1
|
Rüllke M, Schönrock V, Schmitz K, Oreb M, Tamayo E, Benz JP. Engineering of Aspergillus niger for efficient production of D-xylitol from L-arabinose. Microb Cell Fact 2024; 23:262. [PMID: 39367393 PMCID: PMC11452932 DOI: 10.1186/s12934-024-02526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
D-Xylitol is a naturally occurring sugar alcohol present in diverse plants that is used as an alternative sweetener based on a sweetness similar to sucrose and several health benefits compared to conventional sugar. However, current industrial methods for D-xylitol production are based on chemical hydrogenation of D-xylose, which is energy-intensive and environmentally harmful. However, efficient conversion of L-arabinose as an additional highly abundant pentose in lignocellulosic materials holds great potential to broaden the range of applicable feedstocks. Both pentoses D-xylose and L-arabinose are converted to D-xylitol as a common metabolic intermediate in the native fungal pentose catabolism.To engineer a strain capable of accumulating D-xylitol from arabinan-rich agricultural residues, pentose catabolism was stopped in the ascomycete filamentous fungus Aspergillus niger at the stage of D-xylitol by knocking out three genes encoding enzymes involved in D-xylitol degradation (ΔxdhA, ΔsdhA, ΔxkiA). Additionally, to facilitate its secretion into the medium, an aquaglyceroporin from Saccharomyces cerevisiae was tested. In S. cerevisiae, Fps1 is known to passively transport glycerol and is regulated to convey osmotic stress tolerance but also exhibits the ability to transport other polyols such as D-xylitol. Thus, a constitutively open version of this transporter was introduced into A. niger, controlled by multiple promoters with varying expression strengths. The strain expressing the transporter under control of the PtvdA promoter in the background of the pentose catabolism-deficient triple knock-out yielded the most favorable outcome, producing up to 45% D-xylitol from L-arabinose in culture supernatants, while displaying minimal side effects during osmotic stress. Due to its additional ability to extract D-xylose and L-arabinose from lignocellulosic material via the production of highly active pectinases and hemicellulases, A. niger emerges as an ideal candidate cell factory for D-xylitol production from lignocellulosic biomasses rich in both pentoses.In summary, we are showing for the first time an efficient biosynthesis of D-xylitol from L-arabinose utilizing a filamentous ascomycete fungus. This broadens the potential resources to include also arabinan-rich agricultural waste streams like sugar beet pulp and could thus help to make alternative sweetener production more environmentally friendly and cost-effective.
Collapse
Affiliation(s)
- Marcel Rüllke
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Veronika Schönrock
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Kevin Schmitz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Mislav Oreb
- Faculty of Biological Sciences, Institute of Molecular Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Elisabeth Tamayo
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - J Philipp Benz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany.
| |
Collapse
|
2
|
Breuer J, Ferreira DEA, Kramer M, Bollermann J, Nowrousian M. Functional analysis of chromatin-associated proteins in Sordaria macrospora reveals similar roles for RTT109 and ASF1 in development and DNA damage response. G3 (BETHESDA, MD.) 2024; 14:jkae019. [PMID: 38261383 PMCID: PMC10917505 DOI: 10.1093/g3journal/jkae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
We performed a functional analysis of two potential partners of ASF1, a highly conserved histone chaperone that plays a crucial role in the sexual development and DNA damage resistance in the ascomycete Sordaria macrospora. ASF1 is known to be involved in nucleosome assembly and disassembly, binding histones H3 and H4 during transcription, replication and DNA repair and has direct and indirect roles in histone recycling and modification as well as DNA methylation, acting as a chromatin modifier hub for a large network of chromatin-associated proteins. Here, we functionally characterized two of these proteins, RTT109 and CHK2. RTT109 is a fungal-specific histone acetyltransferase, while CHK2 is an ortholog to PRD-4, a checkpoint kinase of Neurospora crassa that performs similar cell cycle checkpoint functions as yeast RAD53. Through the generation and characterization of deletion mutants, we discovered striking similarities between RTT109 and ASF1 in terms of their contributions to sexual development, histone acetylation, and protection against DNA damage. Phenotypic observations revealed a developmental arrest at the same stage in Δrtt109 and Δasf1 strains, accompanied by a loss of H3K56 acetylation, as detected by western blot analysis. Deletion mutants of rtt109 and asf1 are sensitive to the DNA damaging agent methyl methanesulfonate, but not hydroxyurea. In contrast, chk2 mutants are fertile and resistant to methyl methanesulfonate, but not hydroxyurea. Our findings suggest a close functional association between ASF1 and RTT109 in the context of development, histone modification, and DNA damage response, while indicating a role for CHK2 in separate pathways of the DNA damage response.
Collapse
Affiliation(s)
- Jan Breuer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | | | - Mike Kramer
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Jonas Bollermann
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Minou Nowrousian
- Department of Molecular and Cellular Botany, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
3
|
Wang X, Wang M, Sun J, Qu X, Wang S, Sun T. Establishment of an Efficient Genetic Transformation System in Sanghuangporus baumii. J Fungi (Basel) 2024; 10:137. [PMID: 38392809 PMCID: PMC10890400 DOI: 10.3390/jof10020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: Sanghuangporus baumii, a valuable medicinal fungus, has limited studies on its gene function due to the lack of a genetic transformation system. (2) Methods: This study aimed to establish an efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for S. baumii. This study involved cloning the promoter (glyceraldehyde-3-phosphate dehydrogenase, gpd) of S. baumii, reconstructing the transformation vector, optimizing the treatment of receptor tissues, and inventing a new method for screening positive transformants. (3) Results: The established ATMT system involved replacing the CaMV35S promoter of pCAMBIA-1301 with the gpd promoter of S. baumii to construct the pCAMBIA-SH-gpd transformation vector. The vectors were then transferred to A. tumefaciens (EHA105) for infection. This study found that the transformation efficiency was higher in the infection using pCAMBIA-SH-gpd vectors than using pCAMBIA-1301 vectors. The mycelia of S. baumii were homogenized for 20 s and collected as the genetic transformation receptor. After 20 min of co-culture and 48 h of incubation in 15 mL PDL medium at 25 °C, new colonies grew. (4) Conclusions: These colonies were transferred to PDA medium (hygromycin 4 μg/mL, cefotaxime 300 μg/mL), and the transformation efficiency was determined to be 33.7% using PCR.
Collapse
Affiliation(s)
- Xutong Wang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Mandi Wang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Xincheng Street 2888, Changchun 130118, China
| | - Jian Sun
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, China
| | - Xiaolei Qu
- Department of Electrical Engineering, Daqing Normal University, Binxi Road, Daqing 163712, China
| | - Shixin Wang
- College of Forestry, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, China
| | - Tingting Sun
- Department of Food Engineering, Harbin University, Zhongxing Road 109, Nangang District, Harbin 150086, China
| |
Collapse
|
4
|
Wang Q, Chen X, Meng Y, Niu M, Jia Y, Huang L, Ma W, Liang C, Li Z, Zhao L, Dang Z. The Potential Role of Genic-SSRs in Driving Ecological Adaptation Diversity in Caragana Plants. Int J Mol Sci 2024; 25:2084. [PMID: 38396759 PMCID: PMC10888960 DOI: 10.3390/ijms25042084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Caragana, a xerophytic shrub genus widely distributed in northern China, exhibits distinctive geographical substitution patterns and ecological adaptation diversity. This study employed transcriptome sequencing technology to investigate 12 Caragana species, aiming to explore genic-SSR variations in the Caragana transcriptome and identify their role as a driving force for environmental adaptation within the genus. A total of 3666 polymorphic genic-SSRs were identified across different species. The impact of these variations on the expression of related genes was analyzed, revealing a significant linear correlation (p < 0.05) between the length variation of 264 polymorphic genic-SSRs and the expression of associated genes. Additionally, 2424 polymorphic genic-SSRs were located in differentially expressed genes among Caragana species. Through weighted gene co-expression network analysis, the expressions of these genes were correlated with 19 climatic factors and 16 plant functional traits in various habitats. This approach facilitated the identification of biological processes associated with habitat adaptations in the studied Caragana species. Fifty-five core genes related to functional traits and climatic factors were identified, including various transcription factors such as MYB, TCP, ARF, and structural proteins like HSP90, elongation factor TS, and HECT. The roles of these genes in the ecological adaptation diversity of Caragana were discussed. Our study identified specific genomic components and genes in Caragana plants responsive to heterogeneous habitats. The results contribute to advancements in the molecular understanding of their ecological adaptation, lay a foundation for the conservation and development of Caragana germplasm resources, and provide a scientific basis for plant adaptation to global climate change.
Collapse
Affiliation(s)
- Qinglang Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Xing’er Chen
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Yue Meng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Miaomiao Niu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Yuanyuan Jia
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Lei Huang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Wenhong Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Zhiyong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Liqing Zhao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| | - Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; (Q.W.); (X.C.); (Y.M.); (M.N.); (Y.J.); (L.H.); (W.M.); (C.L.); (Z.L.); (L.Z.)
- Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Inner Mongolia Autonomous Region, Hohhot 010021, China
| |
Collapse
|
5
|
Jeennor S, Anantayanon J, Panchanawaporn S, Chutrakul C, Vongsangnak W, Laoteng K. Efficient de novo production of bioactive cordycepin by Aspergillus oryzae using a food-grade expression platform. Microb Cell Fact 2023; 22:253. [PMID: 38071331 PMCID: PMC10710699 DOI: 10.1186/s12934-023-02261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cordycepin (3'-deoxyadenosine) is an important bioactive compound in medical and healthcare markets. The drawbacks of commercial cordycepin production using Cordyceps spp. include long cultivation periods and low cordycepin yields. To overcome these limitations and meet the increasing market demand, the efficient production of cordycepin by the GRAS-status Aspergillus oryzae strain using a synthetic biology approach was developed in this study. RESULTS An engineered strain of A. oryzae capable of cordycepin production was successfully constructed by overexpressing two metabolic genes (cns1 and cns2) involved in cordycepin biosynthesis under the control of constitutive promoters. Investigation of the flexibility of carbon utilization for cordycepin production by the engineered A. oryzae strain revealed that it was able to utilize C6-, C5-, and C12-sugars as carbon sources, with glucose being the best carbon source for cordycepin production. High cordycepin productivity (564.64 ± 9.59 mg/L/d) was acquired by optimizing the submerged fermentation conditions. CONCLUSIONS This study demonstrates a powerful production platform for bioactive cordycepin production by A. oryzae using a synthetic biology approach. An efficient and cost-effective fermentation process for cordycepin production using an engineered strain was established, offering a powerful alternative source for further upscaling.
