1
|
Stafford AM, Yamamoto BK, Phillips TJ. Combined and sequential effects of alcohol and methamphetamine in animal models. Neurosci Biobehav Rev 2021; 131:248-269. [PMID: 34543650 PMCID: PMC8642292 DOI: 10.1016/j.neubiorev.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
Comorbid drug use, often alcohol with other drugs, poses significant health and societal concerns. Methamphetamine is among the illicit drugs most often co-used with alcohol. The current review examines the animal literature for impacts of comorbid alcohol and methamphetamine exposure. We found evidence for additive or synergistic effects of combined or sequential exposure on behavior and physiology. Dopaminergic, serotonergic, and glutamatergic systems are all impacted by combined exposure to alcohol and methamphetamine and cyclooxygenase-2 activity plays an important role in their combined neurotoxic effects. Adverse consequences of comorbid exposure include altered brain development with prenatal exposure, impaired learning and memory, motor deficits, gastrotoxicity, hepatotoxicity, and augmented intake under some conditions. Given high susceptibility to drug experimentation in adolescence, studies of co-exposure during the adolescent period and of how adolescent exposure to one drug impacts later use or sensitivity to the other drug should be a priority. Further, to gain traction on prevention and treatment, additional research to identify motivational and neurobiological drivers and consequences of comorbid use is needed.
Collapse
Affiliation(s)
- Alexandra M Stafford
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Bryan K Yamamoto
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA; Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
2
|
Hansson AC, Gründer G, Hirth N, Noori HR, Spanagel R, Sommer WH. Dopamine and opioid systems adaptation in alcoholism revisited: Convergent evidence from positron emission tomography and postmortem studies. Neurosci Biobehav Rev 2019; 106:141-164. [DOI: 10.1016/j.neubiorev.2018.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/08/2018] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
|
3
|
Feltmann K, Borroto‐Escuela DO, Rüegg J, Pinton L, de Oliveira Sergio T, Narváez M, Jimenez‐Beristain A, Ekström TJ, Fuxe K, Steensland P. Effects of Long-Term Alcohol Drinking on the Dopamine D2 Receptor: Gene Expression and Heteroreceptor Complexes in the Striatum in Rats. Alcohol Clin Exp Res 2018; 42:338-351. [PMID: 29205397 PMCID: PMC5817245 DOI: 10.1111/acer.13568] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/28/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Reduced dopamine D2 receptor (D2R) ligand binding has repeatedly been demonstrated in the striatum of humans with alcohol use disorder (AUD). The attenuated D2R binding has been suggested to reflect a reduced D2R density, which in turn has been proposed to drive craving and relapse. However, results from rodent studies addressing the effects of alcohol drinking on D2R density have been inconsistent. METHODS A validated alcohol drinking model (intermittent access to 20% alcohol) in Wistar rats was used to study the effects of voluntary alcohol drinking (at least 12 weeks) on the D2R in the striatum compared to age-matched alcohol-naïve control rats. Reverse transcriptase quantitative PCR was used to quantify isoform-specific Drd2 gene expression levels. Using bisulfite pyrosequencing, DNA methylation levels of a regulatory region of the Drd2 gene were determined. In situ proximity ligation assay was used to measure densities of D2R receptor complexes: D2R-D2R, adenosine A2A receptor (A2AR)-D2R, and sigma1 receptor (sigma1R)-D2R. RESULTS Long-term voluntary alcohol drinking significantly reduced mRNA levels of the long D2R isoform in the nucleus accumbens (NAc) but did not alter CpG methylation levels in the analyzed sequence of the Drd2 gene. Alcohol drinking also reduced the striatal density of D2R-D2R homoreceptor complexes, increased the density of A2AR-D2R heteroreceptor complexes in the NAc shell and the dorsal striatum, and decreased the density of sigma1R-D2R heteroreceptor complexes in the dorsal striatum. CONCLUSIONS The present results on long-term alcohol drinking might reflect reduced D2R levels through reductions in D2R-D2R homoreceptor complexes and gene expression. Furthermore, based on antagonistic interactions between A2AR and D2R, an increased density of A2AR-D2R heteroreceptor complexes might indicate a reduced affinity and signaling of the D2R population within the complex. Hence, both reduced striatal D2R levels and reduced D2R protomer affinity within the striatal A2AR-D2R complex might underlie reduced D2R radioligand binding in humans with AUD. This supports the hypothesis of a hypodopaminergic system in AUD and suggests the A2AR-D2R heteroreceptor complex as a potential novel treatment target.
Collapse
MESH Headings
- Alcohol Drinking
- Animals
- Central Nervous System Depressants/pharmacology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Ethanol/pharmacology
- Gene Expression/drug effects
- Male
- Multiprotein Complexes/drug effects
- Multiprotein Complexes/metabolism
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/metabolism
- Receptors, Dopamine D2/drug effects
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Receptors, sigma/drug effects
- Receptors, sigma/metabolism
- Sigma-1 Receptor
Collapse
Affiliation(s)
- Kristin Feltmann
- Center for Psychiatry ResearchDepartment of Clinical NeuroscienceKarolinska Institutet& Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | | | - Joëlle Rüegg
- Center for Molecular MedicineDepartment of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
- SwetoxUnit of Toxicology SciencesKarolinska InstitutetSödertäljeSweden
| | - Luca Pinton
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Thatiane de Oliveira Sergio
- Center for Psychiatry ResearchDepartment of Clinical NeuroscienceKarolinska Institutet& Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Manuel Narváez
- Facultad de MedicinaInstituto de Investigación Biomédica de MálagaUniversity of MálagaMalagaSpain
| | | | - Tomas J. Ekström
- Center for Molecular MedicineDepartment of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Kjell Fuxe
- Department of NeuroscienceKarolinska InstitutetStockholmSweden
| | - Pia Steensland
- Center for Psychiatry ResearchDepartment of Clinical NeuroscienceKarolinska Institutet& Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| |
Collapse
|
4
|
Lovinger DM, Alvarez VA. Alcohol and basal ganglia circuitry: Animal models. Neuropharmacology 2017; 122:46-55. [PMID: 28341206 DOI: 10.1016/j.neuropharm.2017.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023]
Abstract
Brain circuits that include the cortex and basal ganglia make up the bulk of the forebrain, and influence behaviors related to almost all aspects of affective, cognitive and sensorimotor functions. The learning of new actions as well as association of existing action repertoires with environmental events are key functions of this circuitry. Unfortunately, the cortico-basal ganglia circuitry is also the target for all drugs of abuse, including alcohol. This makes the circuitry susceptible to the actions of chronic alcohol exposure that impairs circuit function in ways that contribute to cognitive dysfunction and drug use disorders. In the present review, we describe the connectivity and functions of the associative, limbic and sensorimotor cortico-basal ganglia circuits. We then review the effects of acute and chronic alcohol exposure on circuit function. Finally, we review studies examining the roles of the different circuits and circuit elements in alcohol use and abuse. We attempt to synthesize information from a variety of studies in laboratory animals and humans to generate hypotheses about how the three circuits interact with each other and with the other brain circuits during exposure to alcohol and during the development of alcohol use disorders. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Veronica A Alvarez
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
5
|
Battaini F, Pascale A, Ancona DM, Cagiano R, Cuomo V, Govoni S. Moderate Alcohol Intake: Behavioral and Neurochemical Correlates in Rats. Nutr Neurosci 2016; 1:151-9. [DOI: 10.1080/1028415x.1998.11747224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Poon K, Leibowitz SF. Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms. Front Nutr 2016; 3:11. [PMID: 27148536 PMCID: PMC4837147 DOI: 10.3389/fnut.2016.00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Correlative human observational studies on substances of abuse have been highly dependent on the use of rodent models to determine the neuronal and molecular mechanisms that control behavioral outcomes. This is particularly true for gestational exposure to non-illicit substances of abuse, such as excessive dietary fat, ethanol, and nicotine, which are commonly consumed in our society. Exposure to these substances during the prenatal period has been shown in offspring to increase their intake of these substances, induce other behavioral changes, and affect neurochemical systems in several brain areas that are known to control behavior. More importantly, emerging studies are linking the function of the immune system to these neurochemicals and ingestion of these abused substances. This review article will summarize the prenatal rodent models used to study developmental changes in offspring caused by prenatal exposure to dietary fat, ethanol, or nicotine. We will discuss the various techniques used for the administration of these substances into rodents and summarize the published outcomes induced by prenatal exposure to these substances. Finally, this review will cover some of the recent evidence for the role of immune factors in causing these behavioral and neuronal changes.
