1
|
Foja C, Senekowitsch S, Winter F, Grimm M, Rosenbaum C, Koziolek M, Feldmüller M, Kromrey ML, Scheuch E, Tzvetkov MV, Weitschies W, Schick P. Prolongation of the gastric residence time of caffeine after administration in fed state: Comparison of effervescent granules with an extended release tablet. Eur J Pharm Biopharm 2024; 199:114313. [PMID: 38718842 DOI: 10.1016/j.ejpb.2024.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
The aim of the present study was to investigate the gastroretentive capacity of different formulation principles. This was indirectly determined by the absorption behavior of caffeine from the dosage forms. A slow and continuous appearance of caffeine in the saliva of healthy volunteers was used as a parameter for a prolonged gastric retention time. For this purpose, a four-way study was conducted with twelve healthy volunteers using the following test procedures: (1) Effervescent granules with 240 mL of still water administered in fed state, (2) effervescent granules with 20 mL of still water in fed state, (3) extended release (ER) tablet with 240 mL of still water in fed state, and (4) effervescent granules with 240 mL of still water in fasted state. The initial rise of the caffeine concentrations was more pronounced after the intake of the effervescent granules in the fed state compared to that of the ER tablets. However, tmax tended to be shorter in the fed study arms following administration of the ER tablet compared to the granules. Overall, the application of active pharmaceutical ingredients formulated as effervescent granules seems to be a promising approach to increase their gastric residence time after intake in fed state.
Collapse
Affiliation(s)
- Constantin Foja
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Stefan Senekowitsch
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Fabian Winter
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Michael Grimm
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Christoph Rosenbaum
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Mirko Koziolek
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Maximilian Feldmüller
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Marie-Luise Kromrey
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Eberhard Scheuch
- Department of Clinical Pharmacology, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Mladen V Tzvetkov
- Department of Clinical Pharmacology, University Medicine Greifswald, Felix-Hausdorff-Straße 3, 17487 Greifswald, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany.
| |
Collapse
|
2
|
Swanson GR, Garg K, Shaikh M, Keshavarzian A. Increased Intestinal Permeability and Decreased Resiliency of the Intestinal Barrier in Alcoholic Liver Disease. Clin Transl Gastroenterol 2024; 15:e00689. [PMID: 38334953 DOI: 10.14309/ctg.0000000000000689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Only 20%-30% of individuals with alcohol use disorder (AUD) develop alcoholic liver disease (ALD). While the development of gut-derived endotoxemia is understood to be a required cofactor, increased intestinal permeability in ALD is not completely understood. METHODS We recruited 178 subjects-58 healthy controls (HCs), 32 with ALD, 53 with AUD but no liver disease (ALC), and 35 with metabolic dysfunction-associated steatotic liver disease (MASLD). Intestinal permeability was assessed by a sugar cocktail as a percentage of oral dose. The permeability test was repeated after an aspirin challenge in a subset. RESULTS Five-hour urinary lactulose/mannitol ratio (primarily representing small intestinal permeability) was not statistically different in HC, ALC, ALD, and MASLD groups ( P = 0.40). Twenty-four-hour urinary sucralose (representing whole gut permeability) was increased in ALD ( F = 5.3, P < 0.01) and distinguished ALD from ALC; 24-hour sucralose/lactulose ratio (primarily representing colon permeability) separated the ALD group ( F = 10.2, P < 0.01) from the MASLD group. After aspirin challenge, intestinal permeability increased in all groups and ALD had the largest increase. DISCUSSION In a group of patients, we confirmed that (i) the ALD group has increased intestinal permeability compared with the HC, ALC, or MASLD group. In addition, because small bowel permeability (lactulose/mannitol ratio) is normal, the disruption of intestinal barrier seems to be primarily in the large intestine; (ii) decreased resiliency of intestinal barrier to injurious agents (such as NSAID) might be the mechanism for gut leak in subset of AUD who develop ALD.
Collapse
Affiliation(s)
- Garth R Swanson
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, South Carolina, USA
- Rush Center for Integrated Microbiome and Chronobiology, Rush University Medical Center, Chicago, Illinois, USA
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| | - Kanika Garg
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, Illinois, USA
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology, Rush University Medical Center, Chicago, Illinois, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology, Rush University Medical Center, Chicago, Illinois, USA
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, Illinois, USA
- Department of Physiology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
3
|
Amekyeh H, Sabra R, Billa N. A Window for Enhanced Oral Delivery of Therapeutics via Lipid Nanoparticles. Drug Des Devel Ther 2024; 18:613-630. [PMID: 38476206 PMCID: PMC10927375 DOI: 10.2147/dddt.s439975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/25/2023] [Indexed: 03/14/2024] Open
Abstract
Oral administration of dosage forms is convenient and beneficial in several respects. Lipid nanoparticulate dosage forms have emerged as a useful carrier system in deploying low solubility drugs systemically, particularly class II, III, and IV drugs of the Biopharmaceutics Classification System. Like other nanoparticulate delivery systems, their low size-to-volume ratio facilitates uptake by phagocytosis. Lipid nanoparticles also provide scope for high drug loading and extended-release capability, ensuring diminished systemic side effects and improved pharmacokinetics. However, rapid gastrointestinal (GI) clearance of particulate delivery systems impedes efficient uptake across the mucosa. Mucoadhesion of dosage forms to the GI mucosa results in longer transit times due to interactions between the former and mucus. Delayed transit times facilitate transfer of the dosage form across the mucosa. In this regard, a balance between mucoadhesion and mucopenetration guarantees optimal systemic transfer. Furthermore, the interplay between GI anatomy and physiology is key to ensuring efficient systemic uptake. This review captures salient anatomical and physiological features of the GI tract and how these can be exploited for maximal systemic delivery of lipid nanoparticles. Materials used to impart mucoadhesion and examples of successful mucoadhesive lipid nanoformulations are highlighted in this review.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | - Rayan Sabra
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | | |
Collapse
|
4
|
Vrettos NN, Wang P, Wang Y, Roberts CJ, Xu J, Yao H, Zhu Z. Controlled release of MT-1207 using a novel gastroretentive bilayer system comprised of hydrophilic and hydrophobic polymers. Pharm Dev Technol 2023; 28:724-742. [PMID: 37493413 DOI: 10.1080/10837450.2023.2238822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
In the present study, novel gastroretentive bilayer tablets were developed that are promising for the once-a-day oral delivery of the drug candidate MT-1207. The gastroretentive layer consisted of a combination of hydrophilic and hydrophobic polymers, namely polyethylene oxide and Kollidon® SR. A factorial experiment was conducted, and the results revealed a non-effervescent gastroretentive layer that, unlike most gastroretentive layers reported in the literature, was easy to prepare, and provided immediate tablet buoyancy (mean floating lag time of 1.5 s) that lasted over 24 h in fasted state simulated gastric fluid (FaSSGF) pH 1.6, irrespective of the drug layer, thereby allowing a 24-hour sustained release of MT-1207 from the drug layer of the tablets. Furthermore, during in vitro buoyancy testing of the optimised bilayer tablets in media of different pH values (1.0, 3.0, 6.0), the significant difference (one-way ANOVA, p < 0.001) between the respective total floating times indicated that stomach pH effects on tablet buoyancy are important to be considered during the development of non-effervescent gastroretentive formulations and the choice of dosing regimen. To the best of our knowledge, this has not been reported before, and it should probably be factored in when designing dosing regimens. Finally, a pharmacokinetic study in Beagle dogs indicated a successful in vivo 24-hour sustained release of MT-1207 from the optimised gastroretentive bilayer tablet formulations with the drug plasma concentration remaining above the estimated minimum effective concentration of 1 ng/mL at the 24-hour timepoint and also demonstrated the gastroretentive capabilities of the hydrophilic and hydrophobic polymer combination. The optimised formulations will be forwarded to clinical development.
Collapse
Affiliation(s)
| | - Peng Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuhan Wang
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Clive J Roberts
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jinyi Xu
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Hong Yao
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Zheying Zhu
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
5
|
Klang MG. Developing guidance for feeding tube administration of oral medications. JPEN J Parenter Enteral Nutr 2023; 47:519-540. [PMID: 36847617 PMCID: PMC10508335 DOI: 10.1002/jpen.2490] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND Drug administration through feeding tubes presents many challenges to the healthcare provider. There is little information available on medications than can be delivered safely when crushed and what efforts can be implemented to minimize clogging the feeding tube. Our institution requested a comprehensive examination of all oral medications for the feeding tube route. METHODS This report is a synopsis of the physical evaluation of 323 different oral medications for their appropriateness for feeding tube administration with distal site in either the stomach or jejunum. A worksheet was created for each medication. This document contained a review of the chemical and physical properties that would contribute to delivery of the medication. Each medication was then studied for the degree of disintegration, pH, osmolality, and potential to form clogs. For drugs that needed to be crushed, the volume of water needed to dissolve the drug, time for that process, and volume needed to rinse the tube after administration was also studied. RESULTS The results of this review are summarized in a table and based on a composite of the documents cited, tests conducted, and author's judgements based all the data collected. Thirty-six medications were identified as inappropriate for feeding tube administration, and an additional 46 medications were identified as inappropriate for direct jejunal administration. CONCLUSION The information produced by this study will enable clinicians to make informed choices in selecting, compounding, and rinsing medications through feeding tubes. Using the template provided, they will be able to evaluate a drug not studied here for potential issues in feeding tube administration.
Collapse
Affiliation(s)
- Mark G Klang
- Research Pharmacy, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
6
|
Impact of gastric and bowel surgery on gastrointestinal drug delivery. Drug Deliv Transl Res 2023; 13:37-53. [PMID: 35585472 PMCID: PMC9726802 DOI: 10.1007/s13346-022-01179-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 01/01/2023]
Abstract
General surgical procedures on the gastrointestinal tract are commonly performed worldwide. Surgical resections of the stomach, small intestine, or large intestine can have a significant impact on the anatomy and physiological environment of the gastrointestinal tract. These physiological changes can affect the effectiveness of orally administered formulations and drug absorption and, therefore, should be considered in rational drug formulation design for specific pathological conditions that are commonly associated with surgical intervention. For optimal drug delivery, it is important to understand how different surgical procedures affect the short-term and long-term functionality of the gastrointestinal tract. The significance of the surgical intervention is dependent on factors such as the specific region of resection, the degree of the resection, the adaptive and absorptive capacity of the remaining tissue, and the nature of the underlying disease. This review will focus on the common pathological conditions affecting the gastric and bowel regions that may require surgical intervention and the physiological impact of the surgery on gastrointestinal drug delivery. The pharmaceutical considerations for conventional and novel oral drug delivery approaches that may be impacted by general surgical procedures of the gastrointestinal tract will also be addressed.