Collapse
Affiliation(s)
- Sukanya Jeennor
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
| | - Jutamas Anantayanon
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Sarocha Panchanawaporn
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Chanikul Chutrakul
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| |
Collapse
|
6
|
Yan Y, Huang X, Zhou Y, Li J, Liu F, Li X, Hu X, Wang J, Guo L, Liu R, Takaya N, Zhou S. Cytosol Peroxiredoxin and Cell Surface Catalase Differentially Respond to H 2O 2 Stress in Aspergillus nidulans. Antioxidants (Basel) 2023; 12:1333. [PMID: 37507873 PMCID: PMC10376852 DOI: 10.3390/antiox12071333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Both catalase and peroxiredoxin show high activities of H2O2 decomposition and coexist in the same organism; however, their division of labor in defense against H2O2 is unclear. We focused on the major peroxiredoxin (PrxA) and catalase (CatB) in Aspergillus nidulans at different growth stages to discriminate their antioxidant roles. The dormant conidia lacking PrxA showed sensitivity to high concentrations of H2O2 (>100 mM), revealing that PrxA is one of the important antioxidants in dormant conidia. Once the conidia began to swell and germinate, or further develop to young hyphae (9 h to old age), PrxA-deficient cells (ΔprxA) did not survive on plates containing H2O2 concentrations higher than 1 mM, indicating that PrxA is an indispensable antioxidant in the early growth stage. During these early growth stages, absence of CatB did not affect fungal resistance to either high (>1 mM) or low (<1 mM) concentrations of H2O2. In the mature hyphae stage (24 h to old age), however, CatB fulfills the major antioxidant function, especially against high doses of H2O2. PrxA is constitutively expressed throughout the lifespan, whereas CatB levels are low in the early growth stage of the cells developing from swelling conidia to early growth hyphae, providing a molecular basis for their different contributions to H2O2 resistance in different growth stages. Further enzyme activity and cellular localization analysis indicated that CatB needs to be secreted to be functionalized, and this process is confined to the growth stage of mature hyphae. Our results revealed differences in effectiveness and timelines of two primary anti-H2O2 enzymes in fungus.
Collapse
Affiliation(s)
- Yunfeng Yan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaofei Huang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Yao Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyi Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Feiyun Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xueying Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaotao Hu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Lingyan Guo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Renning Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Chang PK. A Simple CRISPR/Cas9 System for Efficiently Targeting Genes of Aspergillus Section Flavi Species, Aspergillus nidulans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger. Microbiol Spectr 2023; 11:e0464822. [PMID: 36651760 PMCID: PMC9927283 DOI: 10.1128/spectrum.04648-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
For Aspergillus flavus, a pathogen of considerable economic and health concern, successful gene knockout work for more than a decade has relied nearly exclusively on using nonhomologous end-joining pathway (NHEJ)-deficient recipients via forced double-crossover recombination of homologous sequences. In this study, a simple CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease) genome editing system that gave extremely high (>95%) gene-targeting frequencies in A. flavus was developed. It contained a shortened Aspergillus nidulans AMA1 autonomously replicating sequence that maintained good transformation frequencies and Aspergillus oryzae ptrA as the selection marker for pyrithiamine resistance. Expression of the codon-optimized cas9 gene was driven by the A. nidulans gpdA promoter and trpC terminator. Expression of single guide RNA (sgRNA) cassettes was controlled by the A. flavus U6 promoter and terminator. The high transformation and gene-targeting frequencies of this system made generation of A. flavus gene knockouts with or without phenotypic changes effortless. Additionally, multiple-gene knockouts of A. flavus conidial pigment genes (olgA/copT/wA or olgA/yA/wA) were quickly generated by a sequential approach. Cotransforming sgRNA vectors targeting A. flavus kojA, yA, and wA gave 52%, 40%, and 8% of single-, double-, and triple-gene knockouts, respectively. The system was readily applicable to other section Flavi aspergilli (A. parasiticus, A. oryzae, A. sojae, A. nomius, A. bombycis, and A. pseudotamarii) with comparable transformation and gene-targeting efficiencies. Moreover, it gave satisfactory gene-targeting efficiencies (>90%) in A. nidulans (section Nidulantes), A. fumigatus (section Fumigati), A. terreus (section Terrei), and A. niger (section Nigri). It likely will have a broad application in aspergilli. IMPORTANCE CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. They are also mostly strain specific or species specific. This developed system is highly efficient and allows knocking out multiple genes in A. flavus efficiently either by sequential transformation or by cotransformation of individual sgRNA vectors if desired. It is readily applicable to section Flavi species and aspergilli in other sections ("section" is a taxonomic rank between genus and species). This cross-Aspergillus section system is for wild-type isolates and does not require homologous donor DNAs to be added, NHEJ-deficient strains to be created, or forced recycling of knockout recipients to be performed for multiple-gene targeting. Hence, it simplifies and expedites the gene-targeting process significantly.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, Louisiana, USA
| |
Collapse
|
8
|
Kirchgaessner L, Wurlitzer JM, Seibold PS, Rakhmanov M, Gressler M. A genetic tool to express long fungal biosynthetic genes. Fungal Biol Biotechnol 2023; 10:4. [PMID: 36726159 PMCID: PMC9893682 DOI: 10.1186/s40694-023-00152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Secondary metabolites (SMs) from mushroom-forming fungi (Basidiomycota) and early diverging fungi (EDF) such as Mucoromycota are scarcely investigated. In many cases, production of SMs is induced by unknown stress factors or is accompanied by seasonable developmental changes on fungal morphology. Moreover, many of these fungi are considered as non-culturable under laboratory conditions which impedes investigation into SM. In the post-genomic era, numerous novel SM genes have been identified especially from EDF. As most of them encode multi-module enzymes, these genes are usually long which limits cloning and heterologous expression in traditional hosts. RESULTS An expression system in Aspergillus niger is presented that is suitable for the production of SMs from both Basidiomycota and EDF. The akuB gene was deleted in the expression host A. niger ATNT∆pyrG, resulting in a deficient nonhomologous end-joining repair mechanism which in turn facilitates the targeted gene deletion via homologous recombination. The ∆akuB mutant tLK01 served as a platform to integrate overlapping DNA fragments of long SM genes into the fwnA locus required for the black pigmentation of conidia. This enables an easy discrimination of correct transformants by screening the transformation plates for fawn-colored colonies. Expression of the gene of interest (GOI) is induced dose-dependently by addition of doxycycline and is enhanced by the dual TetON/terrein synthase promoter system (ATNT) from Aspergillus terreus. We show that the 8 kb polyketide synthase gene lpaA from the basidiomycete Laetiporus sulphureus is correctly assembled from five overlapping DNA fragments and laetiporic acids are produced. In a second approach, we expressed the yet uncharacterized > 20 kb nonribosomal peptide synthetase gene calA from the EDF Mortierella alpina. Gene expression and subsequent LC-MS/MS analysis of mycelial extracts revealed the production of the antimycobacterial compound calpinactam. This is the first report on the heterologous production of a full-length SM multidomain enzyme from EDF. CONCLUSIONS The system allows the assembly, targeted integration and expression of genes of > 20 kb size in A. niger in one single step. The system is suitable for evolutionary distantly related SM genes from both Basidiomycota and EDF. This uncovers new SM resources including genetically intractable or non-culturable fungi.
Collapse
Affiliation(s)
- Leo Kirchgaessner
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.413047.50000 0001 0658 7859Faculty Medical Technology and Biotechnology, Ernst Abbe University of Applied Sciences Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Jacob M. Wurlitzer
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Paula S. Seibold
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Malik Rakhmanov
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| | - Markus Gressler
- grid.9613.d0000 0001 1939 2794Institute of Pharmacy, Department Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745 Jena, Germany ,grid.418398.f0000 0001 0143 807XDepartment Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Winzerlaer Strasse 2, 07745 Jena, Germany
| |
Collapse
|
9
|
Transcriptome-based Mining of the Constitutive Promoters for Tuning Gene Expression in Aspergillus oryzae. J Microbiol 2023; 61:199-210. [PMID: 36745334 DOI: 10.1007/s12275-023-00020-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation has been adopted for developing metabolic engineering tools. The regulatory promoter is a crucial genetic element for strain optimization. In this study, a gene set of Aspergillus oryzae with highly constitutive expression across different growth stages was identified through transcriptome data analysis. The candidate promoters were functionally characterized in A. oryzae by transcriptional control of β-glucuronidase (GUS) as a reporter. The results showed that the glyceraldehyde triphosphate dehydrogenase promoter (PgpdA1) of A. oryzae with a unique structure displayed the most robust strength in constitutively controlling the expression compared to the PgpdA2 and other putative promoters tested. In addition, the ubiquitin promoter (Pubi) of A. oryzae exhibited a moderate expression strength. The deletion analysis revealed that the 5' untranslated regions of gpdA1 and ubi with the length of 1028 and 811 nucleotides, counted from the putative translation start site (ATG), respectively, could efficiently drive the GUS expression. Interestingly, both promoters could function on various carbon sources for cell growth. Glucose was the best fermentable carbon source for allocating high constitutive expressions during cell growth, and the high concentrations (6-8% glucose, w/v) did not repress their functions. It was also demonstrated that the secondary metabolite gene coding for indigoidine could express under the control of PgpdA1 or Pubi promoter. These strong and moderate promoters of A. oryzae provided beneficial options in tuning the transcriptional expression for leveraging the metabolic control towards the targeted products.
Collapse
|
10
|
Dionysopoulou M, Yan N, Wang B, Pliotas C, Diallinas G. Genetic and cellular characterization of MscS-like putative channels in the filamentous fungus Aspergillus nidulans. Channels (Austin) 2022; 16:148-158. [PMID: 35941834 PMCID: PMC9367656 DOI: 10.1080/19336950.2022.2098661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mechanosensitive ion channels are integral membrane proteins ubiquitously present in bacteria, archaea, and eukarya. They act as molecular sensors of mechanical stress to serve vital functions such as touch, hearing, osmotic pressure, proprioception and balance, while their malfunction is often associated with pathologies. Amongst them, the structurally distinct MscL and MscS channels from bacteria are the most extensively studied. MscS-like channels have been found in plants and Schizosaccharomyces pombe, where they regulate intracellular Ca2+ and cell volume under hypo-osmotic conditions. Here we characterize two MscS-like putative channels, named MscA and MscB, from the model filamentous fungus Aspergillus nidulans. Orthologues of MscA and MscB are present in most fungi, including relative plant and animal pathogens. MscA/MscB and other fungal MscS-like proteins share the three transmembrane helices and the extended C-terminal cytosolic domain that form the structural fingerprint of MscS-like channels with at least three additional transmembrane segments than Escherichia coli MscS. We show that MscA and MscB localize in Endoplasmic Reticulum and the Plasma Membrane, respectively, whereas their overexpression leads to increased CaCl2 toxicity or/and reduction of asexual spore formation. Our findings contribute to understanding the role of MscS-like channels in filamentous fungi and relative pathogens.
