1
|
Vagkidis N, Li L, Marsh J, Chechik V. Synergy of UV light and heat in peptide degradation. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
2
|
Jusof FF, Bakmiwewa SM, Weiser S, Too LK, Metz R, Prendergast GC, Fraser ST, Hunt NH, Ball HJ. Investigation of the Tissue Distribution and Physiological Roles of Indoleamine 2,3-Dioxygenase-2. Int J Tryptophan Res 2017; 10:1178646917735098. [PMID: 29051706 PMCID: PMC5638149 DOI: 10.1177/1178646917735098] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/30/2017] [Indexed: 01/11/2023] Open
Abstract
Indoleamine 2,3-dioxygenase-2 (IDO2) is 1 of the 3 enzymes that can catalyze the first step in the kynurenine pathway of tryptophan metabolism. Of the 2 other enzymes, tryptophan 2,3-dioxygenase is highly expressed in the liver and has a role in tryptophan homeostasis, whereas indoleamine 2,3-dioxygenase-1 (IDO1) expression is induced by inflammatory stimuli. Indoleamine 2,3-dioxygenase-2 is reportedly expressed comparatively narrow, including in liver, kidney, brain, and in certain immune cell types, and it does not appear to contribute significantly to systemic tryptophan catabolism under normal physiological conditions. Here, we report the identification of an alternative splicing pattern, including the use of an alternative first exon, that is conserved in the mouse Ido1 and Ido2 genes. These findings prompted us to assess IDO2 protein expression and enzymatic activity in tissues. Our analysis, undertaken in Ido2 +/+ and Ido2−/− mice using immunohistochemistry and measurement of tryptophan and kynurenine levels, suggested an even more restricted pattern of tissue expression than previously reported. We found IDO2 protein to be expressed in the liver with a perinuclear/nuclear, rather than cytoplasmic, distribution. Consistent with earlier reports, we found Ido2 −/− mice to be phenotypically similar to their Ido2+/+ counterparts regarding levels of tryptophan and kynurenine in the plasma and liver. Our findings suggest a specialized function or regulatory role for IDO2 associated with its particular subcellular localization.
Collapse
Affiliation(s)
- Felicita F Jusof
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia.,Department of Physiology, Faculty of Medicine, The University of Malaya, Kuala Lumpur, Malaysia
| | - Supun M Bakmiwewa
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Silvia Weiser
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Lay Khoon Too
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | | | | | - Stuart T Fraser
- Discipline of Physiology, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Nicholas H Hunt
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - Helen J Ball
- Molecular Immunopathology Unit, Bosch Institute and School of Medical Sciences, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
3
|
A biotin enrichment strategy identifies novel carbonylated amino acids in proteins from human plasma. J Proteomics 2017; 156:40-51. [PMID: 28062376 DOI: 10.1016/j.jprot.2016.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/14/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022]
Abstract
Protein carbonylation is an irreversible protein oxidation correlated with oxidative stress, various diseases and ageing. Here we describe a peptide-centric approach for identification and characterisation of up to 14 different types of carbonylated amino acids in proteins. The modified residues are derivatised with biotin-hydrazide, enriched and characterised by tandem mass spectrometry. The strength of the method lies in an improved elution of biotinylated peptides from monomeric avidin resin using hot water (95°C) and increased sensitivity achieved by reduction of analyte losses during sample preparation and chromatography. For the first time MS/MS data analysis utilising diagnostic biotin fragment ions is used to pinpoint sites of biotin labelling and improve the confidence of carbonyl peptide assignments. We identified a total of 125 carbonylated residues in bovine serum albumin after extensive in vitro metal ion-catalysed oxidation. Furthermore, we assigned 133 carbonylated sites in 36 proteins in native human plasma protein samples. The optimised workflow enabled detection of 10 hitherto undetected types of carbonylated amino acids in proteins: aldehyde and ketone modifications of leucine, valine, alanine, isoleucine, glutamine, lysine and glutamic acid (+14Da), an oxidised form of methionine - aspartate semialdehyde (-32Da) - and decarboxylated glutamic acid and aspartic acid (-30Da). BIOLOGICAL SIGNIFICANCE Proteomic tools provide a promising way to decode disease mechanisms at the protein level and help to understand how carbonylation affects protein structure and function. The challenge for future research is to identify the type and nature of oxidised residues to gain a deeper understanding of the mechanism(s) governing carbonylation in cells and organisms and assess their role in disease.
Collapse
|
4
|
|
5
|
Abstract
Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established.
Collapse
Affiliation(s)
- Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| |
Collapse
|
6
|
Spanos D, Tørngren MA, Christensen M, Baron CP. Effect of oxygen level on the oxidative stability of two different retail pork products stored using modified atmosphere packaging (MAP). Meat Sci 2016; 113:162-9. [DOI: 10.1016/j.meatsci.2015.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 11/09/2015] [Accepted: 11/23/2015] [Indexed: 12/19/2022]
|
7
|
Weber D, Davies MJ, Grune T. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions. Redox Biol 2015; 5:367-380. [PMID: 26141921 PMCID: PMC4506980 DOI: 10.1016/j.redox.2015.06.005] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/19/2022] Open
Abstract
Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples.
Collapse
Affiliation(s)
- Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| |
Collapse
|
8
|
Li Y, Kojtari A, Friedman G, Brooks AD, Fridman A, Ji HF. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma. J Phys Chem B 2014; 118:1612-20. [PMID: 24450953 DOI: 10.1021/jp411440k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
L-Valine solutions in water and phosphate buffer were treated with nonthermal plasma generated by using a dielectric barrier discharge (DBD) device and the products generated after plasma treatments were characterized by (1)H NMR and GC-MS. Our results demonstrate that L-valine is decomposed to acetone, formic acid, acetic acid, threo-methylaspartic acid, erythro-methlyaspartic acid, and pyruvic acid after direct exposure to DBD plasma. The concentrations of these compounds are time-dependent with plasma treatment. The mechanisms of L-valine under the DBD plasma are also proposed in this study. Acetone, pyruvic acid, and organic radicals (•)CHO, CH3COCH2OO(•) (acetonylperoxy), and CH3COC(OH)2OO(•) (1,1-dihydroxypropan-2-one peroxy) may be the determining chemicals in DNA damage.
Collapse
Affiliation(s)
- Yingying Li
- Department of Chemistry, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | |
Collapse
|
9
|
Wu MH, Zhang YQ. Nanofiltration recovery of sericin from silk processing waste and synthesis of a lauroyl sericin-based surfactant and its characteristics. RSC Adv 2014. [DOI: 10.1039/c3ra45549a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Liu J, Ames BN. Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer's disease, and Parkinson's disease. Nutr Neurosci 2013; 8:67-89. [PMID: 16053240 DOI: 10.1080/10284150500047161] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitochondrial decay due to oxidative damage is a contributor to brain aging and age-related neurodegenerative diseases, such as Alzheimer's disease (AD) and Parkinson's disease (PD). One type of mitochondrial decay is oxidative modification of key mitochondrial enzymes. Enzyme dysfunction, that is due to poor binding of substrates and coenzymes may be ameliorated by supplementing adequate levels of substrates or coenzyme precursors. Such supplementation with mitochondrial nutrients (mt-nutrients) may be useful to prevent or delay mitochondrial decay, thus prevent or treat AD and PD. In the present review, we survey the literature to identify mt-nutrients that can (1) protect mitochondrial enzymes and/or stimulate enzyme activity by elevating levels of substrates and cofactors; (2) induce phase-2 enzymes to enhance antioxidant defenses; (3) scavenge free radicals and prevent oxidant production in mitochondria, and (4) repair mitochondrial membrane. Then, we discuss the relationships among mt-nutrient deficiency, mitochondrial decay, and cognitive dysfunction, and summarize available evidence suggesting an effect of mt-nutrient supplementation on AD and PD. It appears that greater effects might be obtained by longer-term administration of combinations of mt-nutrients. Thus, optimal doses of combinations of mt-nutrients to delay and repair mitochondrial decay could be a strategy for preventing and treating cognitive dysfunction, including AD and PD.
