1
|
Lara Aparicio SY, Laureani Fierro ÁDJ, Aranda Abreu GE, Toledo Cárdenas R, García Hernández LI, Coria Ávila GA, Rojas Durán F, Aguilar MEH, Manzo Denes J, Chi-Castañeda LD, Pérez Estudillo CA. Current Opinion on the Use of c-Fos in Neuroscience. NEUROSCI 2022; 3:687-702. [PMID: 39483772 PMCID: PMC11523728 DOI: 10.3390/neurosci3040050] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 11/03/2024] Open
Abstract
For years, the biochemical processes that are triggered by harmful and non-harmful stimuli at the central nervous system level have been extensively studied by the scientific community through numerous techniques and animal models. For example, one of these techniques is the use of immediate expression genes, which is a useful, accessible, and reliable method for observing and quantifying cell activation. It has been shown that both the c-fos gene and its protein c-Fos have rapid activation after stimulus, with the length of time that they remain active depending on the type of stimulus and the activation time depending on the stimulus and the structure studied. Fos requires the participation of other genes (such as c-jun) for its expression (during hetero-dimer forming). c-Fos dimerizes with c-Jun protein to form factor AP-1, which promotes the transcription of various genes. The production and removal of c-Fos is part of cellular homeostasis, but its overexpression results in increased cell proliferation. Although Fos has been used as a marker of cellular activity since the 1990s, which molecular mechanism participates in the regulation of the expression of this protein is still unknown because the gene and the protein are not specific to neurons or glial cells. For these reasons, this work has the objective of gathering information about this protein and its use in neuroscience.
Collapse
Affiliation(s)
- Sandra Yasbeth Lara Aparicio
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
- Laboratorio de Neurofisiología, Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Av. Luis Castelazo S/N, Col. Industrial Las Ánimas, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | | | | - Rebeca Toledo Cárdenas
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Luis Isauro García Hernández
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Genaro Alfonso Coria Ávila
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Fausto Rojas Durán
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | | - Jorge Manzo Denes
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | - Lizbeth Donají Chi-Castañeda
- Instituto en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa de Enríquez, Veracruz C.P. 91190, Mexico
| | | |
Collapse
|
2
|
Walker LC. A balancing act: the role of pro- and anti-stress peptides within the central amygdala in anxiety and alcohol use disorders. J Neurochem 2021; 157:1615-1643. [PMID: 33450069 DOI: 10.1111/jnc.15301] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
The central nucleus of the amygdala (CeA) is widely implicated as a structure that integrates both appetitive and aversive stimuli. While intrinsic CeA microcircuits primarily consist of GABAergic neurons that regulate amygdala output, a notable feature of the CeA is the heterogeneity of neuropeptides and neuropeptide/neuromodulator receptors that it expresses. There is growing interest in the role of the CeA in mediating psychopathologies, including stress and anxiety states and their interactions with alcohol use disorders. Within the CeA, neuropeptides and neuromodulators often exert pro- or anti- stress actions, which can influence anxiety and alcohol associated behaviours. In turn, alcohol use can cause adaptions within the CeA, which may render an individual more vulnerable to stress which is a major trigger of relapse to alcohol seeking. This review examines the neurocircuitry, neurochemical phenotypes and how pro- and anti-stress peptide systems act within the CeA to regulate anxiety and alcohol seeking, focusing on preclinical observations from animal models. Furthermore, literature exploring the targeting of genetically defined populations or neuronal ensembles and the role of the CeA in mediating sex differences in stress x alcohol interactions are explored.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
3
|
Walker LC, Kastman HE, Lawrence AJ. Pattern of neural activation following yohimbine‐induced reinstatement of alcohol seeking in rats. Eur J Neurosci 2020; 51:706-720. [DOI: 10.1111/ejn.14431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Leigh C. Walker
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
- Florey Department of Neuroscience and Mental Health The University of Melbourne Melbourne Victoria Australia
| | - Hanna E. Kastman
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
| | - Andrew J. Lawrence
- The Florey Institute of Neuroscience and Mental Health Parkville Victoria Australia