Collapse
|
7
|
Oral Nanomedicines for siRNA Delivery to Treat Inflammatory Bowel Disease. Pharmaceutics 2022; 14:pharmaceutics14091969. [PMID: 36145716 PMCID: PMC9503894 DOI: 10.3390/pharmaceutics14091969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
RNA interference (RNAi) therapies have significant potential for the treatment of inflammatory bowel diseases (IBD). Although administering small interfering RNA (siRNA) via an oral route is desirable, various hurdles including physicochemical, mucus, and cellular uptake barriers of the gastrointestinal tract (GIT) impede both the delivery of siRNA to the target site and the action of siRNA drugs at the target site. In this review, we first discuss various physicochemical and biological barriers in the GI tract. Furthermore, we present recent strategies and the progress of oral siRNA delivery strategies to treat IBD. Finally, we consider the challenges faced in the use of these strategies and future directions of oral siRNA delivery strategies.
Collapse
|
8
|
Hu N, Zhu L, Zhang L, Wang J, Wang Y, Luo J, He L, Hao Z, Zhang L. Immunomodulatory effect and safety of TNF-α RNAi mediated by oral yeast microcapsules in rheumatoid arthritis therapy. Mater Today Bio 2022; 16:100384. [PMID: 35991628 PMCID: PMC9386491 DOI: 10.1016/j.mtbio.2022.100384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 11/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that requires long-term treatment and monitoring. Inhibition of inflammatory gene expression by gene therapy is a significant breakthrough in RA treatment, but the lack of a safe and effective gene delivery system hinders its application. Since oral administration can significantly reduce wound infection caused by parenteral administration, it also has the advantages of high patient compliance and convenience. Therefore, oral administration may be the best option for the treatment of this chronic disease. In this study, we developed a novel oral drug system by delivering tumor necrosis factor-α (TNF-α) short hairpin RNA (shRNA) mediated by non-pathogenic yeast to evaluate its regulation of systemic immune inflammation and safety in RA. Non-pathogenic yeast can resist the destruction of the gastrointestinal acid-base environment and can be recognized by the intestinal macrophages and act on systemic inflammatory lesions. Oral administration of yeast-mediated TNF-α shRNA significantly reduced the expression of TNF-α predominant pro-inflammatory factors in intestinal macrophages and joint synovium, and up-regulated the expression of anti-inflammatory cytokine IL-10 and M2 macrophages, systematically regulating the inflammatory response. This yeast-mediated oral gene delivery system can not only significantly inhibit knee joint synovial inflammation, but also has no toxic effects on peripheral blood and major organs. Therefore, yeast-mediated oral delivery of TNF-α shRNA may be used as a novel gene therapy strategy to treat RA through immunomodulating the mononuclear phagocyte system from the intestine to the joint synovium, and ultimately regulating systemic and local immune inflammation, providing new ideas for the clinical treatment of RA.
Collapse
Affiliation(s)
- Nan Hu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Zhu
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Zhang
- Xi'an Fifth Hospital, Shaanxi Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Xi'an, 710082, China
| | - Jing Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanhua Wang
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Luo
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lan He
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhiming Hao
- Department of Rheumatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
- Corresponding author.
| |
Collapse
|
9
|
Administration strategies and smart devices for drug release in specific sites of the upper GI tract. J Control Release 2022; 348:537-552. [PMID: 35690278 DOI: 10.1016/j.jconrel.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Targeting the release of drugs in specific sites of the upper GI tract would meet local therapeutic goals, improve the bioavailability of specific drugs and help overcoming compliance-related limitations, especially in chronic illnesses of great social/economic impact and involving polytherapies (e.g. Parkinson's and Alzeimer's disease, tubercolosis, malaria, HIV, HCV). It has been traditionally pursued using gastroretentive (GR) systems, i.e. low-density, high-density, magnetic, adhesive and expandable devices. More recently, the interest towards oral administration of biologics has prompted the development of novel drug delivery systems (DDSs) provided with needles and able to inject different formulations in the mucosa of the upper GI tract and particularly of esophagus, stomach or small intestine. Besides comprehensive literature analysis, DDSs identified as smart devices in view of their high degree of complexity in terms of design, working mechanism, materials employed and manufacturing steps were discussed making use of graphic tools.
Collapse
|
10
|
Farhadnejad H, Mortazavi SA, Jamshidfar S, Rakhshani A, Motasadizadeh H, Fatahi Y, Mahdieh A, Darbasizadeh B. Montmorillonite-Famotidine/Chitosan Bio-nanocomposite Hydrogels as a Mucoadhesive/Gastroretentive Drug Delivery System. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2022; 21:e127035. [PMID: 36060919 PMCID: PMC9420228 DOI: 10.5812/ijpr-127035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
The main purpose of the present study was to fabricate mucoadhesive bio-nanocomposite hydrogels to prolong the drug retention time in the stomach. In these bio-nanocomposite hydrogels, chitosan (CH) was used as a bioadhesive matrix, montmorillonite (MMT) was applied to modulate the release rate, and tripolyphosphate (TPP) was the cross-linking agent. The test samples were analyzed via different methods such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Drug incorporation efficacy and mucoadhesive strength of these nanocomposite hydrogel beads were studied. Swelling and in vitro drug release behaviors of these bio-nanocomposite hydrogels were evaluated in simulated gastric fluid (SGF; pH 1.2). The optimized MMT-famotidine (FMT)/CH bio-nanocomposite hydrogels displayed a controllable and sustainable drug release profile with suitable mucoadhesion and prolonged retention time in the stomach. Thus, the results demonstrated that the fabricated mucoadhesive bio-nanocomposite hydrogels could remarkably increase the therapeutic efficacy and bioavailability of FMT by the oral route.
Collapse
Affiliation(s)
- Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Research and Development Department, Varian Pharmed Pharmaceutical Company, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sanaz Jamshidfar
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Rakhshani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network, Tehran, Iran
| | - Athar Mahdieh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Darbasizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Ling JKU, Chan YS, Nandong J. Insights into the release mechanisms of antioxidants from nanoemulsion droplets. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1677-1691. [PMID: 35531405 PMCID: PMC9046499 DOI: 10.1007/s13197-021-05128-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 05/03/2023]
Abstract
The therapeutic effects of antioxidant-loaded nanoemulsion can be often optimized by controlling the release rate in human body. Release kinetic models can be used to predict the release profile of antioxidant compounds and allow identification of key parameters that affect the release rate. It is known that one of the critical aspects in establishing a reliable release kinetic model is to understand the underlying release mechanisms. Presently, the underlying release mechanisms of antioxidants from nanoemulsion droplets are not yet fully understood. In this context, this review scrutinized the current formulation strategies to encapsulate antioxidant compounds and provide an outlook into the future of this research area by elucidating possible release mechanisms of antioxidant compounds from nanoemulsion system.
Collapse
Affiliation(s)
- Jordy Kim Ung Ling
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Yen San Chan
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Jobrun Nandong
- Department of Chemical Engineering, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak Malaysia
| |
Collapse
|
12
|
Li L, Qi Z, Han S, Li X, Liu B, Liu Y. Advances and Applications of Metal-Organic Framework Nanomaterials as Oral Delivery Carriers: A Review. Mini Rev Med Chem 2022; 22:2564-2580. [PMID: 35362373 DOI: 10.2174/1389557522666220330152145] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022]
Abstract
Oral administration is a commonly used, safe, and patient-compliant method of drug delivery. However, due to the multiple absorption barriers in the gastrointestinal tract (GIT), the oral bioavailability of many drugs is low, resulting in a limited range of applications for oral drug delivery. Nanodrug delivery systems have unique advantages in overcoming the multiple barriers to oral absorption and improving the oral bioavailability of encapsulated drugs. Metal-organic frameworks (MOFs) are composed of metal ions and organic linkers assembled by coordination chemistry. Unlike other nanomaterials, nanoscale metal-organic frameworks (nano-MOFs, NMOFs) are increasingly popular for drug delivery systems (DDSs) due to their tunable pore size and easily modified surfaces. This paper summarizes the literature on MOFs in pharmaceutics included in SCI for the past ten years. Then, the GIT structure and oral drug delivery systems are reviewed, and the advantages, challenges, and solution strategies possessed by oral drug delivery systems are discussed. Importantly, two major classes of MOFs suitable for oral drug delivery systems are summarized, and various representative MOFs as oral drug carriers are evaluated in the context of oral drug delivery systems. Finally, the challenges faced by DDSs in the development of MOFs, such as biostability, biosafety, and toxicity, are examined.
Collapse
Affiliation(s)
- Li Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| | - Zhaorui Qi
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Shasha Han
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Xurui Li
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China
| | - Bingmi Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| | - Yu Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110000, China;
- Institute of Forensic Expertise, Liaoning University, Shenyang, 110000, China
| |
Collapse
|
13
|
Gowda BHJ, Ahmed MG, Sahebkar A, Riadi Y, Shukla R, Kesharwani P. Stimuli-Responsive Microneedles as a Transdermal Drug Delivery System: A Demand-Supply Strategy. Biomacromolecules 2022; 23:1519-1544. [PMID: 35274937 DOI: 10.1021/acs.biomac.1c01691] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microneedles are one of the most prominent approaches capable of physically disrupting the stratum corneum without devastating the deeper tissues to deliver both small molecules and macromolecules into the viable epidermis/dermis for local/systemic effects. Over the past two decades, microneedles have caught the attention of many researchers because of their outstanding advantages over oral and parenteral drug delivery systems such as self-administration, pain-free, steady-plasma concentration maintenance, avoidance of first-pass hepatic biotransformation, and so on. So far, scientists have reported various types of microneedle patches to deliver the loaded therapeutics as soon as the microneedles are inserted into the skin, regardless of the demand for therapeutics to treat a specific condition. This way of drug delivery can lead to potential risks such as poor therapeutic efficacy or drug overdose. The stimuli-responsive microneedles are the most predominant tool to achieve the on-demand/need-based drug delivery, leading to safe and effective treatment. Various natural and synthetic polymers that can undergo significant transitions such as swelling, shrinking, dissolution, or disintegration play a pivotal role in the development of stimuli-responsive microneedles. The current Review provides brief information about the history, emergence, type, and working principles of microneedles. Furthermore, it selectively discusses various exogenous and endogenous stimuli-responsive microneedles along with their mechanism of action involved in treating different disease conditions. Collaterally, the emergence of "closed-loop" combinatorial stimuli-responsive microneedle patches for precise delivery of therapeutics is meticulously canvassed. Subsequently, it covers the patents of different stimuli-responsive microneedles and further highlights the existing challenges and future perspectives concerning clinical application and large-scale production.