Collapse
Affiliation(s)
- Jiankang Liu
- Nutritional Genomic Center, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | |
Collapse
|
11
|
Steinmann D, Ji JA, Wang YJ, Schöneich C. Oxidation of human growth hormone by oxygen-centered radicals: formation of Leu-101 hydroperoxide and Tyr-103 oxidation products. Mol Pharm 2012; 9:803-14. [PMID: 22397317 DOI: 10.1021/mp3001028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human growth hormone (hGH) was exposed to oxygen-centered radicals generated through the thermolysis of AAPH in the presence of dioxygen. Such conditions mimic oxidative processes which protein pharmaceuticals can encounter during formulation in the presence of polysorbates. We detected the oxidation of Met to Met sulfoxide, the formation of protein carbonyls, the oxidation of Tyr to dityrosine and several additional Tyr oxidation products, the conformation-dependent oxidation of Trp, and the site-specific formation of protein hydroperoxides. The sensitivity of Met oxidation correlates with their solvent accessible surface, i.e. the yields of MetSO decreased in the order Met-14 > Met-125 > Met-170. Trp oxidation in native hGH was negligible, but was enhanced through denaturation. Dityrosine formed predominantly intramolecularly but did not contribute significantly to protein cross-linking. Hydroperoxides formed selectively on Leu-101 and were generated specifically by alkoxyl radicals, generated through the decomposition of peroxyl radicals. Tyr-103 was converted into a series of oxidation products characterized by mass shifts of Tyr + 14 Da and Tyr + 16 Da.
Collapse
Affiliation(s)
- Daniel Steinmann
- Department of Pharmaceutical Chemistry, University of Kansas , Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|
12
|
Morgan PE, Pattison DI, Davies MJ. Quantification of hydroxyl radical-derived oxidation products in peptides containing glycine, alanine, valine, and proline. Free Radic Biol Med 2012; 52:328-39. [PMID: 22064365 DOI: 10.1016/j.freeradbiomed.2011.10.448] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/11/2011] [Accepted: 10/17/2011] [Indexed: 01/22/2023]
Abstract
Proteins are a major target for oxidation due to their abundance and high reactivity. Despite extensive investigation over many years, only limited quantitative data exist on the contributions of different pathways to the oxidation of peptides and proteins. This study was designed to obtain quantitative data on the nature and yields of oxidation products (alcohols, carbonyls, hydroperoxides, fragment species) formed by a prototypic oxidant system (HO(•)/O(2)) on small peptides of limited, but known, amino acid composition. Peptides composed of Gly, Ala, Val, and Pro were examined with particular emphasis on the peptide Val-Gly-Val-Ala-Pro-Gly, a repeat motif in elastin with chemotactic activity and metalloproteinase regulation properties. The data obtained indicate that hydroperoxide formation occurs nonrandomly (Pro > Val > Ala > Gly) with this inversely related to carbonyl yields (both peptide-bound and released). Multiple alcohols are generated at both side-chain and backbone sites. Backbone fragmentation has been characterized at multiple positions, with sites adjacent to Pro residues being of major importance. Summation of the product concentrations provides clear evidence for the occurrence of chain reactions in peptides exposed to HO(•)/O(2), with the overall product yields exceeding that of the initial HO(•) generated.
Collapse
Affiliation(s)
- Philip E Morgan
- Free Radical Group, The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW 2042, Australia.
| | | | | |
Collapse
|
13
|
Gracanin M, Lam MA, Morgan PE, Rodgers KJ, Hawkins CL, Davies MJ. Amino acid, peptide, and protein hydroperoxides and their decomposition products modify the activity of the 26S proteasome. Free Radic Biol Med 2011; 50:389-99. [PMID: 21111806 DOI: 10.1016/j.freeradbiomed.2010.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/14/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
Abstract
Proteins are major biological targets for oxidative damage within cells because of their high abundance and rapid rates of reaction with radicals and singlet oxygen. These reactions generate high yields of hydroperoxides. The turnover of both native and modified/damaged proteins is critical for maintaining cell homeostasis, with this occurring via the proteasomal and endosomal-lysosomal systems; the former is of particular importance for intracellular proteins. In this study we have examined whether oxidation products generated on amino acids, peptides, and proteins modulate 26S proteasome activity. We show that oxidation products, and particularly protein hydroperoxides, are efficient inhibitors of the 26S proteasome tryptic and chymotryptic activities, with this depending, at least in part, on the presence of hydroperoxide groups. Removal of these species by reduction significantly reduces proteasome inhibition. This loss of activity is accompanied by a loss of thiol residues, but an absence of radical formation, consistent with molecular, rather than radical, reactions being responsible for proteasome inhibition. Aldehydes also seem to play a role in the inhibition of chymotryptic activity, with this prevented by treatment with NaBH(4), which reduces these groups. Inhibition occurred at hydroperoxide concentrations of ≥1μM for oxidized amino acids and peptides and ≥10μM for oxidized proteins, compared with ca. 100μM for H(2)O(2), indicating that H(2)O(2) is a much less effective inhibitor. These data indicate that the formation of oxidized proteins within cells may modulate cell function by interfering with the turnover of native proteins and the clearance of modified materials.
Collapse
Affiliation(s)
- Michelle Gracanin
- Free Radical Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Fonseca C, Domingues P, Reis A, Domingues MRM. Identification of leucine-enkephalin radical oxidation products by liquid chromatography tandem mass spectrometry. Biomed Chromatogr 2008; 22:947-59. [DOI: 10.1002/bmc.1014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Perrone GG, Tan SX, Dawes IW. Reactive oxygen species and yeast apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1354-68. [PMID: 18298957 DOI: 10.1016/j.bbamcr.2008.01.023] [Citation(s) in RCA: 291] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 01/02/2023]
Abstract
Apoptosis is associated in many cases with the generation of reactive oxygen species (ROS) in cells across a wide range of organisms including lower eukaryotes such as the yeast Saccharomyces cerevisiae. Currently there are many unresolved questions concerning the relationship between apoptosis and the generation of ROS. These include which ROS are involved in apoptosis, what mechanisms and targets are important and whether apoptosis is triggered by ROS damage or ROS are generated as a consequence or part of the cellular disruption that occurs during cell death. Here we review the nature of the ROS involved, the damage they cause to cells, summarise the responses of S. cerevisiae to ROS and discuss those aspects in which ROS affect cell integrity that may be relevant to the apoptotic process.
Collapse
Affiliation(s)
- Gabriel G Perrone
- Ramaciotti Centre for Gene Function Analysis, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | |
Collapse
|
17
|
Dremina ES, Sharov VS, Davies MJ, Schöneich C. Oxidation and inactivation of SERCA by selective reaction of cysteine residues with amino acid peroxides. Chem Res Toxicol 2007; 20:1462-9. [PMID: 17892267 DOI: 10.1021/tx700108w] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidative modification of proteins plays an important role in a wide range of pathological processes and aging. Proteins are modified by numerous biologic oxidants including hydrogen peroxide, peroxynitrite, singlet oxygen, and oxygen- and nitrogen-centered radicals. More recently, an additional class of physiologically important oxidants has been identified, peptide and protein peroxides. The latter react quite rapidly and selectively with protein cysteine residues. The sarco/endoplasmic reticulum Ca-ATPase (SERCA) is reversibly regulated through NO-dependent S-glutathiolation of specific cysteine residues. The irreversible oxidation of these cysteine residues could, therefore, impair NO-dependent muscle relaxation. Here, we show that specific protein-derived (amino acid) peroxides react selectively with a subset of the 22 reduced cysteine residues of SERCA1, including a peptide-containing Cys674 and Cys675, where Cys674 (in SERCA2) represents one of the targets for NO-dependent S-glutathiolation. Out of 11 tested amino acid, peptide, and protein peroxides, those derived from free tryptophan and free tyrosine showed the highest reactivity towards SERCA, while no oxidation under similar experimental conditions was detected through hydrogen peroxide. Among the peroxides from tryptophan, those of free tryptophan showed a significantly higher reactivity as compared to those from N- and C-terminally blocked tryptophan. Quantitative HPLC-MS/MS analysis demonstrated that the highest reactivity of the tryptophan-derived peroxides was observed for Cys774 and Cys938, cysteine residues, which are embedded within the transmembrane domains of SERCA1. This unusual reactivity of transmembrane domains cannot be solely rationalized by the hydrophobicity of the oxidant, as the peroxide from dl-tryptophan shows considerable higher reactivity as compared to the one derived from N-acetyl-tryptophan methyl ester. Our data demonstrate a potential role of peptide- and protein-derived peroxides as important mediators of oxidative stress in vivo, which may cause a selective oxidation of Cys residues leading to inactivation of membrane proteins.
