The endpoint was the percentage of mice showing local tumor control at 90 days, with enhancements calculated from the ratios of the radiation doses causing 50% tumor control (± 95% confidence intervals). RESULTS Previous published results in this tumor model reported that carbon ions were 1.3-1.7 times more effective than low LET radiation at inducing tumor control. Similar enhancements occurred with a temperature of only 41.0 °C with a simultaneous heat and radiation treatment. However, higher temperatures were needed with the introduction of any interval; at 42.5 °C, the enhancement was 2.5 with a simultaneous treatment, decreasing to a value within the carbon ion range with a 4-hour interval. CONCLUSIONS Combining hyperthermia with low LET radiation can be as effective as high LET at inducing tumor control, but the temperature needed depended on the time interval between the two modalities.
Collapse
Affiliation(s)
- Pernille B Elming
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita S Sørensen
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Harald Spejlborg
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
24
|
Bosque JJ, Calvo GF, Pérez-García VM, Navarro MC. The interplay of blood flow and temperature in regional hyperthermia: a mathematical approach. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201234. [PMID: 33614070 PMCID: PMC7890498 DOI: 10.1098/rsos.201234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/16/2020] [Indexed: 05/04/2023]
Abstract
In recent decades, hyperthermia has been used to raise oxygenation levels in tumours undergoing other therapeutic modalities, of which radiotherapy is the most prominent one. It has been hypothesized that oxygenation increases would come from improved blood flow associated with vasodilation. However, no test has determined whether this is a relevant assumption or other mechanisms might be acting. Additionally, since hyperthermia and radiotherapy are not usually co-administered, the crucial question arises as to how temperature and perfusion in tumours will change during and after hyperthermia. Overall, it would seem necessary to find a research framework that clarifies the current knowledge, delimits the scope of the different effects and guides future research. Here, we propose a simple mathematical model to account for temperature and perfusion dynamics in brain tumours subjected to regional hyperthermia. Our results indicate that tumours in well-perfused organs like the brain might only reach therapeutic temperatures if their vasculature is highly disrupted. Furthermore, the characteristic times of return to normal temperature levels are markedly shorter than those required to deliver adjuvant radiotherapy. According to this, a mechanistic coupling of perfusion and temperature would not explain any major oxygenation boost in brain tumours immediately after hyperthermia.
Collapse
Affiliation(s)
- Jesús J. Bosque
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
- Author for correspondence: Jesús J. Bosque e-mail:
| | - Gabriel F. Calvo
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Víctor M. Pérez-García
- Department of Mathematics, Mathematical Oncology Laboratory (MOLAB), University of Castilla-La Mancha, Ciudad Real, Spain
| | - María Cruz Navarro
- Department of Mathematics-IMACI, Facultad de Ciencias y Tecnologías Químicas, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
25
|
Lee SY, Fiorentini G, Szasz AM, Szigeti G, Szasz A, Minnaar CA. Quo Vadis Oncological Hyperthermia (2020)? Front Oncol 2020; 10:1690. [PMID: 33014841 PMCID: PMC7499808 DOI: 10.3389/fonc.2020.01690] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Heating as a medical intervention in cancer treatment is an ancient approach, but effective deep heating techniques are lacking in modern practice. The use of electromagnetic interactions has enabled the development of more reliable local-regional hyperthermia (LRHT) techniques whole-body hyperthermia (WBH) techniques. Contrary to the relatively simple physical-physiological concepts behind hyperthermia, its development was not steady, and it has gone through periods of failures and renewals with mixed views on the benefits of heating seen in the medical community over the decades. In this review we study in detail the various techniques currently available and describe challenges and trends of oncological hyperthermia from a new perspective. Our aim is to describe what we believe to be a new and effective approach to oncologic hyperthermia, and a change in the paradigm of dosing. Physiological limits restrict the application of WBH which has moved toward the mild temperature range, targeting immune support. LRHT does not have a temperature limit in the tumor (which can be burned out in extreme conditions) but a trend has started toward milder temperatures with immune-oriented goals, developing toward immune modulation, and especially toward tumor-specific immune reactions by which LRHT seeks to target the malignancy systemically. The emerging research of bystander and abscopal effects, in both laboratory investigations and clinical applications, has been intensified. Our present review summarizes the methods and results, and discusses the trends of hyperthermia in oncology.
Collapse
Affiliation(s)
- Sun-Young Lee
- Department of Radiation Oncology, Chonbuk National University Hospital, Jeonbuk, South Korea
| | | | - Attila Marcell Szasz
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Gyula Szigeti
- Innovation Center, Semmelweis University, Budapest, Hungary
| | - Andras Szasz
- Biotechnics Department, St. Istvan University, Godollo, Hungary
| | - Carrie Anne Minnaar
- Department of Radiation Oncology, Wits Donald Gordon Medical Center, Johannesburg, South Africa
| |
Collapse
|
26
|
|
27
|
Chowdhury SM, Abou-Elkacem L, Lee T, Dahl J, Lutz AM. Ultrasound and microbubble mediated therapeutic delivery: Underlying mechanisms and future outlook. J Control Release 2020; 326:75-90. [PMID: 32554041 DOI: 10.1016/j.jconrel.2020.06.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Beyond the emerging field of oncological ultrasound molecular imaging, the recent significant advancements in ultrasound and contrast agent technology have paved the way for therapeutic ultrasound mediated microbubble oscillation and has shown that this approach is capable of increasing the permeability of microvessel walls while also initiating enhanced extravasation and drug delivery into target tissues. In addition, a large number of preclinical studies have demonstrated that ultrasound alone or combined with microbubbles can efficiently increase cell membrane permeability resulting in enhanced tissue distribution and intracellular drug delivery of molecules, nanoparticles, and other therapeutic agents. The mechanism behind the enhanced permeability is the temporary creation of pores in cell membranes through a phenomenon called sonoporation by high-intensity ultrasound and microbubbles or cavitation agents. At low ultrasound intensities (0.3-3 W/cm2), sonoporation may be caused by microbubbles oscillating in a stable motion, also known as stable cavitation. In contrast, at higher ultrasound intensities (greater than 3 W/cm2), sonoporation usually occurs through inertial cavitation that accompanies explosive growth and collapse of the microbubbles. Sonoporation has been shown to be a highly effective method to improve drug uptake through microbubble potentiated enhancement of microvascular permeability. In this review, the therapeutic strategy of using ultrasound for improved drug delivery are summarized with the special focus on cancer therapy. Additionally, we discuss the progress, challenges, and future of ultrasound-mediated drug delivery towards clinical translation.