Collapse
Affiliation(s)
- B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 1696700, Iran.,School of Medicine, The University of Western Australia, Perth 6009, Australia
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, Uttar Pradesh 226002, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
14
|
Haimhoffer Á, Vasvári G, Budai I, Béresová M, Deák Á, Németh N, Váradi J, Sinka D, Bácskay I, Vecsernyés M, Fenyvesi F. In Vitro and In Vivo Studies of a Verapamil-Containing Gastroretentive Solid Foam Capsule. Pharmaceutics 2022; 14:pharmaceutics14020350. [PMID: 35214082 PMCID: PMC8878168 DOI: 10.3390/pharmaceutics14020350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Gastroretentive systems may overcome problems associated with incomplete drug absorption by localized release of the API in the stomach. Low-density drug delivery systems can float in the gastric content and improve the bioavailability of small molecules. The current publication presents verapamil–HCl-containing solid foam prepared by continuous manufacturing. Production runs were validated, and the foam structure was characterized by micro-CT scans and SEM. Dissolution properties, texture changes during dissolution, and floating forces were analyzed. An optimized formulation was chosen and given orally to Beagle dogs to determine the pharmacokinetic parameters of the solid foam capsules. As a result, a 12.5 m/m% stearic acid content was found to be the most effective to reduce the apparent density of capsules. Drug release can be described by the first-order model, where 70% of verapamil dissolved after 10 h from the optimized formulation. The texture analysis proved that the structures of the solid foams are resistant. Additionally, the floating forces of the samples remained constant during their dissolution in acidic media. An in vivo study confirmed the prolonged release of the API, and gastroscopic images verified the retention of the capsule in the stomach.
Collapse
Affiliation(s)
- Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Street 2-4, H-4028 Debrecen, Hungary;
| | - Monika Béresová
- Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 94, H-4032 Debrecen, Hungary;
| | - Ádám Deák
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Móricz Zsigmond u. 22, H-4032 Debrecen, Hungary; (Á.D.); (N.N.)
| | - Norbert Németh
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Móricz Zsigmond u. 22, H-4032 Debrecen, Hungary; (Á.D.); (N.N.)
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
| | - Dávid Sinka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (G.V.); (J.V.); (D.S.); (I.B.); (M.V.)
- Correspondence:
| |
Collapse
|
15
|
Smart pills for gastrointestinal diagnostics and therapy. Adv Drug Deliv Rev 2021; 177:113931. [PMID: 34416311 DOI: 10.1016/j.addr.2021.113931] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Ingestible smart pills have the potential to be a powerful clinical tool in the diagnosis and treatment of gastrointestinal disease. Though examples of this technology, such as capsule endoscopy, have been successfully translated from the lab into clinically used products, there are still numerous challenges that need to be overcome. This review gives an overview of the research being done in the area of ingestible smart pills and reports on the technical challenges in this field.
Collapse
|
16
|
Vrettos NN, Roberts CJ, Zhu Z. Gastroretentive Technologies in Tandem with Controlled-Release Strategies: A Potent Answer to Oral Drug Bioavailability and Patient Compliance Implications. Pharmaceutics 2021; 13:pharmaceutics13101591. [PMID: 34683884 PMCID: PMC8539558 DOI: 10.3390/pharmaceutics13101591] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
There have been many efforts to improve oral drug bioavailability and therapeutic efficacy and patient compliance. A variety of controlled-release oral delivery systems have been developed to meet these needs. Gastroretentive drug delivery technologies have the potential to achieve retention of the dosage form in the upper gastrointestinal tract (GIT) that can be sufficient to ensure complete solubilisation of the drugs in the stomach fluids, followed by subsequent absorption in the stomach or proximal small intestine. This can be beneficial for drugs that have an “absorption window” or are absorbed to a different extent in various segments of the GIT. Therefore, gastroretentive technologies in tandem with controlled-release strategies could enhance both the therapeutic efficacy of many drugs and improve patient compliance through a reduction in dosing frequency. The paper reviews different gastroretentive drug delivery technologies and controlled-release strategies that can be combined and summarises examples of formulations currently in clinical development and commercially available gastroretentive controlled-release products. The different parameters that need to be considered and monitored during formulation development for these pharmaceutical applications are highlighted.
Collapse
|
17
|
Triplett JD, Simpson HD, Clemmons RS, Cascino GD. The effect of weight reduction surgery on the efficacy and tolerability of epilepsy pharmacotherapy. Epilepsy Behav 2021; 124:108307. [PMID: 34600279 DOI: 10.1016/j.yebeh.2021.108307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Bariatric surgery is an increasingly utilized procedure among patients with obesity-related medical complications. The impact of bariatric surgery on seizure frequency and antiseizure drug (ASD) levels are not well described. METHODS We conducted a retrospective chart review of adult patients with a history of epilepsy or seizures undergoing bariatric surgery for morbid obesity from September 1997-September 2019. The median follow-up was 60 months [range 9-220 months]. RESULTS Forty-six patients with a history of seizures were identified (38 female); 44 patients had recurrent and unprovoked seizures. Seventeen sets of pre- and post-surgery drug concentrations from 14 patients were reviewed. The median age at surgery was 44 years (range, 19-68). Thirty-three patients were prescribed ASDs at the time of bariatric surgery (median 1 drug [range, 1-3]). Laparoscopic Roux-en-Y was performed in 40 patients, and sleeve gastrectomy in 6 patients. Median pre-surgery weight was 120.75 kg (range, 71-230) and BMI 44.4 kg/m2 (range, 34-77.6). Six months following surgery the median weight was 89.5 kg (range, 58.2-202) and BMI 34.2 kg/m2 (range, 24.5-61.9). Nine patients (19.6%) had a worsening of seizure control on long-term follow-up (median 60, range 9-220 months) following bariatric surgery, including five (10.8%) who suffered seizures within 6 months of bariatric surgery. Five patients developed ASD-associated side effects following bariatric surgery including irritability in two patients (levetiracetam and phenytoin) and one patient each suffering from somnolence (phenytoin), hyperammonemic encephalopathy (sodium valproate), and nausea and vomiting (carbamazepine). Subtherapeutic post-surgery drug concentrations were identified in 5 patients and supratherapeutic concentrations in one patient. In the initial 6 months following surgery, ASD doses were increased in five patients and reduced in five. CONCLUSIONS The majority of patients with epilepsy who undergo bariatric surgery have no change in seizure frequency. However, a significant minority of patients may experience medication side effects or an increase in seizure tendency due to the impact of bariatric surgery on ASD drug absorption and metabolism leading. Pre- and post-surgical serum concentrations should be measured in patients with seizures or epilepsy receiving ASDs.
Collapse
Affiliation(s)
- James D Triplett
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.
| | - Hugh D Simpson
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Richard S Clemmons
- Saint Joseph Hospital, Colorado Permanente Medical Group, Denver, CO, United States
| | | |
Collapse
|
18
|
Haimhoffer Á, Fenyvesi F, Lekli I, Béresová M, Bak I, Czagány M, Vasvári G, Bácskay I, Tóth J, Budai I. Preparation of Acyclovir-Containing Solid Foam by Ultrasonic Batch Technology. Pharmaceutics 2021; 13:pharmaceutics13101571. [PMID: 34683864 PMCID: PMC8541121 DOI: 10.3390/pharmaceutics13101571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023] Open
Abstract
In recent years, the application of solid foams has become widespread. Solid foams are not only used in the aerospace field but also in everyday life. Although foams are promising dosage forms in the pharmaceutical industry, their usage is not prevalent due to decreased stability of the solid foam structure. These special dosage forms can result in increased bioavailability of drugs. Low-density floating formulations can also increase the gastric residence time of drugs; therefore, drug release will be sustained. Our aim was to produce a stable floating formula by foaming. Matrix components, PEG 4000 and stearic acid type 50, were selected with the criteria of low gastric irritation, a melting range below 70 °C, and well-known use in oral drug formulations. This matrix was melted at 54 °C in order to produce a dispersion of active substance and was foamed by different gases at atmospheric pressure using an ultrasonic homogenizer. The density of the molded solid foam was studied by the pycnometer method, and its structure was investigated by SEM and micro-CT. The prolonged drug release and mucoadhesive properties were proved in a pH 1.2 buffer. According to our experiments, a stable foam could be produced by rapid homogenization (less than 1 min) without any surfactant material.
Collapse
Affiliation(s)
- Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (F.F.); (G.V.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (F.F.); (G.V.); (I.B.)
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (I.L.); (I.B.)
| | - Mónika Béresová
- Department of Medical Imaging, University of Debrecen, Nagyerdei Krt. 94, H-4032 Debrecen, Hungary;
| | - István Bak
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (I.L.); (I.B.)
| | - Máté Czagány
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary;
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (F.F.); (G.V.); (I.B.)
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary; (Á.H.); (F.F.); (G.V.); (I.B.)
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, H-4032 Debrecen, Hungary
| | - Judit Tóth
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, H-4032 Debrecen, Hungary;
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető Str. 2-4, H-4028 Debrecen, Hungary
- Correspondence: ; Tel.: +36-202128618
| |
Collapse
|
19
|
Blaesi AH, Kümmerlen D, Richter H, Saka N. Mechanical strength and gastric residence time of expandable fibrous dosage forms. Int J Pharm 2021; 613:120792. [PMID: 34363914 DOI: 10.1016/j.ijpharm.2021.120792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 11/28/2022]
Abstract
The expandable, gastroretentive dosage forms are promising for precise control of drug concentration in blood. So far, however, short gastric retention times and safety considerations have precluded their use. In this work, to mitigate the above limitations, expandable fibrous dosage forms were investigated for mechanical strength and gastric retention time in dogs. The fiber formulation consisted of ibuprofen drug; water-absorbing, high-molecular-weight hydroxypropyl methylcellulose (HPMC) excipient; strengthening, enteric methacrylic acid-ethyl acrylate excipient; and barium sulfate, a gastrointestinal contrast agent. The fibers were coated either with a hydrophilic sugar coating, or with the strengthening enteric excipient. Upon administration to a dog, in the stomach the dosage form with sugar-coated fibers expanded to 1.7 times its initial radius in 50-100 minutes, and disintegrated after 4.8 hours. The dosage form with the enteric-excipient-coated fibers, by contrast, expanded to 1.6 times the initial radius in 5 hours. Eventually, after 31 hours the dosage form fractured due to cyclic loads applied by the contracting stomach walls. The fragments passed into the small intestine where they dissolved in less than 2-3 hours. Diametral compression tests and models of fatigue failure show that the substantial increase in gastric residence time is due to strengthening of the fibers by the enteric-excipient coating. Because the enteric excipient is a rubbery semi-solid in the acidic gastric fluid and dissolves in the pH-neutral intestinal fluids, safety concerns should be minimal. Thus, the expandable fibrous dosage forms can be designed for prolonged, safe gastric retention.