Collapse
Affiliation(s)
- Elena S Dremina
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence 66047, USA
| | | | | | | |
Collapse
|
18
|
Cudic M, Marí F, Fields GB. Synthesis and solid-phase application of suitably protected gamma-hydroxyvaline building blocks. J Org Chem 2007; 72:5581-6. [PMID: 17583956 PMCID: PMC2551766 DOI: 10.1021/jo070436y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, an unexpected modified residue, gamma-hydroxy-D-valine (D-Hyv), was identified within ribosomally expressed polypeptide chains of four conopeptides from the venoms of Conus gladiator and Conus mus. To assemble Hyv-containing peptides, we have explored several routes for the synthesis of appropriately functionalized Hyv building blocks. D-Hyv was produced from D-Val by using a variation of the previously published K2PtCl4/CuCl2 oxidative method. Direct synthesis of Boc- or Cbz-D-Hyv lactone proceeded in low yield; additionally, the lactones are too unreactive for solid-phase applications. 9-Borabicyclononane or copper-complexed D-Hyv was prepared and treated with tert-butyldimethylsilyl trifluoromethanesulfonate (TBDMSOTf) to produce D-Hyv(O-TBDMS). The most efficient complex disruption was achieved by Chelex 110 resin (Na+ form) treatment of copper-complexed D-Hyv(O-TBDMS). Reaction of D-Hyv(O-TBDMS) with Fmoc-OSu produced Fmoc-D-Hyv(O-TBDMS) in 26% yield from D-Val. The Fmoc-D-Hyv(O-TBDMS) diastereomers were separated by preparative RP-HPLC in 13% yield from D-Val. Fmoc-D-Hyv(O-TBDMS) was used for the synthesis of the conopeptide gld-V* from Conus gladiator. The isolated synthetic and natural products had coincidental mass and NMR spectra. The methodology presented herein will greatly facilitate biological studies of Hyv-containing sequences, such as receptor responses to hydroxylated versus nonhydroxylated conopeptides and the relative susceptibility of proteins to modification by oxidative stress.
Collapse
Affiliation(s)
- Mare Cudic
- Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, FL 33431
| | - Frank Marí
- Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, FL 33431
| | - Gregg B. Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, FL 33431
| |
Collapse
|
19
|
Gracanin M, Davies MJ. Inhibition of protein tyrosine phosphatases by amino acid, peptide, and protein hydroperoxides: potential modulation of cell signaling by protein oxidation products. Free Radic Biol Med 2007; 42:1543-51. [PMID: 17448901 DOI: 10.1016/j.freeradbiomed.2007.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 01/30/2007] [Accepted: 02/12/2007] [Indexed: 02/07/2023]
Abstract
Reaction of radicals in the presence of O2, or singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. They can be detected in cells and are poorly removed by enzymatic defenses. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, with this resulting in inactivation of some thiol-dependent enzymes. In light of these data, we hypothesized that inactivation of protein tyrosine phosphatases (PTPs), by hydroperoxides present on oxidized proteins, may contribute to cellular and tissue dysfunction by modulation of phosphorylation-dependent cell signaling. We show here that PTPs in cell lysates, and purified PTP-1B, are inactivated by amino acid, peptide, and protein hydroperoxides in a concentration- and structure-dependent manner. Protein hydroperoxides are particularly effective, with inhibition occurring with greater efficacy than with H2O2. Inactivation involves reaction of the hydroperoxide with the conserved active-site Cys residue of the PTPs, as evidenced by hydroperoxide consumption measurements and a diminution of this effect on blocking the Cys residue. This inhibition of PTPs, by oxidized proteins containing hydroperoxide groups, may contribute to cellular dysfunction and altered redox signaling in systems subject to oxidative stress.
Collapse
Affiliation(s)
- Michelle Gracanin
- The Heart Research Institute, 114 Pyrmont Bridge Road, Camperdown, NSW 2050, Australia
| | | |
Collapse
|
20
|
Bröer S, Bröer A, Hansen JT, Bubb WA, Balcar VJ, Nasrallah FA, Garner B, Rae C. Alanine metabolism, transport, and cycling in the brain. J Neurochem 2007; 102:1758-1770. [PMID: 17504263 DOI: 10.1111/j.1471-4159.2007.04654.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain glutamate/glutamine cycling is incomplete without return of ammonia to glial cells. Previous studies suggest that alanine is an important carrier for ammonia transfer. In this study, we investigated alanine transport and metabolism in Guinea pig brain cortical tissue slices and prisms, in primary cultures of neurons and astrocytes, and in synaptosomes. Alanine uptake into astrocytes was largely mediated by system L isoform LAT2, whereas alanine uptake into neurons was mediated by Na(+)-dependent transporters with properties similar to system B(0) isoform B(0)AT2. To investigate the role of alanine transport in metabolism, its uptake was inhibited in cortical tissue slices under depolarizing conditions using the system L transport inhibitors 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid and cycloleucine (1-aminocyclopentanecarboxylic acid; cLeu). The results indicated that alanine cycling occurs subsequent to glutamate/glutamine cycling and that a significant proportion of cycling occurs via amino acid transport system L. Our results show that system L isoform LAT2 is critical for alanine uptake into astrocytes. However, alanine does not provide any significant carbon for energy or neurotransmitter metabolism under the conditions studied.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Angelika Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Jonas T Hansen
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - William A Bubb
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir J Balcar
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Fatima A Nasrallah
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Brett Garner
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| | - Caroline Rae
- School of Biochemistry and Molecular Biology, Australian National University, Acton, Canberra ACT, AustraliaSchool of Molecular and Microbial Biosciences, The University of Sydney, Sydney, New South Wales, AustraliaDepartment of Anatomy and Histology, The University of Sydney, Sydney, New South Wales, AustraliaPrince of Wales Medical Research Institute, Randwick, New South Wales, AustraliaSchool of Chemistry, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Chapple ILC, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000 2007; 43:160-232. [PMID: 17214840 DOI: 10.1111/j.1600-0757.2006.00178.x] [Citation(s) in RCA: 568] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Iain L C Chapple
- Unit of Periodontology, The University of Birmingham School of Dentistry, Birmingham, UK
| | | |
Collapse
|
22
|
Headlam HA, Gracanin M, Rodgers KJ, Davies MJ. Inhibition of cathepsins and related proteases by amino acid, peptide, and protein hydroperoxides. Free Radic Biol Med 2006; 40:1539-48. [PMID: 16632114 DOI: 10.1016/j.freeradbiomed.2005.12.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/14/2005] [Accepted: 12/21/2005] [Indexed: 11/20/2022]
Abstract
Reaction of radicals in the presence of O2, and singlet oxygen, with some amino acids, peptides, and proteins yields hydroperoxides. These species are key intermediates in chain reactions and protein damage. Previously we have shown that peptide and protein hydroperoxides react rapidly with thiols, and that this can result in inactivation of thiol-dependent enzymes. The major route for the cellular removal of damaged proteins is via catabolism mediated by proteosomal and lysosomal pathways; cysteine proteases (cathepsins) play a key role in the latter system. We hypothesized that inactivation of cysteine proteases by hydroperoxide-containing oxidised proteins may contribute to the accumulation of modified proteins within cells. We show here that thiol-dependent cathepsins, either isolated or in cell lysates, are rapidly and efficiently inactivated by amino acid, peptide, and protein hydroperoxides in a time- and concentration-dependent manner; this occurs with similar efficacy to equimolar H2O2. Inactivation involves reaction of the hydroperoxide with Cys residues as evidenced by thiol loss and formation of sulfenic acid intermediates. Structurally related, non-thiol-dependent cathepsins are less readily inactivated by these hydroperoxides. This inhibition, by oxidized proteins, of the system designed to remove modified proteins, may contribute to the accumulation of damaged proteins in cells subject to oxidative stress.