- Florey Department of Neuroscience and Mental Health The University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
4
|
Kastman HE, Blasiak A, Walker L, Siwiec M, Krstew EV, Gundlach AL, Lawrence AJ. Nucleus incertus Orexin2 receptors mediate alcohol seeking in rats. Neuropharmacology 2016; 110:82-91. [PMID: 27395787 DOI: 10.1016/j.neuropharm.2016.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
Alcoholism is a chronic relapsing disorder and a major global health problem. Stress is a key precipitant of relapse in human alcoholics and in animal models of alcohol seeking. The brainstem nucleus incertus (NI) contains a population of relaxin-3 neurons that are highly responsive to psychological stressors; and the ascending NI relaxin-3/RXFP3 signalling system is implicated in stress-induced reinstatement of alcohol seeking. The NI receives orexinergic innervation and expresses orexin1 (OX1) and orexin2 (OX2) receptor mRNA. In alcohol-preferring (iP) rats, we examined the impact of yohimbine-induced reinstatement of alcohol seeking on orexin neuronal activation, and the effect of bilateral injections into NI of the OX1 receptor antagonist, SB-334867 (n = 16) or the OX2 receptor antagonist, TCS-OX2-29 (n = 8) on stress-induced reinstatement of alcohol seeking. We also assessed the effects of orexin-A on NI neuronal activity and the involvement of OX1 and OX2 receptors using whole cell patch-clamp recordings in rat brain slices. Yohimbine-induced reinstatement of alcohol seeking activated orexin neurons. Bilateral NI injections of TCS-OX2-29 attenuated yohimbine-induced reinstatement of alcohol seeking. In contrast, intra-NI injection of SB-334867 had no significant effect. In line with these data, orexin-A (600 nM) depolarized a majority of NI neurons recorded in coronal brain slices (18/28 cells), effects prevented by bath application of TCS-OX2-29 (10 μM), but not SB-334867 (10 μM). These data suggest an excitatory orexinergic input to NI contributes to yohimbine-induced reinstatement of alcohol seeking, predominantly via OX2 receptor signalling.
Collapse
Affiliation(s)
- Hanna E Kastman
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Leigh Walker
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Marcin Siwiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, 30-387 Krakow, Poland
| | - Elena V Krstew
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
5
|
Nasehi M, Zamanparvar M, Ebrahimi-Ghiri M, Zarrindast MR. Modulation of cannabinoid signaling by amygdala α2-adrenergic system in fear conditioning. Behav Brain Res 2016; 300:114-22. [DOI: 10.1016/j.bbr.2015.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/01/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022]
|
6
|
Cai L, Bakalli H, Rinaman L. Yohimbine anxiogenesis in the elevated plus maze is disrupted by bilaterally disconnecting the bed nucleus of the stria terminalis from the central nucleus of the amygdala. Neuroscience 2012; 223:200-8. [PMID: 22890081 DOI: 10.1016/j.neuroscience.2012.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 11/24/2022]
Abstract
The α2 adrenergic receptor antagonist yohimbine (YO) is a sympathomimetic drug that crosses the blood-brain barrier after systemic administration. YO promotes increased transmitter release from noradrenergic (NA) axon terminals in the central nucleus of the amygdala (CEA), bed nucleus of the stria terminalis (BST), hypothalamus, and other brain regions implicated in physiological and behavioral responses to stressful and threatening stimuli. YO is potently anxiogenic in humans and experimental animals, including rats. To determine whether direct connections between the CEA and anterolateral group of BST nuclei (algBST) are necessary for YO anxiogenesis in rats, neurotoxic ibotenate lesions of the CEA in one hemisphere and the ipsi- or contralateral algBST were conducted to disrupt CEA-algBST communication uni- or bilaterally. Sham-lesioned controls received microinjections of vehicle into the CEA and algBST. Two weeks later, behavior was assessed in the elevated plus maze (EPMZ) in rats after i.p. saline or YO (1.0mg/kg). Central ibotenate lesion placement and extent was assessed post-mortem in NeuN-immunolabeled tissue sections. The ability of YO to increase anxiety-like behavior in the EPMZ was similarly robust in rats with sham lesions or ipsilateral CEA-algBST lesions. Conversely, YO anxiogenesis in the EPMZ was disrupted in rats with asymmetric lesions designed to bilaterally disconnect the CEA and algBST, whereas neither unilateral nor bilateral disconnecting lesions altered EPMZ behavior in rats after i.p. saline. We conclude that the anxiogenic effects of increased NA signaling in rats after YO require direct CEA-algBST interactions that do not shape EPMZ behavior under baseline conditions.
