1
|
Brown DM, Glass JI. Technology used to build and transfer mammalian chromosomes. Exp Cell Res 2020; 388:111851. [PMID: 31952951 DOI: 10.1016/j.yexcr.2020.111851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/05/2023]
Abstract
In the near twenty-year existence of the human and mammalian artificial chromosome field, the technologies for artificial chromosome construction and installation into desired cell types or organisms have evolved with the rest of modern molecular and synthetic biology. Medical, industrial, pharmaceutical, agricultural, and basic research scientists seek the as yet unrealized promise of human and mammalian artificial chromosomes. Existing technologies for both top-down and bottom-up approaches to construct these artificial chromosomes for use in higher eukaryotes are very different but aspire to achieve similar results. New capacity for production of chromosome sized synthetic DNA will likely shift the field towards more bottom-up approaches, but not completely. Similarly, new approaches to install human and mammalian artificial chromosomes in target cells will compete with the microcell mediated cell transfer methods that currently dominate the field.
Collapse
|
2
|
Montoliu L. Large-Scale Preparation of Yeast Agarose Plugs to Isolate Yeast Artificial Chromosome DNA. Cold Spring Harb Protoc 2018; 2018:2018/8/pdb.prot093955. [PMID: 30068586 DOI: 10.1101/pdb.prot093955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The microinjection of DNA directly into the pronuclei of fertilized zygotes is the most extensively used method of gene transfer in the mouse. The injection of very large pieces of DNA, including bacterial artificial chromosomes (BACs) and yeast artificial chromosomes (YACs), has become increasingly popular because their size normally accommodates all of the regulatory elements that are needed for a given expression domain to function adequately in an ectopic genomic location. This protocol describes how to prepare large-scale yeast agarose plugs to isolate YAC DNA. The quality of the YAC DNA preparation is the most important consideration in optimizing transgenic mouse production.
Collapse
|
3
|
Brown DM, Chan YA, Desai PJ, Grzesik P, Oldfield LM, Vashee S, Way JC, Silver PA, Glass JI. Efficient size-independent chromosome delivery from yeast to cultured cell lines. Nucleic Acids Res 2017; 45:e50. [PMID: 27980064 PMCID: PMC5397165 DOI: 10.1093/nar/gkw1252] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/13/2016] [Indexed: 01/04/2023] Open
Abstract
The delivery of large DNA vectors (>100 000 bp) remains a limiting step in the engineering of mammalian cells and the development of human artificial chromosomes (HACs). Yeast is commonly used to assemble genetic constructs in the megabase size range, and has previously been used to transfer constructs directly into cultured cells. We improved this method to efficiently deliver large (1.1 Mb) synthetic yeast centromeric plasmids (YCps) to cultured cell lines at rates similar to that of 12 kb YCps. Synchronizing cells in mitosis improved the delivery efficiency by 10-fold and a statistical design of experiments approach was employed to boost the vector delivery rate by nearly 300-fold from 1/250 000 to 1/840 cells, and subsequently optimize the delivery process for multiple mammalian, avian, and insect cell lines. We adapted this method to rapidly deliver a 152 kb herpes simplex virus 1 genome cloned in yeast into mammalian cells to produce infectious virus.
Collapse
Affiliation(s)
- David M Brown
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Yujia A Chan
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Prashant J Desai
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center Johns Hopkins, Viral Oncology Program, Baltimore, MD 21231, USA
| | - Peter Grzesik
- Johns Hopkins University, Sidney Kimmel Comprehensive Cancer Center Johns Hopkins, Viral Oncology Program, Baltimore, MD 21231, USA
| | - Lauren M Oldfield
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Sanjay Vashee
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| | - Jeffrey C Way
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.,Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - John I Glass
- Synthetic Biology and Bioenergy, J. Craig Venter Institute, Rockville, MD, 20850, USA
| |
Collapse
|
4
|
Reeves RH, Cabin DE, Lamb B. Introduction of large insert DNA into mammalian cells and embryos. ACTA ACUST UNITED AC 2008; Chapter 5:Unit 5.12. [PMID: 18428286 DOI: 10.1002/0471142905.hg0512s30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit provides a set of protocols for introducing large insert DNA into cultured mammalian cells and embryos. Two different methods, spheroplast fusion and lipofection, are described for effecting transfer of YACs or gel-purified YAC DNA into cells. Additional protocols discuss preparing and transferring BACs into cells by lipofection and into embryos by microinjection.
Collapse
Affiliation(s)
- R H Reeves
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
5
|
Murakami Y. Functional cloning of a tumor suppressor gene, TSLC1, in human non-small cell lung cancer. Oncogene 2002; 21:6936-48. [PMID: 12362275 DOI: 10.1038/sj.onc.1205825] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The identification of a tumor suppressor gene in non-small cell lung cancer (NSCLC) is one of the most important issues to elucidate the molecular mechanisms of this type of refractory cancer and to establish a novel strategy against it. Since NSCLC, like most other human cancers, develops as a sporadic disease, linkage analysis is not available for gene cloning. This review describes the functional cloning approaches to a tumor suppressor gene in sporadic cancers. Suppression of the malignant phenotype of cancer cells by fusion with a normal fibroblast was the first demonstration of the recessive phenotype of cancer cells in 1969. Evidence of tumor suppressor genes on the specific chromosomes was later provided by functional complementation of the cancer phenotype through microcell-mediated chromosome transfer. Further introduction of more restricted DNA fragments by YAC transfer provides a potent tool to localize the gene to a small segment, appropriate for the subsequent gene cloning. TSLC1, a novel tumor suppressor gene in NSCLC, was identified on chromosome 11q23.2 through a series of functional complementation of A549 cells in tumorigenicity. Two-hit inactivation of the TSLC1 by promoter methylation and gene deletion was observed in 40% of primary NSCLC tumors. The strong tumor suppressor activity of TSLC1, and its possible involvement in cell adhesion, suggest that the functional cloning approach could cast a new light on a group of genes that have not yet been characterized, but are important for general human carcinogenesis as well as tumor suppression.
Collapse
Affiliation(s)
- Yoshinori Murakami
- Tumor Suppression and Functional Genomics Project, National Cancer Center Research Institute, Japan.
| |
Collapse
|
6
|
Martin N, Jaubert J, Glaser P, Szatanik M, Guénet JL. Genetic and physical delineation of the region overlapping the progressive motor neuropathy (pmn) locus on mouse chromosome 13. Genomics 2001; 75:9-16. [PMID: 11472062 DOI: 10.1006/geno.2001.6595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse autosomal recessive mutation progressive motor neuropathy (pmn) results in early onset motor neuron disease with rapidly progressing hindlimb paralysis, severe muscular wasting, and death at 4--6 weeks of age. pmn is thus considered a good animal model for motor neuron diseases and the characterization of the causative gene should help in understanding the biological causes of human spinal muscular atrophies. Here we report the generation of a physical map based on a high-resolution and high-density genetic map encompassing the pmn locus on mouse chromosome 13. We have positioned the pmn locus and a cluster of markers cosegregating with it within a genetic interval of 0.30 cM, delineated by two clusters of markers. We have constructed an approximately 850-kb contig of BACs spanning the pmn critical region. This BAC contig contains the breakpoint of synteny between mouse chromosome 13 and human 1q and 7p regions and lays the foundation for identifying at the molecular level such a breakpoint region. The physical and genetic maps provided a support for the identification of five transcription units positioned in the nonrecombinant interval, and constitute invaluable tools for the identification of other candidate genes for the pmn mutation.
Collapse
MESH Headings
- Alleles
- Animals
- Chromosome Mapping
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 7
- Contig Mapping
- DNA, Complementary/metabolism
- Gene Library
- Genes, Recessive
- Genetic Markers
- Haplotypes
- Hereditary Sensory and Motor Neuropathy/genetics
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Models, Genetic
- Molecular Sequence Data
- Motor Neuron Disease/genetics
- Physical Chromosome Mapping
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
Collapse
Affiliation(s)
- N Martin
- Unité de Génétique des Mammiferes, Institut Pasteur, 25 Rue du Docteur Roux, F-75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
7
|
Hadchouel J, Tajbakhsh S, Primig M, Chang TH, Daubas P, Rocancourt D, Buckingham M. Modular long-range regulation of Myf5 reveals unexpected heterogeneity between skeletal muscles in the mouse embryo. Development 2000; 127:4455-67. [PMID: 11003844 DOI: 10.1242/dev.127.20.4455] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The myogenic factor Myf5 plays a key role in muscle cell determination, in response to signalling cascades that lead to the specification of muscle progenitor cells. We have adopted a YAC transgenic approach to identify regulatory sequences that direct the complex spatiotemporal expression of this gene during myogenesis in the mouse embryo. Important regulatory regions with distinct properties are distributed over 96 kb upstream of the Myf5 gene. The proximal 23 kb region directs early expression in the branchial arches, epaxial dermomyotome and in a central part of the myotome, the epaxial intercalated domain. Robust expression at most sites in the embryo where skeletal muscle forms depends on an enhancer-like sequence located between −58 and −48 kb from the Myf5 gene. This element is active in the epaxial and hypaxial myotome, in limb muscles, in the hypoglossal chord and also at the sites of Myf5 transcription in prosomeres p1 and p4 of the brain. However later expression of Myf5 depends on a more distal region between −96 and −63 kb, which does not behave as an enhancer. This element is necessary for expression in head muscles but strikingly only plays a role in a subset of trunk muscles, notably the hypaxially derived ventral body muscles and also those of the diaphragm and tongue. Transgene expression in limb muscle masses is not affected by removal of the −96/-63 region. Epaxially derived muscles and some hypaxial muscles, such as the intercostals and those of the limb girdles, are also unaffected. This region therefore reveals unexpected heterogeneity between muscle masses, which may be related to different facets of myogenesis at these sites. Such regulatory heterogeneity may underlie the observed restriction of myopathies to particular muscle subgroups.