Collapse
Affiliation(s)
- Mariangela Dionysopoulou
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom.,Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Nana Yan
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Bolin Wang
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - Christos Pliotas
- Astbury Centre for Structural Molecular Biology, School of Biomedical Sciences, University of Leeds, LS2 9JT, Leeds, United Kingdom
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece
| |
Collapse
|
11
|
Nigg M, de Oliveira TC, Sarmiento-Villamil JL, de la Bastide PY, Hintz WE, Sherif SM, Shukla M, Bernier L, Saxena PK. Comparative Analysis of Transcriptomes of Ophiostoma novo-ulmi ssp. americana Colonizing Resistant or Sensitive Genotypes of American Elm. J Fungi (Basel) 2022; 8:637. [PMID: 35736120 PMCID: PMC9224576 DOI: 10.3390/jof8060637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 06/11/2022] [Indexed: 12/10/2022] Open
Abstract
The Ascomycete Ophiostoma novo-ulmi threatens elm populations worldwide. The molecular mechanisms underlying its pathogenicity and virulence are still largely uncharacterized. As part of a collaborative study of the O. novo-ulmi-elm interactome, we analyzed the O. novo-ulmi ssp. americana transcriptomes obtained by deep sequencing of messenger RNAs recovered from Ulmus americana saplings from one resistant (Valley Forge, VF) and one susceptible (S) elm genotypes at 0 and 96 h post-inoculation (hpi). Transcripts were identified for 6424 of the 8640 protein-coding genes annotated in the O. novo-ulmi nuclear genome. A total of 1439 genes expressed in planta had orthologs in the PHI-base curated database of genes involved in host-pathogen interactions, whereas 472 genes were considered differentially expressed (DEG) in S elms (370 genes) and VF elms (102 genes) at 96 hpi. Gene ontology (GO) terms for processes and activities associated with transport and transmembrane transport accounted for half (27/55) of GO terms that were significantly enriched in fungal genes upregulated in S elms, whereas the 22 GO terms enriched in genes overexpressed in VF elms included nine GO terms associated with metabolism, catabolism and transport of carbohydrates. Weighted gene co-expression network analysis identified three modules that were significantly associated with higher gene expression in S elms. The three modules accounted for 727 genes expressed in planta and included 103 DEGs upregulated in S elms. Knockdown- and knockout mutants were obtained for eight O. novo-ulmi genes. Although mutants remained virulent towards U. americana saplings, we identified a large repertoire of additional candidate O. novo-ulmi pathogenicity genes for functional validation by loss-of-function approaches.
Collapse
Affiliation(s)
- Martha Nigg
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Thais C. de Oliveira
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Jorge L. Sarmiento-Villamil
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Paul Y. de la Bastide
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada; (P.Y.d.l.B.); (W.E.H.)
| | - Will E. Hintz
- Department of Biology, Centre for Forest Biology, University of Victoria, Victoria, BC V8W 2Y2, Canada; (P.Y.d.l.B.); (W.E.H.)
| | - Sherif M. Sherif
- Alson H. Smith Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Tech, Winchester, VA 22602, USA;
| | - Mukund Shukla
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Louis Bernier
- Centre d’Étude de la Forêt (CEF) and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada; (M.N.); (T.C.d.O.); (J.L.S.-V.)
| | - Praveen K. Saxena
- Department of Plant Agriculture, Gosling Research Institute for Plant Preservation (GRIPP), University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
12
|
Evaluation of Aspergillus niger Six Constitutive Strong Promoters by Fluorescent-Auxotrophic Selection Coupled with Flow Cytometry: A Case for Citric Acid Production. J Fungi (Basel) 2022; 8:jof8060568. [PMID: 35736051 PMCID: PMC9224621 DOI: 10.3390/jof8060568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Aspergillus niger is an important industrial workhorse for the biomanufacturing of organic acids, proteins, etc. Well-controlled genetic regulatory elements, including promoters, are vital for strain engineering, but available strong promoters for A. niger are limited. Herein, to efficiently assess promoters, we developed an accurate and intuitive fluorescent-auxotrophic selection workflow based on mCherry, pyrG, CRISPR/Cas9 system, and flow cytometry. With this workflow, we characterized six endogenous constitutive promoters in A. niger. The endogenous glyceraldehyde-3-phosphate dehydrogenase promoter PgpdAg showed a 2.28-fold increase in promoter activity compared with the most frequently used strong promoter PgpdAd from A. nidulans. Six predicted conserved motifs, including the gpdA-box, were verified to be essential for the PgpdAg activity. To demonstrate its application, the promoter PgpdAg was used for enhancing the expression of citrate exporter cexA in a citric acid-producing isolate D353.8. Compared with the cexA controlled by PgpdAd, the transcription level of the cexA gene driven by PgpdAg increased by 2.19-fold, which is consistent with the promoter activity assessment. Moreover, following cexA overexpression, several genes involved in carbohydrate transport and metabolism were synergically upregulated, resulting in up to a 2.48-fold increase in citric acid titer compared with that of the parent strain. This study provides an intuitive workflow to speed up the quantitative evaluation of A. niger promoters and strong constitutive promoters for fungal cell factory construction and strain engineering.
Collapse
|
13
|
McCarthy HM, Tarallo M, Mesarich CH, McDougal RL, Bradshaw RE. Targeted Gene Mutations in the Forest Pathogen Dothistroma septosporum Using CRISPR/Cas9. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11081016. [PMID: 35448744 PMCID: PMC9025729 DOI: 10.3390/plants11081016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/04/2022] [Indexed: 05/19/2023]
Abstract
Dothistroma needle blight, caused by Dothistroma septosporum, has increased in incidence and severity over the last few decades and is now one of the most important global diseases of pines. Disease resistance breeding could be accelerated by knowledge of pathogen virulence factors and their host targets. However, this is hindered due to inefficient targeted gene disruption in D. septosporum, which is required for virulence gene characterisation. Here we report the first successful application of CRISPR/Cas9 gene editing to a Dothideomycete forest pathogen, D. septosporum. Disruption of the dothistromin pathway regulator gene AflR, with a known phenotype, was performed using nonhomologous end-joining repair with an efficiency of > 90%. Transformants with a range of disruption mutations in AflR were produced. Disruption of Ds74283, a D. septosporum gene encoding a secreted cell death elicitor, was also achieved using CRISPR/Cas9, by using a specific donor DNA repair template to aid selection where the phenotype was unknown. In this case, 100% of screened transformants were identified as disruptants. In establishing CRISPR/Cas9 as a tool for gene editing in D. septosporum, our research could fast track the functional characterisation of candidate virulence factors in D. septosporum and helps set the foundation for development of this technology in other forest pathogens.
Collapse
Affiliation(s)
- Hannah M. McCarthy
- BioProtection Aotearoa, School of Natural Sciences, Massey University, Palmerston North 4472, New Zealand; (M.T.); (R.E.B.)
- Correspondence:
| | - Mariana Tarallo
- BioProtection Aotearoa, School of Natural Sciences, Massey University, Palmerston North 4472, New Zealand; (M.T.); (R.E.B.)
| | - Carl H. Mesarich
- BioProtection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North 4472, New Zealand;
| | - Rebecca L. McDougal
- Scion, New Zealand Forest Research Institute Ltd., Rotorua 3010, New Zealand;
| | - Rosie E. Bradshaw
- BioProtection Aotearoa, School of Natural Sciences, Massey University, Palmerston North 4472, New Zealand; (M.T.); (R.E.B.)
| |
Collapse
|
14
|
Duan Y, Du Y, Yi Z, Wang Z, Pei X, Wei X, Li M. Systematic Metabolic Engineering for the Production of Azaphilones in Monascus purpureus HJ11. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1589-1600. [PMID: 35085438 DOI: 10.1021/acs.jafc.1c07588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal azaphilones have attracted considerable interest as they exhibit great potential in food and pharmacological industries. However, there is a severe bottleneck in the low production in wild strains and the ability to genetically engineer azaphilone-producing fungi. Using Monascus azaphilones (MAs) as an example, we demonstrate a systematic metabolic engineering strategy for improving the production of MAs. In this study, Monascus purpureus HJ11 was systematically engineered through a combination of promoter engineering, gene knockout, rate-limiting enzyme overexpression, repression of the competing pathway, enzyme engineering, and metabolic rebalance. The maximum yield and titer of MAs successfully increased to 906 mg/g dry cell weight (DCW) and 14.6 g/L, respectively, 2.6 and 3.7 times higher than those reported in the literature. Our successful model not only offers a practical and efficient way to improve the azaphilone production but also sheds light on the potential of systematic metabolic engineering in nonmodel fungi as a chassis for the production of high-value chemicals.
Collapse
Affiliation(s)
- Yali Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Yun Du
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhiqiang Yi
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zhe Wang
- Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310012, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Mu Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| |
Collapse
|
15
|
Ziyadi S, Iddar A, Kabine M, El Mzibri M, Moutaouakkil A. Changes in Growth, Morphology, and Physiology of Tetrahymena pyriformis Exposed to Continuous Cesium-137 and Cobalt-60 Gamma-Radiation. Curr Microbiol 2022; 79:61. [PMID: 34982197 DOI: 10.1007/s00284-021-02684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022]
Abstract
This study investigated the effects of gamma-radiation on Tetrahymena pyriformis. The experimental approach consists of exposing T. pyriformis growing in presence of Cesium-137 (137Cs) at dose rates of 1, 2, 4, and 6 cGy h-1 and Cobalt-60 (60Co) at dose rates of 8, 10, 15, and 20 cGy h-1. The radiation doses effects on growth, morphology, some metabolic enzymes, and reactive oxygen species (ROS) markers have been evaluated. When cells were growing in irradiating conditions at dose rates beyond 4 cGy h-1, a decreasing of cells and generation numbers with a prolongation of generation time and a change of morphological aspect with rounding-off of cells were observed compared to the control. The 50%-inhibitory dose (ID50) for radiation was estimated at 1568.72 ± 158.45 cGy. The gamma-radiation at dose rates more than 6 cGy h-1, affected both glyceraldehyde 3-phosphate dehydrogenase and succinate dehydrogenase by inhibiting their activities. All of these effects were more pronounced when cells were irradiated at the dose rate of 20 cGy h-1 using 60Co source. For ROS markers generated by gamma-radiation in T. pyriformis, the results showed an increase of the lipid peroxidation in cells grown in presence of gamma-radiation at dose rates more than 6 cGy h-1 and an enhancement in catalase and superoxide dismutase activities from the dose rate of 1 cGy h-1. These encouraging results suggested the use of T. pyriformis as a unicellular model cell to investigate other aspects of the response to ionizing radiation.