Collapse
Affiliation(s)
- Sayan Mullick Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Taehwa Lee
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeremy Dahl
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Amelie M Lutz
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
28
|
Datta NR, Kok HP, Crezee H, Gaipl US, Bodis S. Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Front Oncol 2020; 10:819. [PMID: 32596144 PMCID: PMC7303270 DOI: 10.3389/fonc.2020.00819] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Moderate hyperthermia at temperatures between 40 and 44°C is a multifaceted therapeutic modality. It is a potent radiosensitizer, interacts favorably with a host of chemotherapeutic agents, and, in combination with radiotherapy, enforces immunomodulation akin to “in situ tumor vaccination.” By sensitizing hypoxic tumor cells and inhibiting repair of radiotherapy-induced DNA damage, the properties of hyperthermia delivered together with photons might provide a tumor-selective therapeutic advantage analogous to high linear energy transfer (LET) neutrons, but with less normal tissue toxicity. Furthermore, the high LET attributes of hyperthermia thermoradiobiologically are likely to enhance low LET protons; thus, proton thermoradiotherapy would mimic 12C ion therapy. Hyperthermia with radiotherapy and/or chemotherapy substantially improves therapeutic outcomes without enhancing normal tissue morbidities, yielding level I evidence reported in several randomized clinical trials, systematic reviews, and meta-analyses for various tumor sites. Technological advancements in hyperthermia delivery, advancements in hyperthermia treatment planning, online invasive and non-invasive MR-guided thermometry, and adherence to quality assurance guidelines have ensured safe and effective delivery of hyperthermia to the target region. Novel biological modeling permits integration of hyperthermia and radiotherapy treatment plans. Further, hyperthermia along with immune checkpoint inhibitors and DNA damage repair inhibitors could further augment the therapeutic efficacy resulting in synthetic lethality. Additionally, hyperthermia induced by magnetic nanoparticles coupled to selective payloads, namely, tumor-specific radiotheranostics (for both tumor imaging and radionuclide therapy), chemotherapeutic drugs, immunotherapeutic agents, and gene silencing, could provide a comprehensive tumor-specific theranostic modality akin to “magic (nano)bullets.” To get a realistic overview of the strength (S), weakness (W), opportunities (O), and threats (T) of hyperthermia, a SWOT analysis has been undertaken. Additionally, a TOWS analysis categorizes future strategies to facilitate further integration of hyperthermia with the current treatment modalities. These could gainfully accomplish a safe, versatile, and cost-effective enhancement of the existing therapeutic armamentarium to improve outcomes in clinical oncology.
Collapse
Affiliation(s)
- Niloy R Datta
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - H Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Bodis
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
29
|
Yu HH, Lin CH, Chen YC, Chen HH, Lin YJ, Lin KYA. Dopamine-Modified Zero-Valent Iron Nanoparticles for Dual-Modality Photothermal and Photodynamic Breast Cancer Therapy. ChemMedChem 2020; 15:1645-1651. [PMID: 32338431 DOI: 10.1002/cmdc.202000192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/23/2020] [Indexed: 12/12/2022]
Abstract
Phototherapy has the advantages of minimal invasion, few side effects, and improved accuracy for cancer therapy. The application of a polydopamine (PDA)-modified nano zero-valent iron (nZVI@PDA) as a new synergistic agent in combination with photodynamic/photothermal (PD/PT) therapy to kill cancer cells is discussed here. The nZVI@PDA offered high light-to-heat conversion and ROS generation efficiency under near-infrared (NIR) irradiation (808 nm), thus leading to irreversible damage to nZVI@PDA-treated MCF-7 cells at low concentration, without inducing apoptosis in normal cells. Irradiation of nZVI@PDA using an NIR laser converted the energy of the photons to heat and ROS. Our results showed that modification of the PDA on the surface of nZVI can improve the biocompatibility of the nZVI@PDA. This work integrated the PD and PT effects into a single nanodevice to afford a highly efficient cancer treatment. Meanwhile, nZVI@PDA, which combines the advantages of PDA and nZVI, displayed excellent biocompatibility and tumoricidal ability, thus suggesting its huge potential for future clinical research in cancer therapy.
Collapse
Affiliation(s)
- Hsin Her Yu
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Yi-Chun Chen
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Hung-Hsiang Chen
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Yu-Jing Lin
- Department of Biotechnology, National Formosa University, No. 64, Wenhua Rd., Huwei Township, Yunlin County, 632, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, No. 145, Xingda Rd. South Dist., Taichung City, 402, Taiwan
| |
Collapse
|
30
|
Tabuchi Y, Maekawa K, Torigoe M, Furusawa Y, Hirano T, Minagawa S, Yunoki T, Hayashi A. HIKESHI silencing can enhance mild hyperthermia sensitivity in human oral squamous cell carcinoma HSC‑3 cells. Int J Mol Med 2020; 46:58-66. [PMID: 32377716 PMCID: PMC7255474 DOI: 10.3892/ijmm.2020.4591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperthermia (HT) is considered to be of value as a treatment modality in various cancers. However, the acquisition of thermotolerance in cancer cells due to the induction of heat shock proteins (HSPs) makes HT less effective. Recent findings have indicated that heat shock protein nuclear import factor hikeshi (HIKESHI), also referred to as C11orf73, acts as a nuclear import carrier of Hsp70 under heat stress conditions. The aim of the present study was to determine whether knockdown (KD) of HIKESHI by small interfering RNA (siRNA) can potentiate mild HT (MHT) sensitivity in human oral squamous cell carcinoma (OSCC) HSC‑3 cells. The mRNA and protein expression of HIKESHI was found to be markedly suppressed in HSC‑3 cells treated with siRNA for HIKESHI (siHIKE). Silencing HIKESHI significantly decreased the cell viability under MHT conditions (42˚C for 90 min). Immunocytochemical and western blot analyses clearly demonstrated that Hsp70 protein translocated from the cytoplasm to the nucleus under MHT conditions, and this translocation was significantly inhibited in cells treated with siHIKE. Treatment of the cells with MHT transiently increased the phosphorylation level of extracellular signal‑regulated kinase (ERK)2. Furthermore, the phosphorylation was sustained in HIKESHI‑KD cells under MHT conditions, and this sustained phosphorylation was abolished by pretreatment with U0126, an inhibitor of mitogen‑activated protein kinase/ERK. In addition, U0126 significantly decreased the viability of cells treated with the combination of HIKESHI‑KD and MHT. The data of the present study suggest that HIKESHI silencing enhanced the sensitivity of human OSCC HSC‑3 cells to MHT.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Keita Maekawa