Collapse
Affiliation(s)
- L Cai
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | | | | |
Collapse
|
7
|
Cippitelli A, Damadzic R, Hansson AC, Singley E, Sommer WH, Eskay R, Thorsell A, Heilig M. Neuropeptide Y (NPY) suppresses yohimbine-induced reinstatement of alcohol seeking. Psychopharmacology (Berl) 2010; 208:417-26. [PMID: 20012021 DOI: 10.1007/s00213-009-1741-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 11/18/2009] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Reinstatement of responding to a previously alcohol-associated lever following extinction is an established model of relapse-like behavior and can be triggered by stress exposure. Here, we examined whether neuropeptide Y (NPY), an endogenous anti-stress mediator, blocks reinstatement of alcohol-seeking induced by the pharmacological stressor yohimbine. MATERIALS AND METHODS NPY [5.0 or 10.0 mug/rat, intracerebroventricularly (ICV)] dose-dependently blocked the reinstatement of alcohol seeking induced by yohimbine (1.25 mg/kg, i.p.) but failed to significantly suppress the maintenance of alcohol self-administration. We then used c-fos expression mapping to examine neuronal activation following treatment with yohimbine or NPY alone or yohimbine following NPY pre-treatment. RESULTS AND DISCUSSION The analysis was focused on a network of structures previously implicated in yohimbine-induced reinstatement, comprised of central (CeA) and basolateral (BLA) amygdala and the shell of the nucleus accumbens (Nc AccS). Within this network, both yohimbine and NPY potently induced neuronal activation, and their effects were additive, presumably indicating activation of excitatory and inhibitory neuronal populations, respectively. CONCLUSION These results suggest that NPY selectively suppresses relapse to alcohol seeking induced by stressful events and support the NPY system as an attractive target for the treatment of alcohol addiction.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Laboratory of Clinical and Translational Studies, National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), 10 Center Dr. 1/5330, Bethesda, MD 20892-1108, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bundzikova J, Pirnik Z, Zelena D, Mikkelsen JD, Kiss A. Alpha2-adrenergic impact on hypothalamic magnocellular oxytocinergic neurons in long evans and brattleboro rats: effects of agonist and antagonists. Cell Mol Neurobiol 2009; 29:1015-23. [PMID: 19291390 DOI: 10.1007/s10571-009-9388-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 02/27/2009] [Indexed: 01/22/2023]
Abstract
We have previously demonstrated that alpha2-adrenoceptors regulate hypothalamic magnocellular oxytocinergic (OXY) neurons in Sprague Dawley rats. Here we investigated whether activation/inhibition of alpha2-adrenoceptors may similarly trigger/downregulate the activity of OXY neurons in control Long Evans (+/+) and permanently osmotically stressed Brattleboro (di/di) rats. The effect of alpha2-adrenoceptor agonist, xylazine (XYL) and alpha2-adrenoceptor antagonists, atipamezole (ATIP), and idazoxan (IDX) were evaluated in the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. Saline (SAL, 0.1 ml/100 g), XYL (10 mg/kg), ATIP, (1 mg/kg), and IDX (10 mg/kg) and IDX or ATIP followed by XYL were applied intraperitoneally. Rats were sacrificed 90 min later and Fos/OXY co-labelings analyzed in microscope. In control +/+ rats no or few Fos/OXY co-labelings occurred in SON and PVN. XYL significantly increased Fos incidence in OXY neurons in both nuclei. ATIP significantly suppressed the effect of XYL in both nuclei and IDX only in SON. In di/di controls 81% of OXY neurons in SON and 44% in PVN revealed Fos presence and XYL did not further elevate Fos number in SON OXY neurons and slightly increased Fos number in PVN. ATIP or IDX only partially reduced Fos in SAL or XYL treated di/di rats. Our data indicate that: (1) XYL stimulation is not effective in di/di rats because of sustained upregulation of OXY neurons activity and (2) neither ATIP nor IDX reduced significantly the OXY activity in control di/di rats. These findings suggest that alpha2-adrenoceptors have only a limited impact in maintaining OXY cells activity upregulation in PVN and SON of di/di rats.
