1
|
Contreras CA, Hazen TH, Guadarrama C, Cervantes-Rivera R, Ochoa TJ, Vinuesa P, Rasko DA, Puente JL. Phenotypic diversity of type III secretion system activity in enteropathogenic Escherichia coli clinical isolates. J Med Microbiol 2024; 73:001907. [PMID: 39432330 PMCID: PMC11493143 DOI: 10.1099/jmm.0.001907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction. Enteropathogenic Escherichia coli (EPEC) strains pose a significant threat as a leading cause of severe childhood diarrhoea in developing nations. EPEC pathogenicity relies on the type III secretion system (T3SS) encoded by the locus of enterocyte effacement (LEE), facilitating the secretion and translocation of bacterial effector proteins.Gap Statement. While the regulatory roles of PerC (plasmid-encoded regulator) and GrlA (global regulator of LEE-activator) in ler expression and LEE gene activation are well-documented in the EPEC prototype strain E2348/69, understanding the variability in LEE gene expression control mechanisms among clinical EPEC isolates remains an area requiring further investigation.Aim. This study aims to explore the diversity in LEE gene expression control mechanisms among clinical EPEC isolates through a comparative analysis of secretion profiles under defined growth conditions favouring either PerC- or GrlA-mediated activation of LEE expression.Methodology. We compared T3SS-dependent secretion patterns and promoter expression in both typical EPEC (tEPEC) and atypical EPEC (aEPEC) clinical isolates under growth conditions favouring either PerC- or GrlA-mediated activation of LEE expression. Additionally, we conducted promoter reporter activity assays, quantitative real-time PCR and Western blot experiments to assess gene expression activity.Results. Significant differences in T3SS-dependent secretion were observed among tEPEC and aEPEC strains, independent of LEE sequence variations or T3SS gene functionality. Notably, a clinical tEPEC isolate exhibited increased secretion levels under repressive growth conditions and in the absence of both PerC and GrlA, implicating an alternative mechanism in the activation of Ler (LEE-encoded regulator) expression.Conclusion. Our findings indicate that uncharacterized LEE regulatory mechanisms contribute to phenotypic diversity among clinical EPEC isolates, though their impact on clinical outcomes remains unknown. This challenges the conventional understanding based on reference strains and highlights the need to investigate beyond established models to comprehensively elucidate EPEC pathogenesis.
Collapse
Affiliation(s)
- Carmen A. Contreras
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
- Programa de Medicina Humana, Universidad Privada Antenor Orrego, Trujillo, Peru
| | - Tracy H. Hazen
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carmen Guadarrama
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Ramón Cervantes-Rivera
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - Theresa J. Ochoa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- University of Texas School of Public Health, Houston, USA
| | - Pablo Vinuesa
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| | - David A. Rasko
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jose L. Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., Mexico
| |
Collapse
|
2
|
Hernández-Martínez G, Ares MA, Rosales-Reyes R, Soria-Bustos J, Yañez-Santos JA, Cedillo ML, Girón JA, Martínez-Laguna Y, Leng F, Ibarra JA, De la Cruz MA. The nucleoid protein HU positively regulates the expression of type VI secretion systems in Enterobacter cloacae. mSphere 2024; 9:e0006024. [PMID: 38647313 PMCID: PMC11324020 DOI: 10.1128/msphere.00060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Enterobacter cloacae is an emerging pathogen isolated in healthcare-associated infections. A major virulence factor of this bacterium is the type VI secretion system (T6SS). The genome of E. cloacae harbors two T6SS gene clusters (T6SS-1 and T6SS-2), and the functional characterization of both systems showed that these two T6SSs are not expressed under the same conditions. Here, we report that the major histone-like protein HU positively regulates the expression of both T6SSs and, therefore, the function that each T6SS exerts in E. cloacae. Single deletions of the genes encoding the HU subunits (hupA and hupB) decreased mRNA levels of both T6SS. In contrast, the hupA hupB double mutant dramatically affected the T6SS expression, diminishing its transcription. The direct binding of HU to the promoter regions of T6SS-1 and T6SS-2 was confirmed by electrophoretic mobility shift assay. In addition, single and double mutations in the hup genes affected the ability of inter-bacterial killing, biofilm formation, adherence to epithelial cells, and intestinal colonization, but these phenotypes were restored when such mutants were trans-complemented. Our data broaden our understanding of the regulation of HU-mediated T6SS in these pathogenic bacteria. IMPORTANCE T6SS is a nanomachine that functions as a weapon of bacterial destruction crucial for successful colonization in a specific niche. Enterobacter cloacae expresses two T6SSs required for bacterial competition, adherence, biofilm formation, and intestinal colonization. Expression of T6SS genes in pathogenic bacteria is controlled by multiple regulatory systems, including two-component systems, global regulators, and nucleoid proteins. Here, we reported that the HU nucleoid protein directly activates both T6SSs in E. cloacae, affecting the T6SS-related phenotypes. Our data describe HU as a new regulator involved in the transcriptional regulation of T6SS and its impact on E. cloacae pathogenesis.
Collapse
Affiliation(s)
- Gabriela Hernández-Martínez
- Unidad de
Investigación Médica en Enfermedades Infecciosas y
Parasitarias, Hospital de Pediatría, Centro Médico
Nacional Siglo XXI, Instituto Mexicano del Seguro
Social, Mexico City,
Mexico
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Miguel A. Ares
- Unidad de
Investigación Médica en Enfermedades Infecciosas y
Parasitarias, Hospital de Pediatría, Centro Médico
Nacional Siglo XXI, Instituto Mexicano del Seguro
Social, Mexico City,
Mexico
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina
Experimental de la Facultad de Medicina, Universidad Autónoma de
México, Mexico
City, Mexico
| | - Jorge Soria-Bustos
- Pathogen and
Microbiome Division, Translational Genomics Research Institute (TGen)
North, Flagstaff,
Arizona, USA
- Instituto de Ciencias
de la Salud, Universidad Autónoma del Estado de
Hidalgo, Pachuca,
Hidalgo, Mexico
| | | | - María L. Cedillo
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
| | - Jorge A. Girón
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
| | - Ygnacio Martínez-Laguna
- Centro de
Investigación en Ciencias Microbiológicas,
Benemérita Universidad Autónoma de
Puebla, Puebla,
Mexico
| | - Fenfei Leng
- Biomolecular Sciences
Institute and Department of Chemistry and Biochemistry, Florida
International University,
Miami, Florida, USA
| | - J. Antonio Ibarra
- Escuela Nacional de
Ciencias Biológicas, Instituto Politécnico
Nacional, Mexico City,
Mexico
| | - Miguel A. De la Cruz
- Centro de
Detección Biomolecular, Benemérita Universidad
Autónoma de Puebla,
Puebla, Mexico
- Facultad de Medicina,
Benemérita Universidad Autónoma de
Puebla, Puebla,
Mexico
| |
Collapse
|
3
|
Kitagawa K, Kim KS, Iwamoto M, Hayashi S, Park H, Nishiyama T, Nakamura N, Fujita Y, Nakaoka S, Aihara K, Perelson AS, Allweiss L, Dandri M, Watashi K, Tanaka Y, Iwami S. Multiscale modeling of HBV infection integrating intra- and intercellular viral propagation to analyze extracellular viral markers. PLoS Comput Biol 2024; 20:e1011238. [PMID: 38466770 PMCID: PMC10957078 DOI: 10.1371/journal.pcbi.1011238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/21/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. Thus, quantifying and understanding the dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, such study requires repeated liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because liver biopsy is potentially morbid and not common during hepatitis B treatment. We here aimed to develop a noninvasive method for quantifying cccDNA in the liver using surrogate markers in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations, integrates experimental data from in vitro and in vivo investigations. By applying this model, we roughly predicted the amount and dynamics of intrahepatic cccDNA within a certain range using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The noninvasive quantification of cccDNA using our proposed method holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.
Collapse
Affiliation(s)
- Kosaku Kitagawa
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Scientific Computing, Pukyong National University, Busan, South Korea
| | - Masashi Iwamoto
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Takara Nishiyama
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, United States of America
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites, Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites, Germany
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences, Chiba, Japan
- Institute of Mathematics for Industry, Kyushu University; Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University; Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), RIKEN, Wako, Japan
- Science Groove Inc., Fukuoka, Japan
| |
Collapse
|
4
|
Nava-Galeana J, Núñez C, Bustamante VH. Proteomic analysis reveals the global effect of the BarA/SirA-Csr regulatory cascade in Salmonella Typhimurium grown in conditions that favor the expression of invasion genes. J Proteomics 2023; 286:104960. [PMID: 37451358 DOI: 10.1016/j.jprot.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
In many bacteria, the BarA/SirA and Csr regulatory systems control expression of genes encoding a wide variety of cellular functions. The BarA/SirA two-component system induces the expression of CsrB and CsrC, two small non-coding RNAs that sequester CsrA, a protein that binds to target mRNAs and thus negatively or positively regulates their expression. BarA/SirA and CsrB/C induce expression of the Salmonella Pathogenicity Island 1 (SPI-1) genes required for Salmonella invasion of host cells. To further investigate the regulatory role of the BarA/SirA and Csr systems in Salmonella, we performed LC-MS/MS proteomic analysis using the WT S. Typhimurium strain and its derived ΔsirA and ΔcsrB ΔcsrC mutants grown in SPI-1-inducing conditions. The expression of 164 proteins with a wide diversity, or unknown, functions was significantly affected positively or negatively by the absence of SirA and/or CsrB/C. Interestingly, 19 proteins were identified as new targets for SirA-CsrB/C. Our results support that SirA and CsrB/C act in a cascade fashion to regulate gene expression in S. Typhimurium in the conditions tested. Notably, our results show that SirA-CsrB/C-CsrA controls expression of proteins required for the replication of Salmonella in the intestinal lumen, in an opposite way to its control exerted on the SPI-1 proteins. SIGNIFICANCE: The BarA/SirA and Csr global regulatory systems control a wide range of cellular processes, including the expression of virulence genes. For instance, in Salmonella, BarA/SirA and CsrB/C positively regulate expression of the SPI-1 genes, which are required for Salmonella invasion to host cells. In this study, by performing a proteomic analysis, we identified 164 proteins whose expression was positively or negatively controlled by SirA and CsrB/C in SPI-1-inducing conditions, including 19 new possible targets of these systems. Our results support the action of SirA and CsrB/C in a cascade fashion to control different cellular processes in Salmonella. Interestingly, our data indicate that SirA-CsrB/C-CsrA controls inversely the expression of proteins required for invasion of the intestinal epithelium and for replication in the intestinal lumen, which suggests a role for this regulatory cascade as a molecular switch for Salmonella virulence. Thus, our study further expands the insight into the regulatory mechanisms governing the virulence and physiology of an important pathogen.
Collapse
Affiliation(s)
- Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Cinthia Núñez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
5
|
Nava-Galeana J, Yakhnin H, Babitzke P, Bustamante VH. CsrA Positively and Directly Regulates the Expression of the pdu, pocR, and eut Genes Required for the Luminal Replication of Salmonella Typhimurium. Microbiol Spectr 2023; 11:e0151623. [PMID: 37358421 PMCID: PMC10433801 DOI: 10.1128/spectrum.01516-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023] Open
Abstract
Enteric pathogens, such as Salmonella, have evolved to thrive in the inflamed gut. Genes located within the Salmonella pathogenicity island 1 (SPI-1) mediate the invasion of cells from the intestinal epithelium and the induction of an intestinal inflammatory response. Alternative electron acceptors become available in the inflamed gut and are utilized by Salmonella for luminal replication through the metabolism of propanediol and ethanolamine, using the enzymes encoded by the pdu and eut genes. The RNA-binding protein CsrA inhibits the expression of HilD, which is the central transcriptional regulator of the SPI-1 genes. Previous studies suggest that CsrA also regulates the expression of the pdu and eut genes, but the mechanism for this regulation is unknown. In this work, we show that CsrA positively regulates the pdu genes by binding to the pocR and pduA transcripts as well as the eut genes by binding to the eutS transcript. Furthermore, our results show that the SirA-CsrB/CsrC-CsrA regulatory cascade controls the expression of the pdu and eut genes mediated by PocR or EutR, which are the positive AraC-like transcriptional regulators for the pdu and eut genes, respectively. By oppositely regulating the expression of genes for invasion and for luminal replication, the SirA-CsrB/CsrC-CsrA regulatory cascade could be involved in the generation of two Salmonella populations that cooperate for intestinal colonization and transmission. Our study provides new insight into the regulatory mechanisms that govern Salmonella virulence. IMPORTANCE The regulatory mechanisms that control the expression of virulence genes are essential for bacteria to infect hosts. Salmonella has developed diverse regulatory mechanisms to colonize the host gut. For instance, the SirA-CsrB/CsrC-CsrA regulatory cascade controls the expression of the SPI-1 genes, which are required for this bacterium to invade intestinal epithelium cells and for the induction of an intestinal inflammatory response. In this study, we determine the mechanisms by which the SirA-CsrB/CsrC-CsrA regulatory cascade controls the expression of the pdu and eut genes, which are necessary for the replication of Salmonella in the intestinal lumen. Thus, our data, together with the results of previous reports, indicate that the SirA-CsrB/CsrC-CsrA regulatory cascade has an important role in the intestinal colonization by Salmonella.