Collapse
Affiliation(s)
- Soukaina Ziyadi
- Biotechnology and Biomolecules Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP. 1382 R.P., 10001, Rabat, Morocco.,Health and Environment Laboratory, Faculty of Sciences Aïn-Chock, Hassan II University, Km 8 Route d'El Jadida, BP 5366 Mâarif, 20100, Casablanca, Morocco
| | - Abdelghani Iddar
- Biotechnology and Biomolecules Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP. 1382 R.P., 10001, Rabat, Morocco
| | - Mostafa Kabine
- Health and Environment Laboratory, Faculty of Sciences Aïn-Chock, Hassan II University, Km 8 Route d'El Jadida, BP 5366 Mâarif, 20100, Casablanca, Morocco
| | - Mohammed El Mzibri
- Biotechnology and Biomolecules Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP. 1382 R.P., 10001, Rabat, Morocco
| | - Adnane Moutaouakkil
- Biotechnology and Biomolecules Engineering Unit, National Center for Nuclear Energy, Science and Technology (CNESTEN), BP. 1382 R.P., 10001, Rabat, Morocco.
| |
Collapse
|
16
|
Iddar A, El Mzibri M, Moutaouakkil A. Effects of the Cobalt-60 gamma radiation on Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase. Int J Radiat Biol 2021; 98:244-252. [PMID: 34871139 DOI: 10.1080/09553002.2022.2009142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key enzyme of the glycolytic pathway, can play a physiological regulatory role and vital other roles in metabolism. This study investigated the effects of gamma radiation generated by Cobalt-60 source on GAPDH activity and protein levels in Pichia pastoris as an eukaryotic organism model. MATERIALS AND METHODS After purification of the GAPDH from P. pastoris, in vitro effects of irradiation to the dose of 2 Gy, using Cobalt-60 at the dose rate of 0.25 Gy/min, on activity and kinetic parameters were investigated. In vivo effects of gamma exposition (dose of 5 Gy) on P. pastoris GAPDH and on reactive oxygen species (ROS) markers were also explored. RESULTS AND CONCLUSIONS The in vitro irradiation of the purified GAPDH reduces the specific activity and the maximum velocity (Vmax) without alteration of substrates binding (Km). No changes occurred in the specific activity and in kinetic parameters when P. pastoris cells were exposed to Cobalt-60 source. However, this in vivo irradiation of cells produced a significant increase of the GAPDH protein level. The changes of GAPDH activity and the increase of the enzyme population as a target for gamma radiation exposure will play a role in cells adaptation under stress conditions. On the other hand, the increase of malondialdehyde and carbonyl contents and the enhancement of catalase and superoxide dismutase in irradiated cells have been noticed. The antioxidant system can play an important role in the protection of P. pastoris GAPDH against the gamma induced-ROS damage. This is the first report of the P. pastoris GAPDH as a physiological target of gamma exposition.
Collapse
Affiliation(s)
- Abdelghani Iddar
- Biotechnology and Biomolecules Engineering Unit, Life Sciences Division, National Center for Nuclear Energy, Science and Technology (CNESTEN), Rabat, Morocco
| | - Mohammed El Mzibri
- Biotechnology and Biomolecules Engineering Unit, Life Sciences Division, National Center for Nuclear Energy, Science and Technology (CNESTEN), Rabat, Morocco
| | - Adnane Moutaouakkil
- Biotechnology and Biomolecules Engineering Unit, Life Sciences Division, National Center for Nuclear Energy, Science and Technology (CNESTEN), Rabat, Morocco
| |
Collapse
|
17
|
Promoter exchange of the cryptic nonribosomal peptide synthetase gene for oligopeptide production in Aspergillus oryzae. J Microbiol 2021; 60:47-56. [PMID: 34751906 DOI: 10.1007/s12275-022-1442-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022]
Abstract
Oligopeptides with functional activities are of current interest in the nutraceutical and medical sectors. The development of the biosynthetic process of oligopeptides through a nonribosomal peptide synthetase (NRPS) system has become more challenging. To develop a production platform for nonribosomal peptides (NRPs), reprogramming of transcriptional regulation of the acv gene encoded ACV synthetase (ACVS) was implemented in Aspergillus oryzae using the CRISPR-Cas9 system. Awakening silent acv expression was successfully achieved by promoter substitution. Among the three exchanged promoters, AoPgpdA, AoPtef1, and PtPtoxA, the replacement of the native promoter with AoPgpdA led to the highest ACV production in A. oryzae. However, the ACV production of the AoPGpdA strain was also dependent on the medium composition, in which urea was the best nitrogen source, and a C:N ratio of 20:1 was optimal for tripeptide production. In addition to cell growth, magnesium ions are an essential element for ACV production and might participate in ACVS activity. It was also found that ACV was the growth-associated product of the engineered strain that might be a result of constitutive transcriptional control by the AoPgpdA promoter. This study offers a potential strategy for nonribosomal ACV production using the fungal system, which is applicable for redesigning bioactive oligopeptides with industrial relevance.
Collapse
|
18
|
Shen L, Gao J, Wang Y, Li X, Liu H, Zhong Y. Engineering the endoplasmic reticulum secretory pathway in Trichoderma reesei for improved cellulase production. Enzyme Microb Technol 2021; 152:109923. [PMID: 34688089 DOI: 10.1016/j.enzmictec.2021.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/18/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
The filamentous fungus Trichoderma reesei is an extraordinarily efficient cell factory of industrial cellulase for production of biofuels and other bio-based products because of its excellent potential to secrete cellulolytic enzymes. Engineering the protein secretory pathway may be a powerful means for efficient protein production. However, it is uncertain whether this engineering approach could improve cellulase production in T. reesei. Herein, the endoplasmic reticulum (ER) secretory pathway was engineered for the production of cellulolytic enzymes by multiple strategies, including: (I) overexpression of the key components of protein folding (Pdi1, Ero1 and BiP); (II) overexpression of the glycosylation-related elements (Gpt1 and Gls2); (III) knockout of the ER mannosidase I (Mns1) encoding gene mns1. By utilizing these ER engineering strategies, the secretion of β-glucosidase was remarkably elevated in the engineered strains, ranging from 29.2 % to 112.5 %. Furthermore, it was found that engineering these components also regulated the ER stress resistance. More importantly, the total cellulase production was increased with varying degrees, which reached a maximum of 149.4 %, using the filter paper assay (FPA) as a characterization method. These results demonstrated that engineering the ER secretory pathway can enhance protein secretion, particularly for cellulase production, which shed light for the development of high-efficient cellulolytic enzymes for economically feasible bioethanol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Linjing Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Jia Gao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yifan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xihai Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Hong Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
19
|
Wang Y, Wang C, Rajaofera MJN, Zhu L, Xu X, Liu W, Zheng F, Miao W. WY195, a New Inducible Promoter From the Rubber Powdery Mildew Pathogen, Can Be Used as an Excellent Tool for Genetic Engineering. Front Microbiol 2020; 11:610252. [PMID: 33424812 PMCID: PMC7793764 DOI: 10.3389/fmicb.2020.610252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Until now, there are few studies and reports on the use of endogenous promoters of obligate biotrophic fungi. The WY195 promoter in the genome of Oidium heveae, the rubber powdery mildew pathogen, was predicted using PromoterScan and its promoter function was verified by the transient expression of the β-glucuronidase (GUS) gene. WY195 drove high levels of GUS expression in dicotyledons and monocotyledons. qRT-PCR indicated that GUS expression regulated by the WY195 promoter was 17.54-fold greater than that obtained using the CaMV 35S promoter in dicotyledons (Nicotiana tabacum), and 5.09-fold greater than that obtained using the ACT1 promoter in monocotyledons (Oryza sativa). Furthermore, WY195-regulated GUS gene expression was induced under high-temperature and drought conditions. Soluble proteins extracted from WY195-hpaXm transgenic tobacco was bioactive. Defensive micro-HR induced by the transgene expression of hpaXm was observed on transgenic tobacco leaves. Disease resistance bioassays showed that WY195-hpaXm transgenic tobacco enhanced the resistance to tobacco mosaic virus (TMV). WY195 has great potential for development as a new tool for genetic engineering. Further in-depth studies will help to better understand the transcriptional regulation mechanisms and the pathogenic mechanisms of O. heveae.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
- Hainan Academy of Ocean and Fisheries Sciences, Haikou, China
| | - Chen Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Mamy Jayne Nelly Rajaofera
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Li Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Xinze Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Fucong Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
20
|
Molecular engineering to improve lignocellulosic biomass based applications using filamentous fungi. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:73-109. [PMID: 33934853 DOI: 10.1016/bs.aambs.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lignocellulosic biomass is an abundant and renewable resource, and its utilization has become the focus of research and biotechnology applications as a very promising raw material for the production of value-added compounds. Filamentous fungi play an important role in the production of various lignocellulolytic enzymes, while some of them have also been used for the production of important metabolites. However, wild type strains have limited efficiency in enzyme production or metabolic conversion, and therefore many efforts have been made to engineer improved strains. Examples of this are the manipulation of transcriptional regulators and/or promoters of enzyme-encoding genes to increase gene expression, and protein engineering to improve the biochemical characteristics of specific enzymes. This review provides and overview of the applications of filamentous fungi in lignocellulosic biomass based processes and the development and current status of various molecular engineering strategies to improve these processes.