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Misako Torigoe
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Yukihiro Furusawa
- Department of Liberal Arts and Sciences, Toyama Prefectural University, Toyama 939‑0398, Japan
| | - Tetsushi Hirano
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Satsuki Minagawa
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930‑0194, Japan
| | - Tatsuya Yunoki
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| | - Atsushi Hayashi
- Department of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930‑0194, Japan
| |
Collapse
|
31
|
Jun HJ, Park SJ, Kang HJ, Lee GY, Lee N, Park JH, Yoo HS. The Survival Benefit of Combination Therapy With Mild Temperature Hyperthermia and an Herbal Prescription of Gun-Chil-Jung in 54 Cancer Patients Treated With Chemotherapy or Radiation Therapy: A Retrospective Study. Integr Cancer Ther 2020; 19:1534735420926583. [PMID: 32449629 PMCID: PMC7249570 DOI: 10.1177/1534735420926583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/25/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
Background: The combination of herbal medicine with conventional treatment increases the survival rate of cancer patients, but the effect is not great. Hyperthermia may have a synergistic effect with herbal medicine alongside conventional medicine. Objective: To monitor the efficacy of hyperthermia together with Gun-Chil-Jung (GCJ) capsule for event-free survival (EFS) and overall survival (OS) for the treatment of various cancers. Methods: We collected data retrospectively on 54 cancer patients of all stages. They were divided into 4 groups according to each hyperthermia or GCJ treatment period. Hyperthermia with 0.46 MHz radiofrequency wave was applied a power of 50 to 100 W for 70 minutes. GCJ capsules were administered orally 3 times a day. Results: The median follow-up was 13.4 months, and 25 (55.6%) patients showed disease-related events. Hyperthermia with GCJ treatment was administered in combination group (n = 36, 66.7%) and traditional Korean medicine-only group (n = 17, 31.5%). The median EFS was 190 days, and the median OS was 390 days. The group of hyperthermia 7 times or fewer and GCJ more than 28 days showed longer EFS and OS. The analysis of superiority between hyperthermia and GCJ showed no significant difference (EFS, P = .55; OS, P = .364). Conclusions: The combination of hyperthermia 1 to 2 times a week with GCJ treatment may improve survival of cancer patients treated or being treated with conventional cancer therapies.
Collapse
Affiliation(s)
- Hyeong Joon Jun
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| | - So-Jung Park
- Dunsan Korean Medicine Hospital of
Daejeon University, Daejeon, Republic of Korea
| | - Hwi-Joong Kang
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| | - Ga-Young Lee
- Cheonan Korean Medicine Hospital of
Daejeon University, Cheonan, Republic of Korea
| | - Namhun Lee
- Cheonan Korean Medicine Hospital of
Daejeon University, Cheonan, Republic of Korea
| | - Ji Hye Park
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| | - Hwa-Seung Yoo
- Seoul Korean Medicine Hospital of
Daejeon University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Oei A, Kok H, Oei S, Horsman M, Stalpers L, Franken N, Crezee J. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv Drug Deliv Rev 2020; 163-164:84-97. [PMID: 31982475 DOI: 10.1016/j.addr.2020.01.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
Abstract
Mild hyperthermia, local heating of the tumour up to temperatures <43 °C, has been clinically applied for almost four decades and has been proven to substantially enhance the effectiveness of both radiotherapy and chemotherapy in treatment of primary and recurrent tumours. Clinical results and mechanisms of action are discussed in this review, including the molecular and biological rationale of hyperthermia as radio- and chemosensitizer as established in in vitro and in vivo experiments. Proven mechanisms include inhibition of different DNA repair processes, (in)direct reduction of the hypoxic tumour cell fraction, enhanced drug uptake, increased perfusion and oxygen levels. All mechanisms show different dose effect relationships and different optimal scheduling with radiotherapy and chemotherapy. Therefore, obtaining the ideal multi-modality treatment still requires elucidation of more detailed data on dose, sequence, duration, and possible synergisms between modalities. A multidisciplinary approach with different modalities including hyperthermia might further increase anti-tumour effects and diminish normal tissue damage.
Collapse
|
33
|
Stauffer PR, Rodrigues DB, Goldstein R, Nguyen T, Yu Y, Wan S, Woodward R, Gibbs M, Vasilchenko IL, Osintsev AM, Bar-Ad V, Leeper DB, Shi W, Judy KD, Hurwitz MD. Feasibility of removable balloon implant for simultaneous magnetic nanoparticle heating and HDR brachytherapy of brain tumor resection cavities. Int J Hyperthermia 2020; 37:1189-1201. [PMID: 33047639 PMCID: PMC7864554 DOI: 10.1080/02656736.2020.1829103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 10/23/2022] Open
Abstract
AIM Hyperthermia (HT) has been shown to improve clinical response to radiation therapy (RT) for cancer. Synergism is dramatically enhanced if HT and RT are combined simultaneously, but appropriate technology to apply treatments together does not exist. This study investigates the feasibility of delivering HT with RT to a 5-10mm annular rim of at-risk tissue around a tumor resection cavity using a temporary thermobrachytherapy (TBT) balloon implant. METHODS A balloon catheter was designed to deliver radiation from High Dose Rate (HDR) brachytherapy concurrent with HT delivered by filling the balloon with magnetic nanoparticles (MNP) and immersing it in a radiofrequency magnetic field. Temperature distributions in brain around the TBT balloon were simulated with temperature dependent brain blood perfusion using numerical modeling. A magnetic induction system was constructed and used to produce rapid heating (>0.2°C/s) of MNP-filled balloons in brain tissue-equivalent phantoms by absorbing 0.5 W/ml from a 5.7 kA/m field at 133 kHz. RESULTS Simulated treatment plans demonstrate the ability to heat at-risk tissue around a brain tumor resection cavity between 40-48°C for 2-5cm diameter balloons. Experimental thermal dosimetry verifies the expected rapid and spherically symmetric heating of brain phantom around the MNP-filled balloon at a magnetic field strength that has proven safe in previous clinical studies. CONCLUSIONS These preclinical results demonstrate the feasibility of using a TBT balloon to deliver heat simultaneously with HDR brachytherapy to tumor bed around a brain tumor resection cavity, with significantly improved uniformity of heating over previous multi-catheter interstitial approaches. Considered along with results of previous clinical thermobrachytherapy trials, this new capability is expected to improve both survival and quality of life in patients with glioblastoma multiforme.