Collapse
Affiliation(s)
- Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
6
|
Xu X, Usher B, Gutierrez C, Barriot R, Arrowsmith TJ, Han X, Redder P, Neyrolles O, Blower TR, Genevaux P. MenT nucleotidyltransferase toxins extend tRNA acceptor stems and can be inhibited by asymmetrical antitoxin binding. Nat Commun 2023; 14:4644. [PMID: 37591829 PMCID: PMC10435456 DOI: 10.1038/s41467-023-40264-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Mycobacterium tuberculosis, the bacterium responsible for human tuberculosis, has a genome encoding a remarkably high number of toxin-antitoxin systems of largely unknown function. We have recently shown that the M. tuberculosis genome encodes four of a widespread, MenAT family of nucleotidyltransferase toxin-antitoxin systems. In this study we characterize MenAT1, using tRNA sequencing to demonstrate MenT1 tRNA modification activity. MenT1 activity is blocked by MenA1, a short protein antitoxin unrelated to the MenA3 kinase. X-ray crystallographic analysis shows blockage of the conserved MenT fold by asymmetric binding of MenA1 across two MenT1 protomers, forming a heterotrimeric toxin-antitoxin complex. Finally, we also demonstrate tRNA modification by toxin MenT4, indicating conserved activity across the MenT family. Our study highlights variation in tRNA target preferences by MenT toxins, selective use of nucleotide substrates, and diverse modes of MenA antitoxin activity.
Collapse
Affiliation(s)
- Xibing Xu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Ben Usher
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Roland Barriot
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Tom J Arrowsmith
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Xue Han
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Peter Redder
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
7
|
Kitagawa K, Kim KS, Iwamoto M, Hayashi S, Park H, Nishiyama T, Nakamura N, Fujita Y, Nakaoka S, Aihara K, Perelson AS, Allweiss L, Dandri M, Watashi K, Tanaka Y, Iwami S. Multiscale modeling of HBV infection integrating intra- and intercellular viral propagation for analyzing extracellular viral markers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543822. [PMID: 37333409 PMCID: PMC10274663 DOI: 10.1101/2023.06.06.543822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chronic infection of hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. The quantifying and understanding dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, it requires a liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because of the ethical aspect. We here aimed to develop a non-invasive method for quantifying cccDNA in the liver using surrogate markers present in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations (PDEs), integrates experimental data from in vitro and in vivo investigations. By applying this model, we successfully predicted the amount and dynamics of intrahepatic cccDNA using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The non-invasive quantification of cccDNA using our proposed methodology holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.
Collapse
Affiliation(s)
- Kosaku Kitagawa
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
- Department of Scientific Computing, Pukyong National University; Busan, South Korea
| | - Masashi Iwamoto
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
- Department of Virology II, National Institute of Infectious Diseases; Tokyo, Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University; Kumamoto, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Takara Nishiyama
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University; Sapporo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo; Tokyo, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory; Los Alamos, USA
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf; Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites; Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf; Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites; Germany
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases; Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Tokyo, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences; Chiba, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University; Kumamoto, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences; Chiba, Japan
- Institute of Mathematics for Industry, Kyushu University; Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University; Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR); Tokyo, Japan
- Science Groove Inc.; Fukuoka, Japan
| |
Collapse
|
8
|
Jain C. Suppression of multiple phenotypic and RNA processing defects by over-expression of Oligoribonuclease in Escherichia coli. J Biol Chem 2023; 299:104567. [PMID: 36870683 PMCID: PMC10124918 DOI: 10.1016/j.jbc.2023.104567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
Oligoribonuclease (Orn) is an essential Ribonuclease (RNase) from Escherichia coli (E. coli), which plays a critical role in the conversion of short RNA molecules (NanoRNAs) to mononucleotides. Although no additional functions have been ascribed to Orn since its discovery nearly 50 years ago, it was observed in this study that the growth defects caused by a lack of two other RNases that do not digest NanoRNAs, PNPase and RNase PH, could be suppressed by Orn over-expression. Further analyses showed that Orn over-expression can alleviate the growth defects caused by an absence of other RNases even when its expression was increased by a small degree, and it can carry out molecular reactions that are normally performed by RNase T and RNase PH. In addition, biochemical assays revealed that Orn can fully digest single stranded RNAs within a variety of structural contexts. These studies provide new insights into Orn function and its ability to participate in multiple aspects of E. coli RNA metabolism.
Collapse
Affiliation(s)
- Chaitanya Jain
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
9
|
Lara-Ochoa C, Huerta-Saquero A, Medrano-López A, Deng W, Finlay BB, Martínez-Laguna Y, Puente JL. GrlR, a negative regulator in enteropathogenic E. coli, also represses the expression of LEE virulence genes independently of its interaction with its cognate partner GrlA. Front Microbiol 2023; 14:1063368. [PMID: 36876072 PMCID: PMC9979310 DOI: 10.3389/fmicb.2023.1063368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium (CR) belong to a group of pathogens that share the ability to form "attaching and effacing" (A/E) lesions on the intestinal epithelia. A pathogenicity island known as the locus of enterocyte effacement (LEE) contains the genes required for A/E lesion formation. The specific regulation of LEE genes relies on three LEE-encoded regulators: Ler activates the expression of the LEE operons by antagonizing the silencing effect mediated by the global regulator H-NS, GrlA activates ler expression and GrlR represses the expression of the LEE by interacting with GrlA. However, despite the existing knowledge of LEE regulation, the interplay between GrlR and GrlA and their independent roles in gene regulation in A/E pathogens are still not fully understood. Methods To further explore the role that GrlR and GrlA in the regulation of the LEE, we used different EPEC regulatory mutants and cat transcriptional fusions, and performed protein secretion and expression assays, western blotting and native polyacrylamide gel electrophoresis. Results and discussion We showed that the transcriptional activity of LEE operons increased under LEE-repressing growth conditions in the absence of GrlR. Interestingly, GrlR overexpression exerted a strong repression effect over LEE genes in wild-type EPEC and, unexpectedly, even in the absence of H-NS, suggesting that GrlR plays an alternative repressor role. Moreover, GrlR repressed the expression of LEE promoters in a non-EPEC background. Experiments with single and double mutants showed that GrlR and H-NS negatively regulate the expression of LEE operons at two cooperative yet independent levels. In addition to the notion that GrlR acts as a repressor by inactivating GrlA through protein-protein interactions, here we showed that a DNA-binding defective GrlA mutant that still interacts with GrlR prevented GrlR-mediated repression, suggesting that GrlA has a dual role as a positive regulator by antagonizing GrlR's alternative repressor role. In line with the importance of the GrlR-GrlA complex in modulating LEE gene expression, we showed that GrlR and GrlA are expressed and interact under both inducing and repressing conditions. Further studies will be required to determine whether the GrlR alternative repressor function depends on its interaction with DNA, RNA, or another protein. These findings provide insight into an alternative regulatory pathway that GrlR employs to function as a negative regulator of LEE genes.
Collapse
Affiliation(s)
- Cristina Lara-Ochoa
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alejandro Huerta-Saquero
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Departamento de Bionanotecnología, Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Abraham Medrano-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Wanyin Deng
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, Department of Microbiology and Immunology, and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Ygnacio Martínez-Laguna
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
10
|
Gregor C. Generation of bright autobioluminescent bacteria by chromosomal integration of the improved lux operon ilux2. Sci Rep 2022; 12:19039. [PMID: 36351939 PMCID: PMC9646698 DOI: 10.1038/s41598-022-22068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
The bacterial bioluminescence system enables the generation of light by living cells without the requirement of an external luciferin. Due to the relatively low light emission, many applications of bioluminescence imaging would benefit from an increase in brightness of this system. In this report, a new approach of mutagenesis and screening of the involved proteins is described that is based on the identification of mutants with improved properties under rate-limiting reaction conditions. Multiple rounds of screening in Escherichia coli resulted in the operon ilux2 that contains 26 new mutations in the fatty acid reductase complex which provides the aldehyde substrate for the bioluminescence reaction. Chromosomal integration of ilux2 yielded an autonomously bioluminescent E. coli strain with sixfold increased brightness compared to the previously described ilux operon. The ilux2 strain produces sufficient signal for the robust detection of individual cells and enables highly sensitive long-term imaging of bacterial propagation without a selection marker.
Collapse
Affiliation(s)
- Carola Gregor
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Department of Optical Nanoscopy, Institut für Nanophotonik Göttingen e.V., Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
11
|
Regulatory Evolution of the phoH Ancestral Gene in Salmonella enterica Serovar Typhimurium. J Bacteriol 2022; 204:e0058521. [PMID: 35404111 DOI: 10.1128/jb.00585-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One important event for the divergence of Salmonella from Escherichia coli was the acquisition by horizontal transfer of the Salmonella pathogenicity island 1 (SPI-1), containing genes required for the invasion of host cells by Salmonella. HilD is an AraC-like transcriptional regulator in SPI-1 that induces the expression of the SPI-1 and many other acquired virulence genes located in other genomic regions of Salmonella. Additionally, HilD has been shown to positively control the expression of some ancestral genes (also present in E. coli and other bacteria), including phoH. In this study, we determined that both the gain of HilD and cis-regulatory evolution led to the integration of the phoH gene into the HilD regulon. Our results indicate that a HilD-binding sequence was generated in the regulatory region of the S. enterica serovar Typhimurium phoH gene, which mediates the activation of promoter 1 of this gene under SPI-1-inducing conditions. Furthermore, we found that repression by H-NS, a histone-like protein, was also adapted on the S. Typhimurium phoH gene and that HilD activates the expression of this gene in part by antagonizing H-NS. Additionally, our results revealed that the expression of the S. Typhmurium phoH gene is also activated in response to low phosphate but independently of the PhoB/R two-component system, known to regulate the E. coli phoH gene in response to low phosphate. Thus, our results indicate that cis-regulatory evolution has played a role in the expansion of the HilD regulon and illustrate the phenomenon of differential regulation of ortholog genes. IMPORTANCE Two mechanisms mediating differentiation of bacteria are well known: acquisition of genes by horizontal transfer events and mutations in coding DNA sequences. In this study, we found that the phoH ancestral gene is differentially regulated between Salmonella Typhimurium and Escherichia coli, two closely related bacterial species. Our results indicate that this differential regulation was generated by mutations in the regulatory sequence of the S. Typhimurium phoH gene and by the acquisition by S. Typhimurium of foreign DNA encoding the transcriptional regulator HilD. Thus, our results, together with those from an increasing number of studies, indicate that cis-regulatory evolution can lead to the rewiring and reprogramming of transcriptional regulation, which also plays an important role in the divergence of bacteria through time.