Collapse
Affiliation(s)
- Jana Bundzikova
- Laboratory of Functional Neuromorphology, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava 83306, Slovak Republic
| | | | | | | | | |
Collapse
|
9
|
Bundzikova J, Pirnik Z, Mikkelsen JD, Zelena D, Kiss A. Activity of Oxytocinergic Neurons in the Supraoptic Nucleus under Stimulation of ��2-Adrenoceptors in Brattleboro Rats. Ann N Y Acad Sci 2008; 1148:154-60. [DOI: 10.1196/annals.1410.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Sahún I, Gallego X, Gratacòs M, Murtra P, Trullás R, Maldonado R, Estivill X, Dierssen M. Differential responses to anxiogenic drugs in a mouse model of panic disorder as revealed by Fos immunocytochemistry in specific areas of the fear circuitry. Amino Acids 2006; 33:677-88. [PMID: 17111100 DOI: 10.1007/s00726-006-0464-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 10/16/2006] [Indexed: 01/02/2023]
Abstract
Sensitivity to pharmacological challenges has been reported in patients with panic disorder. We have previously validated transgenic mice overexpressing the neurotrophin-3 (NT-3) receptor, TrkC (TgNTRK3), as an engineered murine model of panic disorder. We could determine that TgNTRK3 mice presented increased cellularity in brain regions, such as the locus ceruleus, that are important neural substrates for the expression of anxiety in severe anxiety states. Here, we investigated the sensitivity to induce anxiety and panic-related symptoms by sodium lactate and the effects of various drugs (the alpha2-adrenoceptor antagonist, yohimbine and the adenosine antagonist, caffeine), in TgNTRK3 mice. We found enhanced panicogenic sensitivity to sodium lactate and an increased intensity and a differential pattern of Fos expression after the administration of yohimbine or caffeine in TgNTRK3. Our findings validate the relevance of the NT-3/TrkC system to pathological anxiety and raise the possibility that a specific set of fear-related pathways involved in the processing of anxiety-related information may be differentially activated in panic disorder.
Collapse
Affiliation(s)
- I Sahún
- Genes and Disease Program, Center for Genomic Regulation (CRG), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Banihashemi L, Rinaman L. Noradrenergic inputs to the bed nucleus of the stria terminalis and paraventricular nucleus of the hypothalamus underlie hypothalamic-pituitary-adrenal axis but not hypophagic or conditioned avoidance responses to systemic yohimbine. J Neurosci 2006; 26:11442-53. [PMID: 17079674 PMCID: PMC6674526 DOI: 10.1523/jneurosci.3561-06.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 09/25/2006] [Accepted: 09/26/2006] [Indexed: 01/25/2023] Open
Abstract
The alpha2 adrenoceptor antagonist yohimbine (YO) increases transmitter release from adrenergic/noradrenergic (NA) neurons. Systemic YO activates the hypothalamic-pituitary-adrenal (HPA) axis, inhibits feeding, and supports conditioned flavor avoidance (CFA) in rats. To determine whether these effects require NA inputs to the bed nucleus of the stria terminalis (BNST), vehicle or saporin toxin conjugated to an antibody against dopamine beta hydroxylase (DSAP) was microinjected bilaterally into the BNST to remove its NA inputs. Subsequent tests failed to reveal any lesion effect on the ability of YO (5.0 mg/kg, i.p.) to inhibit food intake or to support CFA. Conversely, HPA axis responses to YO were significantly blunted in DSAP rats. In a terminal experiment, DSAP and control rats were perfused 90-120 min after intraperitoneal injection of YO or vehicle. Brains were processed to reveal Fos immunolabeling and lesion extent. NA fibers were markedly depleted in the BNST and medial parvocellular paraventricular hypothalamus (PVNmp) in DSAP rats, evidence for collateralized NA inputs to these regions. DSAP rats displayed significant loss of caudal medullary NA neurons, and markedly blunted Fos activation in the BNST and in corticotropin-releasing hormone-positive PVNmp neurons after YO. We conclude that a population of medullary NA neurons provides collateral inputs to the BNST and PVNmp, and that these inputs contribute importantly to Fos expression and HPA axis activation after YO treatment. Conversely, NA-mediated activation of BNST and PVNmp neurons is unnecessary for YO to inhibit food intake or support CFA, evidence for the sufficiency of other intact neural pathways in mediating those effects.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