Collapse
Affiliation(s)
- Paul R. Stauffer
- Thomas Jefferson University, Radiation Oncology Dept., Philadelphia PA
| | | | | | - Thinh Nguyen
- Thomas Jefferson University, Radiation Oncology Dept., Philadelphia PA
- Drexel University, Biomedical Engineering Dept., Philadelphia PA
| | - Yan Yu
- Thomas Jefferson University, Radiation Oncology Dept., Philadelphia PA
| | - Shuying Wan
- Thomas Jefferson University, Radiation Oncology Dept., Philadelphia PA
| | | | | | | | | | - Voichita Bar-Ad
- Thomas Jefferson University, Radiation Oncology Dept., Philadelphia PA
| | - Dennis B. Leeper
- Thomas Jefferson University, Radiation Oncology Dept., Philadelphia PA
| | - Wenyin Shi
- Thomas Jefferson University, Radiation Oncology Dept., Philadelphia PA
| | - Kevin D. Judy
- Thomas Jefferson University, Neurosurgery Department
| | - Mark D. Hurwitz
- Thomas Jefferson University, Radiation Oncology Dept., Philadelphia PA
| |
Collapse
|
34
|
Zheng Q, Gao P, Li X, Li H. [Effects of magnetic thermotherapy mediated by magnetic nanocomposite PEG-APTESMNP on proliferation of liver cancer cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:891-897. [PMID: 31511207 DOI: 10.12122/j.issn.1673-4254.2019.08.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To observe the inhibitory effects of PEG-APTES-MNP magnetic heating on liver cancer cells. METHODS The magnetic nanoparticle complex PEG-APTES-MNP was synthesized and its physiochemical properties and biocompatibility were characterized. HepG2 cells were incubated with the PEG-APTES-MNP nanoparticles for magnetic heating or nanoparticle therapy. Prussian blue staining was used to detect the uptake efficiency of the magnetic nanoparticles by HepG2 cells. MTT assay and flow cytometry were used to evaluate the inhibitory effect of the nanoparticles on HepG2 cells, and laser scanning confocal microscopy was used to detect the production of reactive oxygen species (ROS) in the cells. Fifteen nude mice bearing HepG2 cell xenografts were randomized equally into PEG-APTES-MNP injection group (with nanocomposite injection only), PEG-APTES-MNP magnetic heating group and control group (with PBS injection), and the tumor growth were observed in the mice after the treatments. RESULTS The synthesized PEG-APTES-MNP nanoparticles showed good physicochemical properties and biocompatibility. Incubation of HepG2 with the nanoparticles resulted in significantly increased ROS production, obvious inhibition of the cell growth through the synergetic effects of magnetic heating (P < 0.05), and significantly enhanced cell apoptosis. In the tumor-bearing nude mice, the nanoparticles strongly inhibited the tumor growth by magnetic heating (P < 0.05). CONCLUSIONS The magnetic nanocomposite PEG-APTES-MNP has good physicochemical properties and bioavailability and can strongly inhibit the growth of liver cancer cells both in vitro and in nude mice through magnetic heating, demonstrating its potential as a candidate nanomedicine for liver cancer treatment.
Collapse
Affiliation(s)
- Quan Zheng
- Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Peng Gao
- Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Xiaofeng Li
- Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Hailiang Li
- Second Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| |
Collapse
|
35
|
Lu CH, Chen WT, Hsieh CH, Kuo YY, Chao CY. Thermal cycling-hyperthermia in combination with polyphenols, epigallocatechin gallate and chlorogenic acid, exerts synergistic anticancer effect against human pancreatic cancer PANC-1 cells. PLoS One 2019; 14:e0217676. [PMID: 31150487 PMCID: PMC6544372 DOI: 10.1371/journal.pone.0217676] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia (HT) has shown feasibility and potency as an anticancer therapy. Administration of HT in the chemotherapy has previously enhanced the cytotoxicity of drugs against pancreatic cancer. However, the drugs used when conducting these studies are substantially conventional chemotherapeutic agents that may cause unwanted side effects. Additionally, the thermal dosage in the treatment of cancer cells could also probably harm the healthy cells. The purpose of this work was to investigate the potential of the two natural polyphenolic compounds, epigallocatechin gallate (EGCG) and chlorogenic acid (CGA), as heat synergizers in the thermal treatment of the PANC-1 cells. Furthermore, we have introduced a unique strategy entitled the thermal cycling-hyperthermia (TC-HT) that is capable of providing a maximum synergy and minimal side effect with the anticancer compounds. Our results demonstrate that the combination of the TC-HT and the CGA or EGCG markedly exerts the anticancer effect against the PANC-1 cells, while none of the single treatment induced such changes. The synergistic activity was attributed to the cell cycle arrest at the G2/M phase and the induction of the ROS-dependent mitochondria-mediated apoptosis. These findings not only represent the first in vitro thermal synergistic study of natural compounds in the treatment of pancreatic cancer, but also highlight the potential of the TC-HT as an alternative strategy in thermal treatment.
Collapse
Affiliation(s)
- Chueh-Hsuan Lu
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Ting Chen
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Hsiung Hsieh
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Yi Kuo
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chih-Yu Chao
- Department of Physics, Lab for Medical Physics & Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical & Molecular Imaging Center, National Taiwan University College of Medicine, Taipei, Taiwan
- Institute of Applied Physics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
36
|
Zhu L, Altman MB, Laszlo A, Straube W, Zoberi I, Hallahan DE, Chen H. Ultrasound Hyperthermia Technology for Radiosensitization. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1025-1043. [PMID: 30773377 PMCID: PMC6475527 DOI: 10.1016/j.ultrasmedbio.2018.12.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/28/2018] [Accepted: 12/17/2018] [Indexed: 05/08/2023]
Abstract
Hyperthermia therapy (HT) raises tissue temperature to 40-45°C for up to 60 min. Hyperthermia is one of the most potent sensitizers of radiation therapy (RT). Ultrasound-mediated HT for radiosensitization has been used clinically since the 1960s. Recently, magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU), which has been approved by the United States Food and Drug Administration for thermal ablation therapy, has been adapted for HT. With emerging clinical trials using MRgHIFU HT for radiosensitization, there is a pressing need to review the ultrasound HT technology. The objective of this review is to overview existing HT technology, summarize available ultrasound HT devices, evaluate clinical studies combining ultrasound HT with RT and discuss challenges and future directions.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Michael B Altman
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Andrei Laszlo
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - William Straube
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Imran Zoberi
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in Saint Louis, Saint Louis, Missouri, USA.