Collapse
|
12
|
Hayashi S, Isogawa M, Kawashima K, Ito K, Chuaypen N, Morine Y, Shimada M, Higashi-Kuwata N, Watanabe T, Tangkijvanich P, Mitsuya H, Tanaka Y. Droplet digital PCR assay provides intrahepatic HBV cccDNA quantification tool for clinical application. Sci Rep 2022; 12:2133. [PMID: 35136096 PMCID: PMC8826402 DOI: 10.1038/s41598-022-05882-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
The persistence of covalently closed circular DNA (cccDNA) poses a major obstacle to curing chronic hepatitis B (CHB). Here, we used droplet digital PCR (ddPCR) for cccDNA quantitation. The cccDNA-specific ddPCR showed high accuracy with the dynamic range of cccDNA detection from 101 to 105 copies/assay. The ddPCR had higher sensitivity, specificity and precisely than qPCR. The results of ddPCR correlated closely with serum HB core-related antigen and HB surface antigen (HBsAg) in 24 HBV-infected human-liver-chimeric mice (PXB-mice). We demonstrated that in 2 PXB-mice after entecavir treatment, the total cccDNA content did not change during liver repopulation, although the cccDNA content per hepatocyte was reduced after the treatment. In the 6 patients with HBV-related hepatocellular carcinoma, ddPCR detected cccDNA in both tumor and non-tumor tissues. In 13 HBeAg-negative CHB patients with pegylated interferon alpha-2a, cccDNA contents from paired biopsies were more significantly reduced in virological response (VR) than in non-VR at week 48 (p = 0.0051). Interestingly, cccDNA levels were the lowest in VR with HBsAg clearance but remained detectable after the treatment. Collectively, ddPCR revealed that cccDNA content is stable during hepatocyte proliferation and persists at quantifiable levels, even after serum HBsAg clearance.
Collapse
Affiliation(s)
- Sanae Hayashi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.,Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masanori Isogawa
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keigo Kawashima
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kyoko Ito
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yuji Morine
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, Tokushima, Japan
| | - Nobuyo Higashi-Kuwata
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| | - Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Tokyo, Japan.,Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Department of Clinical Sciences, Kumamoto University Hospital, Kumamoto, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan. .,Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
13
|
Interplay between DsbA1, DsbA2 and C8J_1298 Periplasmic Oxidoreductases of Campylobacter jejuni and Their Impact on Bacterial Physiology and Pathogenesis. Int J Mol Sci 2021; 22:ijms222413451. [PMID: 34948248 PMCID: PMC8708908 DOI: 10.3390/ijms222413451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/13/2023] Open
Abstract
The bacterial proteins of the Dsb family catalyze the formation of disulfide bridges between cysteine residues that stabilize protein structures and ensure their proper functioning. Here, we report the detailed analysis of the Dsb pathway of Campylobacter jejuni. The oxidizing Dsb system of this pathogen is unique because it consists of two monomeric DsbAs (DsbA1 and DsbA2) and one dimeric bifunctional protein (C8J_1298). Previously, we showed that DsbA1 and C8J_1298 are redundant. Here, we unraveled the interaction between the two monomeric DsbAs by in vitro and in vivo experiments and by solving their structures and found that both monomeric DsbAs are dispensable proteins. Their structures confirmed that they are homologs of EcDsbL. The slight differences seen in the surface charge of the proteins do not affect the interaction with their redox partner. Comparative proteomics showed that several respiratory proteins, as well as periplasmic transport proteins, are targets of the Dsb system. Some of these, both donors and electron acceptors, are essential elements of the C. jejuni respiratory process under oxygen-limiting conditions in the host intestine. The data presented provide detailed information on the function of the C. jejuni Dsb system, identifying it as a potential target for novel antibacterial molecules.
Collapse
|
14
|
Littleford HE, Kiontke K, Fitch DHA, Greenwald I. hlh-12, a gene that is necessary and sufficient to promote migration of gonadal regulatory cells in Caenorhabditis elegans, evolved within the Caenorhabditis clade. Genetics 2021; 219:iyab127. [PMID: 34740245 PMCID: PMC8570790 DOI: 10.1093/genetics/iyab127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/30/2021] [Indexed: 11/12/2022] Open
Abstract
Specialized cells of the somatic gonad primordium of nematodes play important roles in the final form and function of the mature gonad. Caenorhabditis elegans hermaphrodites are somatic females that have a two-armed, U-shaped gonad that connects to the vulva at the midbody. The outgrowth of each gonad arm from the somatic gonad primordium is led by two female distal tip cells (fDTCs), while the anchor cell (AC) remains stationary and central to coordinate uterine and vulval development. The bHLH protein HLH-2 and its dimerization partners LIN-32 and HLH-12 had previously been shown to be required for fDTC specification. Here, we show that ectopic expression of both HLH-12 and LIN-32 in cells with AC potential transiently transforms them into fDTC-like cells. Furthermore, hlh-12 was known to be required for the fDTCs to sustain gonad arm outgrowth. Here, we show that ectopic expression of HLH-12 in the normally stationary AC causes displacement from its normal position and that displacement likely results from activation of the leader program of fDTCs because it requires genes necessary for gonad arm outgrowth. Thus, HLH-12 is both necessary and sufficient to promote gonadal regulatory cell migration. As differences in female gonadal morphology of different nematode species reflect differences in the fate or migratory properties of the fDTCs or of the AC, we hypothesized that evolutionary changes in the expression of hlh-12 may underlie the evolution of such morphological diversity. However, we were unable to identify an hlh-12 ortholog outside of Caenorhabditis. Instead, by performing a comprehensive phylogenetic analysis of all Class II bHLH proteins in multiple nematode species, we found that hlh-12 evolved within the Caenorhabditis clade, possibly by duplicative transposition of hlh-10. Our analysis suggests that control of gene regulatory hierarchies for gonadogenesis can be remarkably plastic during evolution without adverse phenotypic consequence.
Collapse
Affiliation(s)
- Hana E Littleford
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Karin Kiontke
- Department of Biology, Center for Developmental Genetics, New York University, New York, NY 10003, USA
| | - David H A Fitch
- Department of Biology, Center for Developmental Genetics, New York University, New York, NY 10003, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
15
|
Zhan J, Tan X, Wang X. Null mutation in sspA of Cronobacter sakazakii influences its tolerance to environmental stress. Can J Microbiol 2021; 67:902-918. [PMID: 34379995 DOI: 10.1139/cjm-2021-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cronobacter sakazakii is a known foodborne opportunistic pathogen that can affect the intestinal health of infants. Despite undergoing complex manufacturing processes and low water concentration in the finished product, infant formula has been associated with Cronobacter infections, suggesting that C. sakazakii's pathogenicity may be related to its tolerance to stress. In this study, the effect of the stringent starvation protein A (SspA), which plays an important role in E. coli cellular survival under environmental stresses, on the stress tolerance of C. sakazakii BAA894 was investigated by creating an sspA-knockout mutant. The effects of this mutation on the acid, desiccation and drug tolerance were assessed, and results showed that acid tolerance decreased, while desiccation tolerance increased in LB and decreased in M9. Moreover, the MICs of 10 antibiotics in LB medium and 8 antibiotics in M9 medium were determined and compared of the wild-type and ΔsspA. Transcriptome analysis showed that 27.21% or 37.78% of the genes in ΔsspA were significantly differentially expressed in LB or M9 media, the genes relevant to microbial metabolism in diverse environments and bacterial chemotaxis were detailed analyzed. The current study contributes towards an improved understanding of the role of SspA in C. sakazakii BAA894 stress tolerance.
Collapse
Affiliation(s)
- Jie Zhan
- Jiangnan University, 66374, State Key Laboratory of Food Science and Technology, Wuxi, China;
| | - Xin Tan
- Jiangnan University, 66374, Wuxi, China.,Jiangnan University, 66374, Wuxi, China;
| | - Xiaoyuan Wang
- Jiangnan University, 66374, Wuxi, China, 214122.,Jiangnan University, 66374, Wuxi, China, 214122.,Jiangnan University, 66374, Wuxi, China, 214122;
| |
Collapse
|
16
|
Pérez-Morales D, Nava-Galeana J, Rosales-Reyes R, Teehan P, Yakhnin H, Melchy-Pérez EI, Rosenstein Y, De la Cruz MA, Babitzke P, Bustamante VH. An incoherent feedforward loop formed by SirA/BarA, HilE and HilD is involved in controlling the growth cost of virulence factor expression by Salmonella Typhimurium. PLoS Pathog 2021; 17:e1009630. [PMID: 34048498 PMCID: PMC8192010 DOI: 10.1371/journal.ppat.1009630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 06/10/2021] [Accepted: 05/10/2021] [Indexed: 12/02/2022] Open
Abstract
An intricate regulatory network controls the expression of Salmonella virulence genes. The transcriptional regulator HilD plays a central role in this network by controlling the expression of tens of genes mainly required for intestinal colonization. Accordingly, the expression/activity of HilD is highly regulated by multiple factors, such as the SirA/BarA two-component system and the Hcp-like protein HilE. SirA/BarA positively regulates translation of hilD mRNA through a regulatory cascade involving the small RNAs CsrB and CsrC, and the RNA-binding protein CsrA, whereas HilE inhibits HilD activity by protein-protein interaction. In this study, we show that SirA/BarA also positively regulates translation of hilE mRNA through the same mentioned regulatory cascade. Thus, our results reveal a paradoxical regulation exerted by SirA/BarA-Csr on HilD, which involves simultaneous opposite effects, direct positive control and indirect negative control through HilE. This kind of regulation is called an incoherent type-1 feedforward loop (I1-FFL), which is a motif present in certain regulatory networks and represents a complex biological problem to decipher. Interestingly, our results, together with those from a previous study, indicate that HilE, the repressor component of the I1-FFL reported here (I1-FFLSirA/BarA-HilE-HilD), is required to reduce the growth cost imposed by the expression of the genes regulated by HilD. Moreover, we and others found that HilE is necessary for successful intestinal colonization by Salmonella. Thus, these findings support that I1-FFLSirA/BarA-HilE-HilD cooperates to control the precise amount and activity of HilD, for an appropriate balance between the growth cost and the virulence benefit generated by the expression of the genes induced by this regulator. I1-FFLSirA/BarA-HilE-HilD represents a complex regulatory I1-FFL that involves multiple regulators acting at distinct levels of gene expression, as well as showing different connections to the rest of the regulatory network governing Salmonella virulence. To infect the intestine of a broad range of hosts, including humans, Salmonella is required to express a large number of genes encoding different cellular functions, which imposes a growth penalty. Thus, Salmonella has developed complex regulatory mechanisms that control the expression of virulence genes. Here we identified a novel and sophisticated regulatory mechanism that is involved in the fine-tuned control of the expression level and activity of the transcriptional regulator HilD, for the appropriate balance between the growth cost and the virulence benefit generated by the expression of tens of Salmonella genes. This mechanism forms an incoherent type-1 feedforward loop (I1-FFL), which involves paradoxical regulation; that is, a regulatory factor exerting simultaneous opposite control (positive and negative) on another factor. I1-FFLs are present in regulatory networks of diverse organisms, from bacteria to humans, and represent a complex biological problem to decipher. Interestingly, the I1-FFL reported here is integrated by ancestral regulators and by regulators that Salmonella has acquired during evolution. Thus, our findings reveal a novel I1-FFL of bacteria, which is involved in virulence. Moreover, our results illustrate the integration of ancestral and acquired factors into a regulatory motif, which can lead to the expansion of regulatory networks.
Collapse
Affiliation(s)
- Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Jessica Nava-Galeana
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Paige Teehan
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Erika I. Melchy-Pérez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
17
|
Generation of Genetic Tools for Gauging Multiple-Gene Expression at the Single-Cell Level. Appl Environ Microbiol 2021; 87:AEM.02956-20. [PMID: 33608300 DOI: 10.1128/aem.02956-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/11/2021] [Indexed: 11/20/2022] Open
Abstract
Key microbial processes in many bacterial species are heterogeneously expressed in single cells of bacterial populations. However, the paucity of adequate molecular tools for live, real-time monitoring of multiple-gene expression at the single-cell level has limited the understanding of phenotypic heterogeneity. To investigate phenotypic heterogeneity in the ubiquitous opportunistic pathogen Pseudomonas aeruginosa, a genetic tool that allows gauging multiple-gene expression at the single-cell level has been generated. This tool, named pRGC, consists of a promoter-probe vector for transcriptional fusions that carries three reporter genes coding for the fluorescent proteins mCherry, green fluorescent protein (GFP), and cyan fluorescent protein (CFP). The pRGC vector has been characterized and validated via single-cell gene expression analysis of both constitutive and iron-regulated promoters, showing clear discrimination of the three fluorescence signals in single cells of a P. aeruginosa population without the need for image processing for spectral cross talk correction. In addition, two pRGC variants have been generated for either (i) integration of the reporter gene cassette into a single neutral site of P. aeruginosa chromosome that is suitable for long-term experiments in the absence of antibiotic selection or (ii) replication in bacterial genera other than Pseudomonas The easy-to-use genetic tools generated in this study will allow rapid and cost-effective investigation of multiple-gene expression in populations of environmental and pathogenic bacteria, hopefully advancing the understanding of microbial phenotypic heterogeneity.IMPORTANCE Within a bacterial population, single cells can differently express some genes, even though they are genetically identical and experience the same chemical and physical stimuli. This phenomenon, known as phenotypic heterogeneity, is mainly driven by gene expression noise and results in the emergence of bacterial subpopulations with distinct phenotypes. The analysis of gene expression at the single-cell level has shown that phenotypic heterogeneity is associated with key bacterial processes, including competence, sporulation, and persistence. In this study, new genetic tools have been generated that allow easy cloning of up to three promoters upstream of distinct fluorescent genes, making it possible to gauge multiple-gene expression at the single-cell level by fluorescence microscopy without the need for advanced image-processing procedures. A proof of concept has been provided by investigating iron uptake and iron storage gene expression in response to iron availability in P. aeruginosa.