Collapse
Affiliation(s)
- Kinning Poon
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| |
Collapse
|
7
|
Li J, Li J, Liu X, Qin S, Guan Y, Liu Y, Cheng Y, Chen X, Li W, Wang S, Xiong M, Kuzhikandathil EV, Ye JH, Zhang C. MicroRNA expression profile and functional analysis reveal that miR-382 is a critical novel gene of alcohol addiction. EMBO Mol Med 2013; 5:1402-14. [PMID: 23873704 PMCID: PMC3799494 DOI: 10.1002/emmm.201201900] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 05/02/2013] [Accepted: 06/17/2013] [Indexed: 12/31/2022] Open
Abstract
Alcohol addiction is a major social and health concern. Here, we determined the expression profile of microRNAs (miRNAs) in the nucleus accumbens (NAc) of rats treated with alcohol. The results suggest that multiple miRNAs were aberrantly expressed in rat NAc after alcohol injection. Among them, miR-382 was down-regulated in alcohol-treated rats. In both cultured neuronal cells in vitro and in the NAc in vivo, we identified that the dopamine receptor D1 (Drd1) is a direct target gene of miR-382. Via this target gene, miR-382 strongly modulated the expression of DeltaFosB. Moreover, overexpression of miR-382 significantly attenuated alcohol-induced up-regulation of DRD1 and DeltaFosB, decreased voluntary intake of and preference for alcohol and inhibited the DRD1-induced action potential responses. The results indicated that miRNAs are involved in and may represent novel therapeutic targets for alcoholism.
Collapse
Affiliation(s)
- Jingyuan Li
- Department of Pharmacology, Rush University Medical Center, Rush University, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Acute and chronic ethanol differentially modify the emotional significance of a novel environment: implications for addiction. Int J Neuropsychopharmacol 2012; 15:1109-20. [PMID: 21854680 DOI: 10.1017/s1461145711001283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Using open-field behaviour as an experimental paradigm, we demonstrated a complex interaction between the rewarding/stimulating effects and the anxiogenic/stressful effects of both novelty and acute or chronic amphetamine in mice. As a consequence of this interaction, acute amphetamine-induced hyperlocomotion was inhibited, whereas the expression of its sensitization was facilitated in a novel environment. In the present study, we aimed to investigate the interactions between exposure to a novel environment and the acute and chronic effects of ethanol (Eth), a drug of abuse known to produce anxiolytic-like behaviour in mice. Previously habituated and non-habituated male Swiss mice (3 months old) were tested in an open field after receiving an acute injection of Eth or following repeated treatment with Eth. Acute Eth administration increased locomotion with a greater magnitude in mice exposed to the apparatus for the first time, and this was thought to be related to the attenuation of the stressful effects of novelty produced by the anxiolytic-like effect of acute Eth, leading to a subsequent prevalence of its stimulant effects. However, locomotor sensitization produced by repeated Eth administration was expressed only in the previously explored environment. This result might be related to the well-known tolerance of Eth-induced anxiolytic-like behaviour following repeated treatment, which would restore the anxiogenic effect of novelty. Our data suggest that a complex and plastic interaction between the emotional and motivational properties of novelty and drugs of abuse can critically modify the behavioural expression of addiction-related mechanisms.
Collapse
|
9
|
Involvement of nucleus accumbens dopamine D1 receptors in ethanol drinking, ethanol-induced conditioned place preference, and ethanol-induced psychomotor sensitization in mice. Psychopharmacology (Berl) 2012; 222:141-53. [PMID: 22222864 DOI: 10.1007/s00213-011-2630-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/19/2011] [Indexed: 12/24/2022]
Abstract
RATIONALE Dopamine D1 receptor (D1R) signaling has been associated to ethanol consumption and reward in laboratory animals. OBJECTIVES Here, we hypothesize that this receptor, which is located within the nucleus accumbens (NAc) neurons, modulates alcohol reward mechanisms. METHODS To test this hypothesis, we measured alcohol consumption and ethanol-induced psychomotor sensitization and conditioned place preference (CPP) in mice that received bilateral microinjections of small interference RNA (siRNA)-expressing lentiviral vectors (LV-siD1R) producing D1R knock-down. The other group received control (LV-Mock) viral vectors into the NAc. RESULTS There were no differences in the total fluid consumed and also no differences in the amount of ethanol consumed between groups prior to surgery. However, after surgery, the LV-siD1R group consumed less ethanol than the control group. This difference was not associated to taste neophobia. In addition, results have shown that down-regulation of endogenous D1R using viral-mediated siRNA in the NAc significantly decreased ethanol-induced behavioral sensitization as well as acquisition, but not expression, of ethanol-induced place preference. CONCLUSIONS We conclude that decreased D1R expression into the NAc led to reduced ethanol rewarding properties, thereby leading to lower voluntary ethanol consumption. Together, these findings demonstrate that the D1 receptor pathway within the NAc controls ethanol reward and intake.
Collapse
|
10
|
Barson JR, Morganstern I, Leibowitz SF. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. ILAR J 2012; 53:35-58. [PMID: 23520598 PMCID: PMC3954603 DOI: 10.1093/ilar.53.1.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Consummatory behavior is driven by both caloric and emotional need, and a wide variety of animal models have been useful in research on the systems that drive consumption of food and drugs. Models have included selective breeding for a specific trait, manipulation of gene expression, forced or voluntary exposure to a substance, and identification of biomarkers that predict which animals are prone to overconsuming specific substances. This research has elucidated numerous brain areas and neurochemicals that drive consummatory behavior. Although energy homeostasis is primarily mediated by the hypothalamus, reinforcement is more strongly mediated by nuclei outside the hypothalamus, in mesocorticolimbic regions. Orexigenic neurochemicals that control food intake can provide a general signal for promoting caloric intake or a more specific signal for stimulating consumption of a particular macronutrient, fat, carbohydrate, or protein. The neurochemicals involved in controlling fat ingestion--galanin, enkephalin, orexin, melanin-concentrating hormone, and the endocannabinoids--show positive feedback with this macronutrient, as these peptides both increase fat intake and are further stimulated by its intake. This positive association offers some explanation for why foods high in fat are so often overconsumed. Consumption of ethanol, a drug of abuse that also contains calories, is similarly driven by the neurochemical systems involved in fat intake, according to evidence that closely relates fat and ethanol consumption. Further understanding of the systems involved in consummatory behavior will enable the development of effective therapies for the treatment of both overeating and drug abuse.