Collapse
Affiliation(s)
- Aron H Blaesi
- Enzian Pharmaceutics Aron H. Blaesi, CH-7078 Lenzerheide, Switzerland; Enzian Pharmaceutics, Inc., Cambridge, MA 02139, USA; Laboratory for Mechanical Systems Engineering, Swiss Federal Laboratories for Materials Science and Technology (Empa), CH-8600 Dübendorf, Switzerland.
| | - Dolf Kümmerlen
- Division of Swine Medicine, Department of Farm Animals, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Henning Richter
- Diagnostic Imaging Research Unit (DIRU), Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland; These authors contributed equally to this work
| | - Nannaji Saka
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; These authors contributed equally to this work
| |
Collapse
|
20
|
Haimhoffer Á, Vasvári G, Trencsényi G, Béresová M, Budai I, Czomba Z, Rusznyák Á, Váradi J, Bácskay I, Ujhelyi Z, Fehér P, Vecsernyés M, Fenyvesi F. Process Optimization for the Continuous Production of a Gastroretentive Dosage Form Based on Melt Foaming. AAPS PharmSciTech 2021; 22:187. [PMID: 34155595 PMCID: PMC8217006 DOI: 10.1208/s12249-021-02066-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022] Open
Abstract
Several drugs have poor oral bioavailability due to low or incomplete absorption which is affected by various effects as pH, motility of GI, and enzyme activity. The gastroretentive drug delivery systems are able to deal with these problems by prolonging the gastric residence time, while increasing the therapeutic efficacy of drugs. Previously, we developed a novel technology to foam hot and molten dispersions on atmospheric pressure by a batch-type in-house apparatus. Our aim was to upgrade this technology by a new continuous lab-scale apparatus and confirm that our formulations are gastroretentive. At first, we designed and built the apparatus and continuous production was optimized using a Box-Behnken experimental design. Then, we formulated barium sulfate-loaded samples with the optimal production parameters, which was suitable for in vivo imaging analysis. In vitro study proved the low density, namely 507 mg/cm3, and the microCT record showed high porosity with 40 μm average size of bubbles in the molten suspension. The BaSO4-loaded samples showed hard structure at room temperature and during the wetting test, the complete wetting was detected after 120 min. During the in vivo study, the X-ray taken showed the retention of the formulation in the rat stomach after 2 h. We can conclude that with our device low-density floating formulations were prepared with prolonged gastric residence time. This study provides a promising platform for marketed active ingredients with low bioavailability.
Collapse
Affiliation(s)
- Ádám Haimhoffer
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Gábor Vasvári
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - György Trencsényi
- Department of Medical Imaging, University of Debrecen, Nagyerdei krt. 94, Debrecen, H-4032, Hungary
| | - Monika Béresová
- Department of Medical Imaging, University of Debrecen, Nagyerdei krt. 94, Debrecen, H-4032, Hungary
| | - István Budai
- Faculty of Engineering, University of Debrecen, Ótemető utca 2-4, Debrecen, H-4028, Hungary
| | - Zsuzsa Czomba
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ágnes Rusznyák
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Judit Váradi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei St. 98, Debrecen, H-4032, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary.
| |
Collapse
|
21
|
Melocchi A, Uboldi M, Cerea M, Foppoli A, Maroni A, Moutaharrik S, Palugan L, Zema L, Gazzaniga A. Shape memory materials and 4D printing in pharmaceutics. Adv Drug Deliv Rev 2021; 173:216-237. [PMID: 33774118 DOI: 10.1016/j.addr.2021.03.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022]
Abstract
Shape memory materials (SMMs), including alloys and polymers, can be programmed into a temporary configuration and then recover the original shape in which they were processed in response to a triggering external stimulus (e.g. change in temperature or pH, contact with water). For this behavior, SMMs are currently raising a lot of attention in the pharmaceutical field where they could bring about important innovations in the current treatments. 4D printing involves processing of SMMs by 3D printing, thus adding shape evolution over time to the already numerous customization possibilities of this new manufacturing technology. SMM-based drug delivery systems (DDSs) proposed in the scientific literature were here reviewed and classified according to the target pursued through the shape recovery process. Administration route, therapeutic goal, temporary and original shape, triggering stimulus, main innovation features and possible room for improvement of the DDSs were especially highlighted.
Collapse
|
22
|
Blaesi AH, Saka N. Expandable, dual-excipient fibrous dosage forms for prolonged delivery of sparingly soluble drugs. Int J Pharm 2021; 615:120396. [PMID: 33716100 DOI: 10.1016/j.ijpharm.2021.120396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/06/2021] [Accepted: 02/14/2021] [Indexed: 10/21/2022]
Abstract
In this work, the rates of expansion and drug release by fibrous dosage forms with two excipients are investigated for prolonged delivery of sparingly soluble drugs. The formulation consisted of ibuprofen drug, high-molecular-weight hydroxypropyl methyl cellulose (HPMC) excipient, and the enteric methacrylic acid-ethyl acrylate excipient. Upon immersion in a dissolution fluid, the single fibers and all dosage forms (fiber volume fractions, φ = 0.16, 0.39, and 0.56) expanded proportional to the square-root of time, a characteristic of diffusion-controlled processes. The size of the dosage forms doubled in ten minutes, and they were converted into a highly viscous gel that was stabilized by the enteric excipient for over two days. Eighty percent of the drug was released from single fibers in less than an hour, but in thirty-eight hours from the dosage form with φ = 0.56. Theoretical models suggest that if φ is small, drug release is limited by drug diffusion through the thin fibers. But if φ is very large, drug release is determined by diffusion through the thick, viscous dosage form gel. Between these extremes the drug release time increases exponentially with φ.
Collapse
Affiliation(s)
- Aron H Blaesi
- Enzian Pharmaceutics Aron H. Blaesi, CH-7078 Lenzerheide, Switzerland; Enzian Pharmaceutics, Inc., Cambridge, MA 02139, USA.
| | - Nannaji Saka
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Blaesi AH, Saka N. Expandable fibrous dosage forms for prolonged drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:110144. [PMID: 33545806 DOI: 10.1016/j.msec.2019.110144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 11/15/2022]
Abstract
Many drug therapies could be greatly improved by dosage forms that reside in the stomach for prolonged time and release the drug slowly. In this work, therefore, slow-release fibrous dosage forms that expand rapidly in the gastric fluid to prevent their passage into the intestines are investigated. The dosage forms consisted of acetaminophen drug and a high-molecular-weight hydroxypropyl methyl cellulose (HPMC) excipient. Upon immersion in a dissolution fluid, they transitioned to viscous, and expanded in proportion to the square-root of time and the reciprocal of fiber radius. The normalized axial expansion was up to 100 percent by fifteen minutes, fast enough to convert a swallowable, 10-mm diameter disk into a gastroretentive, 20-mm diameter viscous gel. The drug was released slowly, eighty percent in 2-8.4 hours. Theoretical models show that the fibrous dosage forms expand rapidly due to the fast diffusion of dissolution fluid into the thin fibers. The fibers then coalesce into a uniform viscous gel, and the diffusion length increases from the radius of the thin fibers to the half-thickness of the gelated dosage form. Consequently, drug diffusion out is slow, and the twin requirements, fast expansion and prolonged drug release, are simultaneously satisfied.
Collapse
Affiliation(s)
- Aron H Blaesi
- Enzian Pharmaceutics Aron H. Blaesi, CH-7078 Lenzerheide, Switzerland; Enzian Pharmaceutics, Inc., Cambridge, MA 02139, USA.
| | - Nannaji Saka
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Andretto V, Rosso A, Briançon S, Lollo G. Nanocomposite systems for precise oral delivery of drugs and biologics. Drug Deliv Transl Res 2021; 11:445-470. [PMID: 33534107 DOI: 10.1007/s13346-021-00905-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
Oral delivery is considered the favoured route of administration for both local and systemic delivery of active molecules. Formulation of drugs in conventional systems and nanoparticles has provided opportunities for targeting the gastrointestinal (GI) tract, increasing drug solubility and bioavailability. Despite the achievements of these delivery approaches, the development of a product with the ability of delivering drug molecules at a specific site and according to patients' needs remains a challenging endeavour. The complexity of the physicochemical properties of colloidal systems, their stability in different regions of the gastrointestinal tract, and interaction with the restrictive biological barriers hampered their success for oral precise medicine. To overcome these issues, nanoparticles have been combined with polymers to create hybrid nanosystems, namely nanocomposites. They offer enormous possibilities of structural and mechanical modifications to both nanoparticles and polymeric matrixes to generate systems with new properties, functions, and applications for oral delivery. In this review, nanocomposites' physicochemical and functional properties intended to target specific regions of the GI tract-oral cavity, stomach, small bowel, and colon-are analysed. In parallel, it is provided an insight in the nanocomposite solutions for oral delivery intended for systemic and local absorption, together with a focus on inflammatory bowel diseases (IBDs). Additional difficulties in managing IBD related to the alteration in the physiology of the intestine are described. Finally, future perspectives and opportunities for advancement in this field are discussed.
Collapse
Affiliation(s)
- Valentina Andretto
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Annalisa Rosso
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Stéphanie Briançon
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France
| | - Giovanna Lollo
- LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, CNRS, 43 Boulevard du 11 Novembre 1918, 69100, Villeurbanne, France.
| |
Collapse
|
25
|
Ashammakhi N, Nasiri R, Barros NRD, Tebon P, Thakor J, Goudie M, Shamloo A, Martin MG, Khademhosseini A. Gut-on-a-chip: Current progress and future opportunities. Biomaterials 2020; 255:120196. [PMID: 32623181 PMCID: PMC7396314 DOI: 10.1016/j.biomaterials.2020.120196] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/11/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Organ-on-a-chip technology tries to mimic the complexity of native tissues in vitro. Important progress has recently been made in using this technology to study the gut with and without microbiota. These in vitro models can serve as an alternative to animal models for studying physiology, pathology, and pharmacology. While these models have greater physiological relevance than two-dimensional (2D) cell systems in vitro, endocrine and immunological functions in gut-on-a-chip models are still poorly represented. Furthermore, the construction of complex models, in which different cell types and structures interact, remains a challenge. Generally, gut-on-a-chip models have the potential to advance our understanding of the basic interactions found within the gut and lay the foundation for future applications in understanding pathophysiology, developing drugs, and personalizing medical treatments.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA.