Collapse
|
18
|
Texier P, Bordes P, Nagpal J, Sala AJ, Mansour M, Cirinesi AM, Xu X, Dougan DA, Genevaux P. ClpXP-mediated Degradation of the TAC Antitoxin is Neutralized by the SecB-like Chaperone in Mycobacterium tuberculosis. J Mol Biol 2021; 433:166815. [PMID: 33450247 DOI: 10.1016/j.jmb.2021.166815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 01/31/2023]
Abstract
Bacterial toxin-antitoxin (TA) systems are composed of a deleterious toxin and its antagonistic antitoxin. They are widespread in bacterial genomes and mobile genetic elements, and their functions remain largely unknown. Some TA systems, known as TAC modules, include a cognate SecB-like chaperone that assists the antitoxin in toxin inhibition. Here, we have investigated the involvement of proteases in the activation cycle of the TAC system of the human pathogen Mycobacterium tuberculosis. We show that the deletion of endogenous AAA+ proteases significantly bypasses the need for a dedicated chaperone and identify the mycobacterial ClpXP1P2 complex as the main protease involved in TAC antitoxin degradation. In addition, we show that the ClpXP1P2 degron is located at the extreme C-terminal end of the chaperone addiction (ChAD) region of the antitoxin, demonstrating that ChAD functions as a hub for both chaperone binding and recognition by proteases.
Collapse
Affiliation(s)
- Pauline Texier
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Patricia Bordes
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Jyotsna Nagpal
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Ambre Julie Sala
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Moise Mansour
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anne-Marie Cirinesi
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Xibing Xu
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - David Andrew Dougan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
19
|
Romero-González LE, Pérez-Morales D, Cortés-Avalos D, Vázquez-Guerrero E, Paredes-Hernández DA, Estrada-de los Santos P, Villa-Tanaca L, De la Cruz MA, Bustamante VH, Ibarra JA. The Salmonella Typhimurium InvF-SicA complex is necessary for the transcription of sopB in the absence of the repressor H-NS. PLoS One 2020; 15:e0240617. [PMID: 33119619 PMCID: PMC7595419 DOI: 10.1371/journal.pone.0240617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022] Open
Abstract
Expression of virulence factors in non-typhoidal Salmonella enterica depends on a wide variety of general and specific transcriptional factors that act in response to multiple environmental signals. Expression of genes for cellular invasion located in the Salmonella pathogenicity island 1 (SPI-1) is tightly regulated by several transcriptional regulators arrayed in a cascade, while repression of this system is exerted mainly by H-NS. In SPI-1, H-NS represses the expression mainly by binding to the regulatory region of hilA and derepression is exercised mainly by HilD. However, the possible regulatory role of H-NS in genes downstream from HilD and HilA, such as those regulated by InvF, has not been fully explored. Here the role of H-NS on the expression of sopB, an InvF dependent gene encoded in SPI-5, was evaluated. Our data show that InvF is required for the expression of sopB even in the absence of H-NS. Furthermore, in agreement with previous results on other InvF-regulated genes, we found that the expression of sopB requires the InvF/SicA complex. Our results support that SicA is not required for DNA binding nor for increasing affinity of InvF to DNA in vitro. Moreover, by using a bacterial two-hybrid system we were able to identify interactions between SicA and InvF. Lastly, protein-protein interaction assays suggest that InvF functions as a monomer. Derived from these results we postulate that the InvF/SicA complex does not act on sopB as an anti-H-NS factor; instead, it seems to induce the expression of sopB by acting as a classical transcriptional regulator.
Collapse
Affiliation(s)
- Luis E. Romero-González
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Daniel Cortés-Avalos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Edwin Vázquez-Guerrero
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Denisse A. Paredes-Hernández
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Paulina Estrada-de los Santos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Lourdes Villa-Tanaca
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Miguel A. De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarías, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - J. Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
- * E-mail: ,
| |
Collapse
|
20
|
Soria-Bustos J, Ares MA, Gómez-Aldapa CA, González-Y-Merchand JA, Girón JA, De la Cruz MA. Two Type VI Secretion Systems of Enterobacter cloacae Are Required for Bacterial Competition, Cell Adherence, and Intestinal Colonization. Front Microbiol 2020; 11:560488. [PMID: 33072020 PMCID: PMC7541819 DOI: 10.3389/fmicb.2020.560488] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Enterobacter cloacae has emerged as an opportunistic pathogen in healthcare-associated infections. Analysis of the genomic sequences of several E. cloacae strains revealed the presence of genes that code for expression of at least one type VI secretion system (T6SS). Here, we report that E. cloacae strain ATCC 13047 codes for two functional T6SS named T6SS-1 and T6SS-2. T6SS-1 and T6SS-2 were preferentially expressed in tryptic soy broth and tissue culture medium (DMEM), respectively. Mutants in T6SS-1-associated genes clpV1 and hcp1 significantly affected their ability of inter- and intra-bacterial killing indicating that T6SS-1 is required for bacterial competition. In addition, the Hcp effector protein was detected in supernatants of E. cloacae cultures and a functional T6SS-1 was required for the secretion of this protein. A clpV2 mutant was impaired in both biofilm formation and adherence to epithelial cells, supporting the notion that these phenotypes are T6SS-2 dependent. In vivo data strongly suggest that both T6SSs are required for intestinal colonization because single and double mutants in clpV1 and clpV2 genes were defective in gut colonization in mice. We conclude that the two T6SSs are involved in the pathogenesis scheme of E. cloacae with specialized functions in the interaction with other bacteria and with host cells.
Collapse
Affiliation(s)
- Jorge Soria-Bustos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Carlos A Gómez-Aldapa
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 Mineral de la Reforma, Hidalgo, Mexico
| | - Jorge A González-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
21
|
Cai Y, Usher B, Gutierrez C, Tolcan A, Mansour M, Fineran PC, Condon C, Neyrolles O, Genevaux P, Blower TR. A nucleotidyltransferase toxin inhibits growth of Mycobacterium tuberculosis through inactivation of tRNA acceptor stems. SCIENCE ADVANCES 2020; 6:eabb6651. [PMID: 32923609 PMCID: PMC7450476 DOI: 10.1126/sciadv.abb6651] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/12/2020] [Indexed: 05/12/2023]
Abstract
Toxin-antitoxin systems are widespread stress-responsive elements, many of whose functions remain largely unknown. Here, we characterize the four DUF1814-family nucleotidyltransferase-like toxins (MenT1-4) encoded by the human pathogen Mycobacterium tuberculosis. Toxin MenT3 inhibited growth of M. tuberculosis when not antagonized by its cognate antitoxin, MenA3. We solved the structures of toxins MenT3 and MenT4 to 1.6 and 1.2 Å resolution, respectively, and identified the biochemical activity and target of MenT3. MenT3 blocked in vitro protein expression and prevented tRNA charging in vivo. MenT3 added pyrimidines (C or U) to the 3'-CCA acceptor stems of uncharged tRNAs and exhibited strong substrate specificity in vitro, preferentially targeting tRNASer from among the 45 M. tuberculosis tRNAs. Our study identifies a previously unknown mechanism that expands the range of enzymatic activities used by bacterial toxins, uncovering a new way to block protein synthesis and potentially treat tuberculosis and other infections.
Collapse
Affiliation(s)
- Yiming Cai
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Ben Usher
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Anastasia Tolcan
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Moise Mansour
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bio-protection Research Centre, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Ciarán Condon
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Tim R. Blower
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
22
|
The Salmonella enterica Serovar Typhi ltrR Gene Encodes Two Proteins Whose Transcriptional Expression Is Upregulated by Alkaline pH and Repressed at Their Promoters and Coding Regions by H-NS and Lrp. J Bacteriol 2020; 202:JB.00783-19. [PMID: 32284321 DOI: 10.1128/jb.00783-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/03/2020] [Indexed: 11/20/2022] Open
Abstract
LtrR is a LysR-type regulator involved in the positive expression of ompR to promote ompC and ompF expression. This regulatory network is fundamental for the control of bacterial transformation and resistance to the bile salt sodium deoxycholate in Salmonella enterica serovar Typhi. In this work, the transcriptional regulation of ltrR was characterized, revealing that the use of alternative promoters results in two transcripts. The larger one, the ltrR2 mRNA, was repressed at promoter and coding regions by H-NS, whereas Lrp repressed its expression at the coding region. In the case of the second and shorter ltrR1 transcript, it was repressed only at the coding region by H-NS and Lrp. Remarkably, pH 7.5 is a positive signal involved in the transcriptional expression of both ltrR units. Translational fusions and Western blot experiments demonstrated that ltrR2 and ltrR1 mRNAs encode the LtrR2 and LtrR1 proteins. This study adds new data on the complex genetic and regulatory characteristics of one of the most predominant types of transcriptional factors in bacteria, the LysR-type transcriptional regulators.IMPORTANCE The LysR-type transcriptional regulators are present in viruses, archaea, bacteria, and eukaryotic cells. Furthermore, these proteins are the most abundant transcriptional factors in bacteria. Here, we demonstrate that two LysR-type proteins are generated from the ltrR gene. These proteins are genetically induced by pH and repressed at the promoter and coding regions by the global regulators H-NS and Lrp. Thus, novel basic aspects of the complex genetic regulation of the LysR-type transcriptional regulators are described.
Collapse
|
23
|
Adamczyk-Popławska M, Tracz-Gaszewska Z, Lasota P, Kwiatek A, Piekarowicz A. Haemophilus influenzae HP1 Bacteriophage Encodes a Lytic Cassette with a Pinholin and a Signal-Arrest-Release Endolysin. Int J Mol Sci 2020; 21:E4013. [PMID: 32512736 PMCID: PMC7312051 DOI: 10.3390/ijms21114013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
HP1 is a temperate bacteriophage, belonging to the Myoviridae family and infecting Haemophilus influenzae Rd. By in silico analysis and molecular cloning, we characterized lys and hol gene products, present in the previously proposed lytic module of HP1 phage. The amino acid sequence of the lys gene product revealed the presence of signal-arrest-release (SAR) and muraminidase domains, characteristic for some endolysins. HP1 endolysin was able to induce lysis on its own when cloned and expressed in Escherichia coli, but the new phage release from infected H. influenzae cells was suppressed by inhibition of the secretion (sec) pathway. Protein encoded by hol gene is a transmembrane protein, with unusual C-out and N-in topology, when overexpressed/activated. Its overexpression in E. coli did not allow the formation of large pores (lack of leakage of β-galactosidase), but caused cell death (decrease in viable cell count) without lysis (turbidity remained constant). These data suggest that lys gene encodes a SAR-endolysin and that the hol gene product is a pinholin. HP1 SAR-endolysin is responsible for cell lysis and HP1 pinholin seems to regulate the cell lysis and the phage progeny release from H. influenzae cells, as new phage release from the natural host was inhibited by deletion of the hol gene.