Collapse
Affiliation(s)
- Jessica R Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | | | | |
Collapse
|
11
|
Franklin KM, Engleman EA, Ingraham CM, McClaren JA, Keith CM, McBride WJ, Murphy JM. A single, moderate ethanol exposure alters extracellular dopamine levels and dopamine d receptor function in the nucleus accumbens of wistar rats. Alcohol Clin Exp Res 2009; 33:1721-30. [PMID: 19572982 PMCID: PMC2858589 DOI: 10.1111/j.1530-0277.2009.01009.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The nucleus accumbens (NAc) has been implicated in the neurochemical effects of ethanol (EtOH). Evidence suggests that repeated EtOH exposures and chronic EtOH drinking increase dopamine (DA) neurotransmission in the NAc due, in part, to a reduction in D(2) autoreceptor function. The objectives of the current study were to evaluate the effects of a single EtOH pretreatment and repeated EtOH pretreatments on DA neurotransmission and D(2) autoreceptor function in the NAc of Wistar rats. METHODS Experiment 1 examined D(2) receptor function after a single intraperitoneal (i.p.) injection or repeated i.p. injections of 0.0, 0.5, 1.0, or 2.0 g/kg EtOH to female Wistar rats. Single EtOH pretreatment groups received 1 daily i.p. injection of 0.9% NaCl (saline) for 4 days, followed by 1 day of saline or EtOH administration; repeated EtOH pretreatment groups received 5 days of saline or EtOH injections. Reverse microdialysis experiments were conducted to determine the effects of local perfusion with the D(2)-like receptor antagonist (-)sulpiride (SUL; 100 uM), on extracellular DA levels in the NAc. Experiment 2 evaluated if pretreatment with a single, moderate (1.0 g/kg) dose of EtOH would alter levels and clearance of extracellular DA in the NAc, as measured by no-net-flux (NNF) microdialysis. Subjects were divided into the EtOH-naïve and the single EtOH pretreated groups from Experiment 1. RESULTS Experiment 1: Changes in extracellular DA levels induced with SUL perfusion were altered by the EtOH dose (p < 0.001), but not the number of EtOH pretreatments (p > 0.05). Post-hoc analyses indicated that groups pretreated with single or repeated 1.0 g/kg EtOH showed significantly attenuated DA response to SUL, compared with all other groups (p < 0.001). Experiment 2: Multiple linear regression analyses yielded significantly (p < 0.05) higher extracellular DA concentrations in the NAc of rats receiving EtOH pretreatment, compared with their EtOH-naïve counterparts (3.96 +/- 0.42 nM and 3.25 +/- 0.23 nM, respectively). Extraction fractions were not significantly different between the 2 groups. CONCLUSIONS The present results indicate that a single EtOH pretreatment at a moderate dose can increase DA neurotransmission in the NAc due, in part, to reduced D(2) autoreceptor function.
Collapse
Affiliation(s)
- Kelle M Franklin
- Department of Psychology, Purdue School of Science, IUPUI, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
de Araujo NP, Fukushiro DF, Grassl C, Hipólide DC, Souza-Formigoni MLO, Tufik S, Frussa-Filho R. Ethanol-induced behavioral sensitization is associated with dopamine receptor changes in the mouse olfactory tubercle. Physiol Behav 2009; 96:12-7. [DOI: 10.1016/j.physbeh.2008.07.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 01/23/2023]
|
13
|
Sari Y, Bell RL, Zhou FC. Effects of chronic alcohol and repeated deprivations on dopamine D1 and D2 receptor levels in the extended amygdala of inbred alcohol-preferring rats. Alcohol Clin Exp Res 2006; 30:46-56. [PMID: 16433731 PMCID: PMC4287423 DOI: 10.1111/j.1530-0277.2006.00010.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Dopaminergic (DA) activity in the extended amygdala (EA) has been known to play a pivotal role in mediating drug and alcohol addiction. Alterations of DA activity within the EA after chronic exposure to alcohol or substances of abuse are considered a major mechanism for the development of alcoholism and addiction. To date, it is not clear how different patterns of chronic alcohol drinking affect DA receptor levels. Therefore, the current studies investigated the effects of chronic ethanol consumption, with or without deprivations, on D1 and D2 receptor densities within the EA. METHODS Inbred alcohol-preferring (iP) rats were divided into 3 groups with the following treatments: (1) water for 14 weeks; (2) continuous alcohol (C-Alc) for 14 weeks [24-hour concurrent access to 15 and 30% (v/v) ethanol]; or (3) repeatedly deprived of alcohol (RD-Alc) (24-hour concurrent access to 15 and 30% ethanol for 6 weeks, followed by 2 cycles of 2 weeks of deprivation of and 2 weeks of reexposure to ethanol access). At the end of 14 weeks, the rats were killed for autoradiographic labeling of D1 and D2 receptors. RESULTS Compared with the water control group, both the C-Alc and the RD-Alc groups displayed increases in D1 receptor binding density in the anterior region of the Acb core, whereas the RD-Alc group displayed additional increases in D1 receptor binding density in anterior regions of the lateral and intercalated nuclei of the amygdala. Additionally, both C-Alc and RD-Alc rats displayed increases in D2 receptor binding density in anterior regions of the Acb shell and core, whereas RD-Alc rats displayed additional increases in D2 receptor binding density in the dorsal striatum. CONCLUSION The results of this study indicate that 14-week extended alcohol drinking with continuous chronic or repeated deprivations increase binding sites of D1 and D2 receptors in specific regions of the EA with greater sensitivity in the anterior regions. The repeated deprivation has greater effect on altering D1 and D2 receptor binding sites in the Acb, dorsal striatum, and subamygdala regions. The current result indicates that the two drinking paradigms may have common as well as differential mechanisms on alteration of dopamine receptor-binding sites in specific regions of the EA.