Collapse
Affiliation(s)
- J Hadchouel
- Département de Biologie Moleculaire, CNRS URA 1947, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Cohen-Tannoudji M, Vandormael-Pournin S, Le Bras S, Coumailleau F, Babinet C, Baldacci P. A 2-Mb YAC/BAC-based physical map of the ovum mutant (Om) locus region on mouse chromosome 11. Genomics 2000; 68:273-82. [PMID: 10995569 DOI: 10.1006/geno.2000.6297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The embryonic lethal phenotype observed when DDK females are crossed with males from other strains results from a deleterious interaction between the egg cytoplasm and the paternal pronucleus soon after fertilization. We have previously mapped the Om locus responsible for this phenotype, called the DDK syndrome, to an approximately 2-cM region of chromosome 11. Here, we report the generation of a physical map of 28 yeast and bacterial artificial chromosome clones encompassing the entire genetic interval containing the Om locus. This contig, spanning approximately 2 Mb, was used to map precisely genes and genetic markers of the region. We determined the maximum physical interval for Om to be 1400 kb. In addition, 11 members of the Scya gene family were found to be organized into two clusters at the borders of the Om region. Two other genes (Rad51l3 and Schlafen 2) and one EST (D11Wsu78e) were also mapped in the Om region. This integrated map provides support for the identification of additional candidate genes for the DDK syndrome.
Collapse
Affiliation(s)
- M Cohen-Tannoudji
- Unité de Biologie du Développement, CNRS URA 1960, Institut Pasteur, 25 rue du Dr. Roux, Paris Cedex 15, 75724, France.
| | | | | | | | | | | |
Collapse
|
9
|
Mogayzel PJ, Ashlock MA. CFTR intron 1 increases luciferase expression driven by CFTR 5'-flanking DNA in a yeast artificial chromosome. Genomics 2000; 64:211-5. [PMID: 10729228 DOI: 10.1006/geno.2000.6119] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The DNA elements that account for the highly regulated expression of the cystic fibrosis transmembrane conductance regulator gene (CFTR) are poorly understood. The goal of this study was to assess the feasibility of using a yeast artificial chromosome (YAC)-based reporter gene construct to define these elements further. An approximately 350-kb YAC (y5'luc) was constructed by replacing CFTR with a luciferase reporter gene (luc). A second YAC (y5'lucI) was similarly constructed but included a putative positive regulatory element from CFTR intron 1. Stable Chinese hamster ovary (CHO-K1) cell clones were derived using each YAC to assess the role that luc copy number and the presence of intron 1 played in luc expression. The CHO-K1 clonal cell lines demonstrated a wide range of luciferase activity. On average, this activity was significantly higher in clones derived from y5'lucI. After correcting for luc copy number, the presence of intron 1 was still associated with an increase in luciferase activity (P < 0.05), despite the fact that luciferase activity did not correlate with luc copy number in y5'luc-derived clones (r = -0.12). In contrast, the luciferase activity correlated well with luc copy number in the clones derived from y5'luc (r = 0. 75). These data are consistent with a positive role for intron 1 in regulating CFTR expression, but suggest that copy number is not the only factor that determines expression levels, particularly when this element is present. This YAC-based reporter system will provide a unique strategy for further assessment of the cis-acting elements that control CFTR expression.
Collapse
Affiliation(s)
- P J Mogayzel
- Eudowood Division of Pediatric Respiratory Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21287-2533, USA.
| | | |
Collapse
|
10
|
Reddy DE, Keck CL, Popescu N, Athwal RS, Kaur GP. Identification of a YAC from 16q24 carrying a senescence gene for breast cancer cells. Oncogene 2000; 19:217-22. [PMID: 10644999 DOI: 10.1038/sj.onc.1203264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have identified a 360 kb YAC that carries a cell senescence gene, SEN16. In our earlier studies, we localized SEN16 within a genetic interval of 3 - 7 cM at 16q24.3. Six overlapping YACs spanning the chromosomal region of senescence activity, were assembled in a contig. Candidate YACs, identified by the markers located in the vicinity of SEN16, were retrofitted to introduce a neo selectable marker. Retrofitted YACs were first transferred into mouse A9 cells to generate A9/YAC hybrids. YAC DNA present in A9/YAC hybrids was further transferred by microcell fusion into immortal cell lines derived from human and rat mammary tumors. YAC d792t2 restored senescence in both human and rat mammary tumor cell lines, while an unrelated YAC from chromosome 6q had no senescence activity.
Collapse
Affiliation(s)
- D E Reddy
- Fels Institute for Cancer Research, Temple University School of Medicine, Philadelphia, Pennsylvania, PA 19140, USA
| | | | | | | | | |
Collapse
|
11
|
Tolmachova T, Simpson K, Huxley C. Analysis of a YAC with human telomeres and oriP from epstein-barr virus in yeast and 293 cells. Nucleic Acids Res 1999; 27:3736-44. [PMID: 10471744 PMCID: PMC148630 DOI: 10.1093/nar/27.18.3736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
One approach to the construction and propagation of a mammalian artificial chromosome is to build it up in Saccharomyces cerevisiae, using a yeast artificial chromosome (YAC) base. We have demonstrated that circular YACs carrying the Epstein-Barr virus origin of plasmid replication ( oriP ) are maintained as stable, episomal elements in human cells. We wished to determine whether this technology could be extended, to generate linear extrachromosomal elements. Here, we describe the generation of retrofitting constructs, which permit the addition of human telomeres and the oriP domain to YACs. The constructs contain 0.8 kb of human telomere sequence separated by a unique Not I site from 0.7 kb of Tetrahymena telomere sequence. These constructs seed telomere formation with approximately 40-60% efficiency in human 293-EBNA and HT1080 cells whether or not the Tetrahymena sequence is removed by Not I digestion. A detailed analysis demonstrates that YACs carrying the human telomere cassettes on both arms show instability of the telomere sequences in S.cerevisiae at a frequency of approximately 50%. Introduction of correctly retrofitted, linear oriP YACs into human 293-EBNA cells by lipofection resulted in the generation of circular extrachromosomal elements varying in size from 8 to 300 kb. However, no apparently linear YACs could be detected, suggesting that extrachromosomal maintenance of DNA with the oriP /EBNA-1 system is not compatible with linear molecules capped by telomeres.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Cation Exchange Resins
- Cell Line
- Chromosomes, Artificial, Yeast/genetics
- Cystic Fibrosis Transmembrane Conductance Regulator/genetics
- DNA, Circular/genetics
- DNA, Recombinant/genetics
- DNA, Viral/genetics
- Electrophoresis, Gel, Pulsed-Field
- Genetic Markers/genetics
- Genetic Vectors/genetics
- Herpesvirus 4, Human/genetics
- Humans
- Lipids
- Mutagenesis, Insertional/genetics
- Mutagenesis, Insertional/methods
- Recombination, Genetic/genetics
- Replication Origin/genetics
- Saccharomyces cerevisiae/genetics
- Telomere/genetics
- Tetrahymena/genetics
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- T Tolmachova
- Section of Molecular Genetics, Division of Biomedical Sciences, Imperial College School of Medicine, Imperial College Road, London SW7 2AZ, UK.
| | | | | |
Collapse
|
12
|
Koreth J, Bakkenist CJ, Larin Z, Hunt NC, James MR, McGee JO. 11q23.1 and 11q25-qter YACs suppress tumour growth in vivo. Oncogene 1999; 18:1157-64. [PMID: 10022121 DOI: 10.1038/sj.onc.1202372] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Frequent allelic deletion at chromosome 11q22-q23.1 has been described in breast cancer and a number of other malignancies, suggesting putative tumour suppressor gene(s) within the approximately 8 Mb deleted region. In addition, we recently described another locus, at the 11q25-qter region, frequently deleted in breast cancer, suggesting additional tumour suppressor gene(s) in this approximately 2 Mb deleted region. An 11q YAC contig was accessed and three YACs, one containing the candidate gene ATM at 11q23.1, and two contiguous YACs (overlapping for approximately 400-600 kb) overlying most of the 11q25 deleted region, were retrofitted with a G418 resistance marker and transfected into murine A9 fibrosarcoma cells. Selected A9 transfectant clones (and control untransfected and 'irrelevant' alphoid YAC transfectant A9 clones) were assayed for in vivo tumorigenicity in athymic female Balb c-nu/nu mice. All the 11q YAC transfectant clones demonstrated significant tumour suppression compared to the control untransfected and 'irrelevant' YAC transfected A9 cells. These results define two discrete tumour suppressor loci on chromosome 11q by functional complementation, one to a approximately 1.2 Mb region on 11q23.1 (containing the ATM locus) and another to a approximately 400-600 kb subterminal region on 11q25-qter.