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Natan Roberto de Barros
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA.
| | - Peyton Tebon
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Jai Thakor
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Marcus Goudie
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Martin G Martin
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Los Angeles, CA, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Adrover A, di Muzio L, Trilli J, Brandelli C, Paolicelli P, Petralito S, Casadei MA. Enhanced Loading Efficiency and Mucoadhesion Properties of Gellan Gum Thin Films by Complexation with Hydroxypropyl- β-Cyclodextrin. Pharmaceutics 2020; 12:pharmaceutics12090819. [PMID: 32872207 PMCID: PMC7558953 DOI: 10.3390/pharmaceutics12090819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Polymeric oral thin films (OTFs) were prepared by the casting method, combining gellan gum (GG), a water-soluble polysaccharide, and glycerol (Gly) as a plasticizing agent. GG-Gly films were investigated as potential systems for buccal drug delivery using fluconazole (Class I of the Biopharmaceutical Classification System) as a model drug. At a low concentration of Gly drug precipitation occurred while, for higher concentrations of Gly, a significant deterioration of mucoadhesive and mechanical properties was observed. One possible way to overcome all these problems could be the addition of hydroxypropyl-β-cyclodextrin (HP-β-CD) to the GG-Gly formulation as a drug-precipitation inhibitor. In this work the effect of cyclodextrin addition on the mechanical, mucoadhesive, swelling and release properties of GG-Gly films was investigated. In-vitro drug release studies were carried out using the paddle type dissolution apparatus (USP II) and the millifluidic flow-through device (MFTD). A moving-boundary model for swelling dynamics and release in USP II is proposed to estimate the effective diffusivity of the solvent, HP-β-CD, fluconazole and complex fluconazole/HP-β-CD in the swelling film. Experimental results, supported by theoretical modeling, confirmed that gellan gum-low glycerol thin films including HP-β-CD represent a suitable formulation for fluconazole drug delivery. A sustained release was observed when GG-Gly film is loaded with a preformed complex fluconazole/HP-β-CD.
Collapse
Affiliation(s)
- Alessandra Adrover
- Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Universitá di Roma, Via Eudossiana 18, 00184 Rome, Italy
- Correspondence: (A.A.); (P.P.)
| | - Laura di Muzio
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Jordan Trilli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Chiara Brandelli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Patrizia Paolicelli
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
- Correspondence: (A.A.); (P.P.)
| | - Stefania Petralito
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| | - Maria Antonietta Casadei
- Dipartimento di Chimica e Tecnologia del Farmaco, Sapienza Universitá di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (L.d.M.); (J.T.); (C.B.); (S.P.); (M.A.C.)
| |
Collapse
|
27
|
Li X, Junge L, Taubert M, von Georg A, Dahlinger D, Starke C, Frechen S, Stelzer C, Kinzig M, Sörgel F, Jaehde U, Töx U, Goeser T, Fuhr U. A Novel Study Design Using Continuous Intravenous and Intraduodenal Infusions of Midazolam and Voriconazole for Mechanistic Quantitative Assessment of Hepatic and Intestinal CYP3A Inhibition. J Clin Pharmacol 2020; 60:1237-1253. [PMID: 32427354 DOI: 10.1002/jcph.1619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 12/22/2022]
Abstract
The extent of a drug-drug interaction (DDI) mediated by cytochrome P450 (CYP) 3A inhibitors is highly variable during a dosing interval, as it depends on the temporal course of victim and perpetrator drug concentrations at intestinal and hepatic CYP3A expression sites. Capturing the time course of inhibition is therefore difficult using standard DDI studies assessing changes in area under the curve; thus, a novel design was developed. In a 4-period changeover pilot study, 6 healthy men received intraduodenal or intravenous infusions of the CYP3A substrate midazolam (MDZ) at a rate of 0.26 mg/h for 24 hours. This was combined with intraduodenal or intravenous infusion of the CYP3A inhibitor voriconazole (VRZ), administered at rates of 7.5 mg/h from 8 to 16 hours and of 15 mg/h from 16 to 24 hours, after starting midazolam administration. Plasma and urine concentrations of VRZ, MDZ, and its major metabolites were quantified by liquid chromatography-tandem mass spectrometry and analyzed by semiphysiological population pharmacokinetic nonlinear mixed-effects modeling. A model including mechanism-based inactivation of the metabolizing enzymes (maximum inactivation rate constant kinact , 2.83 h-1 ; dissociation rate constant K I , 9.33 μM) described the pharmacokinetics of VRZ well. By introducing competitive inhibition by VRZ on primary and secondary MDZ metabolism, concentration-time profiles, MDZ and its metabolites were captured appropriately. The model provides estimates of local concentrations of substrate and inhibitor at the major CYP3A expression sites and thus of the respective dynamic extent of inhibition. A combination of intravenous and intraduodenal infusions of inhibitors and substrates has the potential to provide a more accurate assessment of DDIs occurring in both gut wall and liver.
Collapse
Affiliation(s)
- Xia Li
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Lisa Junge
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Max Taubert
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Anabelle von Georg
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Dominik Dahlinger
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Chris Starke
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Sebastian Frechen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| | - Christoph Stelzer
- IMBP-Institute for Biomedical and Pharmaceutical Research, Nurnberg-Heroldsberg, Germany
| | - Martina Kinzig
- IMBP-Institute for Biomedical and Pharmaceutical Research, Nurnberg-Heroldsberg, Germany
| | - Fritz Sörgel
- IMBP-Institute for Biomedical and Pharmaceutical Research, Nurnberg-Heroldsberg, Germany.,Institute of Pharmacology, West German Heart and Vascular Centre, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Jaehde
- Institute of Pharmacy, Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Ulrich Töx
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University Hospital of Cologne, Cologne, Germany
| | - Uwe Fuhr
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, Cologne, Germany
| |
Collapse
|
28
|
Hua S. Advances in Oral Drug Delivery for Regional Targeting in the Gastrointestinal Tract - Influence of Physiological, Pathophysiological and Pharmaceutical Factors. Front Pharmacol 2020; 11:524. [PMID: 32425781 PMCID: PMC7212533 DOI: 10.3389/fphar.2020.00524] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
The oral route is by far the most common route of drug administration in the gastrointestinal tract and can be used for both systemic drug delivery and for treating local gastrointestinal diseases. It is the most preferred route by patients, due to its advantages, such as ease of use, non-invasiveness, and convenience for self-administration. Formulations can also be designed to enhance drug delivery to specific regions in the upper or lower gastrointestinal tract. Despite the clear advantages offered by the oral route, drug delivery can be challenging as the human gastrointestinal tract is complex and displays a number of physiological barriers that affect drug delivery. Among these challenges are poor drug stability, poor drug solubility, and low drug permeability across the mucosal barriers. Attempts to overcome these issues have focused on improved understanding of the physiology of the gastrointestinal tract in both healthy and diseased states. Innovative pharmaceutical approaches have also been explored to improve regional drug targeting in the gastrointestinal tract, including nanoparticulate formulations. This review will discuss the physiological, pathophysiological, and pharmaceutical considerations influencing drug delivery for the oral route of administration, as well as the conventional and novel drug delivery approaches. The translational challenges and development aspects of novel formulations will also be addressed.
Collapse
Affiliation(s)
- Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
29
|
Casati F, Melocchi A, Moutaharrik S, Uboldi M, Foppoli A, Maroni A, Zema L, Neut C, Siepmann F, Siepmann J, Gazzaniga A. Injection Molded Capsules for Colon Delivery Combining Time-Controlled and Enzyme-Triggered Approaches. Int J Mol Sci 2020; 21:ijms21061917. [PMID: 32168895 PMCID: PMC7139580 DOI: 10.3390/ijms21061917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022] Open
Abstract
A new type of colon targeting system is presented, combining time-controlled and enzyme-triggered approaches. Empty capsule shells were prepared by injection molding of blends of a high-amylose starch and hydroxypropyl methylcellulose (HPMC) of different chain lengths. The dissolution/erosion of the HPMC network assures a time-controlled drug release, i.e., drug release starts upon sufficient shell swelling/dissolution/erosion. In addition, the presence of high-amylose starch ensures enzyme-triggered drug release. Once the colon is reached, the local highly concentrated bacterial enzymes effectively degrade this polysaccharide, resulting in accelerated drug release. Importantly, the concentration of bacterial enzymes is much lower in the upper gastrointestinal tract, thus enabling site-specific drug delivery. The proposed capsules were filled with acetaminophen and exposed to several aqueous media, simulating the contents of the gastrointestinal tract using different experimental setups. Importantly, drug release was pulsatile and occurred much faster in the presence of fecal samples from patients. The respective lag times were reduced and the release rates increased once the drug started to be released. It can be expected that variations in the device design (e.g., polymer blend ratio, capsule shell geometry and thickness) allow for a large variety of possible colon targeting release profiles.
Collapse
Affiliation(s)
- Federica Casati
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
- IMA S.p.a., Ozzana dell’Emilia, 40064 Bologna, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Saliha Moutaharrik
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Anastasia Foppoli
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Alessandra Maroni
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
- Correspondence: ; Tel.: +39-02-5032-4654
| | - Christel Neut
- University of Lille, Inserm, CHU Lille, UMR1286, F-59000 Lille, France;
| | - Florence Siepmann
- Université of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (F.S.); (J.S.)
| | - Juergen Siepmann
- Université of Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France; (F.S.); (J.S.)