Collapse
Affiliation(s)
- Youssef Sari
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
14
|
Hamida SB, Bach S, Plute E, Jones BC, Kelche C, Cassel JC. Ethanol–ecstasy (MDMA) interactions in rats: Preserved attenuation of hyperthermia and potentiation of hyperactivity by ethanol despite prior ethanol treatment. Pharmacol Biochem Behav 2006; 84:162-8. [PMID: 16750260 DOI: 10.1016/j.pbb.2006.04.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/21/2006] [Accepted: 04/26/2006] [Indexed: 11/27/2022]
Abstract
Recreational use of ecstasy, or (+/-)-3,4-methylenedioxymethamphetamine (MDMA), is often associated with other drugs, among which ethanol is one of the most common. Little is known, however, about the interaction between these two drugs. Using a daily ethanol and/or MDMA administration regimen, we recently showed that ethanol potentiated the hyperactivity (in the home cage), but attenuated the hyperthermia induced by MDMA. The prevention of hyperthermia occurred only on the first of four daily ethanol-MDMA treatments, indicating possible tolerance to ethanol. In order to test the tolerance hypothesis, we treated Long-Evans adult male rats with ethanol on 4 consecutive days prior to their first treatment with MDMA-ethanol. Our results first confirmed that ethanol (1.5 g/kg, i.p.) potentiates the psychomotor effects of MDMA (10 mg/kg, i.p.), while attenuating its pyretic effects (6.6 mg/kg, i.p.). The results also showed that both the potentiation of locomotor activity and the attenuation of hyperthermia by ethanol are not at all altered by prior ethanol treatment. This indicates that tolerance to ethanol per se does not account for what appears to be tolerance to the ethanol-MDMA combination, thus indicating that ethanol-MDMA combination likely has unique pharmacological effects.
Collapse
Affiliation(s)
- Sami Ben Hamida
- LN2C FRE 2855 Université Louis Pasteur - CNRS, Institut Fédérératif de Recherche 37 - GDR CNRS 2905, 12 rue Goethe, F-67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
15
|
Thanos PK, Taintor NB, Rivera SN, Umegaki H, Ikari H, Roth G, Ingram DK, Hitzemann R, Fowler JS, Gatley SJ, Wang GJ, Volkow ND. DRD2 Gene Transfer Into the Nucleus Accumbens Core of the Alcohol Preferring and Nonpreferring Rats Attenuates Alcohol Drinking. Alcohol Clin Exp Res 2006; 28:720-8. [PMID: 15166646 DOI: 10.1097/01.alc.0000125270.30501.08] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Transient overexpression of the dopamine D2 receptor (DRD2) gene in the nucleus accumbens (NAc) using an adenoviral vector has been associated with a significant decrease in alcohol intake in Sprague Dawley rats. This overexpression of DRD2 reduced alcohol consumption in a two-bottle-choice paradigm and supported the view that high levels of DRD2 may be protective against alcohol abuse. METHODS Using a limited access (1 hr) two-bottle-choice (water versus 10% ethanol) drinking paradigm, we examined the effects of the DRD2 vector in alcohol intake in the genetically inbred alcohol-preferring (P) and -nonpreferring (NP) rats. In addition, micro-positron emission tomography imaging was used at the completion of the study to assess in vivo the chronic (7 weeks) effects of ethanol exposure on DRD2 levels between the two groups. RESULTS P rats that were treated with the DRD2 vector (in the NAc) significantly attenuated their alcohol preference (37% decrease) and intake (48% decrease), and these measures returned to pretreatment levels by day 20. A similar pattern of behavior (attenuation of ethanol drinking) was observed in NP rats. Analysis of the [C]raclopride micro-positron emission tomography data after chronic (7 weeks) exposure to ethanol revealed clear DRD2 binding differences between the P and NP rats. P rats showed 16% lower [C]raclopride specific binding in striatum than the NP rats. CONCLUSIONS These findings further support our hypothesis that high levels of DRD2 are causally associated with a reduction in alcohol consumption and may serve as a protective factor against alcoholism. That this effect was seen in P rats, which are predisposed to alcohol intake, suggests that they are protective even in those who are genetically predisposed to high alcohol intake. It is noteworthy that increasing DRD2 significantly decreased alcohol intake but did not abolish it, suggesting that high DRD2 levels may specifically interfere with the administration of large quantities of alcohol. The significantly higher DRD2 concentration in NP than P rats after 7 weeks of ethanol therefore could account for low alcohol intake.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Department of Medicine, Brookhaven National Laboratory, Upton, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tupala E, Tiihonen J. Dopamine and alcoholism: neurobiological basis of ethanol abuse. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28:1221-47. [PMID: 15588749 DOI: 10.1016/j.pnpbp.2004.06.022] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2004] [Indexed: 01/06/2023]
Abstract
The role of the dopamine (DA) system in brain reward mechanisms and the development of substance abuse has been well established. We review earlier animal and human studies on DA and alcoholism with some relevant issues relating to those studies. The present animal and human data suggest several alterations in the DA system in the context of alcoholism. Receptor studies imply that DA D(2) receptor density and function are lower at least among type 1 alcoholics, which suggests that they could benefit from drugs that enhance DAergic activity, such as partial DA agonists. These drugs could help to restore suboptimal levels of DAergic activity by reducing both the craving for alcohol in abstinence and the euphoria subsequent to alcohol's release of DA in the nucleus accumbens (NAC), thus providing negative reinforcement for relapse.
Collapse
Affiliation(s)
- Erkki Tupala
- Department of Forensic Psychiatry, University of Kuopio, Niuvanniemi Hospital, FIN-70240 Kuopio, Finland.
| | | |
Collapse
|
17
|
Castorina M, Marino R, Grassi M, Drago F. Very low doses of ethanol induce behavioral changes involving dopamine D2 receptors. Eur J Pharmacol 2003; 477:129-35. [PMID: 14519416 DOI: 10.1016/j.ejphar.2003.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In male rats, pretreatment for 20 days with very low (0.5, 1%, v/v) but not with high (5, 10%, v/v) oral doses of ethanol delayed the initiation and reduced the duration of narcosis induced by an acute high intraperitoneal (i.p.) dose of the drug (3 g/kg in 25% saline solution). Furthermore, the treatment improved the acquisition of shuttle-box active avoidance response but did not affect the emission of ultrasonic calls, an index of emotional state of animals. These effects were inhibited by peripheral administration of the dopamine D2 receptor antagonist, sulpiride (1 mg/kg). A higher dose of sulpiride (10 mg/kg) prolonged the duration of narcosis in rats pretreated with high-dose ethanol and reduced the number of conditioned avoidance responses in the shuttle-box paradigm. The pretreatment with the dopamine D2 receptor agonist, (+/-)-2-(N-phenethyl-N-propylamino)-5-hydroxytetralin (PPHT, 0.1 mg/kg), enhanced the effects of ethanol very low doses in delaying the initiation and reducing the duration of narcosis induced by an acute i.p. dose of the drug. A pharmacokinetic study in ethanol-pretreated animals revealed that administration of 0.5% or 1% ethanol for 20 days did not modify significantly the bioavailability of acute ethanol administered i.p. in a dose of 3 g/kg in 25% saline solution. Thus, repeated administration of ethanol very low doses may have affected the sensitivity of presynaptic dopamine D2 receptors. The influence on dopamine release through an action on presynaptic receptors may be involved in these effects of small doses of ethanol.