| |
Collapse
|
37
|
Kroesen M, Mulder HT, van Holthe JML, Aangeenbrug AA, Mens JWM, van Doorn HC, Paulides MM, Oomen-de Hoop E, Vernhout RM, Lutgens LC, van Rhoon GC, Franckena M. The Effect of the Time Interval Between Radiation and Hyperthermia on Clinical Outcome in 400 Locally Advanced Cervical Carcinoma Patients. Front Oncol 2019; 9:134. [PMID: 30906734 PMCID: PMC6418024 DOI: 10.3389/fonc.2019.00134] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/14/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Addition of deep hyperthermia to radiotherapy results in improved local control (LC) and overall survival compared to radiotherapy alone in cervical carcinoma patients. Based on preclinical data, the time interval between radiotherapy, and hyperthermia is expected to influence treatment outcome. Clinical studies addressing the effect of time interval are sparse. The repercussions for clinical applications are substantial, as the time between radiotherapy and hyperthermia should be kept as short as possible. In this study, we therefore investigated the effect of the time interval between radiotherapy and hyperthermia on treatment outcome. Methods: We analyzed all primary cervical carcinoma patients treated between 1996 and 2016 with thermoradiotherapy at our institute. Data on patients, tumors and treatments were collected, including the thermal dose parameters TRISE and CEM43T90. Follow-up data on tumor status and survival as well as late toxicity were collected. Data was analyzed using Cox proportional hazards analysis and Kaplan Meier analysis. Results: 400 patients were included. Kaplan Meier and univariate Cox analysis showed no effect of the time interval (range 30-230 min) on any clinical outcome measure. Besides known prognostic factors, thermal dose parameters TRISE and CEM43T90 had a significant effect on LC. In multivariate analysis, the thermal dose parameter TRISE (HR 0.649; 95% CI 0.501-0.840) and the use of image guided brachytherapy (HR 0.432; 95% CI 0.214-0.972), but not the time interval, were significant predictors of LC and disease specific survival. Conclusions: The time interval between radiotherapy and hyperthermia, up to 4 h, has no effect on clinical outcome. These results are re-ensuring for our current practice of delivering hyperthermia within maximal 4 h after radiotherapy.
Collapse
Affiliation(s)
- M Kroesen
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - H T Mulder
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - J M L van Holthe
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - A A Aangeenbrug
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - J W M Mens
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - H C van Doorn
- Department of Obstetrics and Gynaecology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - M M Paulides
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - E Oomen-de Hoop
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - R M Vernhout
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - L C Lutgens
- Department of Radiation oncology, University Medical Centre Maastricht (MAASTRO), Maastricht, Netherlands
| | - G C van Rhoon
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - M Franckena
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
38
|
Dobšíček Trefná H, Schmidt M, van Rhoon GC, Kok HP, Gordeyev SS, Lamprecht U, Marder D, Nadobny J, Ghadjar P, Abdel-Rahman S, Kukiełka AM, Strnad V, Hurwitz MD, Vujaskovic Z, Diederich CJ, Stauffer PR, Crezee J. Quality assurance guidelines for interstitial hyperthermia. Int J Hyperthermia 2019; 36:277-294. [PMID: 30676101 DOI: 10.1080/02656736.2018.1564155] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Quality assurance (QA) guidelines are essential to provide uniform execution of clinical hyperthermia treatments and trials. This document outlines the clinical and technical consequences of the specific properties of interstitial heat delivery and specifies recommendations for hyperthermia administration with interstitial techniques. Interstitial hyperthermia aims at tumor temperatures in the 40-44 °C range as an adjunct to radiation or chemotherapy. The clinical part of this document imparts specific clinical experience of interstitial heat delivery to various tumor sites as well as recommended interstitial hyperthermia workflow and procedures. The second part describes technical requirements for quality assurance of current interstitial heating equipment including electromagnetic (radiative and capacitive) and ultrasound heating techniques. Detailed instructions are provided on characterization and documentation of the performance of interstitial hyperthermia applicators to achieve reproducible hyperthermia treatments of uniform high quality. Output power and consequent temperature rise are the key parameters for characterization of applicator performance in these QA guidelines. These characteristics determine the specific maximum tumor size and depth that can be heated adequately. The guidelines were developed by the ESHO Technical Committee with participation of senior STM members and members of the Atzelsberg Circle.
Collapse
Affiliation(s)
- H Dobšíček Trefná
- a Department of Electrical Engineering , Chalmers University of Technology , Göteborg , Sweden
| | - M Schmidt
- b Department of Radiation Oncology , University Hospital Erlangen , Erlangen , Germany
| | - G C van Rhoon
- c Department of Radiation Oncology , Erasmus MC Cancer Institute , Rotterdam , the Netherlands
| | - H P Kok
- d Department of Radiation Oncology, Cancer Center Amsterdam , Amsterdam UMC, University of Amsterdam , Amsterdam , the Netherlands
| | - S S Gordeyev
- e Department of Colorectal Oncology , N.N.Blokhin Russian Cancer Research Center , Moscow, Russia
| | - U Lamprecht
- f Radioonkologische Klinik , Universitätsklinikum Tübingen , Tübingen , Germany
| | - D Marder
- g Kantonsspital Aarau , Radio-Onkologie-Zentrum KSA-KSB , Aarau , Switzerland
| | - J Nadobny
- h Klinik für Radioonkologie und Strahlentherapie , Charité Universitätsmedizin Berlin , Berlin , Germany
| | - P Ghadjar
- h Klinik für Radioonkologie und Strahlentherapie , Charité Universitätsmedizin Berlin , Berlin , Germany
| | - S Abdel-Rahman
- i Klinikum der Universität München-Campus Grosshadern , München , Germany
| | - A M Kukiełka
- j Department of Radiation Oncology , Centrum Diagnostyki i Terapii Onkologicznej Nu-Med , Zamość , Poland
| | - V Strnad
- b Department of Radiation Oncology , University Hospital Erlangen , Erlangen , Germany
| | - M D Hurwitz
- k Department of Radiation Oncology , Thomas Jefferson University , Philadelphia , PA , USA
| | - Z Vujaskovic
- l Department of Radiation Oncology , University of Maryland Baltimore , Baltimore , MD , USA
| | - C J Diederich
- m Department of Radiation Oncology , University of California , San Francisco , CA , USA
| | - P R Stauffer
- k Department of Radiation Oncology , Thomas Jefferson University , Philadelphia , PA , USA
| | - J Crezee
- d Department of Radiation Oncology, Cancer Center Amsterdam , Amsterdam UMC, University of Amsterdam , Amsterdam , the Netherlands
| |
Collapse
|
39
|
Alternating Electric Fields (TTFields) Activate Ca v1.2 Channels in Human Glioblastoma Cells. Cancers (Basel) 2019; 11:cancers11010110. [PMID: 30669316 PMCID: PMC6356873 DOI: 10.3390/cancers11010110] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/16/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor treating fields (TTFields) represent a novel FDA-approved treatment modality for patients with newly diagnosed or recurrent glioblastoma multiforme. This therapy applies intermediate frequency alternating electric fields with low intensity to the tumor volume by the use of non-invasive transducer electrode arrays. Mechanistically, TTFields have been proposed to impair formation of the mitotic spindle apparatus and cytokinesis. In order to identify further potential molecular targets, here the effects of TTFields on Ca2+-signaling, ion channel activity in the plasma membrane, cell cycle, cell death, and clonogenic survival were tested in two human glioblastoma cell lines in vitro by fura-2 Ca2+ imaging, patch-clamp cell-attached recordings, flow cytometry and pre-plated colony formation assay. In addition, the expression of voltage-gated Ca2+ (Cav) channels was determined by real-time RT-PCR and their significance for the cellular TTFields response defined by knock-down and pharmacological blockade. As a result, TTFields stimulated in a cell line-dependent manner a Cav1.2-mediated Ca2+ entry, G1 or S phase cell cycle arrest, breakdown of the inner mitochondrial membrane potential and DNA degradation, and/or decline of clonogenic survival suggesting a tumoricidal action of TTFields. Moreover, inhibition of Cav1.2 by benidipine aggravated in one glioblastoma line the TTFields effects suggesting that Cav1.2-triggered signaling contributes to cellular TTFields stress response. In conclusion, the present study identified Cav1.2 channels as TTFields target in the plasma membrane and provides the rationale to combine TTFields therapy with Ca2+ antagonists that are already in clinical use.