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, 20133 Milano, Italy; (F.C.); (A.M.); (S.M.); (M.U.); (A.F.); (A.M.); (A.G.)
| |
Collapse
|
30
|
Multistage release matrices for potential antiplatelet therapy: Assessing the impact of polymers and Sorb-Cel M® on floating, swelling, and release behavior. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Melocchi A, Uboldi M, Inverardi N, Briatico-Vangosa F, Baldi F, Pandini S, Scalet G, Auricchio F, Cerea M, Foppoli A, Maroni A, Zema L, Gazzaniga A. Expandable drug delivery system for gastric retention based on shape memory polymers: Development via 4D printing and extrusion. Int J Pharm 2019; 571:118700. [DOI: 10.1016/j.ijpharm.2019.118700] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 11/26/2022]
|
32
|
Zawari M, Poller B, Walker G, Pearson A, Hampton M, Carr AC. Formulation of Broccoli Sprout Powder in Gastro-Resistant Capsules Protects against the Acidic pH of the Stomach In Vitro but Does Not Increase Isothiocyanate Bioavailability In Vivo. Antioxidants (Basel) 2019; 8:antiox8090359. [PMID: 31480621 PMCID: PMC6770740 DOI: 10.3390/antiox8090359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023] Open
Abstract
Broccoli sprout powder is a rich source of glucosinolates, which are hydrolysed to isothiocyanates in the presence of the enzyme myrosinase. We showed that in vitro incubation of broccoli sprout powder extract with isolated lymphocytes resulted in the upregulation of transcription factor Nrf2, however, there was no increase in Nrf2 protein levels in lymphocytes isolated 3 h following the ingestion of broccoli sprout powder by healthy volunteers. This highlights the general issue that potential health benefits of food-derived compounds can be compromised by limitations in bioavailability. In vitro experiments showed that the generation of isothiocyanates was reduced when the powder was first exposed to the low pH (1.2) of the stomach and then transferred to the higher pH (6.8) of the intestine. The loss of activity due to pre-exposure to the low stomach pH indicates that formulating the broccoli sprout powder in gastro-resistant formulations should increase that amount of isothiocyanate generated in the intestine for absorption. Gelatin capsules were hand-coated with either Eudragit® L100 or Eudragit® L100-55 and were assessed for their gastro-resistant properties using paracetamol as a model active for dissolution studies. Disintegration and dissolution studies showed that Eudragit® L100-55 coated capsules and DRcapsTM (Capsugel®) failed the United States Pharmacopeia (USP) requirements for gastro-resistant capsules, whereas the Eudragit® L100 coated capsules passed. Five healthy participants were administered 1 g of broccoli sprout powder, ingested either with water or encapsulated in uncoated or gastro-resistant capsules. Urinary excretion of isothiocyanate metabolites over the 24 h period post ingestion was assessed by HPLC. Broccoli sprout powder and uncoated gelatin-encapsulated powder showed comparable excretion of isothiocyanate metabolites (18.4 ± 2.3 and 23.9 ± 2.7 µmol, respectively). The enteric coated capsules provided a significantly longer Tmax than the uncoated gelatin capsules (15.4 ± 2.3 versus 3.7 ± 0.7 h, respectively), indicating protection from disintegration in the stomach, however, the excretion of isothiocyanate metabolites was significantly decreased compared with uncoated capsules (i.e., 8.5 ± 1.1 µmol). The lower in vivo formation or absorption of isothiocyanates observed for the gastro-resistant capsules may be due to participant variation in intestinal pH or transit times, resulting in inappropriate pH conditions or insufficient time for the complete disintegration and dissolution of the capsules.
Collapse
Affiliation(s)
- Masuma Zawari
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand
| | - Bettina Poller
- School of Pharmacy, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Greg Walker
- School of Pharmacy, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Andree Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand
| | - Mark Hampton
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand
| | - Anitra C Carr
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, P.O. Box 4345, Christchurch 8140, New Zealand.
| |
Collapse
|
33
|
Development and evaluation of an omeprazole-based delayed-release liquid oral dosage form. Int J Pharm 2019; 567:118416. [PMID: 31175991 DOI: 10.1016/j.ijpharm.2019.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Modified-release oral dosage forms are commonly used in pharmaceutics to delay or sustain the release of drugs. Nowadays, they are only marketed as solid dosage forms such as capsules or tablets. Therefore, the development of a liquid oral dosage form with modified-release properties has been keenly awaited to increase the compliance of patients with a swallowing impairment, such as paediatric, older or critically ill patients. In this study, a new technology has been developed that consists of multi-layered particles suspended extemporaneously in a syrup, using omeprazole as a model drug. The coating procedure was optimized to obtain a yield of minimum 90% w/w and a mean diameter below 500 µm. Eudragit® E100 and Eudragit® L100-55 were used to prevent the early release of omeprazole in the syrup and in the acidic environment of the stomach, respectively. These polymers allowed the stability of the coated particles to be ensured when dispersed in a liquid and the enteric release of the drug to be targeted. It was demonstrated that our new system presented similar release performances to existing marketed enteric dosage forms. It is able to protect omeprazole for 2 h in acidic medium at pH 1.2, while omeprazole was entirely released at pH 6.8 within 45 min. Once the final suspension is prepared extemporaneously, it presents sufficient stability to guarantee the administration of multiple doses filled into a syrup bottle and kept for a limited storage time at room temperature (e.g. up to 10 doses to be administered within 10 days).
Collapse
|
34
|
Intestinal and hepatic biotransformation of pyrrolizidine alkaloid N-oxides to toxic pyrrolizidine alkaloids. Arch Toxicol 2019; 93:2197-2209. [PMID: 31222523 DOI: 10.1007/s00204-019-02499-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are among the most significant groups of phytotoxins present in more than 6000 plants in the world. Hepatotoxic retronecine-type PAs and their corresponding N-oxides usually co-exist in plants. Although PA-induced hepatotoxicity is known for a long time and has been extensively studied, the toxicity of PA N-oxide is rarely investigated. Recently, we reported PA N-oxide-induced hepatotoxicity in humans and rodents and also suggested the association of such toxicity with metabolic conversion of PA N-oxides to the corresponding toxic PAs. However, the detailed biochemical mechanism of PA N-oxide-induced hepatotoxicity is largely unknown. The present study investigated biotransformation of four representative cyclic retronecine-type PA N-oxides to their corresponding PAs in both gastrointestinal tract and liver. The results demonstrated that biotransformation of PA N-oxides to PAs was mediated by both intestinal microbiota and hepatic cytochrome P450 monooxygenases (CYPs), in particular CYP1A2 and CYP2D6. Subsequently, the formed PAs were metabolically activated predominantly by hepatic CYPs to form reactive metabolites exerting hepatotoxicity. Our findings delineated, for the first time, that the metabolism-mediated mechanism of PA N-oxide intoxication involved metabolic reduction of PA N-oxides to their corresponding PAs in both intestine and liver followed by oxidative bioactivation of the resultant PAs in the liver to generate reactive metabolites which interact with cellular proteins leading to hepatotoxicity. In addition, our results raised a public concern and also encouraged further investigations on potentially remarkable variations in PA N-oxide-induced hepatotoxicity caused by significantly altered intestinal microbiota due to individual differences in diets, life styles, and medications.
Collapse
|
35
|
Lalge R, Thipsay P, Shankar VK, Maurya A, Pimparade M, Bandari S, Zhang F, Murthy SN, Repka MA. Preparation and evaluation of cefuroxime axetil gastro-retentive floating drug delivery system via hot melt extrusion technology. Int J Pharm 2019; 566:520-531. [PMID: 31185262 DOI: 10.1016/j.ijpharm.2019.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Cefuroxime Axetil (CA) is a poorly soluble, broad spectrum antibiotic which undergoes enzymatic degradation in gastrointestinal tract. The objective of the present study was to develop lipid-based gastro-retentive floating drug delivery systems containing CA using hot-melt extrusion (HME) to improve absorption. Selected formulations of CA and lipids were extruded using a twin screw hot-melt extruder. Milled extrudates were characterized for dissolution, floating strength, and micromeritic properties. Solid-state characterization was performed using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and hot-stage microscopy. In vitro characterization demonstrated that the formulations exhibited a sustained drug release profile for 12 h. All formulations showed desired floating and flow properties. Solid-state characterization revealed no phase separation and no chemical interactions between the drug and excipients. Based on in vitro study results, an optimized formulation (F8) was further evaluated for in vivo performance. Oral bioavailability (Cmax and AUC0-24h) of F8 was significantly higher than that of pure CA. This study describes the use of lipid-based gastro-retentive floating drug delivery systems to achieve desired sustained release profile for more complete dissolution which could potentially reduce enzymatic degradation. This study also highlights the effectiveness of HME technology to improve dissolution and bioavailability.
Collapse
Affiliation(s)
- Rahul Lalge
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Priyanka Thipsay
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Vijay Kumar Shankar
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Abhijeet Maurya
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Manjeet Pimparade
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - S Narasimha Murthy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Institute for Drug Delivery and Biomedical Research, Bangalore, India
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Innovation & Instruction, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
36
|
Kotla NG, Rana S, Sivaraman G, Sunnapu O, Vemula PK, Pandit A, Rochev Y. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives. Adv Drug Deliv Rev 2019; 146:248-266. [PMID: 29966684 DOI: 10.1016/j.addr.2018.06.021] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/27/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Oral colon-specific delivery systems emerged as the main therapeutic cargos by making a significant impact in the field of modern medicine for local drug delivery in intestinal inflammation. The site-specific delivery of therapeutics (aminosalicylates, glucocorticoids, biologics) to the ulcerative mucus tissue can provide prominent advantages in mucosal healing (MH). Attaining gut mucosal healing and anti-fibrosis are main treatment outcomes in inflammatory bowel disease (IBD). The pharmaceutical strategies that are commonly used to achieve a colon-specific drug delivery system include time, pH-dependent polymer coating, prodrug, colonic microbiota-activated delivery systems and a combination of these approaches. Amongst the different approaches reported, the use of biodegradable polysaccharide coated systems holds great promise in delivering drugs to the ulcerative regions. The present review focuses on major physiological gastro-intestinal tract challenges involved in altering the pharmacokinetics of delivery systems, pathophysiology of MH and fibrosis, reported drug-polysaccharide cargos and focusing on conventional to advanced disease responsive delivery strategies, highlighting their limitations and future perspectives in intestinal inflammation therapy.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland.
| | - Shubhasmin Rana
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Omprakash Sunnapu
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Praveen K Vemula
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK Campus, Bengaluru 560062, India
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Yury Rochev
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway, Ireland; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russian Federation.
| |
Collapse
|
37
|
Tripathi J, Thapa P, Maharjan R, Jeong SH. Current State and Future Perspectives on Gastroretentive Drug Delivery Systems. Pharmaceutics 2019; 11:pharmaceutics11040193. [PMID: 31010054 PMCID: PMC6523542 DOI: 10.3390/pharmaceutics11040193] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/07/2019] [Accepted: 04/17/2019] [Indexed: 01/09/2023] Open
Abstract
In recent years, many attempts have been made to enhance the drug bioavailability and therapeutic effectiveness of oral dosage forms. In this context, various gastroretentive drug delivery systems (GRDDS) have been used to improve the therapeutic efficacy of drugs that have a narrow absorption window, are unstable at alkaline pH, are soluble in acidic conditions, and are active locally in the stomach. In this review, we discuss the physiological state of the stomach and various factors that affect GRDDS. Recently applied gastrointestinal technologies such as expandable, superporous hydrogel; bio/mucoadhesive, magnetic, ion-exchange resin; and low- and high-density-systems have also been examined along with their merits and demerits. The significance of in vitro and in vivo evaluation parameters of various GRDDS is summarized along with their applications. Moreover, future perspectives on this technology are discussed to minimize the gastric emptying rate in both the fasted and fed states. Overall, this review may inform and guide formulation scientists in designing the GRDDS.