Collapse
|
21
|
Wei TY, Wu YJ, Xie QP, Tang JW, Yu ZT, Yang SB, Chen SX. CRISPR/Cas9-Based Genome Editing in the Filamentous Fungus Glarea lozoyensis and Its Application in Manipulating gloF. ACS Synth Biol 2020; 9:1968-1977. [PMID: 32786921 DOI: 10.1021/acssynbio.9b00491] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glarea lozoyensis is an important industrial fungus that produces the pneumocandin B0, which is used for the synthesis of antifungal drug caspofungin. However, because of the limitations and complications of traditional genetic tools, G. lozoyensis strain engineering has been hindered. In this study, we established an efficient CRISPR/Cas9-based gene editing tool in G. lozoyensis SIPI1208. With this method, gene mutagenesis efficiency in the target locus can be up to 80%, which enables the rapid gene knockout. According to the reports, GloF and Ap-HtyE, proline hydroxylases involved in pneumocandin and Echinocandin B biosynthesis, respectively, can catalyze the proline to generate different ratios of trans-3-hydroxy-l-proline to trans-4-hydroxy-l-proline. Heterologous expression of Ap-HtyE in G. lozoyensis decreased the ratio of pneumocandin C0 to (pneumocandin B0 + pneumocandin C0) from 33.5% to 11% without the addition of proline to the fermentation medium. Furthermore, the gloF was replaced by ap-htyE to study the production of pneumocandin C0. However, the gene replacement has been hampered by traditional gene tools since gloF and gloG, two contiguous genes indispensable in the biosynthesis of pneumocandins, are cotranscribed into one mRNA. With the CRISPR/Cas9 strategy, ap-htyE was knocked in and successfully replaced gloF, and results showed that the knock-in strain retained the ability to produce pneumocandin B0, but the production of pneumocandin C0 was abolished. Thus, this strain displayed a competitive advantage in the industrial production of pneumocandin B0. In summary, this study showed that the CRISPR/Cas9-based gene editing tool is efficient for manipulating genes in G. lozoyensis.
Collapse
Affiliation(s)
- Teng-Yun Wei
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Yuan-Jie Wu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Qiu-Ping Xie
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Jia-Wei Tang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Zhi-Tuo Yu
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Song-Bai Yang
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| | - Shao-Xin Chen
- Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Pudong, Shanghai 201203, China
| |
Collapse
|
22
|
Shi JC, Shi WL, Zhou YR, Chen XL, Zhang YZ, Zhang X, Zhang WX, Song XY. The Putative Methyltransferase TlLAE1 Is Involved in the Regulation of Peptaibols Production in the Biocontrol Fungus Trichoderma longibrachiatum SMF2. Front Microbiol 2020; 11:1267. [PMID: 32612590 PMCID: PMC7307461 DOI: 10.3389/fmicb.2020.01267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022] Open
Abstract
The biocontrol fungus Trichoderma longibrachiatum SMF2 secretes a large quantity of peptaibols that have been shown to have a range of biological activities and therefore great application values. However, the mechanism of the regulatory expression of peptaibols is still unclear. The putative methyltransferase LaeA/LAE1 is a global regulator involved in the biosynthesis of some secondary metabolites in filamentous fungi. In this study, we demonstrated that the ortholog of LaeA/LAE1 in the biocontrol fungus T. longibrachiatum SMF2, TlLAE1, plays an important role in the regulation of peptaibols production. Deletion of Tllae1 resulted in a slight negative impact on mycelial growth, and a significant defect in conidial production. Deletion of Tllae1 also compromised the production of peptaibols to a large degree. Further analyses indicated that this defect occurred at the transcriptional level of the two synthetases-encoding genes, tlx1 and tlx2, which are responsible for peptaibols production. By contrast, constitutive expression of Tllae1 in T. longibrachiatum SMF2 led to 2-fold increased peptaibols production, suggesting that this is a strategy to improve peptaibols production in Trichoderma fungi. These results demonstrate the important role of LAE1 in the regulation of peptaibols production in T. longibrachiatum SMF2.
Collapse
Affiliation(s)
- Jin-Chao Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wei-Ling Shi
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yan-Rong Zhou
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao, China
| | - Wei-Xin Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
23
|
Wang Y, Wang C, Rajaofera MJN, Zhu L, Liu W, Zheng F, Miao W. WY7 is a newly identified promoter from the rubber powdery mildew pathogen that regulates exogenous gene expression in both monocots and dicots. PLoS One 2020; 15:e0233911. [PMID: 32479550 PMCID: PMC7263610 DOI: 10.1371/journal.pone.0233911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Promoters are very important for transcriptional regulation and gene expression, and have become invaluable tools for genetic engineering. Owing to the characteristics of obligate biotrophs, molecular research into obligate biotrophic fungi is seriously lagging behind, and very few of their endogenous promoters have been developed. In this study, a WY7 fragment was predicted in the genome of Oidium heveae Steinmann using PromoterScan. Its promoter function was verified with transient transformations (Agrobacterium tumefaciens-mediated transformation, ATMT) in Nicotiana tabacum cv. Xanthi nc. The analysis of the transcription range showed that WY7 could regulate GUS expression in both monocots (Zea mays Linn and Oryza sativa L. spp. Japonica cv. Nipponbare) and dicots (N. tabacum and Hylocereus undulates Britt). The results of the quantitative detection showed that the GUS transient expression levels when regulated by WY7 was more than 11.7 times that of the CaMV 35S promoter in dicots (N. tabacum) and 5.13 times that of the ACT1 promoter in monocots (O. sativa). GUS staining was not detected in the T1 generation of the WY7-GUS transgenic N. tabacum. This showed that WY7 is an inducible promoter. The cis elements of WY7 were predicted using PlantCARE, and further experiments indicated that WY7 was a low temperature- and salt-inducible promoter. Soluble proteins produced by WY7-hpa1Xoo transgenic tobacco elicited hypersensitive responses (HR) in N. tabacum leaves. N. tabacum transformed with pBI121-WY7-hpa1Xoo exhibited enhanced resistance to the tobacco mosaic virus (TMV). The WY7 promoter has a lot of potential as a tool for plant genetic engineering. Further in-depth studies will help to better understand the transcriptional regulation mechanisms of O. heveae.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Chen Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Mamy Jayne Nelly Rajaofera
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Li Zhu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Fucong Zheng
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Ministry of Education, Haikou, China
- College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
24
|
Dimou S, Martzoukou O, Dionysopoulou M, Bouris V, Amillis S, Diallinas G. Translocation of nutrient transporters to cell membrane via Golgi bypass in Aspergillus nidulans. EMBO Rep 2020; 21:e49929. [PMID: 32452614 DOI: 10.15252/embr.201949929] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nutrient transporters, being polytopic membrane proteins, are believed, but not formally shown, to traffic from their site of synthesis, the ER, to the plasma membrane through Golgi-dependent vesicular trafficking. Here, we develop a novel genetic system to investigate the trafficking of a neosynthesized model transporter, the well-studied UapA purine transporter of Aspergillus nidulans. We show that sorting of neosynthesized UapA to the plasma membrane (PM) bypasses the Golgi and does not necessitate key Rab GTPases, AP adaptors, microtubules or endosomes. UapA PM localization is found to be dependent on functional COPII vesicles, actin polymerization, clathrin heavy chain and the PM t-SNARE SsoA. Actin polymerization proved to primarily affect COPII vesicle formation, whereas the essential role of ClaH seems indirect and less clear. We provide evidence that other evolutionary and functionally distinct transporters of A. nidulans also follow the herein identified Golgi-independent trafficking route of UapA. Importantly, our findings suggest that specific membrane cargoes drive the formation of distinct COPII subpopulations that bypass the Golgi to be sorted non-polarly to the PM, and thus serving house-keeping cell functions.
Collapse
Affiliation(s)
- Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga Martzoukou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Vangelis Bouris
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Wang X, Wang Y, Ning S, Shi S, Tan L. Improving Azo Dye Decolorization Performance and Halotolerance of Pichia occidentalis A2 by Static Magnetic Field and Possible Mechanisms Through Comparative Transcriptome Analysis. Front Microbiol 2020; 11:712. [PMID: 32431675 PMCID: PMC7216737 DOI: 10.3389/fmicb.2020.00712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
A halotolerant yeast, Pichia occidentalis A2, was recently isolated that can decolorize various azo dyes. The azo dye decolorization performance of this strain was characterized, including the degradation pathway and detoxification effects of this yeast. Additionally, the effect of static magnetic field (SMF) on this decolorization process was investigated. Activities of key enzymes were analyzed to estimate the change of metabolic activity. Furthermore, possible mechanisms were analyzed through detecting differentially expressed genes between yeast A2 in the absence and presence of SMF. The results indicated that yeast A2 displayed the optimal decolorization performance when the concentrations (in g/L) of glucose, (NH4)2SO4, yeast extract, and NaCl were 4.0, 1.0, 0.1, and ≤30.0, respectively. Meanwhile, the optimal rotation speed, temperature, and pH were 160 rpm, 30°C, and 5.0, respectively. Acid Red B was decolorized and detoxified by yeast A2 through successive steps, including cleavage of the naphthalene-amidine bond, reductive deamination, oxidative deamination/desulfurization, open-loop of hydroxy-substituted naphthalene, and tricarboxylic acid cycle. The dye decolorization efficiency and halotolerance of yeast A2 were enhanced by 206.3 mT SMF. The activities of manganese peroxidase, and laccase were elevated 1.37- and 1.16-fold by 206.3 mT SMF, but lignin peroxidase activity showed little change. It was suggested from the transcriptome sequence that the enhanced halotolerance might be related to the upregulated genes encoding the enzymes or functional proteins related to intracellular synthesis and accumulation of glycerol.