Collapse
Affiliation(s)
- J Koreth
- Nuffield Department of Pathology and Bacteriology, University of Oxford, The John Radcliffe Hospital, Headington, UK
| | | | | | | | | | | |
Collapse
|
13
|
Young DJ, Nimmo ER, Allshire RC. A Schizosaccharomyces pombe artificial chromosome large DNA cloning system. Nucleic Acids Res 1998; 26:5052-60. [PMID: 9801299 PMCID: PMC147965 DOI: 10.1093/nar/26.22.5052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The feasibility of using the fission yeast, Schizosaccharomyces pombe , as a host for the propagation of cloned large fragments of human DNA has been investigated. Two acentric vector arms were utilized; these carry autonomously replicating sequences ( ars elements), selectable markers ( ura4(+) or LEU2 ) and 250 bp of S. pombe terminal telomeric repeats. All cloning was performed between the unique sites in both vector arms for the restriction endonuclease Not I. Initially the system was tested by converting six previously characterized cosmids from human chromosome 11p13 into a form that could be propagated in S.pombe as linear episomal elements of 50-60 kb in length. In all transformants analysed these cosmids were maintained intact. To test if larger fragments of human DNA could also be propagated total human DNA was digested with Not I and size fractionated by pulsed field gel electrophoresis (PFGE). Fractions of 100-1000 kb were ligated to Not I-digested vector arms and transformed into S.pombe protoplasts in the presence of lipofectin. Prototrophic ura+leu+transformants were obtained which upon examination by PFGE were found to contain additional linear chromosomes migrating at between 100 and 500 kb with a copy number of 5-10 copies/cell. Hybridization analyses revealed that these additional bands contained human DNA. Fluorescent in situ hybridization (FISH) analyses of several independent clones indicated that the inserts were derived from single loci within the human genome. These analyses clearly demonstrate that it is possible to clone large fragments of heterologous DNA in fission yeast using this S.p ombe artificial chromosome system which we have called SPARC. This vector-host system will complement the various other systems for cloning large DNA fragments.
Collapse
Affiliation(s)
- D J Young
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | |
Collapse
|
14
|
Westphal EM, Sierakowska H, Livanos E, Kole R, Vos JM. A system for shuttling 200-kb BAC/PAC clones into human cells: stable extrachromosomal persistence and long-term ectopic gene activation. Hum Gene Ther 1998; 9:1863-73. [PMID: 9741425 DOI: 10.1089/hum.1998.9.13-1863] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
A novel shuttle vector, pBH140, has been constructed that allows stable maintenance of large genomic inserts as human artificial episomal chromosomes (HAECs) in mammalian cells. The vector, essentially a hybrid BAC-HAEC, contains an F-based replication system as in a bacterial artificial chromosome (BAC) and the Epstein-Barr virus (EBV) latent origin of replication system, oriP, for replication in human cells. A 185-kb DNA insert containing the entire human beta-globin locus, including its locus control region (LCR), was retrofitted into this vector. The resulting beta-globin BAC-HAEC clone, p148BH, was transfected into human cells and analyzed for episomal maintenance and expression of the beta-globin gene. FISH revealed an association of the vector with different human chromosomes but no integration. The beta-globin BAC-HAECs were present at an average copy number of 11-15 per nucleus in the stably transformed human cells. After 1 year of continuous in vitro cultivation, the HAECs persisted as structurally intact 200-kb episomes. While no beta-globin transcription could be detected in the parental D98/Raji cells, correctly spliced RT-PCR products were produced at significant levels in long-term cultures of the BAC-HAEC-transduced cells. The wide availability of BAC and PAC libraries, the ease in manipulating cloned DNA in bacteria, and the episomal stability of the pBH140 vector make this system ideal for studies on gene expression and other genomic functions in human cells. The potential significance of large, functionally active episomes for gene therapy is discussed.
Collapse
Affiliation(s)
- E M Westphal
- Lineberger Cancer Research Center, School of Medicine, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | |
Collapse
|
15
|
Kouprina N, Annab L, Graves J, Afshari C, Barrett JC, Resnick MA, Larionov V. Functional copies of a human gene can be directly isolated by transformation-associated recombination cloning with a small 3' end target sequence. Proc Natl Acad Sci U S A 1998; 95:4469-74. [PMID: 9539761 PMCID: PMC22513 DOI: 10.1073/pnas.95.8.4469] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unique, small sequences (sequence tag sites) have been identified at the 3' ends of most human genes that serve as landmarks in genome mapping. We investigated whether a single copy gene could be isolated directly from total human DNA by transformation-associated recombination (TAR) cloning in yeast using a short, 3' unique target. A TAR cloning vector was constructed that, when linearized, contained a small amount (381 bp) of 3' hypoxanthine phosphoribosyltransferase (HPRT) sequence at one end and an 189-bp Alu repeat at the other end. Transformation with this vector along with human DNA led to selective isolations of the entire HPRT gene as yeast artificial chromosomes (YACs) that extended from the 3' end sequence to various Alu positions as much as 600 kb upstream. These YACs were retrofitted with a NeoR and a bacterial artificial chromosome (BAC) sequence to transfer the YACs to bacteria and subsequently the BACs to mouse cells by using a Neo selection. Most of the HPRT isolates were functional, demonstrating that TAR cloning retains the functional integrity of the isolated material. Thus, this modified version of TAR cloning, which we refer to as radial TAR cloning, can be used to isolate large segments of the human genome accurately and directly with only a small amount of sequence information.
Collapse
Affiliation(s)
- N Kouprina
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Fabb SA, Ragoussis J. Yeast artificial chromosome vectors. MOLECULAR AND CELL BIOLOGY OF HUMAN DISEASES SERIES 1998; 5:104-24. [PMID: 9532563 DOI: 10.1007/978-94-011-0547-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- S A Fabb
- Division of Medical and Molecular Genetics, UMDS Guy's Hospital, London, UK
| | | |
Collapse
|
17
|
Asselbergs FA, Grossenbacher R, Ortmann R, Hengerer B, McMaster GK, Sutter E, Widmer R, Buxton F. Position-independent expression of a human nerve growth factor-luciferase reporter gene cloned on a yeast artificial chromosome vector. Nucleic Acids Res 1998; 26:1826-33. [PMID: 9512559 PMCID: PMC147460 DOI: 10.1093/nar/26.7.1826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Two yeast artificial chromosomes containing the entire human nerve growth factor gene were isolated and mapped. By homologous recombination a luciferase gene was precisely engineered into the coding portion of the NGF gene and a neomycin selection marker was placed adjacent to one of the YAC telomeres. Expression of the YAC-based NGF reporter gene and a plasmid-based NGF reporter gene were compared with the regulation of endogenous mouse NGF protein in mouse L929 fibroblasts. In contrast to the plasmid-based reporter gene, expression and regulation of the YAC-based reporter gene was independent of the site of integration of the transgene. Basic fibroblast growth factor and okadaic acid stimulated expression of the YAC transgene, whereas transforming growth factor-beta and dexamethasone inhibited it. Although cyclic AMP strongly stimulated production of the endogenous mouse NGF, no effect was seen on the human NGF reporter genes. Downregulation of the secretion of endogenous mouse NGF already occurred at an EC50 of 1-2 nM dexamethasone, but downregulation of the expression of NGF reporter genes occurred only at EC50 of 10 nM. This higher concentration was also required for upregulation of luciferase genes driven by the dexamethasone-inducible promoter of the mouse mammary tumor virus in L929 fibroblasts.