Collapse
Affiliation(s)
- Monika Adamczyk-Popławska
- Warsaw University, Faculty of Biology, Institute of Microbiology, Department of Molecular Virology, Miecznikowa 1, 02-096 Warsaw, Poland; (Z.T.-G.); (P.L.); (A.K.); (A.P.)
| | | | | | | | | |
Collapse
|
24
|
Narváez-Barragán DA, de Sandozequi A, Rodríguez M, Estrada K, Tovar-Herrera OE, Martínez-Anaya C. Analysis of two Mexican Pectobacterium brasiliense strains reveals an inverted relationship between c-di-GMP levels with exopolysaccharide production and swarming motility. Microbiol Res 2020; 235:126427. [PMID: 32109688 DOI: 10.1016/j.micres.2020.126427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 10/25/2022]
Abstract
Pectobacterium is a diverse genus of phytopathogenic species from soil and water that cause infection either to restricted or multiple plant hosts. Phylogenetic analysis and metabolic fingerprinting of large numbers of genomes have expanded classification of Pectobacterium members. Pectobacterium brasiliense sp. nov has been elevated to the species level having detached from P. carotovorum. Here we present two P. brasiliense strains BF20 and BF45 isolated in Mexico from Opuntia and tobacco, respectively, which cluster into two different groups in whole genome comparisons with other Pectobacterium. We found that BF20 and BF45 strains are phenotypically different as BF45 showed more severe and rapid symptoms in comparison to BF20 in the host models celery and broccoli. Both strains produced similar levels of the main autoinducers, but BF45 shows an additional low abundant autoinducer compared to strain BF20. The two strains had different levels of c-di-GMP, which regulates the transition from motile to sessile lifestyle. In contrast to BF45, BF20 had the highest levels of c-di-GMP, was more motile (swarming), non-flocculant and less proficient in biofilm formation and exopolysaccharide production. Genomic comparisons revealed that differences in c-di-GMP accumulation and perhaps the associated phenotypes might be due to unique c-di-GMP metabolic genes in these two strains. Our results improve our understanding of the associations between phenotype and genotype and how this has shaped the physiology of Pectobacterium strains.
Collapse
Affiliation(s)
- Delia A Narváez-Barragán
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Andrés de Sandozequi
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Mabel Rodríguez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Karel Estrada
- Unidad de Secuenciación Masiva y Bioinformática. Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Omar E Tovar-Herrera
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México
| | - Claudia Martínez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Chamilpa, 62210 Cuernavaca, Morelos, México.
| |
Collapse
|
25
|
Chimal-Cázares F, Hernández-Martínez G, Pacheco S, Ares MA, Soria-Bustos J, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Ibarra JA, González-Y-Merchand JA, Gorvel JP, Méresse S, De la Cruz MA. Molecular Characterization of SehB, a Type II Antitoxin of Salmonella enterica Serotype Typhimurium: Amino Acid Residues Involved in DNA-Binding, Homodimerization, Toxin Interaction, and Virulence. Front Microbiol 2020; 11:614. [PMID: 32328049 PMCID: PMC7160566 DOI: 10.3389/fmicb.2020.00614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/19/2020] [Indexed: 11/22/2022] Open
Abstract
Salmonella enterica serotype Typhimurium is a bacterium that causes gastroenteritis and diarrhea in humans. The genome of S. Typhimurium codes for diverse virulence factors, among which are the toxin-antitoxin (TA) systems. SehAB is a type II TA, where SehA is the toxin and SehB is the antitoxin. It was previously reported that the absence of the SehB antitoxin affects the growth of S. Typhimurium. In addition, the SehB antitoxin can interact directly with the SehA toxin neutralizing its toxic effect as well as repressing its own expression. We identified conserved residues on SehB homologous proteins. Point mutations were introduced at both N- and C-terminal of SehB antitoxin to analyze the effect of these changes on its transcription repressor function, on its ability to form homodimers and on the virulence of S. Typhimurium. All changes in amino acid residues at both the N- and C-terminal affected the repressor function of SehB antitoxin and they were required for DNA-binding activity. Mutations in the amino acid residues at the N-terminal showed a lower capacity for homodimer formation of the SehB protein. However, none of the SehB point mutants were affected in the interaction with the SehA toxin. In terms of virulence, the eight single-amino acid mutations were attenuated for virulence in the mouse model. In agreement with our results, the eight amino acid residues of SehB antitoxin were required for its repressor activity, affecting both homodimerization and DNA-binding activity, supporting the notion that both activities of SehB antitoxin are required to confer virulence to Salmonella enterica.
Collapse
Affiliation(s)
- Fernando Chimal-Cázares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela Hernández-Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge Soria-Bustos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Jose Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge A González-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
26
|
Banaś AM, Bocian-Ostrzycka KM, Plichta M, Dunin-Horkawicz S, Ludwiczak J, Płaczkiewicz J, Jagusztyn-Krynicka EK. C8J_1298, a bifunctional thiol oxidoreductase of Campylobacter jejuni, affects Dsb (disulfide bond) network functioning. PLoS One 2020; 15:e0230366. [PMID: 32203539 PMCID: PMC7089426 DOI: 10.1371/journal.pone.0230366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Posttranslational generation of disulfide bonds catalyzed by bacterial Dsb (disulfide bond) enzymes is essential for the oxidative folding of many proteins. Although we now have a good understanding of the Escherichia coli disulfide bond formation system, there are significant gaps in our knowledge concerning the Dsb systems of other bacteria, including Campylobacter jejuni, a food-borne, zoonotic pathogen. We attempted to gain a more complete understanding of the process by thorough analysis of C8J_1298 functioning in vitro and in vivo. C8J_1298 is a homodimeric thiol-oxidoreductase present in wild type (wt) cells, in both reduced and oxidized forms. The protein was previously described as a homolog of DsbC, and thus potentially should be active in rearrangement of disulfides. Indeed, biochemical studies with purified protein revealed that C8J_1298 shares many properties with EcDsbC. However, its activity in vivo is dependent on the genetic background, namely, the set of other Dsb proteins present in the periplasm that determine the redox conditions. In wt C. jejuni cells, C8J_1298 potentially works as a DsbG involved in the control of the cysteine sulfenylation level and protecting single cysteine residues from oxidation to sulfenic acid. A strain lacking only C8J_1298 is indistinguishable from the wild type strain by several assays recognized as the criteria to determine isomerization or oxidative Dsb pathways. Remarkably, in C. jejuni strain lacking DsbA1, the protein involved in generation of disulfides, C8J_1298 acts as an oxidase, similar to the homodimeric oxidoreductase of Helicobater pylori, HP0231. In E. coli, C8J_1298 acts as a bifunctional protein, also resembling HP0231. These findings are strongly supported by phylogenetic data. We also showed that CjDsbD (C8J_0565) is a C8J_1298 redox partner.
Collapse
Affiliation(s)
- Anna Marta Banaś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Maciej Plichta
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jan Ludwiczak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jagoda Płaczkiewicz
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
27
|
Hawkins M, Dimude JU, Howard JAL, Smith AJ, Dillingham MS, Savery NJ, Rudolph CJ, McGlynn P. Direct removal of RNA polymerase barriers to replication by accessory replicative helicases. Nucleic Acids Res 2019; 47:5100-5113. [PMID: 30869136 PMCID: PMC6547429 DOI: 10.1093/nar/gkz170] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 11/24/2022] Open
Abstract
Bacterial genome duplication and transcription require simultaneous access to the same DNA template. Conflicts between the replisome and transcription machinery can lead to interruption of DNA replication and loss of genome stability. Pausing, stalling and backtracking of transcribing RNA polymerases add to this problem and present barriers to replisomes. Accessory helicases promote fork movement through nucleoprotein barriers and exist in viruses, bacteria and eukaryotes. Here, we show that stalled Escherichia coli transcription elongation complexes block reconstituted replisomes. This physiologically relevant block can be alleviated by the accessory helicase Rep or UvrD, resulting in the formation of full-length replication products. Accessory helicase action during replication-transcription collisions therefore promotes continued replication without leaving gaps in the DNA. In contrast, DinG does not promote replisome movement through stalled transcription complexes in vitro. However, our data demonstrate that DinG operates indirectly in vivo to reduce conflicts between replication and transcription. These results suggest that Rep and UvrD helicases operate on DNA at the replication fork whereas DinG helicase acts via a different mechanism.
Collapse
Affiliation(s)
- Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | | | - Abigail J Smith
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Mark S Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Nigel J Savery
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
28
|
HilD induces expression of a novel Salmonella Typhimurium invasion factor, YobH, through a regulatory cascade involving SprB. Sci Rep 2019; 9:12725. [PMID: 31484980 PMCID: PMC6726612 DOI: 10.1038/s41598-019-49192-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 08/20/2019] [Indexed: 12/27/2022] Open
Abstract
HilD is an AraC-like transcriptional regulator encoded in the Salmonella pathogenicity island 1 (SPI-1), which actives transcription of many genes within and outside SPI-1 that are mainly required for invasion of Salmonella into host cells. HilD controls expression of target genes directly or by acting through distinct regulators; three different regulatory cascades headed by HilD have been described to date. Here, by analyzing the effect of HilD on the yobH gene in Salmonella enterica serovar Typhimurium (S. Typhimurium), we further define an additional regulatory cascade mediated by HilD, which was revealed by previous genome-wide analyses. In this regulatory cascade, HilD acts through SprB, a LuxR-like regulator encoded in SPI-1, to induce expression of virulence genes. Our data show that HilD induces expression of sprB by directly counteracting H-NS-mediated repression on the promoter region upstream of this gene. Then, SprB directly activates expression of several genes including yobH, slrP and ugtL. Interestingly, we found that YobH, a protein of only 79 amino acids, is required for invasion of S. Typhimurium into HeLa cells and mouse macrophages. Thus, our results reveal a novel S. Typhimurium invasion factor and provide more evidence supporting the HilD-SprB regulatory cascade.
Collapse
|
29
|
New Shuttle Vectors for Real-Time Gene Expression Analysis in Multidrug-Resistant Acinetobacter Species: In Vitro and In Vivo Responses to Environmental Stressors. Appl Environ Microbiol 2019; 85:AEM.01334-19. [PMID: 31324623 DOI: 10.1128/aem.01334-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/06/2019] [Indexed: 11/20/2022] Open
Abstract
The Acinetobacter genus includes species of opportunistic pathogens and harmless saprophytes. The type species, Acinetobacter baumannii, is a nosocomial pathogen renowned for being multidrug resistant (MDR). Despite the clinical relevance of infections caused by MDR A. baumannii and a few other Acinetobacter spp., the regulation of their pathogenicity remains elusive due to the scarcity of adequate genetic tools, including vectors for gene expression analysis. Here, we report the generation and testing of a series of Escherichia coli-Acinetobacter promoter-probe vectors suitable for gene expression analysis in Acinetobacter spp. These vectors, named pLPV1Z, pLPV2Z, and pLPV3Z, carry both gentamicin and zeocin resistance markers and contain lux, lacZ, and green fluorescent protein (GFP) reporter systems downstream of an extended polylinker, respectively. The presence of a toxin-antitoxin gene system and the high copy number allow pLPV plasmids to be stably maintained even without antibiotic selection. The pLPV plasmids can easily be introduced by electroporation into MDR A. baumannii belonging to the major international lineages as well as into species of the Acinetobacter calcoaceticus-A. baumannii complex. The pLPV vectors have successfully been employed to study the regulation of stress-responsive A. baumannii promoters, including the DNA damage-inducible uvrABC promoter, the ethanol-inducible adhP and yahK promoters, and the iron-repressible promoter of the acinetobactin siderophore biosynthesis gene basA A lux-tagged A. baumannii ATCC 19606T strain, carrying the iron-responsive pLPV1Z::PbasA promoter fusion, allowed in vivo and ex vivo monitoring of the bacterial burden in the Galleria mellonella infection model.IMPORTANCE The short-term adaptive response to environmental cues greatly contributes to the ecological success of bacteria, and profound alterations in bacterial gene expression occur in response to physical, chemical, and nutritional stresses. Bacteria belonging to the Acinetobacter genus are ubiquitous inhabitants of soil and water though some species, such as Acinetobacter baumannii, are pathogenic and cause serious concern due to antibiotic resistance. Understanding A. baumannii pathobiology requires adequate genetic tools for gene expression analysis, and to this end we developed user-friendly shuttle vectors to probe the transcriptional responses to different environmental stresses. Vectors were constructed to overcome the problem of antibiotic selection in multidrug-resistant strains and were equipped with suitable reporter systems to facilitate signal detection. By means of these vectors, the transcriptional response of A. baumannii to DNA damage, ethanol exposure, and iron starvation was investigated both in vitro and in vivo, providing insights into A. baumannii adaptation during stress and infection.