Collapse
Affiliation(s)
| | | | | | | | - Liang Tan
- School of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|
26
|
Umemura M, Kuriiwa K, Dao LV, Okuda T, Terai G. Promoter tools for further development of Aspergillus oryzae as a platform for fungal secondary metabolite production. Fungal Biol Biotechnol 2020; 7:3. [PMID: 32211196 PMCID: PMC7092444 DOI: 10.1186/s40694-020-00093-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/05/2020] [Indexed: 01/14/2023] Open
Abstract
Background The filamentous fungus Aspergillus oryzae is widely used for secondary metabolite production by heterologous expression; thus, a wide variety of promoter tools is necessary to broaden the application of this species. Here we built a procedure to survey A. flavus genes constitutively highly expressed in 83 transcriptome datasets obtained under various conditions affecting secondary metabolite production, to find promoters useful for heterologous expression of genes in A. oryzae. Results To test the ability of the promoters of the top 6 genes to induce production of a fungal secondary metabolite, ustiloxin B, we inserted the promoters before the start codon of ustR, which encodes the transcription factor of the gene cluster responsible for ustiloxin B biosynthesis, in A. oryzae. Four of the 6 promoters induced ustiloxin B production in all tested media (solid maize, liquid V8 and PDB media), and also ustR expression. Two of the 4 promoters were those of tef1 and gpdA, which are well characterized in A. oryzae and A. nidulans, respectively, whereas the other two, those of AFLA_030930 and AFLA_113120, are newly reported here and show activities comparable to that of the gpdA promoter with respect to induction of gene expression and ustiloxin B production. Conclusion We newly reported two sequences as promoter tools for secondary metabolite production in A. oryzae. Our results demonstrate that our simple strategy of surveying for constitutively highly expressed genes in large-scale transcriptome datasets is useful for finding promoter sequences that can be used as heterologous expression tools in A. oryzae.
Collapse
Affiliation(s)
- Maiko Umemura
- 1Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, 305-8566 Japan.,2Computational Bio Big Data Open Innovation Laboratory, AIST, Ibaraki, 305-8566 Japan
| | - Kaoru Kuriiwa
- 1Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, 305-8566 Japan.,3Department of Zoology, National Museum of Nature and Science, Ibaraki, 305-0005 Japan
| | - Linh Viet Dao
- 1Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, 305-8566 Japan.,5Present Address: Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583 Singapore
| | - Tetsuya Okuda
- 1Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, 305-8566 Japan
| | - Goro Terai
- 4Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, 277-8561 Japan
| |
Collapse
|
27
|
A Negative Regulator of Carotenogenesis in Blakeslea trispora. Appl Environ Microbiol 2020; 86:AEM.02462-19. [PMID: 31953331 DOI: 10.1128/aem.02462-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 11/20/2022] Open
Abstract
As an ideal carotenoid producer, Blakeslea trispora has gained much attention due to its large biomass and high production of β-carotene and lycopene. However, carotenogenesis regulation in B. trispora still needs to be clarified, as few investigations have been conducted at the molecular level in B. trispora In this study, a gene homologous to carotenogenesis regulatory gene (crgA) was cloned from the mating type (-) of B. trispora, and the deduced CrgA protein was analyzed for its primary structure and domains. To clarify the crgA-mediated regulation in B. trispora, we used the strategies of gene knockout and complementation to investigate the effect of crgA expression on the phenotype of B. trispora In contrast to the wild-type strain, the crgA null mutant (ΔcrgA) was defective in sporulation but accumulated much more β-carotene (31.2% improvement at the end) accompanied by enhanced transcription of three structural genes (hmgR, carB, and carRA) for carotenoids throughout the culture time. When the wild-type copy of crgA was complemented into the crgA null mutant, sporulation, transcription of structural genes, and carotenoid production were restored to those of the wild-type strain. A gas chromatography-mass spectrometry (GC-MS)-based metabolomic approach and multivariate statistical analyses were performed to investigate the intracellular metabolite profiles. The reduced levels of tricarboxylic acid (TCA) cycle components and some amino acids and enhanced levels of glycolysis intermediates and fatty acids indicate that more metabolic flux was driven into the mevalonate (MVA) pathway; thus, the increase of precursors and fat content contributes to the accumulation of carotenoids.IMPORTANCE The zygomycete Blakeslea trispora is an important strain for the production of carotenoids on a large scale. However, the regulation mechanism of carotenoid biosynthesis is still not well understood in this filamentous fungus. In the present study, we sought to investigate how crgA influences the expression of structural genes for carotenoids, carotenoid biosynthesis, and other anabolic phenotypes. This will lead to a better understanding of the global regulation mechanism of carotenoid biosynthesis and facilitate engineering this strain in the future for enhanced production of carotenoids.
Collapse
|
28
|
Xie H, Ma Q, Wei D, Wang F. Metabolic engineering of an industrial Aspergillus niger strain for itaconic acid production. 3 Biotech 2020; 10:113. [PMID: 32117674 DOI: 10.1007/s13205-020-2080-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/20/2020] [Indexed: 02/04/2023] Open
Abstract
Itaconic acid is a value-added organic acid that is widely applied in industrial production. It can be converted from citric acid by some microorganisms including Aspergillus terreus and Aspergillus niger. Because of high citric acid production (more than 200 g/L), A. niger strains may be developed into powerful itaconic acid-producing microbial cell factories. In this study, industrial citric acid-producing strain A. niger YX-1217, capable of producing 180.0-200.0 g/L, was modified to produce itaconic acid by metabolic engineering. A key gene cadA encoding aconitase was expressed in A. niger YX-1217 under the control of three different promoters. Analyses showed that the PglaA promoter resulted in higher levels of gene expression than the PpkiA and PgpdA promoters. Moreover, the synthesis pathway of itaconic acid was extended by introducing the acoA gene, and the cadA gene, encoding aconitate decarboxylase, into A. niger YX-1217 under the function of the two rigid short-peptide linkers L1 or L2. The resulting recombinant strains L-1 and L-2 were induced to produce itaconic acid in fed-batch fermentations under three-stage control of agitation speed. After fermentation for 104 h, itaconic acid concentrations in the recombinant strain L-2 culture reached 7.2 g/L, which represented a 71.4% increase in itaconic acid concentration compared with strain Z-17 that only expresses cadA. Therefore, co-expression of acoA and cadA resulted in an extension of the citric acid metabolic pathway to the itaconic acid metabolic pathway, thereby increasing the production of itaconic acid by A. niger.
Collapse
Affiliation(s)
- Hui Xie
- 1State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237 China
- 2Life Science College, Henan Agricultural University, Zhengzhou, 450002 China
| | - Qinyuan Ma
- Weifang Ensign Industry Co., Ltd, Weifang, 262499 China
| | - Dongzhi Wei
- 1State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237 China
| | - Fengqing Wang
- 1State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237 China
| |
Collapse
|
29
|
LaeA Controls Citric Acid Production through Regulation of the Citrate Exporter-Encoding cexA Gene in Aspergillus luchuensis mut. kawachii. Appl Environ Microbiol 2020; 86:AEM.01950-19. [PMID: 31862728 DOI: 10.1128/aem.01950-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
The putative methyltransferase LaeA is a global regulator of metabolic and development processes in filamentous fungi. We characterized the homologous laeA genes of the white koji fungus Aspergillus luchuensis mut. kawachii (A. kawachii) to determine their role in citric acid hyperproduction. The ΔlaeA strain exhibited a significant reduction in citric acid production. Cap analysis gene expression (CAGE) revealed that laeA is required for the expression of a putative citrate exporter-encoding cexA gene, which is critical for citric acid production. Deficient citric acid production by a ΔlaeA strain was rescued by the overexpression of cexA to a level comparable with that of a cexA-overexpressing ΔcexA strain. In addition, chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) analysis indicated that LaeA regulates the expression of cexA via methylation levels of the histones H3K4 and H3K9. These results indicate that LaeA is involved in citric acid production through epigenetic regulation of cexA in A. kawachii IMPORTANCE A. kawachii has been traditionally used for production of the distilled spirit shochu in Japan. Citric acid produced by A. kawachii plays an important role in preventing microbial contamination during the shochu fermentation process. This study characterized homologous laeA genes; using CAGE, complementation tests, and ChIP-qPCR, it was found that laeA is required for citric acid production through the regulation of cexA in A. kawachii The epigenetic regulation of citric acid production elucidated in this study will be useful for controlling the fermentation processes of shochu.
Collapse
|
30
|
Sun X, Zhang X, Huang H, Wang Y, Tu T, Bai Y, Wang Y, Zhang J, Luo H, Yao B, Su X. Engineering the cbh1 Promoter of Trichoderma reesei for Enhanced Protein Production by Replacing the Binding Sites of a Transcription Repressor ACE1 to Those of the Activators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1337-1346. [PMID: 31933359 DOI: 10.1021/acs.jafc.9b05452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The strong and inducible cbh1 promoter is most widely used to express heterologous proteins, useful in food and feed industries, in Trichoderma reesei. Enhancing its ability to direct transcription provides a general strategy to improve protein production in T. reesei. The cbh1 promoter was engineered by replacing eight binding sites of the transcription repressor ACE1 to those of the activators ACE2, Hap2/3/5, and Xyr1. While changing ACE1 to Hap2/3/5-binding sites completely abolished the transcription ability, replacements with ACE2- and Xyr1-binding sites (designated cbh1pA and cbh1pX promoters, respectively) largely improved the promoter transcription efficiency, as reflected by expression of a reporter gene DsRed. The cbh1pA and cbh1pX promoters were applied to improve secretory expression of a codon-optimized mannanase from Aspergillus niger to 3.6- and 5.0-fold higher, respectively, which has high application potential in feed industry.
Collapse
Affiliation(s)
- Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Xuhuan Zhang
- Biotechnology Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , People's Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Jie Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute , Chinese Academy of Agricultural Sciences , Beijing 100081 , China
| |
Collapse
|
31
|
Cloning and functional characterization of gpd and α-tubulin promoters from Annulohypoxylon stygium, a companion fungus of Tremella fuciformis. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2019.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Rendsvig JKH, Workman CT, Hoof JB. Bidirectional histone-gene promoters in Aspergillus: characterization and application for multi-gene expression. Fungal Biol Biotechnol 2019; 6:24. [PMID: 31867115 PMCID: PMC6900853 DOI: 10.1186/s40694-019-0088-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/23/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Filamentous fungi are important producers of enzymes and bioactive secondary metabolites and are exploited for industrial purposes. Expression and characterization of biosynthetic pathways requires stable expression of multiple genes in the production host. Fungal promoters are indispensable for the accomplishment of this task, and libraries of promoters that show functionality across diverse fungal species facilitate synthetic biology approaches, pathway expression, and cell-factory construction. RESULTS In this study, we characterized the intergenic region between the genes encoding histones H4.1 and H3, from five phylogenetically diverse species of Aspergillus, as bidirectional promoters (Ph4h3). By expression of the genes encoding fluorescent proteins mRFP1 and mCitrine, we show at the translational and transcriptional level that this region from diverse species is applicable as strong and constitutive bidirectional promoters in Aspergillus nidulans. Bioinformatic analysis showed that the divergent gene orientation of h4.1 and h3 appears maintained among fungi, and that the Ph4h3 display conserved DNA motifs among the investigated 85 Aspergilli. Two of the heterologous Ph4h3s were utilized for single-locus expression of four genes from the putative malformin producing pathway from Aspergillus brasiliensis in A. nidulans. Strikingly, heterologous expression of mlfA encoding the non-ribosomal peptide synthetase is sufficient for biosynthesis of malformins in A. nidulans, which indicates an iterative use of one adenylation domain in the enzyme. However, this resulted in highly stressed colonies, which was reverted to a healthy phenotype by co-expressing the residual four genes from the putative biosynthetic gene cluster. CONCLUSIONS Our study has documented that Ph4h3 is a strong constitutive bidirectional promoter and a valuable new addition to the genetic toolbox of at least the genus Aspergillus.