Collapse
Affiliation(s)
- F A Asselbergs
- Pharma Research Department, Novartis Pharma Inc., CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Webber AL, Tilghman SM. The absence of enhancer competition between Igf2 and H19 following transfer into differentiated cells. Mol Cell Biol 1998; 18:1903-10. [PMID: 9528761 PMCID: PMC121419 DOI: 10.1128/mcb.18.4.1903] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
H19 and Igf2 are reciprocally imprinted genes that lie 90 kb apart on mouse chromosome 7. The two genes are coexpressed during development, with the H19 gene expressed exclusively from the maternal chromosome and Igf2 from the paternal chromosome. It has been proposed that their reciprocal imprinting is governed by a competition between the genes for a common set of enhancers. The competition on the paternal chromosome is influenced by extensive allele-specific methylation of the H19 gene and its 5' flank, which acts to inhibit H19 transcription and thus indirectly leads to the activation of the Igf2 gene. In contrast, no allele-specific methylation has been detected on the maternal chromosome, and the basis for the preference for H19 transcription on that chromosome is unresolved. In this investigation, the mechanism controlling the silencing of the Igf2 gene on the maternal chromosome was explored by studying the transcriptional activity of a yeast artificial chromosome (YAC) containing Igf2 and H19 following transfer into differentiated tissue culture cells. Contrary to expectations, both H19 and Igf2 were expressed from a single integrated copy of the YAC. Furthermore, Igf2 expression appeared to be independent of the H19 locus, based on deletions of the H19 gene promoter and its enhancers. These results suggest that an active process is responsible for the transcriptional bias toward H19 on the maternal chromosome and that the hypomethylated state of this chromosome cannot be viewed as a "default" state. Moreover, the active process is not reproduced in a differentiated cell and may require passage through the female germ line.
Collapse
Affiliation(s)
- A L Webber
- Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
19
|
Bauchwitz R, Costantini F. YAC transgenesis: a study of conditions to protect YAC DNA from breakage and a protocol for transfection. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1401:21-37. [PMID: 9459483 DOI: 10.1016/s0167-4889(97)00107-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Yeast artificial chromosomes (YACs) are providing a great boon to transgene technology by allowing the easy mutagenesis and study of very large DNAs. The large insert sizes of these vectors permit more accurate analysis of the regulation of transgene expression than smaller, more artificially assembled constructs. Transfection of mammalian cells by YACs can be accomplished by a number of methods; the most prevalent, using gel-purified DNA, is dependent upon compaction by salts to protect the large YAC DNA from breakage. We show that the common reliance on NaCl to compact YAC DNA sufficiently to protect it from breakage is not well-founded. Even the use of mixtures of polyamines and NaCl allows substantial damage to purified YACs. The use of polyamines alone in low salt buffers to compact YAC DNA provides the best protection from breakage and allows very effective transfection of murine embryonic stem (ES) cells. We provide a detailed method for ES cell transfection by YACs utilizing the DOTAP lipofection reagent that optimizes transfection efficiency and recovery of intact YACs.
Collapse
Affiliation(s)
- R Bauchwitz
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
20
|
Wheeler VC, Aitken M, Coutelle C. Modification of the mouse mitochondrial genome by insertion of an exogenous gene. Gene 1997; 198:203-9. [PMID: 9370282 DOI: 10.1016/s0378-1119(97)00315-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using homologous recombination in yeast we have inserted a synthetic gene encoding human ornithine transcarbamylase (sOTC), designed to allow mitochondrial (mt) translation, into the mouse mt genome. Modification of the mt genome was facilitated by its cloning into a yeast centromeric plasmid. The sOTC gene was initially flanked by 25 bp of the mt tRNA(His) gene at its 5' end and by 23 bp of the mt tRNA(Ser (AGY)) gene at its 3' end (Wheeler et al., 1996). In order to achieve homologous recombination the flanking homology was subsequently extended to 525 and 362 bp by the polymerase chain reaction (PCR). The sOTC gene was thus inserted into the cloned mt genome at a unique location between the tRNA(His) and tRNA(Ser (AGY)) genes. Positioning of the sOTC gene between these normally contiguous tRNA genes should allow its processing from the mt polycistronic transcript. The ability to modify the mammalian mt genome in this way is a valuable step towards a functional analysis of mt genetic mechanisms and possibly also towards a gene therapy approach for mt disorders.
Collapse
Affiliation(s)
- V C Wheeler
- Department of Biochemistry and Molecular Genetics, Imperial College School of Medicine, St. Mary's Hospital, London, UK
| | | | | |
Collapse
|
21
|
Gu JZ, Carstea ED, Cummings C, Morris JA, Loftus SK, Zhang D, Coleman KG, Cooney AM, Comly ME, Fandino L, Roff C, Tagle DA, Pavan WJ, Pentchev PG, Rosenfeld MA. Substantial narrowing of the Niemann-Pick C candidate interval by yeast artificial chromosome complementation. Proc Natl Acad Sci U S A 1997; 94:7378-83. [PMID: 9207099 PMCID: PMC23829 DOI: 10.1073/pnas.94.14.7378] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Niemann-Pick disease type C (NP-C) is an autosomal recessive lipidosis linked to chromosome 18q11-12, characterized by lysosomal accumulation of unesterified cholesterol and delayed induction of cholesterol-mediated homeostatic responses. This cellular phenotype is identifiable cytologically by filipin staining and biochemically by measurement of low-density lipoprotein-derived cholesterol esterification. The mutant Chinese hamster ovary cell line (CT60), which displays the NP-C cellular phenotype, was used as the recipient for a complementation assay after somatic cell fusions with normal and NP-C murine cells suggested that this Chinese hamster ovary cell line carries an alteration(s) in the hamster homolog(s) of NP-C. To narrow rapidly the candidate interval for NP-C, three overlapping yeast artificial chromosomes (YACs) spanning the 1 centimorgan human NP-C interval were introduced stably into CT60 cells and analyzed for correction of the cellular phenotype. Only YAC 911D5 complemented the NP-C phenotype, as evidenced by cytological and biochemical analyses, whereas no complementation was obtained from the other two YACs within the interval or from a YAC derived from chromosome 7. Fluorescent in situ hybridization indicated that YAC 911D5 was integrated at a single site per CT60 genome. These data substantially narrow the NP-C critical interval and should greatly simplify the identification of the gene responsible in mouse and man. This is the first demonstration of YAC complementation as a valuable adjunct strategy for positional cloning of a human gene.
Collapse
Affiliation(s)
- J Z Gu
- Laboratory of Gene Transfer, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hiemisch H, Schütz G, Kaestner KH. Transcriptional regulation in endoderm development: characterization of an enhancer controlling Hnf3g expression by transgenesis and targeted mutagenesis. EMBO J 1997; 16:3995-4006. [PMID: 9233809 PMCID: PMC1170023 DOI: 10.1093/emboj/16.13.3995] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The hepatic nuclear factor 3gamma (Hnf3g) is a member of the winged helix gene family of transcription factors and is thought to be involved in anterior-posterior regionalization of the primitive gut. In this study, cis-regulatory elements essential for the expression of Hnf3g in vivo have been characterized. To this end, a 170 kb yeast artificial chromosome (YAC) carrying the entire Hnf3g locus was isolated and modified with a lacZ reporter gene. The two mouse lines carrying the unfragmented Hnf3g-lacZ YAC showed tissue-specific, copy number-dependent and position-independent expression, proving that 170 kb of the Hnf3g locus contain all elements important in the regulation of Hnf3g. Cis-regulatory elements necessary for expression of Hnf3g were identified in a three-step procedure. First, DNase I hypersensitive site mapping was used to delineate important chromatin regions around the gene required for tissue-specific activation of Hnf3g. Second, plasmid-derived transgenes and gene targeting of the endogenous Hnf3g gene locus were used to demonstrate that the 3'-flanking region of the gene is necessary and sufficient to direct reporter gene expression in liver, pancreas, stomach and small intestine. Third, a binding site for HNF-1alpha and beta, factors expressed in organs derived from the endoderm such as liver, gut and pancreas, was identified in this 3'-enhancer and shown to be crucial for enhancer function in vitro. Based on its expression pattern we inferred that HNF-1beta is a likely candidate for directly activating Hnf3g gene expression during development.
Collapse
Affiliation(s)
- H Hiemisch
- Molecular Biology of the Cell I Division, German Cancer Research Center, Heidelberg
| | | | | |
Collapse
|
23
|
Tambini CE, George AM, Rommens JM, Tsui LC, Scherer SW, Thacker J. The XRCC2 DNA repair gene: identification of a positional candidate. Genomics 1997; 41:84-92. [PMID: 9126486 DOI: 10.1006/geno.1997.4636] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The human XRCC2 gene, complementing a hamster cell line (irs1) hypersensitive to DNA-damaging agents, was previously mapped to chromosome 7q36.1. Following radiation reduction of human/hamster hybrids, the gene was found to be associated with the marker D7S483. Yeast artificial chromosomes (YACs) carrying D7S483 were fused to the irs1 cell line to identify a YAC that complemented the sensitivity defect. Transcribed sequences were isolated by direct cDNA selection using the complementing YAC, and these were mapped back to the YAC and hybrids to define a 400-kb region carrying XRCC2. Sequencing of cDNAs led to the identification of both known and novel gene sequences, including a candidate for XRCC2 with homology to the yeast RAD51 gene involved in the recombinational repair of DNA damage. Strong support for the candidacy of this gene was obtained from its refined map position and by the full complementation of irs1 sensitivity with a 40-kb cosmid carrying the gene.