Collapse
Affiliation(s)
- Henrietta A Headlam
- The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, NSW 2050, Australia
| | | | | | | |
Collapse
|
23
|
Zemski Berry KA, Murphy RC. Free radical oxidation of plasmalogen glycerophosphocholine containing esterified docosahexaenoic acid: structure determination by mass spectrometry. Antioxid Redox Signal 2005; 7:157-69. [PMID: 15650405 DOI: 10.1089/ars.2005.7.157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasmalogen phospholipids have a vinyl ether substituent at the sn-1 position that is susceptible to oxidative reactions that occur at cell membranes. However, the mechanism by which this oxidation occurs and the effect of the polyunsaturated fatty acid at the sn-2 position have not been established. To gain insight into these mechanisms, the oxidized phospholipid products resulting from the exposure of 1-O-hexadec-1'-enyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (16:0p/22:6-GPCho) to the free radical initiator 2, 2'-azobis (2- amidinopropane) hydrochloride were examined. Electrospray ionization tandem mass spectrometry, UV spectroscopy, and electron ionization-gas chromatography/mass spectrometry were used to structurally characterize the oxidized glycerophosphocholine (GPCho) products. The radical-induced peroxidation of 16:0p/22:6-GPCho revealed two major classes of oxidized phospholipids. The first class of products was formed by oxidation at the sn-1 position and included 1-lyso-2-docosahexaenoyl-GPCho and 1-formyl-2-docosahexaenoyl-GPCho. Additionally, the second class of oxidized products where oxidation occurred at the sn-2 position was classified into three categories that included chain-shortened omega-aldehydes, terminal gamma-hydroxy-alpha,beta-unsaturated aldehydes, and the addition of one or two oxygen atoms onto the sn-2 position of 16:0p/22:6-GPCho. These results clearly indicate that free radical-induced oxidation of plasmalogen phospholipids with esterified docosahexaenoic acid at the sn-2 position underwent oxidation at both the sn-1 and sn-2 positions.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Cell Biology Division, Department of Pediatrics, National Jewish Medical and Research Center., Denver, CO 80045-0511, USA
| | | |
Collapse
|
24
|
Davies MJ. The oxidative environment and protein damage. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1703:93-109. [PMID: 15680218 DOI: 10.1016/j.bbapap.2004.08.007] [Citation(s) in RCA: 998] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 08/18/2004] [Accepted: 08/18/2004] [Indexed: 11/21/2022]
Abstract
Proteins are a major target for oxidants as a result of their abundance in biological systems, and their high rate constants for reaction. Kinetic data for a number of radicals and non-radical oxidants (e.g. singlet oxygen and hypochlorous acid) are consistent with proteins consuming the majority of these species generated within cells. Oxidation can occur at both the protein backbone and on the amino acid side-chains, with the ratio of attack dependent on a number of factors. With some oxidants, damage is limited and specific to certain residues, whereas other species, such as the hydroxyl radical, give rise to widespread, relatively non-specific damage. Some of the major oxidation pathways, and products formed, are reviewed. The latter include reactive species, such as peroxides, which can induce further oxidation and chain reactions (within proteins, and via damage transfer to other molecules) and stable products. Particular emphasis is given to the oxidation of methionine residues, as this species is readily oxidised by a wide range of oxidants. Some side-chain oxidation products, including methionine sulfoxide, can be employed as sensitive, specific, markers of oxidative damage. The product profile can, in some cases, provide valuable information on the species involved; selected examples of this approach are discussed. Most protein damage is non-repairable, and has deleterious consequences on protein structure and function; methionine sulfoxide formation can however be reversed in some circumstances. The major fate of oxidised proteins is catabolism by proteosomal and lysosomal pathways, but some materials appear to be poorly degraded and accumulate within cells. The accumulation of such damaged material may contribute to a range of human pathologies.
Collapse
Affiliation(s)
- Michael J Davies
- The Heart Research Institute, 145 Missenden Road, Sydney, NSW 2050, Australia.
| |
Collapse
|
25
|
Winterbourn CC, Parsons-Mair HN, Gebicki S, Gebicki JM, Davies MJ. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem J 2004; 381:241-8. [PMID: 15025556 PMCID: PMC1133782 DOI: 10.1042/bj20040259] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 03/16/2004] [Indexed: 11/17/2022]
Abstract
Superoxide reacts rapidly with other radicals, but these reactions have received little attention in the context of oxidative stress. For tyrosyl radicals, reaction with superoxide is 3-fold faster than dimerization, and forms the addition product tyrosine hydroperoxide. We have explored structural requirements for hydroperoxide formation using tyrosine analogues and di- and tri-peptides. Superoxide and phenoxyl radicals were generated using xanthine oxidase, peroxidase and the respective tyrosine derivative, or by gamma-radiation. Peroxides were measured using FeSO4/Xylenol Orange. Tyrosine and tyramine formed stable hydroperoxides, but N-acetyltyrosine and p-hydroxyphenylacetic acid did not, demonstrating a requirement for a free amino group. Using [14C]tyrosine, the hydroperoxide and dityrosine were formed at a molar ratio of 1.8:1. Studies with pre-formed hydroperoxides, and measurements of substrate losses, indicated that, in the absence of a free amino group, reaction with superoxide resulted primarily in restitution of the parent compound. With dipeptides, hydroperoxides were formed only on N-terminal tyrosines. However, adjacent lysines promoted hydroperoxide formation, as did addition of free lysine or ethanolamine. Results are compatible with a mechanism [d'Alessandro, Bianchi, Fang, Jin, Schuchmann and von Sonntag (2000) J. Chem. Soc. Perkin Trans. II, 1862-1867] in which the phenoxyl radicals react initially with superoxide by addition, and the intermediate formed either releases oxygen to regenerate the parent compound or is converted into a hydroperoxide. Amino groups favour hydroperoxide formation through Michael addition to the tyrosyl ring. These studies indicate that tyrosyl hydroperoxides should be formed in proteins where there is a basic molecular environment. The contribution of these radical reactions to oxidative stress warrants further investigation.
Collapse
Affiliation(s)
- Christine C Winterbourn
- Department of Pathology, Christchurch School of Medicine and Health Sciences, P.O. Box 4345, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
26
|
Nukuna BN, Sun G, Anderson VE. Hydroxyl radical oxidation of cytochrome c by aerobic radiolysis. Free Radic Biol Med 2004; 37:1203-13. [PMID: 15451060 DOI: 10.1016/j.freeradbiomed.2004.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 06/29/2004] [Accepted: 07/01/2004] [Indexed: 11/28/2022]
Abstract
The reaction of radiolytically generated *OH with cytochrome c was investigated by mass spectrometry. Tryptic digestion and characterization of the oxidized peptides by MALDI-TOF and ESI tandem mass spectrometry identified eight different amino acid residues with oxidized side chains with no cleavage of the protein detected. Solvent-accessible aromatic and methionine residues are the most susceptible to oxidation by *OH. These results support the careful use of *OH in characterizing protein surfaces. Dose-response studies identified the residues most prone to oxidation to be Phe-36, Phe-46, and Met-80. Hydroxylation of Phe-36 and Phe-46 should serve as indicators of the presence of *OH in the mitochondrial intermembrane space. Using solutions containing 50 at.% (18)O, our study also provides a novel method of determining the source of oxygen during *OH-mediated oxidation of proteins and contributes to identification of the modified residue type, with Phe>Tyr>Met in (18)O incorporation. During aerobic radiolysis, UV-vis spectroscopy indicates that ferrocytochrome c reaches a steady state concomitant with reduction of the heme.