Collapse
|
30
|
Ares MA, Abundes-Gallegos J, Rodríguez-Valverde D, Panunzi LG, Jiménez-Galicia C, Jarillo-Quijada MD, Cedillo ML, Alcántar-Curiel MD, Torres J, Girón JA, De la Cruz MA. The Coli Surface Antigen CS3 of Enterotoxigenic Escherichia coli Is Differentially Regulated by H-NS, CRP, and CpxRA Global Regulators. Front Microbiol 2019; 10:1685. [PMID: 31417507 PMCID: PMC6681793 DOI: 10.3389/fmicb.2019.01685] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Enterotoxigenic Escherichia coli produces a myriad of adhesive structures collectively named colonization factors (CFs). CS3 is a CF, which is assembled into fine wiry fibrillae encoded by the cstA-H gene cluster. In this work we evaluated the influence of environmental cues such as temperature, osmolarity, pH, and carbon source on the expression of CS3 genes. The transcription of cstH major pilin gene was stimulated by growth of the bacteria in colonization factor broth at 37°C; the presence of glycerol enhanced cstH transcription, while glucose at high concentration, high osmolarity, and the depletion of divalent cations such as calcium and magnesium repressed cstH expression. In addition, we studied the role of H-NS, CpxRA, and CRP global regulators in CS3 gene expression. H-NS and CpxRA acted as repressors and CRP as an activator of cstH expression. Under high osmolarity, H-NS, and CpxRA were required for cstH repression. CS3 was required for both, bacterial adherence to epithelial cells and biofilm formation. Our data strengthens the existence of a multi-factorial regulatory network that controls transcription of CS3 genes in which global regulators, under the influence of environmental signals, control the production of this important intestinal colonization factor.
Collapse
Affiliation(s)
- Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Judith Abundes-Gallegos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Diana Rodríguez-Valverde
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Leonardo G Panunzi
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - César Jiménez-Galicia
- Unidad Médica de Alta Especialidad, Laboratorio Clínico, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Unidad de Investigacioìn en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Lilia Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Marìa D Alcántar-Curiel
- Unidad de Investigacioìn en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
31
|
Masuda Y, Mitsuyuki S, Kanao R, Hishiki A, Hashimoto H, Masutani C. Regulation of HLTF-mediated PCNA polyubiquitination by RFC and PCNA monoubiquitination levels determines choice of damage tolerance pathway. Nucleic Acids Res 2019; 46:11340-11356. [PMID: 30335157 PMCID: PMC6265450 DOI: 10.1093/nar/gky943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
DNA-damage tolerance protects cells via at least two sub-pathways regulated by proliferating cell nuclear antigen (PCNA) ubiquitination in eukaryotes: translesion DNA synthesis (TLS) and template switching (TS), which are stimulated by mono- and polyubiquitination, respectively. However, how cells choose between the two pathways remains unclear. The regulation of ubiquitin ligases catalyzing polyubiquitination, such as helicase-like transcription factor (HLTF), could play a role in the choice of pathway. Here, we demonstrate that the ligase activity of HLTF is stimulated by double-stranded DNA via HIRAN domain-dependent recruitment to stalled primer ends. Replication factor C (RFC) and PCNA located at primer ends, however, suppress en bloc polyubiquitination in the complex, redirecting toward sequential chain elongation. When PCNA in the complex is monoubiquitinated by RAD6-RAD18, the resulting ubiquitin moiety is immediately polyubiquitinated by coexisting HLTF, indicating a coupling reaction between mono- and polyubiquitination. By contrast, when PCNA was monoubiquitinated in the absence of HLTF, it was not polyubiquitinated by subsequently recruited HLTF unless all three-subunits of PCNA were monoubiquitinated, indicating that the uncoupling reaction specifically occurs on three-subunit-monoubiquitinated PCNA. We discuss the physiological relevance of the different modes of the polyubiquitination to the choice of cells between TLS and TS under different conditions.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Satoshi Mitsuyuki
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Asami Hishiki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8002, Japan
| | - Hiroshi Hashimoto
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8002, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
32
|
SlyA and HilD Counteract H-NS-Mediated Repression on the ssrAB Virulence Operon of Salmonella enterica Serovar Typhimurium and Thus Promote Its Activation by OmpR. J Bacteriol 2019; 201:JB.00530-18. [PMID: 30718301 DOI: 10.1128/jb.00530-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/26/2019] [Indexed: 02/03/2023] Open
Abstract
H-NS-mediated repression of acquired genes and the subsequent adaptation of regulatory mechanisms that counteract this repression have played a central role in the Salmonella pathogenicity evolution. The Salmonella pathogenicity island 2 (SPI-2) is an acquired chromosomal region containing genes necessary for Salmonella enterica to colonize and replicate in different niches of hosts. The ssrAB operon, located in SPI-2, encodes the two-component system SsrA-SsrB, which positively controls the expression of the SPI-2 genes but also other many genes located outside SPI-2. Several regulators have been involved in the expression of ssrAB, such as the ancestral regulators SlyA and OmpR, and the acquired regulator HilD. In this study, we show how SlyA, HilD, and OmpR coordinate to induce the expression of ssrAB under different growth conditions. We found that when Salmonella enterica serovar Typhimurium is grown in nutrient-rich lysogeny broth (LB), SlyA and HilD additively counteract H-NS-mediated repression on ssrAB, whereas in N-minimal medium (N-MM), SlyA antagonizes H-NS-mediated repression on ssrAB independently of HilD. Interestingly, our results indicate that OmpR is required for the expression of ssrAB independently of the growth conditions, even in the absence of repression by H-NS. Therefore, our data support two mechanisms adapted for the expression of ssrAB under different growth conditions. One involves the additive action of SlyA and HilD, whereas the other involves SlyA, but not HilD, to counteract H-NS-mediated repression on ssrAB, thus favoring in both cases the activation of ssrAB by OmpR.IMPORTANCE The global regulator H-NS represses the expression of acquired genes and thus avoids possible detrimental effects on bacterial fitness. Regulatory mechanisms are adapted to induce expression of the acquired genes in particular niches to obtain a benefit from the information encoded in the foreign DNA, as for pathogenesis. Here, we show two mechanisms that were integrated for the expression of virulence genes in Salmonella Typhimurium. One involves the additive action of the regulators SlyA and HilD, whereas the other involves SlyA, but not HilD, to counteract H-NS-mediated repression on the ssrAB operon, thus favoring its activation by the OmpR regulator. To our knowledge, this is the first report involving the coordinated action of two regulators to counteract H-NS-mediated repression.
Collapse
|
33
|
Freire DM, Gutierrez C, Garza-Garcia A, Grabowska AD, Sala AJ, Ariyachaokun K, Panikova T, Beckham KSH, Colom A, Pogenberg V, Cianci M, Tuukkanen A, Boudehen YM, Peixoto A, Botella L, Svergun DI, Schnappinger D, Schneider TR, Genevaux P, de Carvalho LPS, Wilmanns M, Parret AHA, Neyrolles O. An NAD + Phosphorylase Toxin Triggers Mycobacterium tuberculosis Cell Death. Mol Cell 2019; 73:1282-1291.e8. [PMID: 30792174 PMCID: PMC6436930 DOI: 10.1016/j.molcel.2019.01.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/13/2018] [Accepted: 01/18/2019] [Indexed: 01/13/2023]
Abstract
Toxin-antitoxin (TA) systems regulate fundamental cellular processes in bacteria and represent potential therapeutic targets. We report a new RES-Xre TA system in multiple human pathogens, including Mycobacterium tuberculosis. The toxin, MbcT, is bactericidal unless neutralized by its antitoxin MbcA. To investigate the mechanism, we solved the 1.8 Å-resolution crystal structure of the MbcTA complex. We found that MbcT resembles secreted NAD+-dependent bacterial exotoxins, such as diphtheria toxin. Indeed, MbcT catalyzes NAD+ degradation in vitro and in vivo. Unexpectedly, the reaction is stimulated by inorganic phosphate, and our data reveal that MbcT is a NAD+ phosphorylase. In the absence of MbcA, MbcT triggers rapid M. tuberculosis cell death, which reduces mycobacterial survival in macrophages and prolongs the survival of infected mice. Our study expands the molecular activities employed by bacterial TA modules and uncovers a new class of enzymes that could be exploited to treat tuberculosis and other infectious diseases.
Collapse
Affiliation(s)
- Diana Mendes Freire
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Acely Garza-Garcia
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anna D Grabowska
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Ambre J Sala
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Kanchiyaphat Ariyachaokun
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Terezie Panikova
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Katherine S H Beckham
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - André Colom
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Vivian Pogenberg
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Michele Cianci
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Anne Tuukkanen
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Yves-Marie Boudehen
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Antonio Peixoto
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France
| | - Laure Botella
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Thomas R Schneider
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31400 Toulouse, France
| | - Luiz Pedro Sorio de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany; University Hamburg Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Annabel H A Parret
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, 22607 Hamburg, Germany.
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, 205 route de Narbonne, 31400 Toulouse, France.
| |
Collapse
|
34
|
Structural insights into chaperone addiction of toxin-antitoxin systems. Nat Commun 2019; 10:782. [PMID: 30770830 PMCID: PMC6377645 DOI: 10.1038/s41467-019-08747-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
SecB chaperones assist protein export by binding both unfolded proteins and the SecA motor. Certain SecB homologs can also control toxin-antitoxin (TA) systems known to modulate bacterial growth in response to stress. In such TA-chaperone (TAC) systems, SecB assists the folding and prevents degradation of the antitoxin, thus facilitating toxin inhibition. Chaperone dependency is conferred by a C-terminal extension in the antitoxin known as chaperone addiction (ChAD) sequence, which makes the antitoxin aggregation-prone and prevents toxin inhibition. Using TAC of Mycobacterium tuberculosis, we present the structure of a SecB-like chaperone bound to its ChAD peptide. We find differences in the binding interfaces when compared to SecB–SecA or SecB-preprotein complexes, and show that the antitoxin can reach a functional form while bound to the chaperone. This work reveals how chaperones can use discrete surface binding regions to accommodate different clients or partners and thereby expand their substrate repertoire and functions. SecB homologs can be associated with stress-responsive type II toxin–antitoxin (TA) systems and form tripartite toxin-antitoxin-chaperone systems (TAC). Here the authors provide structural insights into TACs by presenting the crystal structure of the M. tuberculosis TA-associated SecB chaperone in complex with the C-terminal ChAD (chaperone addiction) extension of the antitoxin HigA1.