Collapse
Affiliation(s)
- C E Tambini
- DNA Repair and Mutagenesis Group, MRC Radiation and Genome Stability Unit, Harwell, Oxfordshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Lien LL, Lee Y, Orkin SH. Regulation of the myeloid-cell-expressed human gp91-phox gene as studied by transfer of yeast artificial chromosome clones into embryonic stem cells: suppression of a variegated cellular pattern of expression requires a full complement of distant cis elements. Mol Cell Biol 1997; 17:2279-90. [PMID: 9121478 PMCID: PMC232077 DOI: 10.1128/mcb.17.4.2279] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Identifying the full repertoire of cis elements required for gene expression in mammalian cells (or animals) is challenging, given the moderate sizes of many loci. To study how the human gp91-phox gene is expressed specifically in myeloid hematopoietic cells, we introduced yeast artificial chromosome (YAC) clones and derivatives generated in yeast into mouse embryonic stem cells competent to differentiate to myeloid cells in vitro or into mouse chimeras. Fully appropriate regulation was recapitulated with a 130-kb YAC containing 60 and 30 kb of 5' and 3' flanking sequences, respectively. Immunodetection of human gp91-phox protein revealed uniform expression in individual myeloid cells. The removal of upstream sequences led to decreased overall expression which reflected largely a variegated pattern of expression, such that cells were either "on" or "off," rather than pancellular loss of expression. The proportion of clones displaying marked variegation increased with progressive deletion. DNase I mapping of chromatin identified two hypersensitive clusters, consistent with the presence of multiple regulatory elements. Our findings point to cooperative interactions of complex regulatory elements and suggest that the presence of an incomplete set of elements reduces the probability that an open chromatin domain (or active transcriptional complex) may form or be maintained in the face of repressive influences of neighboring chromatin.
Collapse
Affiliation(s)
- L L Lien
- Division of Hematology/Oncology, Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
25
|
Abstract
A method for linking any standard yeast artificial chromosomes (YAC) is described. YACs are introduced into the same cell and joined by mitotic recombination between the vector arms and the homologous sequence in a linking vector; several YACs can be recombined sequentially. The linking vectors also contain the beta-galactosidase gene as an expression reporter in mammalian cells.
Collapse
Affiliation(s)
- Z Larin
- Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, UK.
| | | | | |
Collapse
|
26
|
Abstract
Polyethylene glycol (PEG)-induced cell fusion can be a useful method for the transfer of yeast artificial chromosomes (YACs) from yeast spheroplasts to mammalian cells in culture, although success varies between recipient cell types. Experiments aimed at determining optimum fusion conditions can also be very time-consuming. To minimize this difficulty, a reporter plasmid has been constructed that allows yeast-mammalian cell fusion rates to be determined within 3 d. The speed and sensitivity of the assay should allow a more systematic evaluation of cell lines for their capacity to fuse with yeast, and for rapid optimization of fusion parameters.
Collapse
Affiliation(s)
- D Markie
- Paediatric Research Unit, UMDS, Guy's Hospital, London.
| |
Collapse
|
27
|
Simpson K, McGuigan A, Huxley C. Stable episomal maintenance of yeast artificial chromosomes in human cells. Mol Cell Biol 1996; 16:5117-26. [PMID: 8756669 PMCID: PMC231512 DOI: 10.1128/mcb.16.9.5117] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Plasmids carrying the Epstein-Barr virus origin of plasmid replication (oriP) have been shown to replicate autonomously in latently infected human cells (J. Yates, N. Warren, D. Reisman, and B. Sugden, Proc. Natl. Acad. Sci. USA 81:3806-3810, 1984). We demonstrate that addition of this domain is sufficient for stable episomal maintenance of yeast artificial chromosomes (YACs), up to at least 660 kb, in human cells expressing the viral protein EBNA-1. To better approximate the latent viral genome, YACs were circularized before addition of the oriP domain by homologous recombination in yeast cells. The resulting OriPYACs were maintained as extrachromosomal molecules over long periods in selection; a 90-kb OriPYAC was unrearranged in all cell lines analyzed, whereas the intact form of a 660-kb molecule was present in two of three cell lines. The molecules were also relatively stable in the absence of selection. This finding indicates that the oriP-EBNA-1 interaction is sufficient to stabilize episomal molecules of at least 660 kb and that such elements do not undergo rearrangements over time. Fluorescence in situ hybridization analysis demonstrated a close association of OriPYACs, some of which were visible as pairs, with host cell chromosomes, suggesting that the episomes replicate once per cell cycle and that stability is achieved by attachment to host chromosomes, as suggested for the viral genome. The wide availability of YAC libraries, the ease of manipulation of cloned sequences in yeast cells, and the episomal stability make OriPYACs ideal for studying gene function and control of gene expression.
Collapse
MESH Headings
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Cell Line, Transformed
- Chromosomes, Artificial, Yeast/physiology
- Chromosomes, Human/ultrastructure
- DNA, Circular/genetics
- DNA, Fungal/genetics
- DNA, Recombinant/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Epstein-Barr Virus Nuclear Antigens
- Extrachromosomal Inheritance
- Herpesvirus 4, Human/genetics
- Humans
- In Situ Hybridization, Fluorescence
- Kidney/cytology
- Plasmids/physiology
- Replication Origin
Collapse
Affiliation(s)
- K Simpson
- Imperial College School of Medicine at St. Mary's London, United Kingdom
| | | | | |
Collapse
|
28
|
Perou CM, Moore KJ, Nagle DL, Misumi DJ, Woolf EA, McGrail SH, Holmgren L, Brody TH, Dussault BJ, Monroe CA, Duyk GM, Pryor RJ, Li L, Justice MJ, Kaplan J. Identification of the murine beige gene by YAC complementation and positional cloning. Nat Genet 1996; 13:303-8. [PMID: 8673129 DOI: 10.1038/ng0796-303] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The beige mutation is a murine autosomal recessive disorder, resulting in hypopigmentation, bleeding and immune cell dysfunction. The gene defective in beige is thought to be a homologue of the gene for the human disorder Chediak-Higashi syndrome. We have identified the murine beige gene by in vitro complementation and positional cloning, and confirmed its identification by defining mutations in two independent mutant alleles. The sequence of the beige gene message shows strong nucleotide homology to multiple human ESTs, one or more of which may be associated with the Chediak-Higashi syndrome gene. The amino acid sequence of the Beige protein revealed a novel protein with significant amino acid homology to orphan proteins identified in Saccharomyces cerevisiae, Caenorhabditis elegans and humans.
Collapse
Affiliation(s)
- C M Perou
- Department of Pathology, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McGuigan A, Huxley C. Replication of yeast DNA and novel chromosome formation in mouse cells. Nucleic Acids Res 1996; 24:2271-80. [PMID: 8710496 PMCID: PMC145922 DOI: 10.1093/nar/24.12.2271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To determine whether yeast DNA can replicate or segregate in mammalian cells, we have transferred genomic DNA from the yeast Saccharomyces cerevisiae into mouse cells. Most of the lines contained stably integrated yeast DNA. However, in two of the lines, the yeast DNA was maintained as numerous small extrachromosomal elements which were still present after 26 cell divisions in selection but which were lost rapidly out of selection. This indicates that, although yeast DNA can replicate in mouse cells, the yeast centromere does not function to give segregation. In one cell line we observed a large novel chromosome consisting almost entirely of yeast DNA. This chromosome segregates well and contains mouse centromeric minor satellite DNA and variable amounts of major satellite DNA which probably comprise the functional centromere. The yeast DNA in the novel chromosome has a compacted chromatin structure which may be responsible for the efficient formation of anaphase bridges. Furthermore, yeast DNA integrated into mouse chromosomes forms constrictions at the point of integration. These features have previously been presumed to be hallmarks of centromeric function in transfection assays aimed at identifying putative centromeric DNA. Hence our results suggest caution be exercised in the interpretation of such assays.
Collapse
Affiliation(s)
- A McGuigan
- Department of Biochemistry and Molecular Genetics, Imperial College School of Medicine at St Mary's, London, UK
| | | |
Collapse
|
30
|
Perou CM, Justice MJ, Pryor RJ, Kaplan J. Complementation of the beige mutation in cultured cells by episomally replicating murine yeast artificial chromosomes. Proc Natl Acad Sci U S A 1996; 93:5905-9. [PMID: 8650191 PMCID: PMC39160 DOI: 10.1073/pnas.93.12.5905] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chédiak-Higashi syndrome in man and the beige mutation of mice are phenotypically similar disorders that have profound effects upon lysosome and melanosome morphology and function. We isolated two murine yeast artificial chromosomes (YACs) that, when introduced into beige mouse fibroblasts, complement the beige mutation. The complementing YACs exist as extrachromosomal elements that are amplified in high concentrations of G418. When YAC-complemented beige cells were fused to human Chédiak-Higashi syndrome or Aleutian mink fibroblasts, complementation of the mutant phenotype also occurred. These results localize the beige gene to a 500-kb interval and demonstrate that the same or homologous genes are defective in mice, minks, and humans.