Collapse
Affiliation(s)
- Maria Castorina
- Department of Experimental and Clinical Pharmacology, University of Catania Medical School, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | |
Collapse
|
18
|
Vasconcelos SMM, Macêdo DS, Lima LO, Sousa FCF, Fonteles MMF, Viana GSB. Effect of one-week ethanol treatment on monoamine levels and dopaminergic receptors in rat striatum. Braz J Med Biol Res 2003; 36:503-9. [PMID: 12700829 DOI: 10.1590/s0100-879x2003000400013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the effects of ethanol on the levels of norepinephrine, dopamine, serotonin (5-HT) and their metabolites as well as on D1- and D2-like receptors in the rat striatum. Ethanol (2 or 4 g/kg, po) was administered daily by gavage to male Wistar rats and on the 7th day, 30 min or 48 h after drug administration, the striatum was dissected for biochemical assays. Monoamine and metabolite concentrations were measured by HPLC and D1- and D2-like receptor densities were determined by binding assays. Scatchard analyses showed decreases of 30 and 43%, respectively, in D1- and D2-like receptor densities and no change in dissociation constants (Kd) 48 h after the withdrawal of the dose of 4 g/kg. Ethanol, 2 g/kg, was effective only on the density of D2-like receptors but not on Kd of either receptor. Thirty minutes after the last ethanol injection (4 g/kg), decreases of D2 receptor density (45%) as well as of Kd values (34%) were detected. However, there was no significant effect on D1-like receptor density and a 46% decrease was observed in Kd. An increase in dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), a decrease in norepinephrine, and no alteration in 5-HT levels were demonstrated after 48-h withdrawal of 4 g/kg ethanol. Similar effects were observed in dopamine and DOPAC levels 30 min after drug administration. No alteration in norepinephrine concentration and a decrease in 5-HT levels were seen 30 min after ethanol (4 g/kg) administration. Our findings indicate the involvement of the monoaminergic system in the responses to ethanol.
Collapse
Affiliation(s)
- S M M Vasconcelos
- Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | | | | | | | | |
Collapse
|
19
|
Engleman EA, McBride WJ, Li TK, Lumeng L, Murphy JM. Ethanol drinking experience attenuates (-)sulpiride-induced increases in extracellular dopamine levels in the nucleus accumbens of alcohol-preferring (P) rats. Alcohol Clin Exp Res 2003; 27:424-31. [PMID: 12658107 DOI: 10.1097/01.alc.0000056618.57931.a5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The reinforcing properties of ethanol may be partly mediated through the mesolimbic dopamine (DA) system. This study examines the effects of local application of the DA D(2) receptor antagonist (-)sulpiride (SUL) on ethanol drinking of alcohol-preferring (P) rats, and extracellular DA levels in the nucleus accumbens (NAc) of P rats that were either ethanol-naive or had been chronically drinking ethanol. METHODS Microdialysis was used to sample NAc DA levels, and reverse microdialysis was used to locally administer the D(2) antagonist (-)sulpiride (SUL) into the NAc of adult female P rats that were either drinking ethanol (n = 17) or were ethanol-naive (n = 24). Stable intake of 15% (v/v) ethanol (>/=0.75 g/kg) was established for the ethanol-drinking group in daily 1-hr access periods over a minimum of 4 weeks before surgery. Naive and ethanol-drinking rats were implanted with bilateral guide cannulae aimed 4 mm above the NAc shell. After recovery from surgery, microdialysis probes (active area = 2 mm) were inserted bilaterally into the NAc. Two days later, rats in the ethanol-drinking and naive groups were each divided into two groups; one group was bilaterally perfused (1.0 microl/min) with artificial cerebrospinal fluid (aCSF) and the other group was further divided into three subgroups that were perfused with aCSF + either 50, 100, or 200 microM SUL for 240 min. During the last 60 min of perfusion, the ethanol-drinking rats were given their daily 1-hr ethanol access period. Following ethanol access, the aCSF + SUL subgroups were then given aCSF only. The entire perfusion procedure was repeated 24 hr later, but the aCSF only and aCSF + SUL group treatment conditions were transposed. RESULTS In ethanol-drinking rats, 100 and 200 microM SUL increased extracellular NAc DA levels to approximately 200% of basal values, but did not significantly alter ethanol intake. In ethanol-naive P rats, 100 and 200 microM SUL increased extracellular NAc DA levels significantly more (450% of basal; p < 0.05) than in the ethanol-drinking group. CONCLUSIONS The findings are consistent with the hypothesis that ethanol-drinking experience causes a desensitization or a down-regulation of D(2) autoreceptors in the NAc of P rats.
Collapse
Affiliation(s)
- Eric A Engleman
- Department of Psychology, Purdue School of Science, 402 N. Blackford Street, IUPUI, Indianapolis, IN 46202-3275, USA
| | | | | | | | | |
Collapse
|
20
|
Ripley TL, Dunworth SJ, Stephens DN. Consequences of amygdala kindling and repeated withdrawal from ethanol on amphetamine-induced behaviours. Eur J Neurosci 2002; 16:1129-38. [PMID: 12383242 DOI: 10.1046/j.1460-9568.2002.02175.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been shown previously that chronic ethanol treatment in mice leads to accelerated behavioural sensitization to psychomotor stimulants [Manley & Little (1997) J. Pharmacol. Exp. Ther., 281, 1330-1339], whilst repeated experience of ethanol withdrawal sensitizes pathways underlying seizure activity (Becker & Hale (1993) Alcohol Clin. Exp. Res., 17, 94-98]. The aim of the current experiment was to investigate the consequences of repeated withdrawal from ethanol on amphetamine-induced behaviours in the rat and compare this with animals with electrical kindling of the amygdala, a procedure that has been shown to enhance alcohol withdrawal seizures [Pinel et al. (1975) Can. J. Neurol. Sci., 2, 467-475]. For the kindling experiments, electrodes were surgically implanted in the left basolateral amygdala and were stimulated daily at the afterdischarge threshold until a criterion of three consecutive stage 5 seizures was reached. Fully kindled rats showed a marginally significant reduction in sensitivity to the locomotor stimulant effects of acute amphetamine compared with sham and partially kindled rats which had experienced subthreshold stimulation of the amygdala. Sham and partially kindled rats sensitized readily to the locomotor activating effects of amphetamine (0.125 mg/kg) following repeated treatments, but the fully kindled rats did not. Fully kindled rats also failed to show place preference conditioning to amphetamine (0.5 mg/kg). Rats, withdrawn three times from chronic ethanol (liquid-diet), kindled more quickly to PTZ (30 mg/kg, i.p.) than rats with the same overall exposure to ethanol (24 days) followed by a single withdrawal or control animals. However, there was no difference in the locomotor stimulating effects of acute amphetamine (0.25-1 mg/kg, i.p.), the rate of sensitization to amphetamine (0.125 mg/kg, i.p.) or amphetamine induced conditioned place preference (1 mg/kg, i.p.). These observations suggest that, in rats, repeated withdrawal from a relatively mild chronic ethanol treatment modulates neuronal systems that may also be involved in PTZ-induced kindling but not those involved in either the acute stimulant effects of amphetamine or behavioural sensitization or appetitive conditioning following repeated amphetamine administration. Behavioural changes following amygdala kindling differed from those following repeated ethanol withdrawal, suggesting that withdrawal kindling from a mild ethanol treatment differs in its effects from amygdala kindling.