Collapse
|
40
|
Hyperthermic chest wall re-irradiation in recurrent breast cancer: a prospective observational study. Strahlenther Onkol 2019; 195:318-326. [PMID: 30607453 DOI: 10.1007/s00066-018-1414-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE To prospectively investigate the role of re-irradiation (re-RT) combined with hyperthermia (HT) in a contemporary cohort of patients affected by recurrent breast cancer (RBC). METHODS Within the prospective registry HT03, patients with resected RBC and previous irradiation were included. Re-RT was applied to the recurrence region with doses of 50-50.4 Gy, with a boost up to 60-60.4 Gy to the microscopically or macroscopically positive resection margins (R1/R2) region. Concurrent HT was performed at 40-42 ℃. Primary endpoint was LC. Acute and late toxicity, overall survival, cancer-specific survival (CSS), and progression-free survival (PFS) were also evaluated. RESULTS 20 patients and 21 RBC were analyzed. Median re-RT dose was 50.4 Gy and a median of 11 HT fractions were applied. Re-RT+HT was well tolerated, with three patients who experienced a grade (G) 3 acute skin toxicity and no cases of ≥G3 late toxicity. With a median follow up of 24.7 months, two local relapses occurred. Ten patients experienced regional and/or distant disease progression. Five patients died, four of them from breast cancer. PFS was favorable in patients treated with re-RT+HT for the first recurrence with doses of 60 Gy. A trend towards better CSS was found in patients with negative or close margins and after doses of 60 Gy. CONCLUSION Full-dose re-RT+HT for RBC is well tolerated, provides good LC, and seems to be more effective when applied at the time of the first relapse and after doses of 60 Gy. The registry will be continued for validation in a larger cohort and with longer follow-up.
Collapse
|
41
|
Sun X, Zhuang B, Zhang M, Jiang H, Jin Y. Intratumorally Injected Photothermal Agent-Loaded Photodynamic Nanocarriers for Ablation of Orthotopic Melanoma and Breast Cancer. ACS Biomater Sci Eng 2019; 5:724-739. [DOI: 10.1021/acsbiomaterials.8b01111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaodong Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jin Ming Avenue, Kaifeng 475004, China
| | - Bo Zhuang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Mengmeng Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jin Ming Avenue, Kaifeng 475004, China
| | - Heliu Jiang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
- Institute of Pharmacy, Pharmaceutical College of Henan University, Jin Ming Avenue, Kaifeng 475004, China
| |
Collapse
|
42
|
Spirou SV, Basini M, Lascialfari A, Sangregorio C, Innocenti C. Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice †. NANOMATERIALS 2018; 8:nano8060401. [PMID: 29865277 PMCID: PMC6027353 DOI: 10.3390/nano8060401] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
Abstract
Hyperthermia, though by itself generally non-curative for cancer, can significantly increase the efficacy of radiation therapy, as demonstrated by in vitro, in vivo, and clinical results. Its limited use in the clinic is mainly due to various practical implementation difficulties, the most important being how to adequately heat the tumor, especially deep-seated ones. In this work, we first review the effects of hyperthermia on tissue, the limitations of radiation therapy and the radiobiological rationale for combining the two treatment modalities. Subsequently, we review the theory and evidence for magnetic hyperthermia that is based on magnetic nanoparticles, its advantages compared with other methods of hyperthermia, and how it can be used to overcome the problems associated with traditional techniques of hyperthermia.
Collapse
Affiliation(s)
- Spiridon V Spirou
- Department of Radiology, Sismanoglio General Hospital of Attica, Sismanogliou 1, Marousi 15126, Greece.
| | - Martina Basini
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.
| | - Alessandro Lascialfari
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.
| | - Claudio Sangregorio
- ICCOM-CNR via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
- INSTM and Dept. Of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | - Claudia Innocenti
- ICCOM-CNR via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
- INSTM and Dept. Of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
43
|
Spirou SV, Costa Lima SA, Bouziotis P, Vranješ-Djurić S, Efthimiadou EΚ, Laurenzana A, Barbosa AI, Garcia-Alonso I, Jones C, Jankovic D, Gobbo OL. Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E306. [PMID: 29734795 PMCID: PMC5977320 DOI: 10.3390/nano8050306] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/22/2018] [Accepted: 04/29/2018] [Indexed: 12/23/2022]
Abstract
Magnetic nanoparticle (MNP)-mediated hyperthermia (MH) coupled with radiation therapy (RT) is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy ("Radiomag"). The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a) in vitro evaluation of MNPs; (b) in vitro evaluation of MNP-cell interactions; (c) in vivo evaluation of the MNPs; (d) MH combined with RT; and (e) pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work.
Collapse
Affiliation(s)
- Spiridon V Spirou
- Department of Radiology, Sismanoglio General Hospital of Attica, Sismanogliou 1, Marousi 15126, Athens, Greece.