12
|
Myers EA, Banihashemi L, Rinaman L. The anxiogenic drug yohimbine activates central viscerosensory circuits in rats. J Comp Neurol 2006; 492:426-41. [PMID: 16228990 DOI: 10.1002/cne.20727] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Systemic administration of the alpha(2)-adrenoceptor antagonist yohimbine (YO) activates the HPA stress axis and promotes anxiety in humans and experimental animals. We propose that visceral malaise contributes to the stressful and anxiogenic effects of systemic YO and that YO recruits brainstem noradrenergic (NA) and peptidergic neurons that relay viscerosensory signals to the hypothalamus and limbic forebrain. To begin testing these hypotheses, the present study explored dose-related effects of YO on food intake, conditioned flavor avoidance (CFA), and Fos immunolabeling in rats. Systemic YO (5.0 mg/kg BW, i.p.) inhibited food intake, supported CFA, and increased Fos immunolabeling in identified NA neurons in the ventrolateral medulla, nucleus of the solitary tract, and locus coeruleus. YO also increased Fos in the majority of corticotropin releasing hormone-positive neurons in the paraventricular nucleus of the hypothalamus. YO administered at 1.0 mg/kg BW did not inhibit food intake, did not support CFA, and did not increase Fos immunolabeling. Retrograde neural tracing demonstrated that neurons activated by YO at 5.0 mg/kg BW included medullary and pontine neurons that project to the central nucleus of the amygdala and to the lateral bed nucleus of the stria terminalis, the latter region receiving comparatively greater input by Fos-positive neurons. We conclude that YO produces anorexigenic and aversive effects that correlate with activation of brainstem viscerosensory inputs to the limbic forebrain. These findings invite continued investigation of how central viscerosensory signaling pathways interact with hypothalamic and limbic regions to influence interrelated physiological and behavioral components of anxiety, stress, and visceral malaise.
Collapse
|
13
|
Funk D, Li Z, Lê AD. Effects of environmental and pharmacological stressors on c-fos and corticotropin-releasing factor mRNA in rat brain: Relationship to the reinstatement of alcohol seeking. Neuroscience 2005; 138:235-43. [PMID: 16359808 DOI: 10.1016/j.neuroscience.2005.10.062] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/12/2005] [Accepted: 10/31/2005] [Indexed: 11/15/2022]
Abstract
We have observed marked heterogeneity among different stressors in their ability to reinstate alcohol seeking in rats. Of the stressors we have tested, only the environmental stressor footshock and the pharmacological stressor yohimbine induce reinstatement. The reasons for such differences among stressors are not known. The purpose of the experiments presented here is to determine the neuroanatomical substrates that underlie these behavioral differences. To this end, we assessed whether stressors effective in inducing reinstatement of alcohol seeking activate a different set of neuronal pathways than do those that are ineffective, using the technique of in situ hybridization of the mRNAs for c-fos, a marker of neuronal activation, and corticotropin-releasing factor (CRF), a stress-related peptide we have shown to be critical to footshock-induced reinstatement of alcohol seeking. Exposure of rats to the environmental stressors footshock, restraint or social defeat, or the pharmacological stressors yohimbine or FG-7142 increased levels of the mRNAs for c-fos and CRF in the brain in a number of areas previously shown to be responsive to stressors. We found regionally specific effects of the stressors on c-fos and CRF mRNA in brain regions associated with the rewarding effects of alcohol and other abused drugs. The two stressors we have previously shown to be effective in inducing reinstatement of alcohol seeking, footshock and yohimbine, induced c-fos mRNA in the shell of the nucleus accumbens, and the basolateral and central amygdalar nuclei. These two stressors also induced CRF mRNA in the dorsal region of the bed nucleus of the stria terminalis. Taken together, these results provide evidence that activity in these regions may be involved in the reinstatement of alcohol seeking induced by these stressors. These results are also in keeping with the previously demonstrated role of CRF neurons in the dorsal bed nucleus of the stria terminalis in the reinstatement of alcohol seeking induced by stress.