Collapse
|
35
|
Activity of Vsr endonucleases encoded by Neisseria gonorrhoeae FA1090 is influenced by MutL and MutS proteins. BMC Microbiol 2018; 18:95. [PMID: 30165819 PMCID: PMC6116569 DOI: 10.1186/s12866-018-1243-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/21/2018] [Indexed: 01/22/2023] Open
Abstract
Background The functioning of DNA repair systems is based on correct interactions between proteins involved in DNA repair. Very Short Patch (VSP) repair is a DNA repair system that corrects mismatches resulting from the deamination of 5-methylcytosine. The key enzyme in the VSP system is Vsr endonuclease, which can cleave mismatched DNA independently of accessory proteins. Until now, in vivo activity has only been shown for V.EcoKDcm - the only Vsr endonuclease in Escherichia coli. Additionally, the VSP system of E. coli is the only one for which interactions between proteins of the system have been demonstrated. Neisseria gonorrhoeae FA1090 is the first bacterium that we previously demonstrated to encode two active in vitro Vsr endonucleases: V.NgoAXIII and V.NgoAXIV. Results We elucidate the mutator phenotype of N. gonorrhoeae mutants with disrupted genes encoding V.NgoAXIII or V.NgoAXIV endonuclease. Furthermore, we investigate the interactions between gonococcal Vsr endonucleases and MutL and MutS proteins. The Vsr endonucleases physically interact with gonococcal MutL protein but not with MutS protein. In the presence of the MutL protein, the efficiency of DNA cleavage by both V.NgoAXIII and V.NgoAXIV endonucleases increases, resulting in a decrease in the amount of Vsr enzyme required to complete digestion of mismatched DNA. Both Vsr endonucleases are also stimulated in vitro by the MutL protein of E. coli. In turn, the gonococcal MutS protein hinders DNA cleavage by the Vsr endonucleases. However, this effect is overridden in the presence of MutL, and furthermore, the simultaneous presence of MutL and MutS causes an increase in the efficiency of DNA cleavage by the Vsr endonucleases compared to the reaction catalyzed by V.NgoAXIII or V.NgoAXIV alone. Conclusions For the first time, interactions between proteins of the DNA repair system encoded by N. gonorrhoeae that are responsible for the correction of mismatches resulting from the 5-methylcytosine deamination were identified. The increase in activity of Vsr endonucleases in the presence of MutL protein could allow for reduced synthesis of the Vsr endonucleases in cells, and the susceptibility of gonococcal Vsr endonucleases on MutL protein of E. coli implies a universal mechanism of Vsr stimulation by MutL protein. Electronic supplementary material The online version of this article (10.1186/s12866-018-1243-3) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
New Shuttle Vectors for Gene Cloning and Expression in Multidrug-Resistant Acinetobacter Species. Antimicrob Agents Chemother 2018; 62:AAC.02480-17. [PMID: 29339383 DOI: 10.1128/aac.02480-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Understanding bacterial pathogenesis requires adequate genetic tools to assess the role of individual virulence determinants by mutagenesis and complementation assays, as well as for homologous and heterologous expression of cloned genes. Our knowledge of Acinetobacter baumannii pathogenesis has so far been limited by the scarcity of genetic tools to manipulate multidrug-resistant (MDR) epidemic strains, which are responsible for most infections. Here, we report on the construction of new multipurpose shuttle plasmids, namely, pVRL1 and pVRL2, which can efficiently replicate in Acinetobacter spp. and in Escherichia coli The pVRL1 plasmid has been constructed by combining (i) the cryptic plasmid pWH1277 from Acinetobacter calcoaceticus, which provides an origin of replication for Acinetobacter spp.; (ii) a ColE1-like origin of replication; (iii) the gentamicin or zeocin resistance cassette for antibiotic selection; and (iv) a multilinker containing several unique restriction sites. Modification of pVRL1 led to the generation of the pVRL2 plasmid, which allows arabinose-inducible gene transcription with an undetectable basal expression level of cloned genes under uninduced conditions and a high dynamic range of responsiveness to the inducer. Both pVRL1 and pVRL2 can easily be selected in MDR A. baumannii, have a narrow host range and a high copy number, are stably maintained in Acinetobacter spp., and appear to be compatible with indigenous plasmids carried by epidemic strains. Plasmid maintenance is guaranteed by the presence of a toxin-antitoxin system, providing more insights into the mechanism of plasmid stability in Acinetobacter spp.
Collapse
|
37
|
HilD and PhoP independently regulate the expression of grhD1, a novel gene required for Salmonella Typhimurium invasion of host cells. Sci Rep 2018; 8:4841. [PMID: 29555922 PMCID: PMC5859253 DOI: 10.1038/s41598-018-23068-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/06/2018] [Indexed: 01/28/2023] Open
Abstract
When Salmonella is grown in the nutrient-rich lysogeny broth (LB), the AraC-like transcriptional regulator HilD positively controls the expression of genes required for Salmonella invasion of host cells, such as the Salmonella pathogenicity island 1 (SPI-1) genes. However, in minimal media, the two-component system PhoP/Q activates the expression of genes necessary for Salmonella replication inside host cells, such as the SPI-2 genes. Recently, we found that the SL1344_1872 hypothetical gene, located in a S. Typhimurium genomic island, is co-expressed with the SPI-1 genes. In this study we demonstrate that HilD induces indirectly the expression of SL1344_1872 when S. Typhimurium is grown in LB; therefore, we named SL1344_1872 as grhD1 for gene regulated by HilD. Furthermore, we found that PhoP positively controls the expression of grhD1, independently of HilD, when S. Typhimurium is grown in LB or N-minimal medium. Moreover, we demonstrate that the grhD1 gene is required for the invasion of S. Typhimurium into epithelial cells, macrophages and fibroblasts, as well as for the intestinal inflammatory response caused by S. Typhimurium in mice. Thus, our results reveal a novel virulence factor of Salmonella, whose expression is positively and independently controlled by the HilD and PhoP transcriptional regulators.
Collapse
|
38
|
Kityk R, Kopp J, Mayer MP. Molecular Mechanism of J-Domain-Triggered ATP Hydrolysis by Hsp70 Chaperones. Mol Cell 2017; 69:227-237.e4. [PMID: 29290615 DOI: 10.1016/j.molcel.2017.12.003] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 12/16/2022]
Abstract
Efficient targeting of Hsp70 chaperones to substrate proteins depends on J-domain cochaperones, which in synergism with substrates trigger ATP hydrolysis in Hsp70s and concomitant substrate trapping. We present the crystal structure of the J-domain of Escherichia coli DnaJ in complex with the E. coli Hsp70 DnaK. The J-domain interacts not only with DnaK's nucleotide-binding domain (NBD) but also with its substrate-binding domain (SBD) and packs against the highly conserved interdomain linker. Mutational replacement of contacts between J-domain and SBD strongly reduces the ability of substrates to stimulate ATP hydrolysis in the presence of DnaJ and compromises viability at heat shock temperatures. Our data demonstrate that the J-domain and the substrate do not deliver completely independent signals for ATP hydrolysis, but the J-domain, in addition to its direct influence on Hsp70s catalytic center, makes Hsp70 more responsive for the hydrolysis-inducing signal of the substrate, resulting in efficient substrate trapping.
Collapse
Affiliation(s)
- Roman Kityk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Jürgen Kopp
- Biochemistry Center of Heidelberg University (BZH), 69120 Heidelberg, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Chakraborty S, Winardhi RS, Morgan LK, Yan J, Kenney LJ. Non-canonical activation of OmpR drives acid and osmotic stress responses in single bacterial cells. Nat Commun 2017; 8:1587. [PMID: 29138484 PMCID: PMC5686162 DOI: 10.1038/s41467-017-02030-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Unlike eukaryotes, bacteria undergo large changes in osmolality and cytoplasmic pH. It has been described that during acid stress, bacteria internal pH promptly acidifies, followed by recovery. Here, using pH imaging in single living cells, we show that following acid stress, bacteria maintain an acidic cytoplasm and the osmotic stress transcription factor OmpR is required for acidification. The activation of this response is non-canonical, involving a regulatory mechanism requiring the OmpR cognate kinase EnvZ, but not OmpR phosphorylation. Single cell analysis further identifies an intracellular pH threshold ~6.5. Acid stress reduces the internal pH below this threshold, increasing OmpR dimerization and DNA binding. During osmotic stress, the internal pH is above the threshold, triggering distinct OmpR-related pathways. Preventing intracellular acidification of Salmonella renders it avirulent, suggesting that acid stress pathways represent a potential therapeutic target. These results further emphasize the advantages of single cell analysis over studies of population averages.
Collapse
Affiliation(s)
- Smarajit Chakraborty
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Ricksen S Winardhi
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Department of Physics, National University of Singapore, Singapore, 117551, Singapore
| | - Leslie K Morgan
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.,Department of Microbiology & Immunology, University of Illinois-Chicago, Chicago, IL, 60612, USA
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Department of Physics, National University of Singapore, Singapore, 117551, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore, 117411, Singapore. .,Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA. .,Department of Microbiology & Immunology, University of Illinois-Chicago, Chicago, IL, 60612, USA. .,Department of Biochemistry, National University of Singapore, Singapore, 117596, Singapore.
| |
Collapse
|
40
|
Duval V, Foster K, Brewster J, Levy SB. A Novel Regulatory Cascade Involving BluR, YcgZ, and Lon Controls the Expression of Escherichia coli OmpF Porin. Front Microbiol 2017; 8:1148. [PMID: 28713335 PMCID: PMC5491885 DOI: 10.3389/fmicb.2017.01148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/07/2017] [Indexed: 11/13/2022] Open
Abstract
In Escherichia coli, OmpF is an important outer membrane protein, which serves as a passive diffusion pore for small compounds including nutrients, antibiotics, and toxic compounds. OmpF expression responds to environmental changes such as temperature, osmolarity, nutrients availability, and toxic compounds via complex regulatory pathways involving transcriptional and post-transcriptional regulation. Our study identified a new regulatory cascade that controls the expression of OmpF porin. This pathway involves BluR, a transcriptional regulator repressing the expression of the ycgZ-ymgABC operon. We showed that BluR was responsible for the temperature-dependent regulation of the ycgZ-ymgABC operon. Furthermore, our results showed that independent expression of YcgZ led to a decreased activity of the ompF promoter, while YmgA, YmgB, and YmgC expression had no effect. We also determined that YcgZ accumulates in the absence of the Lon protease. Thus, mutation in bluR leads to de-repression of ycgZ-ymgABC transcription. With a second mutation in lon, YcgZ protein accumulates to reach levels that do not allow increased expression of OmpF under growth conditions that usually would, i.e., low temperature. With BluR responding to blue-light and temperature, this study sheds a new light on novel signals able to regulate OmpF porin.
Collapse
Affiliation(s)
- Valérie Duval
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, BostonMA, United States
| | - Kimberly Foster
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, BostonMA, United States
| | - Jennifer Brewster
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, BostonMA, United States
| | - Stuart B Levy
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, BostonMA, United States
| |
Collapse
|
41
|
Pérez-Morales D, Banda MM, Chau NYE, Salgado H, Martínez-Flores I, Ibarra JA, Ilyas B, Coombes BK, Bustamante VH. The transcriptional regulator SsrB is involved in a molecular switch controlling virulence lifestyles of Salmonella. PLoS Pathog 2017; 13:e1006497. [PMID: 28704543 PMCID: PMC5562331 DOI: 10.1371/journal.ppat.1006497] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/18/2017] [Accepted: 06/28/2017] [Indexed: 11/22/2022] Open
Abstract
The evolution of bacterial pathogenicity, heavily influenced by horizontal gene transfer, provides new virulence factors and regulatory connections that alter bacterial phenotypes. Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) are chromosomal regions that were acquired at different evolutionary times and are essential for Salmonella virulence. In the intestine of mammalian hosts, Salmonella expresses the SPI-1 genes that mediate its invasion to the gut epithelium. Once inside the cells, Salmonella down-regulates the SPI-1 genes and induces the expression of the SPI-2 genes, which favor its intracellular replication. The mechanism by which the invasion machinery is deactivated following successful invasion of host cells is not known. Here, we show that the SPI-2 encoded transcriptional regulator SsrB, which positively controls SPI-2, acts as a dual regulator that represses expression of SPI-1 during intracellular stages of infection. The mechanism of this SPI-1 repression by SsrB was direct and acts upon the hilD and hilA regulatory genes. The phenotypic effect of this molecular switch activity was a significant reduction in invasion ability of S. enterica serovar Typhimurium while promoting the expression of genes required for intracellular survival. During mouse infections, Salmonella mutants lacking SsrB had high levels of hilA (SPI-1) transcriptional activity whereas introducing a constitutively active SsrB led to significant hilA repression. Thus, our results reveal a novel SsrB-mediated mechanism of transcriptional crosstalk between SPI-1 and SPI-2 that helps Salmonella transition to the intracellular lifestyle. Salmonella infect humans and a wide range of mammalian hosts. Successful infection requires the bacteria to sense their surroundings and regulate gene expression in a way that maximizes fitness in that particular environment. The two major lifestyles of Salmonella include extracellular stages and intracellular stages of host cell infection; however, the molecular mechanisms of how Salmonella transitions between these two lifestyles are not completely understood. Here we show that the transcriptional regulator SsrB functions in a dual capacity, activating genes required for intracellular survival while simultaneously repressing genes needed for extracellular stages of infection. Our data highlight how regulatory crosstalk is selective during infection, presumably because it helps facilitate rapid transitions in bacterial lifestyles that ultimately promote bacterial survival and replication.
Collapse
Affiliation(s)
- Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - María M. Banda
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - N. Y Elizabeth Chau
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Heladia Salgado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Irma Martínez-Flores
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - J. Antonio Ibarra
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Bushra Ilyas
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
42
|
Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor. PLoS One 2017; 12:e0173285. [PMID: 28278272 PMCID: PMC5344390 DOI: 10.1371/journal.pone.0173285] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae.