Collapse
Affiliation(s)
- C M Perou
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, 84132, USA
| | | | | | | |
Collapse
|
31
|
Fairhead C, Heard E, Arnaud D, Avner P, Dujon B. Insertion of unique sites into YAC arms for rapid physical analysis following YAC transfer into mammalian cells. Nucleic Acids Res 1995; 23:4011-2. [PMID: 7479056 PMCID: PMC307330 DOI: 10.1093/nar/23.19.4011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- C Fairhead
- Unité de Génétique Moléculaire des Levures, CNRS URA 1149, Paris, France
| | | | | | | | | |
Collapse
|
32
|
Kusaba H, Kohno K, Asakuno K, Kuwano M, Okumura K, Green ED, Schlessinger D, Wada M. Functional expression of yeast artificial chromosome-human multidrug resistance genes in mouse cells. Genome Res 1995; 5:245-58. [PMID: 8593612 DOI: 10.1101/gr.5.3.245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multidrug resistance (MDR) genes, which are ATP-binding cassette family genes, encode the cell surface glycoprotein, P-glycoprotein, which functions as an energy-dependent drug efflux pump. Two relevant human genes, PGY1 and PGY3, are located on human chromosome 7, and three relevant mouse genes, mdr1a, mdr1b, and mdr2, are located on mouse chromosome 5. An LMD1 cell line was established after the transfer of a 580-kb yeast artificial chromosome (YAC) clone carrying the human MDR locus into mouse L cells; the cell line was shown to have stably integrated YAC DNA in an apparent intact form. Using LMD1 cells as the parental cell line, five vincristine-resistant sublines, designated LMD1-V50, LMD1-V100, LMD1-V200, LMD1-V500, and LMD1-V1000, were isolated by exposure to increasing concentrations of the drug. LMD1-V50, LMD1-V100, LMD1-V200, LMD1-V500, and LMD1-V1000 showed 3-, 7-, 13-, 45-, and 110-fold higher resistance to the cytotoxic effects of vincristine, respectively, than their parental counterpart, LMD1. Immunofluorescence, Western blot, and Northern blot analyses revealed that the human PGY1 gene or its product was overexpressed, accompanied by gene amplification. The human PGY3 gene was also overexpressed in the LMD1-V20, LMD1-V100, and LMD1-V1000 cell lines. Southern blot and fluorescence in situ hybridization (FISH) analyses demonstrated that although essentially the entire YAC DNA was integrated in mouse genome and amplified, the endogenous mouse mdr genes were not amplified in these drug-resistant cell lines. Similar results were obtained by the analyses of vincristine-resistant cell lines isolated from four independent subclones of LMD1 cells. Thus, in contrast to their mouse counterparts, the integrated human MDR genes retained susceptibility to both gene activation and amplification, during the selection of drug-resistant mouse cell lines. The possibility that transferred YACs may retain regulatory properties observed in the cells of origin, and may have a chromatin structure that favors augmented expression, is discussed.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- Animals
- Base Sequence
- Blotting, Western
- Chromosomes, Artificial, Yeast
- Chromosomes, Human, Pair 7
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/genetics
- Gene Expression
- Humans
- In Situ Hybridization, Fluorescence
- KB Cells/drug effects
- KB Cells/metabolism
- L Cells/drug effects
- L Cells/metabolism
- Mice
- Molecular Sequence Data
- Polymerase Chain Reaction
- Recombinant Fusion Proteins/biosynthesis
- Recombinant Fusion Proteins/genetics
- Vincristine/pharmacology
Collapse
Affiliation(s)
- H Kusaba
- Department of Biochemistry, Kyushu University School of Medicine, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gobin SJ, Alcaïde-Loridan C, Bono MR, Ottone C, Chumakov I, Rothstein R, Fellous M. Transfer of yeast artificial chromosomes into mammalian cells and comparative study of their integrity. Gene X 1995; 163:27-33. [PMID: 7557474 DOI: 10.1016/0378-1119(95)00399-q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Yeast artificial chromosomes (YACs) from the CEPH MegaYAC library (Paris, France) ranging in size from 350 to 1600 kb and mapping to the q22.1 and q22.2 regions of human chromosome 21 were transferred into mammalian cells by spheroplast fusion. The integrity of the YACs from two adjacent parts of the region was compared after retrofitting and stable transfer into mammalian cells. We found that large YACs could easily be manipulated to allow transfer of the YAC material into mammalian cells and that the size of the YAC did not appear to be limiting for fusion. However, we show that there was great variability in the integrity of the YACs from the two regions, which was not related to the size of the YACs. Four YACs in region I from sequence-tagged site (STS) G51E05 up to STS LL103 showed, in general, no loss of material and correct gene transfer into mammalian cells. In contrast, the three YACs in the more centromeric region II (from STS G51B09 up to G51E05) frequently showed a loss of human material during handling, retrofitting and transfer. As a YAC from another library covering region II was also found to be unstable, we propose that the integrity of the YACs is highly dependent on the incorporated human chromosomal DNA.
Collapse
Affiliation(s)
- S J Gobin
- Immunogénétique Humaine, INSERM U276, Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Mendez MJ, Abderrahim H, Noguchi M, David NE, Hardy MC, Green LL, Tsuda H, Yoast S, Maynard-Currie CE, Garza D. Analysis of the structural integrity of YACs comprising human immunoglobulin genes in yeast and in embryonic stem cells. Genomics 1995; 26:294-307. [PMID: 7601456 DOI: 10.1016/0888-7543(95)80214-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With the goal of creating a strain of mice capable of producing human antibodies, we are cloning and reconstructing the human immunoglobulin germline repertoire in yeast artificial chromosomes (YACs). We describe the identification of YACs containing variable and constant region sequences from the human heavy chain (IgH) and kappa light chain (IgK) loci and the characterization of their integrity in yeast and in mouse embryonic stem (ES) cells. The IgH locus-derived YAC contains five variable (VH) genes, the major diversity (D) gene cluster, the joining (JH) genes, the intronic enhancer (EH), and the constant region genes, mu (C mu) and delta (C delta). Two IgK locus-derived YACs each contain three variable (V kappa) genes, the joining (J kappa) region, the intronic enhancer (E kappa), the constant gene (C kappa), and the kappa deleting element (kde). The IgH YAC was unstable in yeast, generating a variety of deletion derivatives, whereas both IgK YACs were stable. YACs encoding heavy chain and kappa light chain, retrofitted with the mammalian selectable marker, hypoxanthine phosphoribosyltransferase (HPRT), were each introduced into HPRT-deficient mouse ES cells. Analysis of YAC integrity in ES cell lines revealed that the majority of DNA inserts were integrated in substantially intact form.
Collapse
Affiliation(s)
- M J Mendez
- Cell Genesys, Inc., Foster City, California 94404, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vaudin M, Roopra A, Hillier L, Brinkman R, Sulston J, Wilson RK, Waterston RH. The construction and analysis of M13 libraries prepared from YAC DNA. Nucleic Acids Res 1995; 23:670-4. [PMID: 7899089 PMCID: PMC306736 DOI: 10.1093/nar/23.4.670] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Yeast artificial chromosomes (YACs) provide a powerful way to isolate and map large regions of genomic DNA and their use in genome analysis is now extensive. We modified a series of procedures to produce high quality shotgun libraries from small amounts of YAC DNA. Clones from several different libraries have been sequenced and analyzed for distribution, sequence integrity and degree of contamination from yeast DNA. We describe these procedures and analyses and show that sequencing at about 1-fold coverage, followed by database comparison (survey sequencing) offers a relatively quick method to determine the nature of previously uncharacterized cosmid or YAC clones.
Collapse
Affiliation(s)
- M Vaudin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63108
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The human hprt chromosomal region (Xq26) was physical-mapped using pulsed field gel electrophoresis (PFGE). This work involved: (i) the recovery of three new genomic DNA markers (DXS1327, DXS1328, and DXS1329), (ii) the ordering of new markers relative to 11 previously available hprt-linked markers by deletion mapping, and (iii) the completion of human T-lymphocyte PFGE Southern blots using the 14 Xq26 markers. A contiguous 1.5-Mb physical map of the region telomeric to hprt was determined. As this map identifies clusters of in vivo unmethylated rare-cutter restriction sites, potential CpG islands are revealed.
Collapse
Affiliation(s)
- M J Lippert
- University of Vermont, VCC Genetics Laboratory, Burlington 05401
| | | | | |
Collapse
|
37
|
Larionov V, Graves J, Kouprina N, Resnick MA. The role of recombination and RAD52 in mutation of chromosomal DNA transformed into yeast. Nucleic Acids Res 1994; 22:4234-41. [PMID: 7937151 PMCID: PMC331931 DOI: 10.1093/nar/22.20.4234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
While transformation is a prominent tool for genetic analysis and genome manipulation in many organisms, transforming DNA has often been found to be unstable relative to established molecules. We determined the potential for transformation-associated mutations in a 360 kb yeast chromosome III composed primarily of unique DNA. Wild-type and rad52 Saccharomyces cerevisiae strains were transformed with either a homologous chromosome III or a diverged chromosome III from S. carlsbergensis. The host strain chromosome III had a conditional centromere allowing it to be lost on galactose medium so that recessive mutations in the transformed chromosome could be identified. Following transformation of a RAD+ strain with the homologous chromosome, there were frequent changes in the incoming chromosome, including large deletions and mutations that do not lead to detectable changes in chromosome size. Based on results with the diverged chromosome, interchromosomal recombinational interactions were the source of many of the changes. Even though rad52 exhibits elevated mitotic mutation rates, the percentage of transformed diverged chromosomes incapable of substituting for the resident chromosome was not increased in rad52 compared to the wild-type strain, indicating that the mutator phenotype does not extend to transforming chromosomal DNA. Based on these results and our previous observation that the incidence of large mutations is reduced during the cloning of mammalian DNA into a rad52 as compared to a RAD+ strain, a rad52 host is well-suited for cloning DNA segments in which gene function must be maintained.