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos", Aghia Paraskevi, Athens 15310, Greece.
| | - Sanja Vranješ-Djurić
- "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11351, Serbia.
| | - Eleni Κ Efthimiadou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou 15784, Greece.
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Agia Paraskevi Attikis, Athens 15310, Greece.
| | - Anna Laurenzana
- Department of Biomedical and Clinical Science "Mario Serio", University of Florence, 50134 Firenze, Italy.
| | - Ana Isabel Barbosa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal.
| | - Ignacio Garcia-Alonso
- Department of Surgery, Radiology & Ph.M. University of the Basque Country, Bilbao E48940, Spain.
| | - Carlton Jones
- NanoTherics Ltd., Studio 3, Unit 3, Silverdale Enterprise Centre Kents Lane, Newcastle under Lyme ST5 6SR, UK.
| | - Drina Jankovic
- "Vinča" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11351, Serbia.
| | - Oliviero L Gobbo
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02PN40 Dublin, Ireland.
| |
Collapse
|
44
|
Rajaee Z, Khoei S, Mahdavi SR, Ebrahimi M, Shirvalilou S, Mahdavian A. Evaluation of the effect of hyperthermia and electron radiation on prostate cancer stem cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:133-142. [PMID: 29453555 DOI: 10.1007/s00411-018-0733-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/07/2018] [Indexed: 05/09/2023]
Abstract
The aim of this study was to investigate the effect of hyperthermia, 6 MeV electron radiation and combination of these treatments on cancer cell line DU145 in both monolayer culture and spheroids enriched for prostate cancer stem cells (CSCs). Flowcytometric analysis of the expression of molecular markers CD133+/CD44+ was carried out to determine the prostate CSCs in cell line DU145 grown as spheroids in serum-free medium. Following monolayer and spheroid culture, DU145 cells were treated with different doses of hyperthermia, electron beam and combination of them. The survival and self-renewing of the cells were evaluated by colony formation assay (CFA) and spheroid formation assay (SFA). Flowcytometry results indicated that the percentage of CD133+/CD44+ cells in spheroid culture was 13.9-fold higher than in the monolayer culture. The SFA showed significant difference between monolayer and spheroid culture for radiation treatment (6 Gy) and hyperthermia (60 and 90 min). The CFA showed significantly enhanced radiosensitivity in DU145 cells grown as monolayer as compared to spheroids, but no effect of hyperthermia. In contrast, for the combination of radiation and hyperthermia the results of CFA and SFA showed a reduced survival fraction in both cultures, with larger effects in monolayer than in spheroid culture. Thus, hyperthermia may be a promising approach in prostate cancer treatment that enhances the cytotoxic effect of electron radiation. Furthermore, determination and characterization of radioresistance and thermoresistance of CSCs in the prostate tumor is the key to develop more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Zhila Rajaee
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran.
| | - Seied Rabi Mahdavi
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sakine Shirvalilou
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614525, Tehran, Iran
| | - Alireza Mahdavian
- Polymer Science Department, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
45
|
Gabriele P, Orecchia R, Madon E, Ruo Redda MG, Sannazzari GL. The Cost of Hypertermia: Nine Years Experience at the Radiation Therapy Department of the Turin University. TUMORI JOURNAL 2018; 80:327-31. [PMID: 7839459 DOI: 10.1177/030089169408000502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background In this paper the authors try to quantify the expenditure for the equipment, staff, treatment per patient and research, sustained at the Radiation Therapy Department of the University of Turin for the treatment of cancer with hyperthermia Methods Two hyperthermic computerized devices are available: the SAPIC SV03 multifrequencies system (915, 434 and 2-30 MHz) for external hyperthermia, and the SACEM system. working only with the frequency of 915 MHz, for interstitial and intracavitary heating. From September 1983 to December 1991, 408 patients have been treated with hyperthermia, for a total number of treated sites of 483; 2960 heating sessions were performed, with a average of six sessions per patient. Results The overall cost of our “hyperthermia project” was about 2,000,000,000 Italian liras; the equipment cost was estimated at 1,258,650,000 Liras (839,100 US$), and the cost per treatment and per heat session at about 3,985,200 (2676 US$) and 664,200 liras (443 US$), respectively. The cost of the research program can be estimated in 175,000,000 liras (116,666 US$). The National Health System provides for a partial reimbursement of 2,000,000 liras (1,333 US$) for each course of hyperthermia. Taking into account the mean expected life expectancy and increasing purchases for replacement of equipment, these costs increase 10% each year. As regards the cost-benefit problem, using the Rees formula it varies from 1112 US$ when hyperthermia is used as elective treatment to 3380 US$ when hyperthermia is used as palliative treatment. Conclusions Hyperthermia is, in our experience, an expensive therapy.
Collapse
Affiliation(s)
- P Gabriele
- Radiotherapy Department, University of Turin, Italy
| | | | | | | | | |
Collapse
|
46
|
Dressel S, Gosselin MC, Capstick MH, Carrasco E, Weyland MS, Scheidegger S, Neufeld E, Kuster N, Bodis S, Rohrer Bley C. Novel hyperthermia applicator system allows adaptive treatment planning: Preliminary clinical results in tumour-bearing animals. Vet Comp Oncol 2017; 16:202-213. [PMID: 28892246 DOI: 10.1111/vco.12340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
Hyperthermia (HT) as an adjuvant to radiation therapy (RT) is a multimodality treatment method to enhance therapeutic efficacy in different tumours. High demands are placed on the hardware and treatment planning software to guarantee adequately planned and applied HT treatments. The aim of this prospective study was to determine the effectiveness and safety of the novel HT system in tumour-bearing dogs and cats in terms of local response and toxicity as well as to compare planned with actual achieved data during heating. A novel applicator with a flexible number of elements and integrated closed-loop temperature feedback control system, and a tool for patient-specific treatment planning were used in a combined thermoradiotherapy protocol. Good agreement between predictions from planning and clinical outcome was found in 7 of 8 cases. Effective HT treatments were planned and verified with the novel system and provided improved quality of life in all but 1 patient. This individualized treatment planning and controlled heat exposure allows adaptive, flexible and safe HT treatments in palliatively treated animal patients.