Collapse
Affiliation(s)
- Jakob K. H. Rendsvig
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Christopher T. Workman
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Jakob B. Hoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
33
|
Nordzieke DE, Fernandes TR, El Ghalid M, Turrà D, Di Pietro A. NADPH oxidase regulates chemotropic growth of the fungal pathogen Fusarium oxysporum towards the host plant. THE NEW PHYTOLOGIST 2019; 224:1600-1612. [PMID: 31364172 DOI: 10.1111/nph.16085] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/24/2019] [Indexed: 05/06/2023]
Abstract
Soil-inhabiting fungal pathogens use chemical signals to locate and colonise the host plant. In the vascular wilt fungus Fusarium oxysporum, hyphal chemotropism towards tomato roots is triggered by secreted plant peroxidases (Prx), which catalyse the reductive cleavage of reactive oxygen species (ROS). Here we show that this chemotropic response requires the regulated synthesis of ROS by the conserved fungal NADPH oxidase B (NoxB) complex, and their transformation into hydrogen peroxide (H2 O2 ) by superoxide dismutase (SOD). Deletion of NoxB or the regulatory subunit NoxR, or pharmacological inhibition of SOD, specifically abolished chemotropism of F. oxysporum towards Prx gradients. Addition of isotropic concentrations of H2 O2 rescued chemotropic growth in the noxBΔ and noxRΔ mutants, but not in a mutant lacking the G protein-coupled receptor Ste2. Prx-triggered rapid Nox- and Ste2-dependent phosphorylation of the cell wall integrity mitogen-activated protein kinase (CWI MAPK) Mpk1, an essential component of the chemotropic response. These results suggest that Ste2 and the CWI MAPK cascade function downstream of NoxB in Prx chemosensing. Our findings reveal a new role for Nox enzymes in directed hyphal growth of a filamentous pathogen towards its host and might be of broad interest for chemotropic interactions between plants and root-colonising fungi.
Collapse
Affiliation(s)
| | - Tânia R Fernandes
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| | - Mennat El Ghalid
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| | - David Turrà
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, Córdoba, 14071, Spain
| |
Collapse
|
34
|
Grau MF, Entwistle R, Oakley CE, Wang CCC, Oakley BR. Overexpression of an LaeA-like Methyltransferase Upregulates Secondary Metabolite Production in Aspergillus nidulans. ACS Chem Biol 2019; 14:1643-1651. [PMID: 31265232 DOI: 10.1021/acschembio.9b00380] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fungal secondary metabolites (SMs) include medically valuable compounds as well as compounds that are toxic, carcinogenic, and/or contributors to fungal pathogenesis. It is consequently important to understand the regulation of fungal secondary metabolism. McrA is a recently discovered transcription factor that negatively regulates fungal secondary metabolism. Deletion of mcrA (mcrAΔ), the gene encoding McrA, results in upregulation of many SMs and alters the expression of more than 1000 genes. One gene strongly upregulated by the deletion of mcrA is llmG, a putative methyl transferase related to LaeA, a major regulator of secondary metabolism. We artificially upregulated llmG by replacing its promoter with strong constitutive promoters in strains carrying either wild-type mcrA or mcrAΔ. Upregulation of llmG on various media resulted in increased production of the important toxin sterigmatocystin and compounds from at least six major SM pathways. llmG is, thus, a master SM regulator. mcrAΔ generally resulted in greater upregulation of SMs than upregulation of llmG, indicating that the full effects of mcrA on secondary metabolism involve genes in addition to llmG. However, the combination of mcrAΔ and upregulation of llmG generally resulted in greater compound production than mcrAΔ alone (in one case more than 460 times greater than the control). This result indicates that deletion of mcrA and/or upregulation of llmG can likely be combined with other strategies for eliciting SM production to greater levels than can be obtained with any single strategy.
Collapse
Affiliation(s)
- Michelle F. Grau
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - C. Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
35
|
Nguyen DX, Sakaguchi T, Nakazawa T, Sakamoto M, Honda Y. A 14-bp stretch plays a critical role in regulating gene expression from β1-tubulin promoters of basidiomycetes. Curr Genet 2019; 66:217-228. [DOI: 10.1007/s00294-019-01014-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/25/2022]
|
36
|
Honda Y, Tanigawa E, Tsukihara T, Nguyen DX, Kawabe H, Sakatoku N, Watari J, Sato H, Yano S, Tachiki T, Irie T, Watanabe T, Watanabe T. Stable and transient transformation, and a promoter assay in the selective lignin-degrading fungus, Ceriporiopsis subvermispora. AMB Express 2019; 9:92. [PMID: 31236750 PMCID: PMC6591348 DOI: 10.1186/s13568-019-0818-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/04/2022] Open
Abstract
A genetic transformation system was developed for the selective white rot basidiomycete Ceriporiopsis subvermispora using a modified protocol with polyethylene glycol and CaCl2 treatment of the protoplasts and plasmids harboring recombinant hygromycin phosphotransferase (hph) driven by a homologous promoter. During repeated transfer on fresh potato dextrose agar plates containing 100 µg/ml hygromycin B, most transformants lost drug resistance, while the remaining isolates showed stable resistance over five transfers. No drug-resistant colonies appeared in control experiments without DNA or using a promoter-less derivative of the plasmid, indicating that a transient expression of the recombinant hph was driven by the promoter sequence in these unstable drug-resistant transformants. Southern blot analysis of the stable transformants revealed random integration of the plasmid DNA fragment in the chromosome at different copy numbers. This transformation system yielding mostly transient transformants was successfully used for promoter assay experiments, and only a 141-bp fragment was found to be essential for the basic promoter function of glyceraldehyde dehydrogenase gene (gpd) in this fungus. Subsequent mutational analyses suggested that a TATAA sequence is important for the basic promoter function of gpd gene. The promoter assay system will enable the functional analysis of gene expression control sequences quickly and easily, mostly in the absence of undesirable effects from differences in copy number and chromosomal position of an integrated reporter gene among stable transformants.
Collapse
|
37
|
Dalestones A and B, two anti-inflammatory cyclopentenones from Daldinia eschscholzii with an edited strong promoter for the global regulator LaeA-like gene. Chin J Nat Med 2019; 17:387-393. [PMID: 31171274 DOI: 10.1016/s1875-5364(19)30045-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 11/22/2022]
Abstract
Replacement of the native promoter of theglobal regulator LaeA-like gene of Daldinia eschscholzii by a strong gpdA promoter led to the generation of two novel cyclopentenone metabolites, named dalestones A and B, whose structures were assigned by a combination of spectroscopic analysis, modified Mosher's reaction, and electronic circular dichroism (ECD). Dalestones A and B inhibit the gene expression of TNF-α and IL-6 in LPS-induced RAW264.7 macrophages.
Collapse
|
38
|
Truncated, strong inducible promoter P mcl1 from Metarhizium anisopliae. 3 Biotech 2019; 9:75. [PMID: 30800586 DOI: 10.1007/s13205-019-1610-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
In this study, Metarhizium collagen -like protein (MCL1) promoter from Metarhizium anisopliae was analysed and truncated into different sizes through series of targeted and random deletions based on the presence of various transcription factor-binding sites. Synthetic Green Fluorescent Protein (sGFP) was being utilized as a reporter gene to study the relative expression driving capability of unmodified and truncated promoters. Conserved promoter sequence analysis revealed similarity between the paralogous promoters from M. brunneum and M. acridum. sGFP expression in the haemolymph was directed with the help of mcl1 signal peptide sequence. Deleting the promoter region from - 2764 to - 1583 bp increases the promoter mcl1 (Pmcl1) activity by twofolds, while deletions of the regions upstream of - 1150 bp and - 840 bp caused a decrease of sGFP expression level (80% and 70%, respectively). Transcriptional binding sites predicted for the deleted region revealed the loss of upstream repressing sequences such as Matalpha2 along with ROX1 and Rap1 repressor-binding sites located - 2234 bp, - 1754 bp and - 1724 bp from the TSS. Compared with Pmcl1-wild type (2.7 kbp), Pmcl1-1583 bp had a shorter sequence and showed statistically significant expression in M. anisopliae. This study introduces a highly efficient strong inducible promoter for over-expression of target genes in M. anisopliae.