Collapse
Affiliation(s)
- V Larionov
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | | | | | |
Collapse
|
38
|
Sun TQ, Fenstermacher DA, Vos JM. Human artificial episomal chromosomes for cloning large DNA fragments in human cells. Nat Genet 1994; 8:33-41. [PMID: 7987390 DOI: 10.1038/ng0994-33] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have developed a human artificial episomal chromosome (HAEC) system, based on the latent replication origin of the large herpes Epstein-Barr virus, for the propagation and stable maintenance of DNA as circular minichromosomes in human cells. Individual HAECs carried human genomic inserts ranging from 60-330 kb and appeared genetically stable. An HAEC library of 1,500 independent clones carrying random human genomic fragments with average sizes of 150-200 kb was established and allowed recovery of the HAEC DNA. Our autologous HAEC system, with human DNA cloned directly in human cells, provides an important tool for functional study of large mammalian DNA regions and gene therapy.
Collapse
Affiliation(s)
- T Q Sun
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill 27599
| | | | | |
Collapse
|
39
|
Soh J, Mariano TM, Bradshaw G, Donnelly RJ, Pestka S. Generation of random internal deletion derivatives of YACs by homologous targeting to Alu sequences. DNA Cell Biol 1994; 13:301-9. [PMID: 8172658 DOI: 10.1089/dna.1994.13.301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To facilitate the manipulation of human genomic DNA in yeast artificial chromosome (YAC) clones, a plasmid to integrate the selective marker for antibiotic G418 resistance into YACs and to delete some of the human DNA fragments from YACs was constructed. The linearized integration/deletion plasmid, which contains Alu family sequences at both ends, can recombine with YACs containing human repetitive sequences via homologous recombination. The homologous recombination results in a random integration of the antibiotic G418-resistant gene into a human genomic Alu sequence, and in most cases, an internal deletion within the YAC. The YACs with internal deletions can be useful to identify the location of the genes if they produce functional knockouts. In those cases when the integration/deletion event disrupts the integrity of the gene so it no longer can produce a viable and functional mRNA in fused eukaryotic cells, the site of integration in the YAC thus serves as a marker for the inactivated gene. In this report we describe a model system to locate specific genes in YACs.
Collapse
Affiliation(s)
- J Soh
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854-5635
| | | | | | | | | |
Collapse
|
40
|
Fuscoe JC, Nelsen AJ, Pilia G. Detection of deletion mutations extending beyond the HPRT gene by multiplex PCR analysis. SOMATIC CELL AND MOLECULAR GENETICS 1994; 20:39-46. [PMID: 8197475 DOI: 10.1007/bf02257484] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A multiplex PCR assay was developed for the rapid analysis of deletion size at the hypoxanthine phosphoribosyltransferase (hprt) locus. The DNA sequence of mapped DNA segments flanking the hprt gene was determined. These cloned DNAs were derived from the ends of a set of overlapping yeast artificial chromosomes (YAC) defining a contig of 8 Mb at Xq26 and including hprt. We used "bubble" PCR to isolate an additional YAC end-clone. Seven primer pairs were derived from DNA sequence analysis of the clones and incorporated into a multiplex PCR assay. These primer pairs define loci located approximately 750 kb and 350 kb upstream of hprt and 300 kb, 540 kb, 900 kb, 1260 kb, and 1400 kb downstream of hprt. A primer pair for an unlinked and unselected gene sequence (K-ras) was also included in the multiplex reaction to serve as an internal positive control. Using this new assay, hprt mutant DNAs can be screened to determine the extent of deletion. Deletions larger than 2 Mb have been identified and show that large deletions can be tolerated at this hemizygous locus.
Collapse
Affiliation(s)
- J C Fuscoe
- Environmental Health Research and Testing, Inc., Research Triangle Park, North Carolina
| | | | | |
Collapse
|
41
|
Svetlova M, Solovjeva L, Stein G, Chamberland C, Vig B, Tomilin N. The structure of human S-phase chromosome fibres. Chromosome Res 1994; 2:47-52. [PMID: 8162320 DOI: 10.1007/bf01539453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recent in situ hybridization studies suggested that within the range of 0.1-1.0 Mb, human interphase chromosomes follow a random walk model (i.e. they behave as flexible polymers without major constraints). However, chromosome structure may differ in the G1, S, and G2 phases, and phase-specific constraints may be masked if the chromosome analysis does not discriminate between the phases. Therefore, using confocal microscopy, we examined the structure of S-phase chromosomes labelled with 5-iododeoxyuridine after prolonged treatment with 5-fluorodeoxyuridine. In the S-phase, labelled 0.32 mu chromosome fibres mostly appear as semi-circles with an average diameter of 0.83 +/- 0.03 mu. These semi-circles are joined together to form different 3D structures, and two semicircles frequently adopt s- or omega-like conformations involving about 2.5 mu of the chromosome contour length (L). Morphometric analysis of the S-phase fibres suggests that our data fit both the random flexible polymer model and also a model in which two constrained semi-circles are attached to each other by a flexible joint, thus eliminating constraints at long distances (L more than 2 mu).
Collapse
Affiliation(s)
- M Svetlova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg
| | | | | | | | | | | |
Collapse
|
42
|
Pearson BE, Choi TK. Expression of the human beta-amyloid precursor protein gene from a yeast artificial chromosome in transgenic mice. Proc Natl Acad Sci U S A 1993; 90:10578-82. [PMID: 8248147 PMCID: PMC47820 DOI: 10.1073/pnas.90.22.10578] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One hallmark of Alzheimer disease is the formation in the brain of amyloid plaques containing a small peptide derived from the beta-amyloid precursor protein (APP). The APP gene exhibits a complex pattern of expression in peripheral tissues and in the brain. The entire human APP gene was introduced into embryonic stem (ES) cells by co-lipofection of a 650-kb yeast artificial chromosome (YAC). Three ES lines containing an essentially intact YAC were isolated, and expression of human APP mRNAs at levels comparable to those of endogenous mouse APP transcripts was obtained. A transgenic mouse line was established by germ-line transmission of the APP YAC. RNase protection analysis of human APP mRNAs demonstrated appropriate splicing of the primary APP transcript in ES cells and in the brain of a transgenic animal. These mice may be useful for elucidating the function of the various APP isoforms in vivo.
Collapse
Affiliation(s)
- B E Pearson
- GenPharm International, Mountain View, CA 94043
| | | |
Collapse
|
43
|
Schedl A, Larin Z, Montoliu L, Thies E, Kelsey G, Lehrach H, Schütz G. A method for the generation of YAC transgenic mice by pronuclear microinjection. Nucleic Acids Res 1993; 21:4783-7. [PMID: 8233827 PMCID: PMC331506 DOI: 10.1093/nar/21.20.4783] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Yeast artificial chromosomes (YACs) represent the latest generation of vectors which have the great advantage of large insert size. The introduction of YACs into mammalian cells and organisms has become an important goal, since it offers the potential to study the control of large and complex transcription units and identify genes by complementation. Microinjection into the nucleus is the most direct and efficient way of delivering YAC DNA into cells, but requires the purification of the YAC from the remaining yeast chromosomes. Here we describe a detailed method for the isolation of pure, intact and highly concentrated YAC DNA. As a model system the murine tyrosinase gene was chosen and four YACs covering this locus were isolated. Introduction by homologous recombination in yeast of sequences permitting YAC amplification greatly facilitated the isolation of YAC DNA at high concentrations. YAC DNA stabilized in a salt and polyamine containing buffer did not compromise the survival of microinjected oocytes and was suitable for the generation of transgenic mice. Applications and benefits of this technique will be discussed.
Collapse
Affiliation(s)
- A Schedl
- Division Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg
| | | | | | | | | | | | | |
Collapse
|
44
|
Genetic transfer and expression of reconstructed yeast artificial chromosomes containing normal and translocated BCL2 proto-oncogenes. Mol Cell Biol 1993. [PMID: 8355694 DOI: 10.1128/mcb.13.9.5469] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of this study was to determine whether it will be feasible to study the expression of a large, human gene, such as the BCL2 proto-oncogene, by DNA transfection. The BCL2 proto-oncogene is 230 kb in size and is deregulated in tumor cells by translocation into the immunoglobulin heavy-chain locus. Yeast artificial chromosomes (YACs) containing the human BCL2 gene were altered by homologous recombination in Saccharomyces cerevisiae to yield replicas of the normal and translocated alleles. Constructions containing either allele and ranging in size from 360 to 800 kb were integrated stably into a mouse tumor line. Fifty-eight percent of the clones contained a copy of the entire YAC insert. Over 50% of these clones expressed appropriate levels of human BCL2 RNA and protein. These studies suggested that the expression of large human genes and their pathologic rearrangements can be studied by transfection techniques employing YACs propagated in S. cerevisiae.