Collapse
Affiliation(s)
- Benedicta N Nukuna
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4935, USA
| | | | | |
Collapse
|
27
|
Headlam HA, Davies MJ. Markers of protein oxidation: different oxidants give rise to variable yields of bound and released carbonyl products. Free Radic Biol Med 2004; 36:1175-84. [PMID: 15082071 DOI: 10.1016/j.freeradbiomed.2004.02.017] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Revised: 02/11/2004] [Accepted: 02/13/2004] [Indexed: 11/21/2022]
Abstract
Exposure of proteins to radicals in the presence of O2 gives both side-chain oxidation and backbone fragmentation. These processes can be interrelated, with initial side-chain oxidation giving rise to backbone damage via transfer reactions. We have shown previously that alkoxyl radicals formed on the C-3 carbons of Ala, Val, Leu, and Asp residues undergo beta-scission to give backbone alpha-carbon radicals, with the release of the side- chain as a carbonyl compound. We now show that this is a general mechanism that occurs with a wide range of oxidants. The quantitative significance of this process depends on the extent of oxidation at C-3 compared with other sites. HO*, generated by gamma radiolysis, gave the highest total carbonyl yield, with protein-bound carbonyls predominating over released. In contrast, metal ion/H2O2 systems, gave more released than bound carbonyls, with this ratio modulated by EDTA. This is ascribed to metal ion-protein interactions affecting the sites of initial oxidation. Hypochlorous acid gave low concentrations of released carbonyls, but high yields of protein-bound material. The peroxyl radical generator 2,2'-azobis(2-amidinopropane) hydrochloride, and a peroxynitrite generator, 3-morpholinosydnonimine hydrochloride, gave lower overall carbonyl yields, with released carbonyls predominating over protein-bound species similar to that observed with metal ion/H2O2 systems.
Collapse
|
28
|
Woods AA, Linton SM, Davies MJ. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques. Biochem J 2003; 370:729-35. [PMID: 12456264 PMCID: PMC1223198 DOI: 10.1042/bj20021710] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2002] [Accepted: 11/28/2002] [Indexed: 12/23/2022]
Abstract
Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has been interpreted in terms of the occurrence of two oxidative mechanisms, one involving oxygen-derived radicals catalysed by trace transition metal ions, and a second involving chlorinating species (HOCl or Cl2), generated by the haem enzyme myeloperoxidase (MPO). As MPO is released extracellularly by activated monocytes (and possibly macrophages) and is a highly basic protein, it would be expected to associate with polyanions such as the glycosaminoglycans of the extracellular matrix, and might result in damage being localized at such sites. In this study proteins extracted from extracellular matrix material obtained from advanced human atherosclerotic lesions are shown to contain elevated levels of oxidized amino acids [3,4-dihydroxyphenylalanine (DOPA), di-tyrosine, 2-hydroxyphenylalanine ( o-Tyr)] when compared with healthy (human and pig) arterial tissue. These matrix-derived materials account for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions. The detection of elevated levels of DOPA and o-Tyr, which have been previously attributed to the occurrence of oxygen-radical-mediated reactions, by HOCl treatment, suggests an alternative route to the formation of these materials in plaques. This is believed to involve the formation and subsequent decomposition of protein chloramines.
Collapse
Affiliation(s)
- Alan A Woods
- The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, New South Wales 2050, Australia
| | | | | |
Collapse
|
29
|
Abstract
Radical attack on proteins in the presence of O(2) gives protein hydroperoxides in high yields. These peroxides are decomposed by transition metal ions, reducing agents, UV light and heat, with the formation of a range of reactive radicals that are capable of initiating further damage. Evidence has been presented for the formation of alcohols as stable products of peroxide decomposition, and these have been employed as markers of oxidative damage in vivo. The mechanism of formation of these alcohols is unclear, with both radical and nonradical pathways capable of generating these products. In this study we have investigated the reduction of peptide and protein hydroperoxides by THP-1 (human monocyte-like) cells and it is shown that this process is accompanied by radical formation as detected by EPR spin trapping. The radicals detected, which are similar to those detected from metal-ion catalyzed reduction, are generated externally to the cell. In the absence of cells, or with cell-conditioned media or cell lysates, lower concentrations of radicals were detected, indicating that intact cells are required for rapid hydroperoxide decomposition. The rate of radical generation was enhanced by preloading the cells with ascorbate, and this was accompanied by intracellular formation of the ascorbate radical. It is proposed that decomposition of some amino acid and peptide hydroperoxides occurs extracellularly via the involvement of a cell-surface reducing system, such as a trans-plasma membrane electron transport system (TPMET) either directly, or indirectly via redox cycling of trace transition metal ions.
Collapse
|
30
|
Headlam HA, Davies MJ. Beta-scission of side-chain alkoxyl radicals on peptides and proteins results in the loss of side-chains as aldehydes and ketones. Free Radic Biol Med 2002; 32:1171-84. [PMID: 12031901 DOI: 10.1016/s0891-5849(02)00814-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exposure of proteins to radicals in the presence of O(2) results in side-chain oxidation and backbone fragmentation; the interrelationship between these processes is not fully understood. Recently, initial attack on Ala side-chains was shown to give alpha-carbon radicals (and hence backbone cleavage) and formaldehyde, via the formation and subsequent beta-scission, of C-3 alkoxyl radicals. We now show that this side-chain to backbone damage transfer, is a general mechanism for aliphatic side-chains. Oxidation of Val, Leu, and Asp residues by HO(*)/O(2) results in the release of a family of carbonyls (including formaldehyde, acetone, isobutyraldehyde, and glyoxylic acid) via the formation, and subsequent beta-scission of alkoxyl radicals. The concentration of these products increases with the HO(*) flux. The release of multiple carbonyls confirms the occurrence of oxidation at C-3 and C-4 for Val, and these sites, plus C-5, for Leu. The detection of glyoxylic acid and CO(2)(-*) from Asp demonstrates the occurrence of competing beta-scission processes for the Asp C-3 alkoxyl radical. The yield of hydroperoxides and released carbonyls account for 10-145% of the initial HO(*). The greater than 100% yields confirm the occurrence of chain reactions in peptide/protein oxidation, with more than one residue being damaged per initiating radical.
Collapse
Affiliation(s)
- Henrietta A Headlam
- The Free Radical Group, Heart Research Institute, Camperdown, Sydney, Australia
| | | |
Collapse
|
31
|
Kang JH, Kim KS, Choi SY, Kwon HY, Won MH, Kang TC. Protective effects of carnosine, homocarnosine and anserine against peroxyl radical-mediated Cu,Zn-superoxide dismutase modification. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1570:89-96. [PMID: 11985892 DOI: 10.1016/s0304-4165(02)00158-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carnosine (beta-alanyl-L-histidine), homocarnosine (gamma-amino-butyryl-L-histidine) and anserine (beta-alanyl-1-methyl-L-histidine) have been proposed to act as anti-oxidants in vivo. The protective effects of carnosine and related compounds against the oxidative damage of human Cu,Zn-superoxide dismutase (SOD) by peroxyl radicals generated from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) were studied. The oxidative damage to Cu,Zn-SOD by AAPH-derived radicals led to protein fragmentation, which is associated with the inactivation of enzyme. Carnosine, homocarnosine and anserine significantly inhibited the fragmentation and inactivation of Cu,Zn-SOD by AAPH. All three compounds also inhibited the release of copper ions from the enzyme and the formation of carbonyl compounds in AAPH-treated Cu,Zn-SOD. These compounds inhibited the fragmentation of other protein without copper ion. The results suggest that carnosine and related compounds act as the copper chelator and peroxyl radical scavenger to protect the protein fragmentation. Oxidation of amino acid residues in Cu,Zn-SOD induced by AAPH were significantly inhibited by carnosine and related compounds. It is proposed that carnosine and related dipeptides might be explored as potential therapeutic agents for pathologies that involve Cu,Zn-SOD modification mediated by peroxyl radicals.