Collapse
|
39
|
Construction and characterization of the GFAT gene as a novel selection marker in Aspergillus nidulans. Appl Microbiol Biotechnol 2018; 102:7951-7962. [DOI: 10.1007/s00253-018-9185-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/09/2018] [Accepted: 06/17/2018] [Indexed: 11/30/2022]
|
40
|
Hernanz-Koers M, Gandía M, Garrigues S, Manzanares P, Yenush L, Orzaez D, Marcos JF. FungalBraid: A GoldenBraid-based modular cloning platform for the assembly and exchange of DNA elements tailored to fungal synthetic biology. Fungal Genet Biol 2018; 116:51-61. [DOI: 10.1016/j.fgb.2018.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
|
41
|
Zhang H, Yan JN, Zhang H, Liu TQ, Xu Y, Zhang YY, Li J. Effect of gpd box copy numbers in the gpdA promoter of Aspergillus nidulans on its transcription efficiency in Aspergillus niger. FEMS Microbiol Lett 2018; 365:5045313. [DOI: 10.1093/femsle/fny154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- He Zhang
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Street Xiangfang District, Harbin 150030, China
| | - Jian nan Yan
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Street Xiangfang District, Harbin 150030, China
| | - Hui Zhang
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Street Xiangfang District, Harbin 150030, China
| | - Tian qi Liu
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Street Xiangfang District, Harbin 150030, China
| | - Yue Xu
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Street Xiangfang District, Harbin 150030, China
| | - Yuan yuan Zhang
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Street Xiangfang District, Harbin 150030, China
| | - Jie Li
- College of Life Sciences, Northeast Agricultural University, No. 600 Changjiang Street Xiangfang District, Harbin 150030, China
| |
Collapse
|
42
|
Liu Y, Koh CMJ, Yap SA, Du M, Hlaing MM, Ji L. Identification of novel genes in the carotenogenic and oleaginous yeast Rhodotorula toruloides through genome-wide insertional mutagenesis. BMC Microbiol 2018; 18:14. [PMID: 29466942 PMCID: PMC5822628 DOI: 10.1186/s12866-018-1151-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/30/2018] [Indexed: 01/15/2023] Open
Abstract
Background Rhodotorula toruloides is an outstanding producer of lipids and carotenoids. Currently, information on the key metabolic pathways and their molecular basis of regulation remains scarce, severely limiting efforts to engineer it as an industrial host. Results We have adapted Agrobacterium tumefaciens-mediated transformation (ATMT) as a gene-tagging tool for the identification of novel genes in R. toruloides. Multiple factors affecting transformation efficiency in several species in the Pucciniomycotina subphylum were optimized. The Agrobacterium transfer DNA (T-DNA) showed predominantly single-copy chromosomal integrations in R. toruloides, which were trackable by high efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR). To demonstrate the application of random T-DNA insertions for strain improvement and gene hunting, 3 T-DNA insertional libraries were screened against cerulenin, nile red and tetrazolium violet respectively, resulting in the identification of 22 mutants with obvious phenotypes in fatty acid or lipid metabolism. Similarly, 5 carotenoid biosynthetic mutants were obtained through visual screening of the transformants. To further validate the gene tagging strategy, one of the carotenoid production mutants, RAM5, was analyzed in detail. The mutant had a T-DNA inserted at the putative phytoene desaturase gene CAR1. Deletion of CAR1 by homologous recombination led to a phenotype similar to RAM5 and it could be genetically complemented by re-introduction of the wild-type CAR1 genome sequence. Conclusions T-DNA insertional mutagenesis is an efficient forward genetic tool for gene discovery in R. toruloides and related oleaginous yeast species. It is also valuable for metabolic engineering in these hosts. Further analysis of the 27 mutants identified in this study should augment our knowledge of the lipid and carotenoid biosynthesis, which may be exploited for oil and isoprenoid metabolic engineering. Electronic supplementary material The online version of this article (10.1186/s12866-018-1151-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanbin Liu
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
| | - Chong Mei John Koh
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sihui Amy Yap
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Minge Du
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Mya Myintzu Hlaing
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lianghui Ji
- Biomaterials and Biocatalysts Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
43
|
Madhavan A, Pandey A, Sukumaran RK. Expression system for heterologous protein expression in the filamentous fungus Aspergillus unguis. BIORESOURCE TECHNOLOGY 2017; 245:1334-1342. [PMID: 28578805 DOI: 10.1016/j.biortech.2017.05.140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Heterologous protein expression in filamentous fungi is advantageous, especially in the context of large scale production of high volume low value recombinant proteins. However, such systems are rare and not available in public domain. A novel filamentous fungus - Aspergillus unguis NII 08123 was used as host for developing a protein expression system. An expression cassette was assembled using A. nidulans glyceraldehyde 3 phosphate dehydrogenase promoter (Pgapd), tryptophan synthase transcription terminator (TtrpC) and hygromycin resistance gene (hph) as selection marker. The enhanced green fluorescent protein (GFP) gene from Aequorea victoria was used as the model test protein for the evaluation of the expression system. The genetic transformation of this novel fungus was optimized through electroporation. Use of heterologous signal peptides resulted in high levels of secreted expression. The fungal host-expression system combination was tested successfully for the expression of the recombinant therapeutic protein-human interferon beta (HuIFNβ).
Collapse
Affiliation(s)
- Aravind Madhavan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Thiruvananthapuram 695 019, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Thiruvananthapuram 695 019, India; Center of Innovative and Applied Bioprocessing, Mohali 160 071, Punjab, India
| | - Rajeev K Sukumaran
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology, CSIR, Thiruvananthapuram 695 019, India.
| |
Collapse
|
44
|
Dong WX, Ding JL, Gao Y, Peng YJ, Feng MG, Ying SH. Transcriptomic insights into the alternative splicing-mediated adaptation of the entomopathogenic fungus Beauveria bassiana
to host niches: autophagy-related gene 8 as an example. Environ Microbiol 2017; 19:4126-4139. [DOI: 10.1111/1462-2920.13862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/16/2017] [Accepted: 07/16/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Wei-Xia Dong
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| | - Yang Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| | - Yue-Jin Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
45
|
Role of HxkC, a mitochondrial hexokinase-like protein, in fungal programmed cell death. Fungal Genet Biol 2016; 97:36-45. [DOI: 10.1016/j.fgb.2016.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 11/21/2022]
|
46
|
Sioupouli G, Lambrinidis G, Mikros E, Amillis S, Diallinas G. Cryptic purine transporters inAspergillus nidulansreveal the role of specific residues in the evolution of specificity in the NCS1 family. Mol Microbiol 2016; 103:319-332. [DOI: 10.1111/mmi.13559] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Georgia Sioupouli
- Department of Biology; National and Kapodistrian University of Athens, Panepistimioupolis; Athens 15784 Greece
| | - George Lambrinidis
- Department of Pharmacy; National and Kapodistrian University of Athens, Panepistimioupolis; Athens 15771 Greece
| | - Emmanuel Mikros
- Department of Pharmacy; National and Kapodistrian University of Athens, Panepistimioupolis; Athens 15771 Greece
| | - Sotiris Amillis
- Department of Biology; National and Kapodistrian University of Athens, Panepistimioupolis; Athens 15784 Greece
| | - George Diallinas
- Department of Biology; National and Kapodistrian University of Athens, Panepistimioupolis; Athens 15784 Greece
| |
Collapse
|
47
|
The CreB deubiquitinating enzyme does not directly target the CreA repressor protein in Aspergillus nidulans. Curr Genet 2016; 63:647-667. [DOI: 10.1007/s00294-016-0666-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
|
48
|
Oakley CE, Ahuja M, Sun WW, Entwistle R, Akashi T, Yaegashi J, Guo CJ, Cerqueira GC, Russo Wortman J, Wang CCC, Chiang YM, Oakley BR. Discovery of McrA, a master regulator of Aspergillus secondary metabolism. Mol Microbiol 2016; 103:347-365. [PMID: 27775185 DOI: 10.1111/mmi.13562] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2016] [Indexed: 01/17/2023]
Abstract
Fungal secondary metabolites (SMs) are extremely important in medicine and agriculture, but regulation of their biosynthesis is incompletely understood. We have developed a genetic screen in Aspergillus nidulans for negative regulators of fungal SM gene clusters and we have used this screen to isolate mutations that upregulate transcription of the non-ribosomal peptide synthetase gene required for nidulanin A biosynthesis. Several of these mutations are allelic and we have identified the mutant gene by genome sequencing. The gene, which we designate mcrA, is conserved but uncharacterized, and it encodes a putative transcription factor. Metabolite profiles of mcrA deletant, mcrA overexpressing, and parental strains reveal that mcrA regulates at least ten SM gene clusters. Deletion of mcrA stimulates SM production even in strains carrying a deletion of the SM regulator laeA, and deletion of mcrA homologs in Aspergillus terreus and Penicillum canescens alters the secondary metabolite profile of these organisms. Deleting mcrA in a genetic dereplication strain has allowed us to discover two novel compounds as well as an antibiotic not known to be produced by A. nidulans. Deletion of mcrA upregulates transcription of hundreds of genes including many that are involved in secondary metabolism, while downregulating a smaller number of genes.
Collapse
Affiliation(s)
- C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Manmeet Ahuja
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Wei-Wen Sun
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA
| | - Ruth Entwistle
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | - Tomohiro Akashi
- Division of OMICS analysis, Nagoya University Graduate School of Medicine, 65 Tsurumai, Nagoya, Aichi, 466-8550, Japan
| | - Junko Yaegashi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA
| | - Chun-Jun Guo
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA
| | - Gustavo C Cerqueira
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Jennifer Russo Wortman
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, 415 Main St, Cambridge, MA, 02142, USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA.,Department of Chemistry, Dornsife Colleges of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California, 90089, USA
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California, 90089, USA.,Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan, 71710, Republic of China
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| |
Collapse
|
49
|
The construction and use of versatile binary vectors carrying pyrG auxotrophic marker and fluorescent reporter genes for Agrobacterium-mediated transformation of Aspergillus oryzae. World J Microbiol Biotechnol 2016; 32:204. [DOI: 10.1007/s11274-016-2168-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/27/2016] [Indexed: 11/26/2022]
|
50
|
Johns AMB, Love J, Aves SJ. Four Inducible Promoters for Controlled Gene Expression in the Oleaginous Yeast Rhodotorula toruloides. Front Microbiol 2016; 7:1666. [PMID: 27818654 PMCID: PMC5073140 DOI: 10.3389/fmicb.2016.01666] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/05/2016] [Indexed: 01/24/2023] Open
Abstract
Rhodotorula (Rhodosporidium) toruloides is an oleaginous yeast with great biotechnological potential, capable of accumulating lipid up to 70% of its dry biomass, and of carotenoid biosynthesis. However, few molecular genetic tools are available for manipulation of this basidiomycete yeast and its high genomic GC content can make routine cloning difficult. We have developed plasmid vectors for transformation of R. toruloides which include elements for Saccharomyces cerevisiae in-yeast assembly; this method is robust to the assembly of GC-rich DNA and of large plasmids. Using such vectors we screened for controllable promoters, and identified inducible promoters from the genes NAR1, ICL1, CTR3, and MET16. These four promoters have independent induction/repression conditions and exhibit different levels and rates of induction in R. toruloides, making them appropriate for controllable transgene expression in different experimental situations. Nested deletions were used to identify regulatory regions in the four promoters, and to delimit the minimal inducible promoters, which are as small as 200 bp for the NAR1 promoter. The NAR1 promoter shows very tight regulation under repressed conditions as determined both by an EGFP reporter gene and by conditional rescue of a leu2 mutant. These new tools facilitate molecular genetic manipulation and controllable gene expression in R. toruloides.
Collapse
Affiliation(s)
| | - John Love
- Department of Biosciences, University of Exeter Exeter, UK
| | - Stephen J Aves
- Department of Biosciences, University of Exeter Exeter, UK
| |
Collapse
|