Collapse
Affiliation(s)
- S Dressel
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | | | - M S Weyland
- ZHAW School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - S Scheidegger
- ZHAW School of Engineering, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - E Neufeld
- IT'IS Foundation, Zurich, Switzerland
| | - N Kuster
- IT'IS Foundation, Zurich, Switzerland.,Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - S Bodis
- Radioonkologie Zentrum KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - C Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
de Oliveira MR, Nabavi SF, Nabavi SM, Jardim FR. Omega-3 polyunsaturated fatty acids and mitochondria, back to the future. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
48
|
Chakraborty S, Dhakshinamurthy GS, Misra SK. Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications. J Biomed Mater Res A 2017. [PMID: 28643475 DOI: 10.1002/jbm.a.36141] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanotechnology has emerged strongly as a viable option to overcome the challenge of early diagnosis and effective drug delivery, for cancer treatment. Emerging research articles have expounded the advantages of using a specific type of nanomaterial-based system called as "nanocarriers," for anti-cancer therapy. The nanocarrier system is used as a transport unit for targeted drug delivery of the therapeutic drug moiety. In order for the nanocarriers to be effective for anticancer therapy, their physicochemical parameter needs to be tuned so that bio-functionalisation can be achieved to (1) allow drugs being attached to the substrate and for their controlled release, (2) ensure the stability of the nanocarrier up to the point of delivery, and (3) clearance of the nanocarrier after the delivery. It is therefore envisaged that tailoring of the physicochemical properties of nanocarriers can greatly influence their reactivity and interaction in the biological milieu, and this is becoming an important parameter for increasing the efficacy of cancer therapy. This review emphasizes the importance of physicochemical properties of nanocarriers, and how they influence its usage as chemotherapeutic drug carriers. The goal of this review is to present a correlation between the physicochemical properties of the nanocarriers and its intended action, and how their design based on these properties can enhance their cancer combating abilities while minimizing damage to the healthy tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2906-2928, 2017.
Collapse
Affiliation(s)
- Swaroop Chakraborty
- Biological Engineering, Indian Institute of Technology-Gandhinagar, Ahmedabad, 382424, India
| | | | - Superb K Misra
- Materials Science and Engineering, Indian Institute of Technology-Gandhinagar, Ahmedabad, 382424, India
| |
Collapse
|
49
|
Mahdavi SR, Janati Esfahani A, Shiran MB, Khoei S, Estiri N. Enhanced DNA Damages of Human Prostate Cancer Cells Induced by Radiofrequency Capacitive Hyperthermia Pre- and Post X-rays: 6 MV versus 15 MV. CELL JOURNAL 2017; 19:79-85. [PMID: 28580311 PMCID: PMC5448316 DOI: 10.22074/cellj.2017.4749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/31/2016] [Indexed: 01/18/2023]
Abstract
Objective This study aimed to determine the effect of 13.56 MHz radiofrequency (RF)
capacitive hyperthermia (HT) on radiosensivity of human prostate cancer cells pre and
post X-ray radiation treatment (RT).
Materials and Methods In this experimental study, the human prostate cancer cell line
DU145 was cultured as 300 µm diameter spheroids. We divided the spheroids into group I:
control, group II: HT at 43˚C for 30 minutes (HT), group III: 4 Gy irradiation with 6 MV X-ray [RT
(6 MV)], group IV: 4 Gy irradiation with 15 MV X-ray [RT (15 MV)], group V: HT+RT (6 MV),
group VI: HT+RT (15 MV), group VII: RT (6 MV)+HT, and group VIII: RT (15 MV)+HT. The alkaline
comet assay was used to assess DNA damages in terms of tail moment (TM). Thermal
enhancement factor (TEF) was obtained for the different treatment combinations.
Results Mean TM increased with increasing photon energy. Group II had significantly greater TM compared to group I. Groups III and IV also had significantly higher TM
compared to group I. Significant differences in TM existed between groups V, VII, and III
(P<0.05). We observed significant differences in TM between groups VI, VIII, and IV. TEF
values demonstrated that enhanced response to radiation was more pronounced in group
V compared to the other combined treatments.
Conclusion Our results suggest that HT applied before RT leads to higher radiosensivity
compared to after RT. HT at 43˚C for 30 minutes added to 6 MV X-ray causes higher
enhancement of radiation compared to 15 MV X-ray.
Collapse
Affiliation(s)
- Seied Rabi Mahdavi
- Radiation Biology Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Janati Esfahani
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Bagher Shiran
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samideh Khoei
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nader Estiri
- Department of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
50
|
Zhang J, Schmidt CJ, Lamont SJ. Transcriptome analysis reveals potential mechanisms underlying differential heart development in fast- and slow-growing broilers under heat stress. BMC Genomics 2017; 18:295. [PMID: 28407751 PMCID: PMC5390434 DOI: 10.1186/s12864-017-3675-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modern fast-growing broilers are susceptible to heart failure under heat stress because their relatively small hearts cannot meet increased need of blood pumping. To improve the cardiac tolerance to heat stress in modern broilers through breeding, we need to find the important genes and pathways that contribute to imbalanced cardiac development and frequent occurrence of heat-related heart dysfunction. Two broiler lines - Ross 708 and Illinois - were included in this study as a fast-growing model and a slow-growing model respectively. Each broiler line was separated to two groups at 21 days posthatch. One group was subjected to heat stress treatment in the range of 35-37 °C for 8 h per day, and the other was kept in thermoneutral condition. Body and heart weights were measured at 42 days posthatch, and gene expression in left ventricles were compared between treatments and broiler lines through RNA-seq analysis. RESULTS Body weight and normalized heart weight were significantly reduced by heat stress only in Ross broilers. RNA-seq results of 44 genes were validated using Biomark assay. A total of 325 differentially expressed (DE) genes were detected between heat stress and thermoneutral in Ross 708 birds, but only 3 in Illinois broilers. Ingenuity pathway analysis (IPA) predicted dramatic changes in multiple cellular activities especially downregulation of cell cycle. Comparison between two lines showed that cell cycle activity is higher in Ross than Illinois in thermoneutral condition but is decreased under heat stress. Among the significant pathways (P < 0.01) listed for different comparisons, "Mitotic Roles of Polo-like Kinases" is always ranked first. CONCLUSIONS The increased susceptibility of modern broilers to cardiac dysfunction under heat stress compared to slow-growing broilers could be due to diminished heart capacity related to reduction in relative heart size. The smaller relative heart size in Ross heat stress group than in Ross thermoneutral group is suggested by the transcriptome analysis to be caused by decreased cell cycle activity and increased apoptosis. The DE genes in RNA-seq analysis and significant pathways in IPA provides potential targets for breeding of heat-tolerant broilers with optimized heart function.
Collapse
Affiliation(s)
- Jibin Zhang
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA
| | - Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, 531 South College Ave, Newark, DE, 19716, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, 806 Stange Rd, 2255 Kildee Hall, Ames, IA, 50011, USA.
| |
Collapse
|