Collapse
Affiliation(s)
- Tamzin L Ripley
- Sussex Centre for Research in Alcohol, Alcoholism and Drug Dependence, School of Biological Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | | | | |
Collapse
|
21
|
Quadros IMH, Nobrega JN, Hipólide DC, de Lucca EM, Souza-Formigoni MLO. Differential propensity to ethanol sensitization is not associated with altered binding to D1 receptors or dopamine transporters in mouse brain. Addict Biol 2002; 7:291-9. [PMID: 12126488 DOI: 10.1080/13556210220139505] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Behavioral sensitization to ethanol's stimulant effect has been proposed as a marker for individual abuse liability. In previous work we have demonstrated that mice showing an increased propensity to EtOH sensitization had higher levels of dopamine (DA) D2 receptor binding in localized brain areas compared to mice showing less sensitization. In the present study we examined whether altered binding to D1 or the DA transporter (DAT) might also be associated with differential propensity to develop EtOH sensitization. Male Swiss mice received 2.4 g/kg EtOH or saline intraperitoneally (i.p.) daily for 21 days, were tested weekly for locomotor activity, and then sacrificed. D1 and DAT binding were assessed by quantitative autoradiography using [(3)H]SCH-23390 and [(3)H]WIN 35,428, respectively. EtOH-treated mice were subdivided into sensitized and non-sensitized subgroups according to their locomotor activity during treatment. Analyses of brain D1 (19 regions) and DAT (12 regions) binding densities revealed no significant differences among EtOH-sensitized, -non-sensitized or saline groups in any of the regions measured (all p values > 0.32 for D1 and > 0.16 for DAT). These results suggest that brain D1 and DAT binding, unlike the recently reported changes in D2 binding, do not differentiate mice that develop behavioral sensitization to ethanol from those that do not.
Collapse
Affiliation(s)
- Isabel M H Quadros
- Department of Psychobiology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | | | | |
Collapse
|
22
|
Puzziferri I, Signorile A, Guerrieri F, Papa S, Cuomo V, Steardo L. Chronic low dose ethanol intake: biochemical characterization of liver mitochondria in rats. Life Sci 2000; 66:477-84. [PMID: 10794064 DOI: 10.1016/s0024-3205(99)00617-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Liver mitochondria were isolated from male rats exposed for 2 months to low doses of ethanol (3% v/v in drinking water), a condition not associated with tolerance or dependence. The results show no significant changes in the content of reduced or oxidized glutathione in the liver mitochondria of ethanol treated rats with respect to controls. However, a slight but significant increase in lipid peroxidation, accompanied by an increased content of oxidized proteins, was found in ethanol exposed animals. Mitochondrial content of cytochrome complexes was not significantly affected by ethanol intake. The specific enzymatic activity of cytochrome oxidase showed, however, a significant decrease in ethanol-treated rats. The slight mitochondrial alterations found in the liver of rats exposed chronically to low doses of ethanol might represent the beginning of a more extensive damage previously observed in rats exposed to high doses of this substance.
Collapse
Affiliation(s)
- I Puzziferri
- Bonomo Research Center and International Biomedical Institute, Castel del Monte, Andria-Bari, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Myers RD, Robinson DE. Mmu and D2 receptor antisense oligonucleotides injected in nucleus accumbens suppress high alcohol intake in genetic drinking HEP rats. Alcohol 1999; 18:225-33. [PMID: 10456575 DOI: 10.1016/s0741-8329(99)00015-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous pharmacological and other studies have implicated both Mmu and dopamine receptor subtypes in alcohol consumption. In the genetic drinking rat as well as those chemically induced to drink, evidence has accrued that the abnormal intake of alcohol is underpined by these receptors in the brain. The purpose of this investigation was to demonstrate unequivocally that a biological impairment by antisense oligodeoxynucleotide (ODN) targeted specifically to these two receptor subtypes would disrupt ongoing alcohol drinking. In this project, a new strain of female and male high-ethanol preferring (HEP) rats was used that had free access to preferred concentrations of alcohol over water in a two choice paradigm. A guide cannula for a microinjection needle was first implanted bilaterally above the nucleus accumbens (NAC) of each rat. Following recovery, a dose of either 250 or 500 ng of the Mmu ODN or 500 ng D2ODN was microinjected into the NAC of the rat in a volume of 0.8-1.0 microl. A standard temporal sequence was used in which microinjections were given four times at successive 12-h intervals over a 2-day interval. The control mismatch ODNs corresponding to both the Mmu or D2 receptor antisense were microinjected identically at homologous sites in the NAC. Following the experiments, the brain of each rat was removed and sectioned in the coronal plane for histological analysis so that each microinjection site was identified. The results showed that the Mmu receptor antisense caused a significant dose dependent fall in free access alcohol drinking within 12 to 24 h following the initial microinjection. This decline often persisted for 1 to 2 days in terms of both g/kg intake and proportion of alcohol to water consumed. Similarly, the D2 receptor ODN likewise induced an intense and significant decline in both g/kg and proportion measures of alcohol intake. Since the corresponding mismatch ODN for both Mmu and D2 receptors exerted no effect on either of these measures of alcohol consumption, the specificity of molecular action of the respective antisense molecules on drinking behavior of the HEP rats was confirmed. Thus, these results provide the first unequivocal evidence that the genes for D2 and Mmu receptors are fundamentally involved in abnormal alcohol drinking in the genetically predisposed individual. Finally, important new anatomical evidence is introduced for the critical role of the NAC in the genetic basis of aberrant drinking of alcohol.
Collapse
Affiliation(s)
- R D Myers
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | |
Collapse
|
24
|
Cagiano R, Tattoli M, Persichella M, Mazzoccoli M, Govoni S, Cuomo V. Effects of chronic low-dose ethanol intake on sexual behavior in rats. Alcohol 1998; 16:135-8. [PMID: 9665315 DOI: 10.1016/s0741-8329(97)00182-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of 8-week ethanol intake (3% v/v in drinking water) on the sexual activity of male rats were investigated during three experimental sessions with 15-day intersession intervals. Chronic ethanol consumption did not significantly influence any copulatory parameter during the three experimental sessions. The evaluation of ultrasonic emission during sexual behavior showed that rats treated with ethanol exhibited a significant increase of the postejaculatory vocalization length during the third test session. These results indicate that the chronic intake of low doses of ethanol, which does not induce either tolerance or dependence, only slightly affects the motivational state of male rats during sexual activity.
Collapse
Affiliation(s)
- R Cagiano
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Pascale A, Battaini F, Govoni S, Persichella M, De Salvia MA, Cuomo V. Chronic low doses of ethanol affect brain protein kinase C and ultrasonic calls in rats. Alcohol 1997; 14:557-61. [PMID: 9401670 DOI: 10.1016/s0741-8329(97)00047-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Few studies have investigated neurobehavioral and neurochemical consequences of chronic consumption of low doses of ethanol. The present study shows that in rats exposure to 3% ethanol (v/v in drinking water) for 2 months decreased both calcium-dependent and -independent protein kinase C (PKC) activities in the cortex and in the hippocampus. This treatment also reduced ultrasonic calls (UCs), an index of emotional and motivational states of the animal. In addition, at cortical level of ethanol-treated rats, we observed a correlation between calcium-dependent activities and UCs. These results suggest that nonaddicting doses of ethanol affect brain PKC activities and that this enzyme may be involved in the ethanol modulation of emotional and motivational behaviors.