Collapse
Affiliation(s)
- Julu Tripathi
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| | - Prakash Thapa
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| | - Ravi Maharjan
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, 32 Donggukro, Ilsandonggu, Goyang, Gyeonggi 10326, Korea.
| |
Collapse
|
38
|
Homayun B, Lin X, Choi HJ. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019; 11:E129. [PMID: 30893852 PMCID: PMC6471246 DOI: 10.3390/pharmaceutics11030129] [Citation(s) in RCA: 402] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
Routes of drug administration and the corresponding physicochemical characteristics of a given route play significant roles in therapeutic efficacy and short term/long term biological effects. Each delivery method has favorable aspects and limitations, each requiring a specific delivery vehicles design. Among various routes, oral delivery has been recognized as the most attractive method, mainly due to its potential for solid formulations with long shelf life, sustained delivery, ease of administration and intensified immune response. At the same time, a few challenges exist in oral delivery, which have been the main research focus in the field in the past few years. The present work concisely reviews different administration routes as well as the advantages and disadvantages of each method, highlighting why oral delivery is currently the most promising approach. Subsequently, the present work discusses the main obstacles for oral systems and explains the most recent solutions proposed to deal with each issue.
Collapse
Affiliation(s)
- Bahman Homayun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Xueting Lin
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
39
|
Ion-pair approach coupled with nanoparticle formation to increase bioavailability of a low permeability charged drug. Int J Pharm 2018; 557:36-42. [PMID: 30578978 DOI: 10.1016/j.ijpharm.2018.12.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/21/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Atenolol is a drug widely used for the treatment of hypertension. However, the great drawback it presents is a low bioavailability after oral administration. To obtain formulations that allow to improve the bioavailability of this drug is a challenge for the pharmaceutical technology. The objective of this work was to increase the rate and extent of intestinal absorption of atenolol as model of a low permeability drug, developing a double technology strategy. To increase atenolol permeability an ion pair with brilliant blue was designed and the sustained release achieved through encapsulation in polymeric nanoparticles (NPs). The in vitro release studies showed a pH-dependent release from NPs, (particle size 437.30 ± 8.92) with a suitable release profile of drug (atenolol) and counter ion (brilliant blue) under intestinal conditions. Moreover, with the in vivo assays, a significant increase (2-fold) of atenolol bioavailability after administering the ion-pair NPs by oral route was observed. In conclusion, the combination of ion-pair plus polymeric NPs have proved to be a simple and very useful approach to achieve a controlled release and to increase the bioavailability of a low permeability charged drugs.
Collapse
|
40
|
Devi P, Rathor S, Sharma P, Sen J, Kaur H, Singh J. Development of novel gastroretentive salbutamol sulfate-loaded sodium alginate-pectin bubble beads prepared by co-axial needle air-injection method and in vivo clinical evaluation by ultrasound studies. Eur J Pharm Sci 2018; 122:359-373. [PMID: 30017846 DOI: 10.1016/j.ejps.2018.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 11/28/2022]
Abstract
In the present study, the salbutamol sulfate-loaded sodium alginate-pectin (SS-loaded SA-PEC) bubble beads have been optimized and evaluated for drug loading, in vitro drug release, in vivo floating behavior in the stomach, etc. Nine batches (F1-F9) of bubble beads with different SA and PEC contents were prepared by novel co-axial needle air-injection method and related to their percent drug loading efficiency (%DLE) and percent drug release at 4 h (%R4h) as response factors. The multivariate analysis has shown the effect of SA/PEC ratio, total polymer content, as well as their interaction on %DLE and %R4h. In the quantitative modeling, the satisfactory adjustment of the linear models (along with interaction terms) with the experimental data for both %DLE and %R4h has confirmed the findings of the multivariate analysis. The optimized SS-loaded SA-PEC bubble beads based on 2D (contours), 3D, desirability, and overlay plots has exhibited %DLE of 87.35 ± 2.48% (n = 3 and error = 2.94%) and %R4h of 85.79 ± 2.98% (n = 3 and error = 0.25%). The in vitro drug release studies have shown almost complete (≥85%) SS release from all the batches within 4-6 h in simulated gastric fluid (SGF) pH 1.2. The in vivo clinical findings by ultrasound studies have shown excellent floatation (>6 h) behavior of bubble beads in the upper gastrointestinal tract (GIT) and efficient stomach-specific gastroretention.
Collapse
Affiliation(s)
- Pooja Devi
- College of Pharmacy, PGIMS, University of Health Sciences, Rohtak 124001, Haryana, India
| | - Sandeep Rathor
- College of Pharmacy, PGIMS, University of Health Sciences, Rohtak 124001, Haryana, India
| | - Pratibha Sharma
- College of Pharmacy, PGIMS, University of Health Sciences, Rohtak 124001, Haryana, India
| | - Jyotsna Sen
- Department of Radiodiagnosis, PGIMS, University of Health Sciences, Rohtak 124001, Haryana, India
| | - Harmeet Kaur
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Jasbir Singh
- College of Pharmacy, PGIMS, University of Health Sciences, Rohtak 124001, Haryana, India.
| |
Collapse
|
41
|
Lozoya-Agullo I, González-Álvarez I, Merino-Sanjuán M, Bermejo M, González-Álvarez M. Preclinical models for colonic absorption, application to controlled release formulation development. Eur J Pharm Biopharm 2018; 130:247-259. [PMID: 30064699 DOI: 10.1016/j.ejpb.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/14/2022]
Abstract
Oral controlled release (CR) formulations have many benefits and have become a valuable resource for the local and systemic administration of drugs. The most important characteristic of these pharmaceutical products is that drug absorption occurs mainly in the colon. Therefore, this review analyses the physiological and physicochemical features that may affect an orally administered CR product, as well as the different strategies to develop a CR dosage form and the methods used to evaluate the formulation efficacy. The models available to study the intestinal permeability and their applicability to colonic permeability determinations are also discussed.
Collapse
Affiliation(s)
- Isabel Lozoya-Agullo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Spain; Pharmacokinetics, Pharmaceutical Technology and Parasitology, University of Valencia, Spain
| | | | - Matilde Merino-Sanjuán
- Pharmacokinetics, Pharmaceutical Technology and Parasitology, University of Valencia, Spain; Molecular Recognition and Technological Development, Polytechnic University-University of Valencia, Valencia, Spain
| | - Marival Bermejo
- Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, Spain
| | | |
Collapse
|
42
|
Rubbens J, Mols R, Brouwers J, Augustijns P. Exploring gastric drug absorption in fasted and fed state rats. Int J Pharm 2018; 548:636-641. [PMID: 29981414 DOI: 10.1016/j.ijpharm.2018.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022]
Abstract
The small intestine is generally considered the major site of absorption after oral drug administration. Absorption from the stomach is often disregarded, though passive diffusion across the gastric mucosal barrier is theoretically possible. In this study, an in situ gastric bolus administration model was used to study the gastric absorption of pharmaceutical compounds in fasted and fed state rats. Three drugs [paracetamol (neutral), diclofenac (acidic) and posaconazole (basic)] were administered directly into the stomach as solution (paracetamol and diclofenac) or suspension (posaconazole). Transfer to the intestine was blocked by ligating the pylorus; as a reference, non-ligated conditions were used. Blood samples were collected and gastric absorption was assessed by the appearance of compounds in the systemic circulation. Paracetamol and diclofenac were readily absorbed from the fasted and fed state rat stomach. For paracetamol, the relative contribution of gastric absorption was higher in the fed state compared to the fasted state. Posaconazole absorption was negligible. Since the ability of the stomach to absorb pharmaceutical compounds was clearly confirmed, the present study warrants further research to quantify the contribution of gastric absorption to total gastrointestinal drug absorption.
Collapse
Affiliation(s)
- Jari Rubbens
- KU Leuven, Drug Delivery & Disposition, Gasthuisberg O&N2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - Raf Mols
- KU Leuven, Drug Delivery & Disposition, Gasthuisberg O&N2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - Joachim Brouwers
- KU Leuven, Drug Delivery & Disposition, Gasthuisberg O&N2, Herestraat 49 Box 921, 3000 Leuven, Belgium
| | - Patrick Augustijns
- KU Leuven, Drug Delivery & Disposition, Gasthuisberg O&N2, Herestraat 49 Box 921, 3000 Leuven, Belgium.
| |
Collapse
|
43
|
Rahim SA, Carter P, Elkordy AA. Influence of calcium carbonate and sodium carbonate gassing agents on pentoxifylline floating tablets properties. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
He X, Song ZJ, Jiang CP, Zhang CF. Absorption Properties of Luteolin and Apigenin in Genkwa Flos Using In Situ Single-Pass Intestinal Perfusion System in the Rat. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1745-1759. [PMID: 29121796 DOI: 10.1142/s0192415x1750094x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The flower bud of Daphne genkwa (Genkwa Flos) is a commonly used herbal medicine in Asian countries. Luteolin and apigenin are two recognized active flavonoids in Genkwa Flos. The aim of this study was to investigate the intestinal absorption mechanisms of Genkwa Flos flavonoids using in situ single-pass intestinal perfusion rat model. Using HPLC, we determined its major effective flavonoids luteolin, apigenin, as well as, hydroxygenkwanin and genkwanin in biological samples. The intestinal absorption mechanisms of the total flavonoids in Genkwa Flos (TFG) were investigated using in situ single-pass intestinal perfusion rat model. Comparing the TFG absorption rate in different intestinal segments, data showed that the small intestine absorption was significantly higher than that of the colon ([Formula: see text]). Compared with duodenum and ileum, the jejunum was the best small intestinal site for TFG absorption. The high TFG concentration (61.48[Formula: see text][Formula: see text]g/ml) yielded the highest permeability ([Formula: see text]). Subsequently, three membrane protein inhibitors (verapamil, pantoprazole and probenecid) were used to explore the TFG absorption pathways. Data showed probenecid, a multidrug resistance protein (or MRP) inhibitor, effectively enhanced the TFG absorption ([Formula: see text]). Furthermore, by comparing commonly used natural absorption enhancers on TFG, it was observed that camphor was the most effective. In Situ single-pass intestinal perfusion experiment shows that TFG absorption is much higher in the small intestine than in the colon, and the TFG is absorbed mainly via an active transport pathway with MRP-mediated efflux mechanism. Camphor obviously enhanced the TFG absorption, and this could be an effective TFG formulation preparation method to increase clinical effectiveness after Genkwa Flos administration. Our study elucidated the TFG absorption mechanisms, and provided new information for its formulation preparation.