Collapse
Affiliation(s)
- D Funk
- Department of Neuroscience, Center for Addiction and Mental Health, 33 Russell Street, Toronto, Ontario, Canada M5S 2S1.
| | | | | |
Collapse
|
14
|
Pirnik Z, Jezova D, Mikkelsen JD, Kiss A. Xylazine activates oxytocinergic but not vasopressinergic hypothalamic neurons under normal and hyperosmotic conditions in rats. Neurochem Int 2005; 47:458-65. [PMID: 16125277 DOI: 10.1016/j.neuint.2005.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/07/2005] [Accepted: 07/12/2005] [Indexed: 11/26/2022]
Abstract
Role of central alpha2-adrenoceptors in the regulation of hypothalamic magnocellular cells was studied under hyperosmotic challenge elicited by hypertonic saline (HS). Rats pretreated with receptor agonist, xylazine (XYL), were injected intraperitoneally with different (low: 0.375, moderate: 0.75, high: 1.5 M) HS 30 min later. The activity of the paraventricular (PVN) and supraoptic (SON) vasopressin and oxytocin perikarya was established by Fos-dual-immunohistochemistry 60 min after HS administration. Results showed that 1/XYL is a potent stimulus for oxytocin but not vasopressin magnocellular cells under basal and weak hyperosmotic conditions 2/highHS completely overlaps the effect of XYL. In addition, XYL partially suppressed Fos expression in the parvocellular PVN cells activated by highHS. The data suggest that alpha2-adrenoceptors may play an important role in the regulation of oxytocinergic PVN and SON neurons under basal and weak hyperosmotic conditions and that alpha2-adrenoceptors may also participate in the control of PVN parvocellular cells under intense osmotic challenge.
Collapse
Affiliation(s)
- Z Pirnik
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska str. 3, 833 06 Bratislava, Slovakia
| | | | | | | |
Collapse
|
15
|
Wang X, Li G, Abdel-Rahman AA. Site-dependent inhibition of neuronal c-jun in the brainstem elicited by imidazoline I1 receptor activation: Role in rilmenidine-evoked hypotension. Eur J Pharmacol 2005; 514:191-9. [PMID: 15910806 DOI: 10.1016/j.ejphar.2005.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 03/16/2005] [Indexed: 11/22/2022]
Abstract
Clonidine (a mixed alpha2-adrenoceptor and imidazoline I1 receptor agonist)-evoked hypotension was associated with dissimilar reductions in c-jun gene expression in the rostral ventrolateral medulla (RVLM) and the nucleus tractus solitarius (NTS) in normotensive rats. In the present study, we investigated the relative contribution of the alpha2-adrenoceptor vs. the imidazoline I1 receptor to the reduction in c-jun gene expression in these two brainstem areas. In conscious spontaneously hypertensive rats (SHRs), equihypotensive doses of three centrally acting hypotensive drugs with different selectivity for the two receptors were administered intracisternally (4 microl) to limit their actions to the brain. As a control, a similar hypotensive response was elicited by i.v. hydralazine. Clonidine (0.5 microg), or alpha-methylnorepinephrine (alpha-MNE, 4 microg), a highly selective alpha2-adrenoceptor agonist, similarly reduced c-jun mRNA expression in the NTS and rostral ventrolateral medulla. In contrast, a similar hypotensive response (-37+/-3.5 mm Hg) caused by the selective imidazoline I1 receptor agonist rilmenidine (25 microg) was associated with reduction in c-jun mRNA expression in the rostral ventrolateral medulla, but not in the NTS. Further, intra-rostral ventrolateral medulla rilmenidine (40 nmol) reduced c-Jun protein expression in rostral ventrolateral medulla and blood pressure and both responses were antagonized by selective imidazoline I1 receptor (efaroxan, 4 nmol), but not alpha2-adrenoceptor (SK&F 86466, 10 nmol) blockade. These results suggest: (1) the c-jun containing neurons in the brainstem are involved in the centrally mediated hypotension elicited by centrally acting antihypertensive agents, and (2) the alpha2-adrenoceptor modulates c-jun gene expression in the NTS and rostral ventrolateral medulla implicated in centrally mediated hypotension, and (3) the imidazoline I1 receptor mediated inhibition of c-jun gene expression in the rostral ventrolateral medulla, but not in the NTS, contributes to the centrally mediated hypotension by the second generation drugs.