Collapse
Affiliation(s)
- Jung Hoon Kang
- Department of Genetic Engineering, Division of Natural Sciences, Chongju University, 360-764, South Korea.
| | | | | | | | | | | |
Collapse
|
32
|
Hawkins CL, Davies MJ. Generation and propagation of radical reactions on proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:196-219. [PMID: 11245785 DOI: 10.1016/s0005-2728(00)00252-8] [Citation(s) in RCA: 517] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The oxidation of proteins by free radicals is thought to play a major role in many oxidative processes within cells and is implicated in a number of human diseases as well as ageing. This review summarises information on the formation of radicals on peptides and proteins and how radical damage may be propagated and transferred within protein structures. The emphasis of this article is primarily on the deleterious actions of radicals generated on proteins, and their mechanisms of action, rather than on enzymatic systems where radicals are deliberately formed as transient intermediates. The final section of this review examines the control of protein oxidation and how such damage might be limited by antioxidants.
Collapse
Affiliation(s)
- C L Hawkins
- Heart Research Institute, 145 Missenden Road, Camperdown, 2050, Sydney, NSW, Australia
| | | |
Collapse
|
33
|
Affiliation(s)
- J W Naskalski
- Department of Diagnostics, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
34
|
Radiation chemistry of proteins. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0167-6881(01)80022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
35
|
Kwon HY, Choi SY, Won MH, Kang T, Kang JH. Oxidative modification and inactivation of Cu,Zn-superoxide dismutase by 2,2'-azobis(2-amidinopropane) dihydrochloride. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1543:69-76. [PMID: 11087942 DOI: 10.1016/s0167-4838(00)00197-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have investigated oxidative modification of human Cu, Zn-superoxide dismutase (SOD) by alkylperoxyl radicals and alkylperoxides. To generate free radicals, we used the hydrophilic azocompound, 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). When Cu,Zn-SOD was incubated with AAPH, the enzyme activity was decreased gradually in a time-dependent manner. The oxidative damage to Cu,Zn-SOD by AAPH-derived radicals led to protein fragmentation which is associated with the inactivation of enzyme. Incubation with AAPH resulted in the release of copper ions from Cu,Zn-SOD and the generation of protein carbonyl derivatives. Catalase did not protect the fragmentation of Cu,Zn-SOD whereas azide, glutathione and a metal chelator, diethylenetriamine pentaacetic acid inhibited the protein fragmentation. When Cu,Zn-SOD that has been exposed to AAPH was subsequently analyzed by amino acid analysis, lysine, histidine, proline, and valine residues were particularly sensitive. It is suggested that oxidative damage of Cu,Zn-SOD by AAPH-derived radicals may induce the perturbation of cellular antioxidant defense systems and subsequently lead to the deleterious condition in cells.
Collapse
Affiliation(s)
- H Y Kwon
- Departmernt of Physiology, College of Medicine, Hallym University, Chunchon 200-702, South Korea
| | | | | | | | | |
Collapse
|
36
|
Cholesterol and oxysterol metabolism and subcellular distribution in macrophage foam cells: accumulation of oxidized esters in lysosomes. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32056-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Davies MJ, Fu S, Wang H, Dean RT. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med 1999; 27:1151-63. [PMID: 10641706 DOI: 10.1016/s0891-5849(99)00206-3] [Citation(s) in RCA: 316] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mechanisms of formation and the nature of the altered amino acid side chains formed on proteins subjected to oxidant attack are reviewed. The use of stable products of protein side chain oxidation as potential markers for assessing oxidative damage in vivo in humans is discussed. The methods developed in the authors laboratories are outlined, and the advantages and disadvantages of these techniques compared with other methodologies for assessing oxidative damage to proteins and other macromolecules. Evidence is presented to show that protein oxidation products are sensitive markers of oxidative damage, that the pattern of products detected may yield information as to the nature of the original oxidative insult, and that the levels of oxidized side-chains can, in certain circumstances, be much higher than those of other markers of oxidation such as lipid hydroperoxides.
Collapse
Affiliation(s)
- M J Davies
- The Heart Research Institute, Camperdown, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
38
|
Hemmingsen A, Allen JT, Zhang S, Mortensen J, Spiteri MA. Early detection of ozone-induced hydroperoxides in epithelial cells by a novel infrared spectroscopic method. Free Radic Res 1999; 31:437-48. [PMID: 10547188 DOI: 10.1080/10715769900301001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the lower atmosphere ozone is a toxic and an unwanted oxidising pollutant causing injury to the airway epithelial cells by lipid peroxidation to yield products such as phospholipid hydroperoxides (PLHP). Measurements of PLHP, which are primary oxidation products, may reflect an early susceptibility of the target cell to oxidative stress. Biphasic cultures of bronchial epithelial cells (BEAS-2B) were exposed to ozone at environmentally relevant concentrations (0.1-1.0 ppm) for 4 and 12 h. Detection of PLHP was made using a novel technique based on fourier transform infrared spectroscopy (FTIR) in combination with high performance thin-layer chromatography (HPTLC). Six phospholipids were identified on the HPTLC plate; lysophosphatidylcholine (LPC), sphingomyelin (SM), phosphatidylcholine (PC), lysophosphatidylethanolamine (LPE), phosphatidylinositol (PI), and phosphatidylethanolamine (PE). From the FTIR spectra, O-O stretching of hydroperoxides was identified in the range 890-820cm(-1). Multivariate data analysis revealed a positive correlation (r = 0.99 for 4 h exposure and r = 0.98 for 12h exposure) between ozone exposure levels and the region of the FTIR-spectrum comprising the main wavelengths for hydroperoxides. These data support this alternative, versatile and novel spectroscopic approach for the early detection of ozone-mediated damage in human airway epithelial cells.
Collapse
Affiliation(s)
- A Hemmingsen
- Lung Injury and Inflammation Research Group, Department of Respiratory Medicine, North Staffordshire Hospital, Stoke-on-Trent, England.
| | | | | | | | | |
Collapse
|
39
|
James MJ, van Reyk D, Rye KA, Dean RT, Cleland LG, Barter PJ, Jessup W. Low density lipoprotein of synovial fluid in inflammatory joint disease is mildly oxidized. Lipids 1998; 33:1115-21. [PMID: 9870907 DOI: 10.1007/s11745-998-0313-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidatively modified low density lipoprotein (LDL) has many biological activities which could contribute to the pathology of the atherosclerotic lesion. Because atherosclerosis has an inflammatory component, there has been much interest in the extent to which LDL could be oxidatively modified in vivo by inflammation. The present study examined LDL present in an accessible inflammatory site, the inflamed synovial joint, for evidence of compositional change and oxidative modification. LDL was isolated from knee joint synovial fluid (SF) from subjects with inflammatory arthropathies and also from matched plasma samples. SF and plasma LDL had similar free cholesterol and alpha-tocopherol content, but SF LDL had a lower content of esterified cholesterol. On electrophoresis, SF LDL was slightly more electronegative than LDL from matched plasma samples, but the changes were much less than those resulting from Cu2+-treatment of LDL. Oxidized cholesterol was not detected in any samples, but cholesterol ester hydroperoxide levels were greater in SF than in plasma LDL. When samples from three subjects were incubated with macrophages, the SF LDL did not cause significant loading of the cells with cholesterol or cholesterol esters, in contrast to the situation with acetylated LDL. Overall, the SF LDL displayed evidence of slightly increased oxidation by comparison with matched plasma samples. Despite their isolation from an environment with active inflammation, changes were modest compared with those resulting from Cu2+ treatment. Thus, extensive LDL oxidation is not a necessary correlate of location in a chronic inflammatory site, even though it is characteristic of atherosclerotic lesions.