Collapse
Affiliation(s)
- Xin He
- * Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast, BT7 1NN, Northern Ireland, UK.,† State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, P. R. China
| | - Zi-Jing Song
- † State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, P. R. China
| | - Cui-Ping Jiang
- † State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, P. R. China
| | - Chun-Feng Zhang
- † State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, JS 210009, P. R. China.,‡ Tang Center of Herbal Medicine and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
45
|
Deng J, Zhu X, Chen Z, Fan CH, Kwan HS, Wong CH, Shek KY, Zuo Z, Lam TN. A Review of Food–Drug Interactions on Oral Drug Absorption. Drugs 2017; 77:1833-1855. [DOI: 10.1007/s40265-017-0832-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Vo AQ, Feng X, Pimparade M, Ye X, Kim DW, Martin ST, Repka MA. Dual-mechanism gastroretentive drug delivery system loaded with an amorphous solid dispersion prepared by hot-melt extrusion. Eur J Pharm Sci 2017; 102:71-84. [PMID: 28257881 DOI: 10.1016/j.ejps.2017.02.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 10/24/2022]
Abstract
In the present study, we aimed to prepare a gastroretentive drug delivery system that would be both highly resistant to gastric emptying via multiple mechanisms and would also potentially induce in situ supersaturation. The bioadhesive floating pellets, loaded with an amorphous solid dispersion, were prepared in a single step of hot-melt extrusion technology. Hydroxypropyl cellulose (Klucel™ MF) and hypromellose (Benecel™ K15M) were used as matrix-forming polymers, and felodipine was used as the model drug. The foam pellets were fabricated based on the expansion of CO2, which was generated from sodium bicarbonate during the melt-extrusion process. A 2n full factorial experimental design was utilized to investigate the effects of formulation compositions to the pellet properties. The melt-extrusion process transformed the crystalline felodipine into an amorphous state that was dispersed and "frozen" in the polymer matrix. All formulations showed high porosity and were able to float immediately, without lag time, on top of gastric fluid, and maintained their buoyancy over 12h. The pellet-specific floating force, which could be as high as 4800μN/g, increased significantly during the first hour, and was relatively stable until 9h. The sodium bicarbonate percentage was found to be most significantly effect to the floating force. The ex vivo bioadhesion force of the pellets to porcine stomach mucosa was approximately 5mN/pellet, which was more than five times higher than the gravitation force of the pellet saturated with water. Drug release was well controlled up to 12h in the sink condition of 0.5% sodium lauryl sulphate in 0.1N HCl. The dissolution at 1, 3, 5, and 8h were 5-12%, 25-45%, 55-80%, and ≥75% respectively for all 11 formulations. In biorelevant dissolution medium, a supersaturated solution was formed, and the concentration was maintained at around 2μg/mL, approximately 10-folds higher than that of the pure felodipine. All input factors significantly affected dissolution in the first 3h, but afterwards, only drug load and hypromellose (HPMC) content had significant effects. The prepared drug delivery system has great potential in overcoming low and fluctuating bioavailability of poorly soluble drugs. CHEMICAL Felodipine (PubChem CID: 3333); hypromellose (PubChem CID: 57503849), hydroxypropyl cellulose (PubChem CID: 71306830), sodium bicarbonate (PubChem CID: 516892); sodium carbonate (PubChem CID: 10340).
Collapse
Affiliation(s)
- Anh Q Vo
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Xin Feng
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Manjeet Pimparade
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Xinyou Ye
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Dong Wuk Kim
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Scott T Martin
- Material Chacterization, Thermo Fisher Scientific, Tewksbury, MA 01876, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
47
|
Nador F, Guisasola E, Baeza A, Villaecija MAM, Vallet-Regí M, Ruiz-Molina D. Synthesis of Polydopamine-Like Nanocapsules via Removal of a Sacrificial Mesoporous Silica Template with Water. Chemistry 2016; 23:2753-2758. [DOI: 10.1002/chem.201604631] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Fabiana Nador
- Catalan Institute of Nanoscience and Nanotechnology (ICN2); CSIC and The Barcelona Institute of Science and Technology, Edificio ICN2, Campus UAB, Bellaterra; 08193 Barcelona Spain
| | - Eduardo Guisasola
- Depto. Química Inorgánica y Bioinorgánica, Facultad de Farmacia; Instituto de Investigación Sanitaria Hospital 12 de Octubre; i+12 Universidad Complutense de Madrid; Plaza Ramon y Cajal s/n. 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería; Biomateriales y Nanomedicina (CIBER-BBN); Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0 28029 Madrid Spain
| | - Alejandro Baeza
- Depto. Química Inorgánica y Bioinorgánica, Facultad de Farmacia; Instituto de Investigación Sanitaria Hospital 12 de Octubre; i+12 Universidad Complutense de Madrid; Plaza Ramon y Cajal s/n. 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería; Biomateriales y Nanomedicina (CIBER-BBN); Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0 28029 Madrid Spain
| | - Miguel Angel Moreno Villaecija
- Catalan Institute of Nanoscience and Nanotechnology (ICN2); CSIC and The Barcelona Institute of Science and Technology, Edificio ICN2, Campus UAB, Bellaterra; 08193 Barcelona Spain
| | - Maria Vallet-Regí
- Depto. Química Inorgánica y Bioinorgánica, Facultad de Farmacia; Instituto de Investigación Sanitaria Hospital 12 de Octubre; i+12 Universidad Complutense de Madrid; Plaza Ramon y Cajal s/n. 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería; Biomateriales y Nanomedicina (CIBER-BBN); Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0 28029 Madrid Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2); CSIC and The Barcelona Institute of Science and Technology, Edificio ICN2, Campus UAB, Bellaterra; 08193 Barcelona Spain
| |
Collapse
|
48
|
Akazawa T, Uchida Y, Tachikawa M, Ohtsuki S, Terasaki T. Quantitative Targeted Absolute Proteomics of Transporters and Pharmacoproteomics-Based Reconstruction of P-Glycoprotein Function in Mouse Small Intestine. Mol Pharm 2016; 13:2443-56. [PMID: 27276518 DOI: 10.1021/acs.molpharmaceut.6b00196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to investigate whether a pharmacokinetic model integrating in vitro mdr1a efflux activity (which we previously reported) with in vitro/in vivo differences in protein expression level can reconstruct intestinal mdr1a function. In situ intestinal permeability-surface area product ratio between wild-type and mdr1a/1b (-/-) mice is one of the parameters used to describe intestinal mdr1a function. The reconstructed ratios of six mdr1a substrates (dexamethasone, digoxin, loperamide, quinidine, verapamil, vinblastine) and one nonsubstrate (diazepam) were consistent with the observed values reported by Adachi et al. within 2.1-fold difference. Thus, intestinal mdr1a function can be reconstructed by our pharmacoproteomic modeling approach. Furthermore, we evaluated regional differences in protein expression levels of mouse intestinal transporters. Sixteen (mdr1a, mrp4, bcrp, abcg5, abcg8, glut1, 4f2hc, sglt1, lat2, pept1, mct1, slc22a18, ostβ, villin1, Na(+)/K(+)-ATPase, γ-gtp) out of 46 target molecules were detected by employing our established quantitative targeted absolute proteomics technique. The protein expression amounts of mdr1a and bcrp increased progressively from duodenum to ileum. Sglt1, lat2, and 4f2hc were highly expressed in jejunum and ileum. Mct1 and ostβ were highly expressed in ileum. The quantitative expression profiles established here should be helpful to understand and predict intestinal transporter functions.
Collapse
Affiliation(s)
- Takanori Akazawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University , 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
49
|
Overview on gastroretentive drug delivery systems for improving drug bioavailability. Int J Pharm 2016; 510:144-58. [PMID: 27173823 DOI: 10.1016/j.ijpharm.2016.05.016] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
Abstract
In recent decades, many efforts have been made in order to improve drug bioavailability after oral administration. Gastroretentive drug delivery systems are a good example; they emerged to enhance the bioavailability and effectiveness of drugs with a narrow absorption window in the upper gastrointestinal tract and/or to promote local activity in the stomach and duodenum. Several strategies are used to increase the gastric residence time, namely bioadhesive or mucoadhesive systems, expandable systems, high-density systems, floating systems, superporous hydrogels and magnetic systems. The present review highlights some of the drugs that can benefit from gastroretentive strategies, such as the factors that influence gastric retention time and the mechanism of action of gastroretentive systems, as well as their classification into single and multiple unit systems.
Collapse
|
50
|
Yusif RM, Abu Hashim II, Mohamed EA, Badria FAE. Gastroretentive Matrix Tablets of Boswellia Oleogum Resin: Preparation, Optimization, In Vitro Evaluation, and Cytoprotective Effect on Indomethacin-Induced Gastric Ulcer in Rabbits. AAPS PharmSciTech 2016; 17:328-38. [PMID: 26092303 DOI: 10.1208/s12249-015-0351-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/04/2015] [Indexed: 12/13/2022] Open
Abstract
Currently available anti-ulcer drugs suffer from serious side effects which limited their uses and prompted the need to search for a safe and efficient new anti-ulcer agent. Boswellia gum resin (BR) emerged as a safe, efficient, natural, and economic potential cytoprotective agent. Thus, it is of medical importance to develop gastroretentive (GR) formulations of BR to enhance its bioavailability and anti-ulcer efficacy. Early attempts involved the use of organic solvents and non-applicability to large-scale production. In this study, different tablet formulations were prepared by simple direct compression combining floating and bioadhesion mechanisms employing hydroxypropyl methylcellulose (HPMC), sodium carboxymethyl cellulose (SCMC), pectin (PC), and/or carbopol (CP) as bioadhesive polymers and sodium bicarbonate (SB) as a gas former. The prepared tablets were subjected for assessment of swelling, floating, bioadhesion, and drug release in 0.1 N HCl. The optimized GR formulation was examined for its protective effect on the gastric ulcer induced by indomethacin in albino rabbits compared with lactose tablets. The obtained results disclosed that swelling, floating, bioadhesion, and drug release of the GR tablets of BR depend mainly on the nature of the matrix and the ratio of polymer combinations. Moreover, a combination of SCMC-CP in a ratio of 2:1 (SCP21) exhibited desirable floating, bioadhesion, swelling, and extended drug release. Also, a 6-h pretreatment with SCP21 tablets decreased the severity of inflammation and number of bleeding spots among ulcer-induced rabbits in comparison to those treated with lactose tablets.
Collapse
|