Collapse
Affiliation(s)
- A Pascale
- Institute of Pharmacological Sciences, University of Milano, Italy.
| | | | | | | | | | | |
Collapse
|
26
|
Eravci M, Grosspietsch T, Pinna G, Schulz O, Kley S, Bachmann M, Wolffgramm J, Götz E, Heyne A, Meinhold H, Baumgartner A. Dopamine receptor gene expression in an animal model of 'behavioral dependence' on ethanol. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 50:221-9. [PMID: 9406938 DOI: 10.1016/s0169-328x(97)00188-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The steady-state levels of messenger RNA (mRNA) of five cloned dopamine (D) receptors were measured in five brain regions in rats in a recently developed animal model of 'behavioral dependence' on ethanol. One group of rats was given the choice between ethanol and water over a 9-month period and developed 'behavioral dependence' on ethanol (group a). This group was compared with a group given the choice between ethanol and water for only 2 months (not yet behaviorally dependent, group b), a group forced to consume ethanol as sole fluid over a 9-month period (not behaviorally dependent, group c) and ethanol-naive control rats. All groups were sacrificed 1 month after ethanol withdrawal. The concentrations of mRNA of D3-receptors in the limbic forebrain (which included the nucleus accumbens) were significantly lowered in groups a and b, but unchanged in group c. D3 mRNA levels were reduced in the hippocampus of group b and unchanged in the cortex, amygdala and striatum. No significant changes in the mRNA concentrations of D1-, D2-, D4- or D5-receptors were seen in the five brain regions in any group. In conclusion, chronic consumption of ethanol under the 'free-choice condition', which may best induce the drug-rewarding effect, leads to specific changes in the D3-receptor gene expression which were not seen after forced ethanol administration. Changes in D3 mRNA levels were, however, not a specific correlate of 'behavioral dependence', as they were also detected in rats not yet 'behaviorally dependent' (group b).
Collapse
Affiliation(s)
- M Eravci
- Department of Radiological Diagnostics and Nuclear Medicine, Klinikum Benjamin Franklin, Free University of Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Gili-Martín E, Fernández-Briera A, Calvo P. Effects of chronic ethanol treatment and ethanol withdrawal on [3H]SCH23390 binding to rat striatal membranes. Neuropharmacology 1997; 36:101-6. [PMID: 9144646 DOI: 10.1016/s0028-3908(96)00159-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of chronic ethanol administration and ethanol withdrawal on the kinetic and pharmacological properties of [3H]SCH23390 binding sites and the labelling of central dopamine D-1 receptors were studied in the striatum of the rat. Chronic 40 day ethanol treatment produced a statistically significant decrease (p < 0.05) in maximum binding (Bmax) on striatal dopamine D-1 receptors of the rat, KD remaining unaltered. The withdrawal of ethanol did not affect the kinetic binding parameters. The rank order of potency in displacing the specific [3H]SCH23390 binding of several dopamine antagonists, agonists and serotonin-related drugs was consistent with the pharmacological profile of dopamine D-1 receptors. Chronic ethanol treatment led to a statistically significant increase in receptor affinity (lower Ki than controls) for (+)-butaclamol (p < 0.05). Ethanol withdrawal for 24 hr increased the affinity of [3H]SCH23390-labeled binding sites for norepinephrine. The addition of 0.03-0.68 M ethanol in vitro had no significant effects on [3H]SCH23390 binding in striatal preparations taken from both control and ethanol-treated rats. The results show that rat striatal [3H]SCH23390-labelled binding sites are affected by different conditions of ethanol exposure, possibly suggesting the medication of striatal dopamine pathways in the responses to ethanol intoxication.
Collapse
Affiliation(s)
- E Gili-Martín
- Department of Fundamental Biology, University of Vigo, Spain
| | | | | |
Collapse
|
28
|
Silvestre JS, O'Neill MF, Fernandez AG, Palacios JM. Effects of a range of dopamine receptor agonists and antagonists on ethanol intake in the rat. Eur J Pharmacol 1996; 318:257-65. [PMID: 9016913 DOI: 10.1016/s0014-2999(96)00821-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aim of this study was to assess the effects of a range of dopaminergic agents on consumption of an ethanol solution (10% ethanol, 3% glucose) in rats. A two-bottle, free-choice paradigm was used following induction of ethanol consumption and preference in standard laboratory rats. The model used provides a robust and reliable level of ethanol oral administration in normal laboratory rats. Both ethanol intake and preference were reduced by a dopamine D1 receptor partial agonist, SFK 38393 ((+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride), in a dose-dependent manner. The dopamine D2/D3 receptor agonist 7-OH-DPAT ((+/-)-7-hydroxy-N,N-(di-n-propyl-2-aminotetralin)) at the lowest dose of 0.01 mg/kg increased both ethanol intake and preference. At higher doses (0.03-0.1 mg/kg) no significant effects were found. The dopamine D1 receptor antagonist SCH 23390 (R-(+)-7-chloro-2,3,4,5-tetrahydro-3-methyl-1-phenyl-1H-3-benzazepine-8- ol), dopamine D2/D3 receptor antagonist raclopride and 5-HT2/D2 receptor antagonist risperidone did not affect ethanol consumption, although all at high doses induced a significant decrease in water intake, indicating a non-specific decrease in consummatory behavior with these compounds. These results suggest the involvement of the dopaminergic system in ethanol intake and ethanol reinforcement with dopamine D1 and D2/D3 receptors playing opposing roles. Blockade of dopamine D2 receptors had no selective effect on ethanol consumption and ethanol preference.
Collapse
Affiliation(s)
- J S Silvestre
- Department of Pharmacology, Research Centre, Laboratorios Almirall, Barcelona, Spain
| | | | | | | |
Collapse
|
29
|
Blomqvist O, Ericson M, Johnson DH, Engel JA, Söderpalm B. Voluntary ethanol intake in the rat: effects of nicotinic acetylcholine receptor blockade or subchronic nicotine treatment. Eur J Pharmacol 1996; 314:257-67. [PMID: 8957244 DOI: 10.1016/s0014-2999(96)00583-3] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been suggested that the mesolimbic dopamine activating and the reinforcing properties of ethanol involve activation of central nicotinic acetylcholine receptors. To test this hypothesis, the effects of two nicotinic receptor antagonists and of subchronic nicotine treatment on voluntary ethanol consumption (ethanol 6% v/v or water) were studied in ethanol low-, medium- or high-preferring Wistar rats. After systemic mecamylamine (2 mg/kg) but not hexamethonium (0 mg/kg) high- but not low-preferring rats decreased their ethanol intake but, however, not their ethanol preference. When subchronically exposed to nicotine (0.35 mg/kg, s.c. daily) medium-preferring rats markedly increased their ethanol intake and preference. This effect lasted for more than 1 week after interrupting nicotine administration. Ethanol intake levels did not correlate with locomotor activity scores after nicotine challenge (0.35 mg/kg, s.c.) or with exploratory locomotor activity. However, exploratory locomotor activity correlated with locomotor activity scores both after nicotine (0.35 mg/kg, s.c.) and ethanol (0.125 g/kg i.p.) challenge. Dopamine release, as indicated by accumulation of 3-methoxytyramine after monoamine oxidase inhibition, was increased in the limbic forebrain (including the nucleus accumbens, the olfactory tubercles, the amygdala and the septum) after acute nicotine (0.35 mg/kg s.c.) or ethanol (2.5 g/kg i.p.) in animals subchronically exposed to nicotine compared to subchronically vehicle-treated controls. The present results further implicate central nicotinic receptors in the molecular events mediating the reinforcing properties of ethanol, and suggest that subchronic nicotine enhances the responsiveness of mesolimbic dopamine neurons both to nicotine and to ethanol. Clinical implications are discussed.