Collapse
Affiliation(s)
- M J James
- Rheumatology Unit, Royal Adelaide Hospital, SA, Australia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Fu S, Dean R, Southan M, Truscott R. The hydroxyl radical in lens nuclear cataractogenesis. J Biol Chem 1998; 273:28603-9. [PMID: 9786852 DOI: 10.1074/jbc.273.44.28603] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cataract is the major cause of blindness; the most common form is age-related, or senile, cataract. The reasons for the development of cataract are unknown. Here we demonstrate that nuclear cataract is associated with the extensive hydroxylation of protein-bound amino acid residues, which increases with the development of cataract by up to 15-fold in the case of DOPA. The relative abundance of the oxidized amino acids in lens protein (assessed per parent amino acid) is DOPA > o- and m-tyrosine > 3-hydroxyvaline, 5-hydroxyleucine > dityrosine. Nigrescent cataracts, in which the normally transparent lens becomes black and opaque, contain the highest level of hydroxylated amino acids yet observed in a biological tissue: for example, per 1000 parent amino acid residues, DOPA, 15; 3-hydroxyvaline, 0.3; compared with dityrosine, 0.05. The products include representatives of the hydroperoxide and DOPA pathways of protein oxidation, which can give rise to secondary reactive species, radical and otherwise. The observed relative abundance corresponds closely with that of products of hydroxyl radical or metal-dependent oxidation of isolated proteins, and not with the patterns resulting from hypochlorite or tyrosyl-radical oxidation. Although very little light in the 300-400-nm range passes the cornea and the filter compounds of the eye, we nevertheless also demonstrate that photoxidation of lens proteins with light of 310 nm, the part of the spectrum in which protein aromatic residues have residual absorbance, does not give rise to the hydroxylated aliphatic amino acids. Thus the post-translational modification of crystallins by hydroxyl radicals/Fenton systems seems to dominate their in vivo oxidation, and it could explain the known features of such nuclear cataractogenesis.
Collapse
Affiliation(s)
- S Fu
- Cell Biology Group, the Heart Research Institute, Camperdown, New South Wales, 2050, Australia
| | | | | | | |
Collapse
|
41
|
Fu S, Davies MJ, Stocker R, Dean RT. Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque. Biochem J 1998; 333 ( Pt 3):519-25. [PMID: 9677308 PMCID: PMC1219612 DOI: 10.1042/bj3330519] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidative damage might be important in atherogenesis. Oxidized lipids are present at significant concentrations in advanced human plaque, although tissue antioxidants are mostly present at normal concentrations. Indirect evidence of protein modification (notably derivatization of lysine) or oxidation has been obtained by immunochemical methods; the specificities of these antibodies are unclear. Here we present chemical determinations of six protein-bound oxidation products: dopa, o-tyrosine, m-tyrosine, dityrosine, hydroxyleucine and hydroxyvaline, some of which reflect particularly oxy-radical-mediated reaction pathways, which seem to involve mainly the participation of transition- metal ions. We compared the relative abundance of these oxidation products in normal intima, and in human carotid plaque samples with that observed after radiolytically generated hydroxyl radical attack on BSA in vitro. The close similarities in relative abundances in the latter two circumstances indicate that hydroxyl radical damage might occur in plaque. The relatively higher level of dityrosine in plaque than that observed after radiolysis suggests the additional involvement of HOCl-mediated reactions in advanced plaque.
Collapse
Affiliation(s)
- S Fu
- Cell Biology Group, The Heart Research Institute, 145 Missenden Road, Camperdown, NSW, 2050, Australia
| | | | | | | |
Collapse
|
42
|
Robinson S, Bevan R, Lunec J, Griffiths H. Chemiluminescence determination of hydroperoxides following radiolysis and photolysis of free amino acids. FEBS Lett 1998; 430:297-300. [PMID: 9688559 DOI: 10.1016/s0014-5793(98)00679-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Hydroperoxides were determined in selected amino acids using three free radical generating systems by a sensitive (50 pmol limit of detection) and specific high performance liquid chromatography (HPLC)/chemiluminescence method. UVB and gamma radiation produced significant hydroperoxide formation, particularly in the aromatic amino acids tyrosine and tryptophan. Hydroperoxide yield was found to be dependent on both amino acid and irradiation source. Generation of hydrogen peroxide as a by-product of irradiation caused interference with chemiluminescence detection demonstrating the need for catalase addition. Hydroperoxides were not detectable following metal-catalysed H2O2 breakdown. We suggest that metal ions could interfere with the detection of hydroperoxides by causing preferential decomposition.
Collapse
Affiliation(s)
- S Robinson
- Division of Chemical Pathology, Centre for Mechanisms of Human Toxicity, MRC Toxicology Unit, University of Leicester, UK
| | | | | | | |
Collapse
|
43
|
Finley EL, Dillon J, Crouch RK, Schey KL. Radiolysis-Induced Oxidation of Bovine α-Crystallin. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb03245.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Morin B, Davies MJ, Dean RT. The protein oxidation product 3,4-dihydroxyphenylalanine (DOPA) mediates oxidative DNA damage. Biochem J 1998; 330 ( Pt 3):1059-67. [PMID: 9494069 PMCID: PMC1219245 DOI: 10.1042/bj3301059] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A major product of hydroxy-radical addition to tyrosine is 3, 4-dihydroxyphenylalanine (DOPA) which has reducing properties. Protein-bound DOPA (PB-DOPA) has been shown to be a major component of the stable reducing species formed during protein oxidation under several conditions. The aim of the present work was to investigate whether DOPA, and especially PB-DOPA, can mediate oxidative damage to DNA. We chose to generate PB-DOPA using mushroom tyrosinase, which catalyses the hydroxylation of tyrosine residues in protein. This permitted us to study the reactions of PB-DOPA in the virtual absence of other protein-bound oxidation products. The formation of two oxidation products of DNA, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodG) and 5-hydroxy-2'-deoxycytidine (5OHdC), were studied with a novel HPLC using gradient elution and an electrochemical detection method, which allowed the detection of both DNA modifications in a single experiment. We found that exposure of calf thymus DNA to DOPA or PB-DOPA resulted in the formation of 8oxodG and 5OHdC, with the former predominating. The formation of these DNA oxidation products by either DOPA or PB-DOPA depended on the presence of oxygen, and also on the presence and on the concentration of transition metal ions, with copper being more effective than iron. The yields of 8oxodG and 5OHdC increased with DOPA concentration in proteins. Thus PB-DOPA was able to promote further radical-generating events, which then transferred damage to other biomolecules such as DNA.
Collapse
Affiliation(s)
- B Morin
- Cell Biology Unit, The Heart Research Institute, 145-147 Missenden Road, Camperdown, Sydney, NSW2050, Australia
| | | | | |
Collapse
|
45
|
Silvester JA, Timmins GS, Davies MJ. Protein hydroperoxides and carbonyl groups generated by porphyrin-induced photo-oxidation of bovine serum albumin. Arch Biochem Biophys 1998; 350:249-58. [PMID: 9473299 DOI: 10.1006/abbi.1997.0495] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Porphyrin-sensitized photo-oxidation of bovine serum albumin results in oxidation at specific sites to produce protein radical species: at the Cys-34 residue (to give a thiyl radical) and at one or both tryptophan residues (Trp-134 and Trp-214) to give tertiary carbon-centered radicals and cause disruption of the indole ring system. This study shows that these photo-oxidation processes also consume oxygen and give rise to hydrogen peroxide, protein hydroperoxides, and carbonyl functions. The yield of hydrogen peroxide, protein hydroperoxides, and carbonyl functions is shown to be dependent on illumination time, the nature of the sensitizer, and the concentration of oxygen; the yield of hydroperoxides can also be markedly diminished by the presence of a spin trap which reacts with the initial protein radicals. The mechanism of formation of the protein hydroperoxides is suggested to be primarily through type I processes (i.e., independent of singlet oxygen), while type II (singlet oxygen) mechanisms may play a significant role in protein carbonyl formation. Reaction of the protein hydroperoxide species with metal ion complexes is shown to produce further protein-derived radicals which are predominantly present on amino acid side chains.