Collapse
Affiliation(s)
- Xu Wang
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | | | | |
Collapse
|
16
|
Singewald N, Salchner P, Sharp T. Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biol Psychiatry 2003; 53:275-83. [PMID: 12586446 DOI: 10.1016/s0006-3223(02)01574-3] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The fact that induction of anxiety- and panic-related symptoms is a property common to a range of drugs suggests that common neural substrates underlie their behavioral effects. METHODS We used Fos immunocytochemistry to test the effects of four anxiogenic drugs (FG-7142, yohimbine, m-chlorophenylpiperazine [mCPP], and caffeine) on anxiety-related circuitry in rat forebrain. RESULTS All four drugs commonly increased Fos-like immunoreactivity in 7 of 41 brain areas investigated, namely, central nucleus of the amygdala, bed nucleus of the stria terminalis, lateral septum, paraventricular nucleus of the hypothalamus, lateral hypothalamus, infralimbic and prelimbic cortex. All drugs but one (mCPP) also increased Fos expression in the basolateral and medial amygdala, the dorsomedial hypothalamus, cingulate cortex, and parts of the motor cortex. CONCLUSIONS The results suggest that the anxiogenic drugs selected activate a restricted set of forebrain areas. Most of these areas have previously been shown to be activated by environmentally evoked anxiety and to have anatomic connections with hindbrain regions that are activated by the same drugs and by environmentally evoked anxiety. Together, these data are consistent with the theory of an integrated forebrain and hindbrain neuronal system that is important for anxiety states evoked by both drug and environmental manipulations.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
17
|
Schroeder BE, Schiltz CA, Kelley AE. Neural activation profile elicited by cues associated with the anxiogenic drug yohimbine differs from that observed for reward-paired cues. Neuropsychopharmacology 2003; 28:14-21. [PMID: 12496936 DOI: 10.1038/sj.npp.1300007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cues associated with dangerous or rewarding outcomes can themselves elicit neural activation. Previous work in rats has shown that cues associated with morphine, cocaine, nicotine or palatable food can elicit enhanced expression of the immediate-early gene product Fos in discrete brain regions. Activation of the prefrontal cortex has been shown to be particularly prominent. Some studies have also shown prefrontal cortical activation following exposure to fear-inducing stimuli. To investigate the specificity of regional brain Fos activation, we treated rats with an anxiogenic drug, yohimbine (2 mg/kg, intraperitoneally (i.p.)), or water once per day for 10 consecutive days in a test environment distinct from their home cages. Yohimbine elicited a robust locomotor response that progressively sensitized over days. After a 4-day interval, rats were reintroduced to the paired environment, without drug treatment. Rats re-exposed to the environment where they had previously been treated with yohimbine showed conditioned increases in motor activity compared with controls. Fos expression was increased in several brain regions, including the basolateral amygdala, but was unchanged in prefrontal cortex, in contrast to what has been reported for rewarding drugs. These observations show a neural activation profile elicited by cues associated with the anxiogenic drug yohimbine and further support the hypothesis that prefrontal cortex has a specific role in reward expectancy.
Collapse
|
18
|
El-Mas MM, Abdel-Rahman AA. Clonidine diminishes c-jun gene expression in the cardiovascular sensitive areas of the rat brainstem. Brain Res 2000; 856:245-9. [PMID: 10677633 DOI: 10.1016/s0006-8993(99)02370-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study investigated the effect of clonidine on the basal and inducible c-jun and c-fos mRNA expression in the nucleus tractus solitarius (middle, mNTS, and rostral, rNTS) and the rostral ventrolateral medulla (caudal, cRVLM, and rostral, rRVLM). Conscious rats received saline, clonidine (30 microg/kg, i.v.), saline plus sodium nitroprusside (NP), or clonidine plus NP. Under basal conditions (saline-infused rats), c-jun mRNA was expressed in the mNTS and rRVLM but not in the rNTS or cRVLM whereas c-fos mRNA was not detectable. Clonidine attenuated the increases in c-fos in the mNTS and cRVLM and c-jun gene expression in the mNTS and rRVLM caused by NP-evoked hypotension and also reduced the basal expression of c-jun mRNA in the mNTS and rRVLM. These findings establish a causal link between clonidine inhibition of c-fos expression in brainstem and its hypotensive action, and provide the first evidence that clonidine attenuates the expression of the closely linked c-jun gene in neurons implicated in centrally mediated hypotension.