Collapse
Affiliation(s)
- O Blomqvist
- Department of Pharmacology, Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
30
|
Woods JM, Ricken JD, Druse MJ. Effects of chronic alcohol consumption and aging on dopamine D1 receptors in Fischer 344 rats. Alcohol Clin Exp Res 1995; 19:1331-7. [PMID: 8561311 DOI: 10.1111/j.1530-0277.1995.tb01621.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present study examined the hypothesis that chronic alcoholism augments the age-related loss of dopamine D1 receptors. This hypothesis was investigated because previous studies reported that both aging and chronic alcoholism produce significant changes in dopaminergic systems, and because chronic alcoholism potentiates some age-related CNS losses. In addition, this study investigated the effects of aging on D1 receptors in animals 1 and 7 days after withdrawal from chronic ethanol. Quantitative autoradiography was used to measure [3H]SCH 23390 binding to D1 receptors in brain areas associated with both the nigrostriatal and mesocorticolimbic dopamine systems. Receptors were assessed in 5-, 14-, and 24-month-old male Fischer 344 rats that were pair-fed a control or 6.6% (v/v) ethanol-containing liquid diet for 6 weeks. The results of these studies demonstrated that aging is associated with a significant decline in D1 receptors in the rostral and caudal striatum, and substantia nigra of both control and ethanol-fed rats. These receptor changes in the nigrostriatal system may be associated with motor abnormalities. In addition, there was an age-related decline in D1 receptors in two brain areas of the mesocorticolimbic system: the nucleus accumbens and frontal cortex. The latter findings may be important because of the involvement of this system with the rewarding properties of ethanol and other drugs of abuse. There were no age-related differences in the response of D1 receptors to ethanol withdrawal in the caudal and rostral striatum, substantia nigra, and nucleus accumbens.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J M Woods
- Department of Molecular and Cellular Biochemistry, Loyola University of Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
31
|
Fahlke C, Hård E, Eriksson CJ, Engel JA, Hansen S. Amphetamine-induced hyperactivity: differences between rats with high or low preference for alcohol. Alcohol 1995; 12:363-7. [PMID: 7546334 DOI: 10.1016/0741-8329(95)00019-n] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This study determined the relationship between ethanol intake and spontaneous and amphetamine-induced locomotor activity. Locomotion was studied in high-preferring (HP; > 70% of total fluid intake consumed as alcohol) and low-preferring (LP; < 20% of total fluid intake consumed as alcohol) male Wistar rats with free access to water and a 6% (v/v) ethanol solution for 3 weeks. Following an alcohol-free 3-week period, the animals were tested for spontaneous motor activity for 1 h. One week later, locomotion was recorded in the same activity boxes following a subcutaneous injection with d-amphetamine sulfate (1 mg/kg). For determination of plasma levels of corticosterone, blood samples were taken immediately after each of the two tests for locomotor activity. There was no difference between HP and LP rats with regard to spontaneous locomotor activity. Neither were there any differences in plasma levels of corticosterone between the groups. Amphetamine stimulated locomotion in both HP and LP rats, but to a significantly greater extent in HP animals. Both groups had higher blood levels of corticosterone after the amphetamine test than after the drug-free test, but the corticosterone increase was significantly larger in the HP than in the LP rats. These data indicate that the same neural substrate (e.g., the mesocorticolimbic dopamine system) may mediate important aspects of both ethanol drinking and amphetamine responsiveness. Individual differences in the properties of this substrate may account for the finding that ethanol drinking and amphetamine responsiveness covary. A possible explanation for this association may be that prior consumption of ethanol sensitizes the neural substrate responsible for amphetamine-induced hyperactivity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Fahlke
- Department of Psychology, Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
32
|
Palasciano G, Portincasa P, Di Ciaula A, Palmieri V. Prolonged consumption of moderate doses of alcohol and in vitro gastro-duodenal and ileal contractility in the rat. Eur J Clin Invest 1995; 25:171-5. [PMID: 7781663 DOI: 10.1111/j.1365-2362.1995.tb01544.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of chronic feeding with moderate doses of ethanol (3% vol/vol in drinking water for 8 weeks), which do not induce tolerance, dependence and withdrawal, on the contractility of gastric, duodenal and ileal strips from rats were investigated. Only 50% of ethanol-treated specimens (as compared to 100% of saccharose-fed controls) exhibited antral phasic contractions (frequency decreased by 31% and 27% in the antrum and duodenum, respectively; P < 0.03 vs. controls). The depolarizing agent potassium chloride (KCl, 80 mM) produced less peak active tension in the fundus of ethanol-fed rats (P < 0.01). In alcoholic rats the sensitivity of the antrum to acetylcholine was fourfold less than that of control specimens. It is concluded that, in the rat, moderate doses of ethanol given chronically impair both spontaneous and tonic contractility of the stomach and duodenal muscle without affecting ileal contraction. It is possible that motility defects in the gut exposed to ethanol concentrations which do not cause tolerance, dependence or withdrawal in the rat may be due to a local rather than a systemic effect on the smooth muscle.
Collapse
Affiliation(s)
- G Palasciano
- Institute of Clinica Medica I, University of Bari Medical School, Policlinico, Italy
| | | | | | | |
Collapse
|
33
|
Abstract
This article reviews the literature and presents some unpublished data on the CNS effects of alcohol at doses not producing tolerance and dependence. The available evidence indicates that the effect of low doses of ethanol may qualitatively differ from those produced in animal models mimicking alcoholism. For example, rats exposed for two months to alcohol in drinking water at a concentration (3%) not inducing tolerance or dependence, as assessed by lack of withdrawal signs upon treatment suspension, appear to be less stressed in the two-way avoidance-learning tests. Accordingly, the treated rats perform better and learn faster than sucrose-fed controls, while this behavior is disrupted by high levels of ethanol intake. These initial observations suggest that discontinuity may exist between the effects of low and high doses of this substance and underscore the need to expand research on the effects of alcohol on the CNS to include the bottom end of the dose-response curve.
Collapse
Affiliation(s)
- S Govoni
- Institute of Pharmacological Sciences, University of Milano, Italy
| | | | | | | |
Collapse
|