Collapse
Affiliation(s)
- J A Silvester
- Department of Chemistry, University of York, York, United Kingdom
| | | | | |
Collapse
|
46
|
Fu S, Fu MX, Baynes JW, Thorpe SR, Dean RT. Presence of dopa and amino acid hydroperoxides in proteins modified with advanced glycation end products (AGEs): amino acid oxidation products as a possible source of oxidative stress induced by AGE proteins. Biochem J 1998; 330 ( Pt 1):233-9. [PMID: 9461515 PMCID: PMC1219132 DOI: 10.1042/bj3300233] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycation and subsequent Maillard or browning reactions of glycated proteins, leading to the formation of advanced glycation end products (AGEs), are involved in the chemical modification of proteins during normal aging and have been implicated in the pathogenesis of diabetic complications. Oxidative conditions accelerate the browning of proteins by glucose, and AGE proteins also induce oxidative stress responses in cells bearing AGE receptors. These observations have led to the hypothesis that glycation-induced pathology results from a cycle of oxidative stress, increased chemical modification of proteins via the Maillard reaction, and further AGE-dependent oxidative stress. Here we show that the preparation of AGE-collagen by incubation with glucose under oxidative conditions in vitro leads not only to glycation and formation of the glycoxidation product Nepsilon-(carboxymethyl)lysine (CML), but also to the formation of amino acid oxidation products on protein, including m-tyrosine, dityrosine, dopa, and valine and leucine hydroperoxides. The formation of both CML and amino acid oxidation products was prevented by anaerobic, anti-oxidative conditions. Amino acid oxidation products were also formed when glycated collagen, prepared under anti-oxidative conditions, was allowed to incubate under aerobic conditions that led to the formation of CML. These experiments demonstrate that amino acid oxidation products are formed in proteins during glycoxidation reactions and suggest that reactive oxygen species formed by redox cycling of dopa or by the metal-catalysed decomposition of amino acid hydroperoxides, rather than by redox activity or reactive oxygen production by AGEs on protein, might contribute to the induction of oxidative stress by AGE proteins.
Collapse
Affiliation(s)
- S Fu
- Cell Biology Unit, Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, NSW 2050, Australia
| | | | | | | | | |
Collapse
|
47
|
Brocks JJ, Welle FM, Beckhaus HD, Rüchardt C. Are α-centered peptide radicals stabilized by a capto-dative effect? Tetrahedron Lett 1997. [DOI: 10.1016/s0040-4039(97)10085-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 1997; 324 ( Pt 1):1-18. [PMID: 9164834 PMCID: PMC1218394 DOI: 10.1042/bj3240001] [Citation(s) in RCA: 1148] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several categories of reactive species, and a range of stable products whose chemistry is currently being elucidated. Among the reactive products, protein hydroperoxides can generate further radical fluxes on reaction with transition-metal ions; protein-bound reductants (notably dopa) can reduce transition-metal ions and thereby facilitate their reaction with hydroperoxides; and aldehydes may participate in Schiff-base formation and other reactions. Cells can detoxify some of the reactive species, e.g. by reducing protein hydroperoxides to unreactive hydroxides. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. Thus cells can generally remove oxidized proteins by proteolysis. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, this may contribute to the observed accumulation and damaging actions of oxidized proteins during aging and in pathologies such as diabetes, atherosclerosis and neurodegenerative diseases. Protein oxidation may also sometimes play controlling roles in cellular remodelling and cell growth. Proteins are also key targets in defensive cytolysis and in inflammatory self-damage. The possibility of selective protection against protein oxidation (antioxidation) is raised.
Collapse
Affiliation(s)
- R T Dean
- Cell Biology Unit, The Heart Research Institute, 145-147 Missenden Road, Camperdown, Sydney, NSW 2050, Australia
| | | | | | | |
Collapse
|
49
|
Fu SL, Dean RT. Structural characterization of the products of hydroxyl-radical damage to leucine and their detection on proteins. Biochem J 1997; 324 ( Pt 1):41-8. [PMID: 9164839 PMCID: PMC1218399 DOI: 10.1042/bj3240041] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously reported the formation of valine hydroperoxides and aldehydes from hydroxyl-radical attack on free valine and protein molecules. We have also demonstrated that the major degradation products of valine hydroperoxides by several biochemical and cellular systems are the corresponding hydroxides, and therefore proposed that hydroxyvalines may serve as useful in vivo markers for studying protein oxidation. Here we have undertaken the structural elucidation of the oxidation products of leucine, another amino acid which is very susceptible to peroxidation. Hydroxyl-radical (HO.) attack on l-leucine in the presence of oxygen, followed by NaBH4 reduction, gave rise to five major oxidation products which have been isolated and identified. On the basis of chemical and spectroscopic evidence, the five products have been identified as (2S)-gamma-hydroxyleucine, (2S,4S)-delta-hydroxyleucine, (2S,4R)-delta-hydroxyleucine, (2S,4R)-4-methylproline (trans-4-methyl-l-proline) and (2S,4S)-4-methylproline (cis-4-methyl-l-proline). The three hydroxyleucines have been confirmed to be the reduction products of the corresponding hydroperoxyleucines, while the two proline analogues are from reduction of their corresponding cyclic Schiff bases. By HPLC analysis using post-column o-phthaldialdehyde derivatization, we have detected hydroxyleucines in the hydrolysates of tripeptides and proteins which had been gamma-radiolysed and treated with NaBH4. Furthermore, we demonstrate the occurrence of the hydroxyleucines on proteins in physiological and pathological samples. Hydroxyleucines, like hydroxyvalines, may provide useful in vivo markers for studying protein oxidation. In the present study we also investigated the competition between leucine, valine and phenylalanine for HO., and proposed a possible radical-transfer process in such free-radical reactions.
Collapse
Affiliation(s)
- S L Fu
- Heart Research Institute, 145 Missenden Road, Camperdown, NSW 2050, Australia
| | | |
Collapse
|
50
|
Fu S, Gebicki S, Jessup W, Gebicki JM, Dean RT. Biological fate of amino acid, peptide and protein hydroperoxides. Biochem J 1995; 311 ( Pt 3):821-7. [PMID: 7487937 PMCID: PMC1136075 DOI: 10.1042/bj3110821] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the course of searching for a suitable marker for studying protein oxidation, we have successfully elucidated the structures of three valine hydroperoxides, i.e. beta-hydroperoxyvaline, (2S,3S)-gamma-hydroperoxyvaline and (2S,3R)-gamma-hydroperoxyvaline, which are novel products of protein oxidation. The corresponding valine hydroxides were obtained by sodium borohydride reduction [Fu, Hick, Sheil and Dean (1995) Free Rad. Biol. Med. 19, 281-292]. We hypothesized that valine hydroxides might be the major biological degradation products of valine hydroperoxides and, as such, could be useful markers for the study of protein oxidation in vivo. The aim of this study was to investigate the fate of valine hydroperoxide in selected biological systems by the use of chemiluminescence detection of hydroperoxides and HPLC analysis of O-phthaldialdehyde derivatives of amino acid residues. The degradation of hydroperoxides present on gamma-radiolysed solutions of valine, Pro-Val-Gly, or BSA occurred in the presence of: (1) transition metals (Fe2+, Fe3+, or Cu2+), (2) the detoxifying enzyme GSH peroxidase, (3) human plasma, and (4) J774 mouse monocyte macrophage cells. The major degradation product of valine hydroperoxide recovered in each case was found to be a valine hydroxide. These results suggest that valine hydroxide (derived from the hydroperoxide) may well be a useful in vivo marker for studying protein damage under oxidative stress.
Collapse
Affiliation(s)
- S Fu
- Heart Research Institute, Camperdown, NSW, Australia
| | | | | | | | | |
Collapse
|