Collapse
|
45
|
Soh J, Donnelly RJ, Mariano TM, Cook JR, Schwartz B, Pestka S. Identification of a yeast artificial chromosome clone encoding an accessory factor for the human interferon gamma receptor: evidence for multiple accessory factors. Proc Natl Acad Sci U S A 1993; 90:8737-41. [PMID: 8378357 PMCID: PMC47433 DOI: 10.1073/pnas.90.18.8737] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Human chromosomes 6 and 21 are both necessary to confer sensitivity to human interferon gamma (Hu-IFN-gamma), as measured by the induction of human HLA class I antigen. Human chromosome 6 encodes the receptor for Hu-IFN-gamma, and human chromosome 21 encodes accessory factors for generating biological activity through the Hu-IFN-gamma receptor. A small region of human chromosome 21 that is responsible for encoding such factors was localized with hamster-human somatic cell hybrids carrying an irradiation-reduced fragment of human chromosome 21. The cell line with the minimum chromosome 21-specific DNA is Chinese hamster ovary 3x1S. To localize the genes further, 10 different yeast artificial chromosome clones from six different loci in the vicinity of the 3x1S region were fused to a human-hamster hybrid cell line (designated 16-9) that contains human chromosome 6q (supplying the Hu-IFN-gamma receptor) and the human HLA-B7 gene. These transformed 16-9 cells were assayed for induction of class I HLA antigens upon treatment with Hu-IFN-gamma. Here we report that a 540-kb yeast artificial chromosome encodes the necessary species-specific factor(s) and can substitute for human chromosome 21 to reconstitute the Hu-IFN-gamma-receptor-mediated induction of class I HLA antigens. However, the factor encoded on the yeast artificial chromosome does not confer antiviral protection against encephalomyocarditis virus, demonstrating that an additional factor encoded on human chromosome 21 is required for the antiviral activity.
Collapse
MESH Headings
- Animals
- Biological Factors/biosynthesis
- Biological Factors/genetics
- Blotting, Southern
- CHO Cells
- Chromosomes, Fungal
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 6
- Clone Cells
- Cloning, Molecular/methods
- Cricetinae
- DNA/genetics
- Genes, MHC Class I
- HLA-B7 Antigen/biosynthesis
- HLA-B7 Antigen/genetics
- Humans
- Hybrid Cells
- Interferon-gamma/metabolism
- Interferon-gamma/pharmacology
- Receptors, Interferon/biosynthesis
- Receptors, Interferon/genetics
- Transfection
- Interferon gamma Receptor
Collapse
Affiliation(s)
- J Soh
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854-5635
| | | | | | | | | | | |
Collapse
|
46
|
Silverman GA, Yang E, Proffitt JH, Zutter M, Korsmeyer SJ. Genetic transfer and expression of reconstructed yeast artificial chromosomes containing normal and translocated BCL2 proto-oncogenes. Mol Cell Biol 1993; 13:5469-78. [PMID: 8355694 PMCID: PMC360259 DOI: 10.1128/mcb.13.9.5469-5478.1993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The goal of this study was to determine whether it will be feasible to study the expression of a large, human gene, such as the BCL2 proto-oncogene, by DNA transfection. The BCL2 proto-oncogene is 230 kb in size and is deregulated in tumor cells by translocation into the immunoglobulin heavy-chain locus. Yeast artificial chromosomes (YACs) containing the human BCL2 gene were altered by homologous recombination in Saccharomyces cerevisiae to yield replicas of the normal and translocated alleles. Constructions containing either allele and ranging in size from 360 to 800 kb were integrated stably into a mouse tumor line. Fifty-eight percent of the clones contained a copy of the entire YAC insert. Over 50% of these clones expressed appropriate levels of human BCL2 RNA and protein. These studies suggested that the expression of large human genes and their pathologic rearrangements can be studied by transfection techniques employing YACs propagated in S. cerevisiae.
Collapse
Affiliation(s)
- G A Silverman
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
47
|
Choi TK, Hollenbach PW, Pearson BE, Ueda RM, Weddell GN, Kurahara CG, Woodhouse CS, Kay RM, Loring JF. Transgenic mice containing a human heavy chain immunoglobulin gene fragment cloned in a yeast artificial chromosome. Nat Genet 1993; 4:117-23. [PMID: 8348148 DOI: 10.1038/ng0693-117] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have developed a method for the introduction of yeast artificial chromosomes (YACs) into transgenic mice. An 85 kilobase (kb) fragment of the human heavy chain immunoglobulin gene was cloned as a YAC, and embryonic stem cell lines carrying intact, integrated YACs were derived by co-lipofection of the YAC with an unlinked selectable marker. Chimaeric founder animals were produced by blastocyst injection, and offspring transgenic for the YAC were obtained. Analysis of serum from these offspring for human heavy chain antibody subunits demonstrated expression of the YAC-borne immunoglobulin gene fragment. Co-lipofection may prove to be a highly-successful means of producing transgenic mice containing large gene fragments in YACs.
Collapse
Affiliation(s)
- T K Choi
- GenPharm International, Mountain 94043
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Koi M, Johnson LA, Kalikin LM, Little PF, Nakamura Y, Feinberg AP. Tumor cell growth arrest caused by subchromosomal transferable DNA fragments from chromosome 11. Science 1993; 260:361-4. [PMID: 8469989 DOI: 10.1126/science.8469989] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A fundamental problem in the identification and isolation of tumor suppressor and other growth-inhibiting genes is the loss of power of genetic complementation at the subchromosomal level. A direct genetic strategy was developed to isolate subchromosomal transferable fragments (STFs) from any chromosome, each containing a selectable marker within the human DNA, that could be transferred to any mammalian cell. As a test of the method, several overlapping STFs from 11p15 were shown to cause in vitro growth arrest of rhabdomyosarcoma cells. This activity mapped between the beta-globin and insulin genes.
Collapse
Affiliation(s)
- M Koi
- Howard Hughes Medical Institute, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109
| | | | | | | | | | | |
Collapse
|
49
|
Jakobovits A, Moore AL, Green LL, Vergara GJ, Maynard-Currie CE, Austin HA, Klapholz S. Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature 1993; 362:255-8. [PMID: 8459850 DOI: 10.1038/362255a0] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Introduction of DNA fragments, hundreds of kilobases in size, into mouse embryonic stem (ES) cells would greatly advance the ability to manipulate the mouse genome. Mice generated from such modified cells would permit investigation of the function and expression of very large or crudely mapped genes. Large DNA molecules cloned into yeast artificial chromosomes (YACs) are stable and genetically manipulable within yeast, suggesting yeast-cell fusion as an ideal method for transferring large DNA segments into mammalian cells. Introduction of YACs into different cell types by this technique has been reported; however, the incorporation of yeast DNA along with the YAC has raised doubts as to whether ES cells, modified in this way, would be able to recolonize the mouse germ line. Here we provide, to our knowledge, the first demonstration of germ-line transmission and expression of a large human DNA fragment, introduced into ES cells by fusion with yeast spheroplasts. Proper development was not impaired by the cointegration of a large portion of the yeast genome with the YAC.
Collapse
Affiliation(s)
- A Jakobovits
- Cell Genesys Inc., Foster City, California 94404
| | | | | | | | | | | | | |
Collapse
|
50
|
Markie D, Ragoussis J, Senger G, Rowan A, Sansom D, Trowsdale J, Sheer D, Bodmer WF. New vector for transfer of yeast artificial chromosomes to mammalian cells. SOMATIC CELL AND MOLECULAR GENETICS 1993; 19:161-9. [PMID: 8511673 DOI: 10.1007/bf01233531] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A modification vector has been constructed to facilitate the transfer of yeast artificial chromosomes (YACs) to mammalian cells in culture by targeting a dominant selectable marker (G418 resistance) to the right arm of pYAC4 clones. The ADE2 gene is used for yeast selection with consequent disruption of the URA3 gene, allowing direct modification of YACs within the common host strain AB1380, and providing a simple test for correct targeting. This vector has been tested by modification of a 550-kb YAC containing part of the human MHC class II region and transfer to CHO cells by protoplast fusion. Analysis of 15 independent G418-resistant CHO lines obtained following fusion suggests the majority contain a complete YAC with moderate amplification in some lines.
Collapse
Affiliation(s)
- D Markie
- Cancer Genetics Laboratory, Imperial Cancer Research Fund, London, U.K
| | | | | | | | | | | | | | | |
Collapse
|