Collapse
Affiliation(s)
- M M El-Mas
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC, USA
| | | |
Collapse
|
19
|
Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:370-490. [PMID: 9858769 DOI: 10.1016/s0165-0173(98)00018-6] [Citation(s) in RCA: 1056] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews findings up to the end of 1997 about the inducible transcription factors (ITFs) c-Jun, JunB, JunD, c-Fos, FosB, Fra-1, Fra-2, Krox-20 (Egr-2) and Krox-24 (NGFI-A, Egr-1, Zif268); and the constitutive transcription factors (CTFs) CREB, CREM, ATF-2 and SRF as they pertain to gene expression in the mammalian nervous system. In the first part we consider basic facts about the expression and activity of these transcription factors: the organization of the encoding genes and their promoters, the second messenger cascades converging on their regulatory promoter sites, the control of their transcription, the binding to dimeric partners and to specific DNA sequences, their trans-activation potential, and their posttranslational modifications. In the second part we describe the expression and possible roles of these transcription factors in neural tissue: in the quiescent brain, during pre- and postnatal development, following sensory stimulation, nerve transection (axotomy), neurodegeneration and apoptosis, hypoxia-ischemia, generalized and limbic seizures, long-term potentiation and learning, drug dependence and withdrawal, and following stimulation by neurotransmitters, hormones and neurotrophins. We also describe their expression and possible roles in glial cells. Finally, we discuss the relevance of their expression for nervous system functioning under normal and patho-physiological conditions.
Collapse
Affiliation(s)
- T Herdegen
- Institute of Pharmacology, University of Kiel, Hospitalstrasse 4, 24105, Kiel,
| | | |
Collapse
|
20
|
Abstract
The stimulation of immediate early gene expression in brain and neuronal cell culture systems has been reported after various experimental paradigms such as chemiconvulsant-provoked seizures or specific drug applications. In particular, the induction of immediate early genes by adrenergic model substances has been demonstrated by several investigators. This report demonstrates that a single dose of desipramine (10 or 25 mg/kg), a classical tricyclic antidepressant drug acting on the adrenergic system, induced c-fos and zif268 expression in rat hippocampus without affecting c-jun. The observed immediate early gene response might reflect part of a signal transduction cascade involved in long-term neuroadaptive and behavioral changes after antidepressant drug treatment.
Collapse
Affiliation(s)
- N Dahmen
- Department of Psychiatry, University of Mainz, Germany
| | | | | | | |
Collapse
|
21
|
Wintrip N, Nance DM, Wilkinson M. The effect of lactation on induced Fos-like immunoreactivity in the rat hypothalamic paraventricular nucleus. Brain Res 1997; 754:113-20. [PMID: 9134966 DOI: 10.1016/s0006-8993(97)00063-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lactating rats display a period of blunted hypothalamo-pituitary-adrenal (HPA) response to a variety of stressors. This hyporesponsiveness is reported to be dependent upon continuous mother-pup interactions. In this study, computer-assisted densitometric methods were used to measure levels of induced Fos-like immunoreactivity (FLI) in the hypothalamic paraventricular nucleus (PVN) of lactating and non-lactating rats. Adrenalectomy (ADX) induces elevated levels of FLI in the PVN of non-lactating rats. We have observed that, between post-partum day (pd) 4 and pd 21, the level of ADX-induced FLI in the PVN of lactating rats follows a U-shaped distribution; that the persistence of this phenomenon is dependent upon continued mother-pup interaction and that sustained mother-pup interaction beyond the end of the normal suckling period (pd 21) does not extend the period of refractoriness. We have further determined that both the non-specific neural activator Metrazole, and the glutamate agonist N-methyl-D,L-aspartate (NMA), induced smaller increases in FLI in the PVN of lactating rats compared to non-lactating cohorts, and that the suppressing effect of lactation on Metrazole-induced FLI does not extend to all brain regions. These results suggest that mechanisms responsible for the onset and maintenance of the so-called lactational stress-hyporesponsive period (LSHRP) include altered function of glutamatergic pathways.
Collapse
Affiliation(s)
- N Wintrip
- Department of Physiology and Biophysics, Dalhousie University, Faculty of Medicine, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|