Collapse
|
43
|
Mellies JL, Platenkamp A, Osborn J, Ben-Avi L. PerC Manipulates Metabolism and Surface Antigens in Enteropathogenic Escherichia coli. Front Cell Infect Microbiol 2017; 7:32. [PMID: 28224117 PMCID: PMC5293775 DOI: 10.3389/fcimb.2017.00032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/23/2017] [Indexed: 11/13/2022] Open
Abstract
Enteropathogenic Escherichia coli is an important cause of profuse, watery diarrhea in infants living in developing regions of the world. Typical strains of EPEC (tEPEC) possess a virulence plasmid, while related clinical isolates that lack the pEAF plasmid are termed atypical EPEC (aEPEC). tEPEC and aEPEC tend to cause acute vs. more chronic type infections, respectively. The pEAF plasmid encodes an attachment factor as well as a regulatory operon, perABC. PerC, a poorly understood regulator, was previously shown to regulate expression of the type III secretion system through Ler. Here we elucidate the regulon of PerC using RNA sequencing analysis to better our understanding of the role of the pEAF in tEPEC infection. We demonstrate that PerC controls anaerobic metabolism by increasing expression of genes necessary for nitrate reduction. A tEPEC strain overexpressing PerC exhibited a growth advantage compared to a strain lacking this regulator, when grown anaerobically in the presence of nitrate, conditions mimicking the human intestine. We show that PerC strongly down-regulates type I fimbriae expression by manipulating fim phase variation. The quantities of a number of non-coding RNA molecules were altered by PerC. In sum, this protein controls niche adaptation, and could help to explain the function of the PerC homologs (Pch), many of which are encoded within prophages in related, Gram-negative pathogens.
Collapse
Affiliation(s)
| | | | - Jossef Osborn
- Molecular Microbiology and Immunology, Oregon Health and Science University Portland, OR, USA
| | - Lily Ben-Avi
- Biology Department, Reed College Portland, OR, USA
| |
Collapse
|
44
|
De la Cruz MA, Ruiz-Tagle A, Ares MA, Pacheco S, Yáñez JA, Cedillo L, Torres J, Girón JA. The expression of Longus type 4 pilus of enterotoxigenic Escherichia coli is regulated by LngR and LngS and by H-NS, CpxR and CRP global regulators. Environ Microbiol 2017; 19:1761-1775. [PMID: 27943535 DOI: 10.1111/1462-2920.13644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 12/31/2022]
Abstract
Enterotoxigenic Escherichia coli produces a long type 4 pilus called Longus. The regulatory elements and the environmental signals controlling the expression of Longus-encoding genes are unknown. We identified two genes lngR and lngS in the Longus operon, whose predicted products share homology with transcriptional regulators. Isogenic lngR and lngS mutants were considerably affected in transcription of lngA pilin gene. The expression of lngA, lngR and lngS genes was optimally expressed at 37°C at pH 7.5. The presence of glucose and sodium chloride had a positive effect on Longus expression. The presence of divalent ions, particularly calcium, appears to be an important stimulus for Longus production. In addition, we studied H-NS, CpxR and CRP global regulators, on Longus expression. The response regulator CpxR appears to function as a positive regulator of lng genes as the cpxR mutant showed reduced levels of lngRSA expression. In contrast, H-NS and CRP function as negative regulators since expression of lngA was up-regulated in isogenic hns and crp mutants. H-NS and CRP were required for salt- and glucose-mediated regulation of Longus. Our data suggest the existence of a complex regulatory network controlling Longus expression, involving both local and global regulators in response to different environmental signals.
Collapse
Affiliation(s)
- Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI IMSS, Mexico City, Mexico
| | | | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI IMSS, Mexico City, Mexico
| | - Sabino Pacheco
- Departamento de Microbiología Molecular, Instituto de Biotecnología UNAM, Cuernavaca, Mexico
| | - Jorge A Yáñez
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Lilia Cedillo
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI IMSS, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.,Department of Pediatrics, University of Virginia, Charlottesville, VA, 22908, USA
| |
Collapse
|
45
|
Vajravel S, Kovács L, Kis M, Rehman AU, Vass I, Gombos Z, Toth TN. β-Carotene influences the phycobilisome antenna of cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2016; 130:403-415. [PMID: 27165097 DOI: 10.1007/s11120-016-0273-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/01/2016] [Indexed: 06/05/2023]
Abstract
We investigated the relation between the carotenoid composition and the structure of phycobilisome (PBS) antenna of cyanobacterium Synechocystis sp. PCC 6803. PBS is a large soluble protein complex enhances the light harvesting efficiency of the cells. It is composed of a central allophycocyanin core and radial phycocyanin rods, but it does not contain carotenoids. However, the absence or low level of carotenoids were previously shown to lead the co-existence of unconnected rod units and assembled PBS with shorter peripheral rods. Here we show that the lack of β-carotene, but not of xanthophylls or the distortion of photosystem structure, evoked unconnected rods. Thus, these essential β-carotene molecules are not bound by Photosystem I or Photosystem II. Our results do not show correlation between the reactive oxygen species (ROS) and PBS distortion despite the higher singlet oxygen producing capacity and light sensitivity of the mutant cells. Reduced cellular level of those linker proteins attaching the rod units together was also observed, but the direct damage of the linkers by ROS are not supported by our data. Enzymatic PBS proteolysis induced by nitrogen starvation in carotenoid mutant cells revealed a retarded degradation of the unconnected rod units.
Collapse
Affiliation(s)
- Sindhujaa Vajravel
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - László Kovács
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - Mihály Kis
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - Ateeq Ur Rehman
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - Zoltan Gombos
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary
| | - Tunde N Toth
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, P.O. Box 521, Szeged, 6701, Hungary.
| |
Collapse
|
46
|
Martínez-Flores I, Pérez-Morales D, Sánchez-Pérez M, Paredes CC, Collado-Vides J, Salgado H, Bustamante VH. In silico clustering of Salmonella global gene expression data reveals novel genes co-regulated with the SPI-1 virulence genes through HilD. Sci Rep 2016; 6:37858. [PMID: 27886269 PMCID: PMC5122947 DOI: 10.1038/srep37858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/02/2016] [Indexed: 01/04/2023] Open
Abstract
A wide variety of Salmonella enterica serovars cause intestinal and systemic infections to humans and animals. Salmonella Patogenicity Island 1 (SPI-1) is a chromosomal region containing 39 genes that have crucial virulence roles. The AraC-like transcriptional regulator HilD, encoded in SPI-1, positively controls the expression of the SPI-1 genes, as well as of several other virulence genes located outside SPI-1. In this study, we applied a clustering method to the global gene expression data of S. enterica serovar Typhimurium from the COLOMBOS database; thus genes that show an expression pattern similar to that of SPI-1 genes were selected. This analysis revealed nine novel genes that are co-expressed with SPI-1, which are located in different chromosomal regions. Expression analyses and protein-DNA interaction assays showed regulation by HilD for six of these genes: gtgE, phoH, sinR, SL1263 (lpxR) and SL4247 were regulated directly, whereas SL1896 was regulated indirectly. Interestingly, phoH is an ancestral gene conserved in most of bacteria, whereas the other genes show characteristics of genes acquired by Salmonella. A role in virulence has been previously demonstrated for gtgE, lpxR and sinR. Our results further expand the regulon of HilD and thus identify novel possible Salmonella virulence genes.
Collapse
Affiliation(s)
- Irma Martínez-Flores
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Deyanira Pérez-Morales
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Mishael Sánchez-Pérez
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Claudia C Paredes
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Julio Collado-Vides
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Heladia Salgado
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| |
Collapse
|
47
|
Abstract
Bacterial toxin–antitoxin (TA) systems, in which a labile antitoxin binds and inhibits the toxin, can promote adaptation and persistence by modulating bacterial growth in response to stress. Some atypical TA systems, known as tripartite toxin–antitoxin–chaperone (TAC) modules, include a molecular chaperone that facilitates folding and protects the antitoxin from degradation. Here we use a TAC module from Mycobacterium tuberculosis as a model to investigate the molecular mechanisms by which classical TAs can become ‘chaperone-addicted'. The chaperone specifically binds the antitoxin at a short carboxy-terminal sequence (chaperone addiction sequence, ChAD) that is not present in chaperone-independent antitoxins. In the absence of chaperone, the ChAD sequence destabilizes the antitoxin, thus preventing toxin inhibition. Chaperone–ChAD pairs can be transferred to classical TA systems or to unrelated proteins and render them chaperone-dependent. This mechanism might be used to optimize the expression and folding of heterologous proteins in bacterial hosts for biotechnological or medical purposes. Some bacterial toxin-antitoxin systems consist of a labile antitoxin that inhibits a toxin, and a chaperone that stabilizes the antitoxin. Here, Bordes et al. identify a sequence within the antitoxin to which the chaperone binds and which can be transferred to other proteins to make them chaperone-dependent.
Collapse
|
48
|
Modulation of heterologous expression from PBAD promoter in Escherichia coli production strains. J Biotechnol 2016; 236:1-9. [PMID: 27498315 DOI: 10.1016/j.jbiotec.2016.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/28/2016] [Accepted: 08/03/2016] [Indexed: 11/23/2022]
Abstract
Promoter PBAD is frequently used for heterologous gene expression due to several advantages, such as moderately high expression levels, induction by an inexpensive and non-toxic monosaccharide L-arabinose and tight regulation of transcription, which is particularly important for expression of toxic proteins. A drawback of this promoter is all-or-none induction that occurs at subsaturating inducer concentrations. Although the overall expression level of the cell culture seems to correlate with increasing arabinose concentrations, the population is a mixture of induced and uninduced cells and with increasing arabinose concentrations, only the fraction of induced cells increases. This phenomenon is caused by autocatalytic gene expression - the expression of the arabinose transporter AraE is induced by the transported molecule. In this work the promoter PE, controlling the expression of araE, was exchanged for the stronger PBAD promoter in two Escherichia coli strains commonly used for heterologous protein production. This modification should increase a basal number of arabinose transporters in the cell wall and reduce the threshold concentration required for induction and thus reduce heterogeneity of cell population. Heterogeneity and level of expression in individual cells were analysed by flow cytometry using gfp as a reporter gene. In the strain BL21ai, the promoter exchange increased the number of induced cells at subsaturating arabinose concentrations as well as a yield of protein at saturating inducer concentration. In contrast, the modification did not improve these characteristics in RV308ai. In both strains it was possible to modulate the expression level in induced cells 3-6-fold even at subsaturating arabinose concentrations.
Collapse
|
49
|
Ares MA, Fernández-Vázquez JL, Rosales-Reyes R, Jarillo-Quijada MD, von Bargen K, Torres J, González-y-Merchand JA, Alcántar-Curiel MD, De la Cruz MA. H-NS Nucleoid Protein Controls Virulence Features of Klebsiella pneumoniae by Regulating the Expression of Type 3 Pili and the Capsule Polysaccharide. Front Cell Infect Microbiol 2016; 6:13. [PMID: 26904512 PMCID: PMC4746245 DOI: 10.3389/fcimb.2016.00013] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial infections. Main virulence determinants of K. pneumoniae are pili, capsular polysaccharide, lipopolysaccharide, and siderophores. The histone-like nucleoid-structuring protein (H-NS) is a pleiotropic regulator found in several gram-negative pathogens. It has functions both as an architectural component of the nucleoid and as a global regulator of gene expression. We generated a Δhns mutant and evaluated the role of the H-NS nucleoid protein on the virulence features of K. pneumoniae. A Δhns mutant down-regulated the mrkA pilin gene and biofilm formation was affected. In contrast, capsule expression was derepressed in the absence of H-NS conferring a hypermucoviscous phenotype. Moreover, H-NS deficiency affected the K. pneumoniae adherence to epithelial cells such as A549 and HeLa cells. In infection experiments using RAW264.7 and THP-1 differentiated macrophages, the Δhns mutant was less phagocytized than the wild-type strain. This phenotype was likely due to the low adherence to these phagocytic cells. Taken together, our data indicate that H-NS nucleoid protein is a crucial regulator of both T3P and CPS of K. pneumoniae.
Collapse
Affiliation(s)
- Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de PediatríaMexico City, Mexico; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico City, Mexico
| | - José L Fernández-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | | | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría Mexico City, Mexico
| | - Jorge A González-y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Mexico City, Mexico
| | - María D Alcántar-Curiel
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México Mexico City, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Hospital de Pediatría Mexico City, Mexico
| |
Collapse
|
50
|
Morgado G, Gerngross D, Roberts TM, Panke S. Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 162:117-146. [PMID: 27757475 DOI: 10.1007/10_2016_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).
Collapse
Affiliation(s)
- Gaspar Morgado
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Daniel Gerngross
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Tania M Roberts
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Sven Panke
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|