1
|
Ren S, Yao C, Liu Y, Feng G, Dong X, Gao B, Qian S. Antioxidants for Treatment of Duchenne Muscular Dystrophy: A Systematic Review and Meta-Analysis. Eur Neurol 2022; 85:377-388. [PMID: 35697003 DOI: 10.1159/000525045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/29/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Increasing evidence has shown that oxidative stress is involved in the pathogenesis of Duchenne muscular dystrophy (DMD). Oxidative stress impairs muscle function, reduces regenerative capacity, and leads to atrophy and muscle weakness. The present study aimed to evaluate the effectiveness and safety of antioxidants in treatment of DMD patients. METHODS Medline, Embase, EBSCOhost, and Cochrane Library databases were searched using relevant keywords regarding DMD and antioxidants. The risk of bias for all included studies was assessed using the Cochrane risk of bias tool. The effectiveness of antioxidants in improving pulmonary function and muscle strength in DMD patients and their rate of adverse events was evaluated by meta-analysis. RESULTS A total of nine eligible studies were identified. Among these, two studies involving 85 patients compared idebenone with placebo. Pooled data showed a significant improvement in pulmonary function after idebenone treatment. Flavonoids- and omega 3-based compounds (FLAVOMEGA) significantly improved muscle strength. Two studies evaluated coenzyme Q10 (CoQ10) and reported clinical improvement in physical activity. The remaining four studies evaluated pentoxifylline, superoxide dismutase, vitamin E combination with penicillamine and penicillamine alone, respectively, and found no significant differences between the intervention and placebo groups, measured by pulmonary function, muscle strength, movement function, or quality of life. Most adverse events were mild, while the rates of dropout and serious adverse events were low with respect to antioxidants. CONCLUSIONS Idebenone appeared to be safe and effective in improving pulmonary function in DMD patients, while pentoxifylline, superoxide dismutase, penicillamine, or a combination of vitamin E with penicillamine did not show a significant therapeutic effect. CoQ10 and FLAVOMEGA might be beneficial in improving muscle strength or physical activity in DMD patients. However, additional trials with more participants are warranted in the future.
Collapse
Affiliation(s)
- Shouchen Ren
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunmei Yao
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yali Liu
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Guoshuang Feng
- Center for Clinical Epidemiology and Evidence-based Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaohuan Dong
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Baoqin Gao
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Suyun Qian
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
2
|
Zimmerman MA, Hall M, Qi Q, Mehta SL, Chen G, Li PA. Ubisol Coenzyme Q10 promotes mitochondrial biogenesis in HT22 cells challenged by glutamate. Exp Ther Med 2021; 22:1295. [PMID: 34630650 PMCID: PMC8461507 DOI: 10.3892/etm.2021.10730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/15/2021] [Indexed: 11/25/2022] Open
Abstract
Glutamate-induced excitotoxicity is a well-recognized cause of neuronal cell death. Nutritional supplementation with Coenzyme Q10 (CoQ10) has been previously demonstrated to serve neuro-protective effects against glutamate-induced excitotoxicity. The aim of the present study was to determine whether the protective effect of CoQ10 against glutamate toxicity could be attributed to stimulating mitochondrial biogenesis. Mouse hippocampal neuronal HT22 cells were incubated with glutamate with or without ubisol Q10. The results revealed that glutamate significantly decreased levels of mitochondrial biogenesis related proteins, including peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and nuclear respiratory factor (NRF)2. Additionally, glutamate reduced mitochondrial biogenesis, as determined using a mitochondrial biogenesis kit. Pretreatment with CoQ10 prevented decreases in phosphorylated (p)-Akt, p-cAMP response element-binding protein, PGC-1α, NRF2 and mitochondrial transcription factor A, increasing mitochondrial biogenesis. Taken together, the results described a novel mechanism of CoQ10-induced neuroprotection and indicated a central role for mitochondrial biogenesis in protecting against glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- Mary A Zimmerman
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.,Department of Biology, University of Wisconsin La Crosse, La Crosse, WI 54601, USA
| | - Mia Hall
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| | - Qi Qi
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.,Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - Suresh L Mehta
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA.,Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Guisheng Chen
- Department of Neurology, General Hospital of Ningxia Medical University, Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Yinchuan, Ningxia 750004, P.R. China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Biotechnology Enterprise (BRITE), North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
3
|
Accumulation of formaldehyde causes motor deficits in an in vivo model of hindlimb unloading. Commun Biol 2021; 4:933. [PMID: 34413463 PMCID: PMC8376875 DOI: 10.1038/s42003-021-02448-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
During duration spaceflight, or after their return to earth, astronauts have often suffered from gait instability and cerebellar ataxia. Here, we use a mouse model of hindlimb unloading (HU) to explore a mechanism of how reduced hindlimb burden may contribute to motor deficits. The results showed that these mice which have experienced HU for 2 weeks exhibit a rapid accumulation of formaldehyde in the gastrocnemius muscle and fastigial nucleus of cerebellum. The activation of semicarbazide-sensitive amine oxidase and sarcosine dehydrogenase induced by HU-stress contributed to formaldehyde generation and loss of the abilities to maintain balance and coordinate motor activities. Further, knockout of formaldehyde dehydrogenase (FDH-/-) in mice caused formaldehyde accumulation in the muscle and cerebellum that was associated with motor deficits. Remarkably, formaldehyde injection into the gastrocnemius muscle led to gait instability; especially, microinfusion of formaldehyde into the fastigial nucleus directly induced the same symptoms as HU-induced acute ataxia. Hence, excessive formaldehyde damages motor functions of the muscle and cerebellum.
Collapse
|
4
|
Park J, Kim S, Lee S, Jeong Y, Roy VC, Rizkyana AD, Chun B. Edible oil extracted from anchovies using supercritical CO
2
: Availability of fat‐soluble vitamins and comparison with commercial oils. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin‐Seok Park
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| | - Sung‐Yeoul Kim
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| | - Seung‐Chan Lee
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| | - Yu‐Rin Jeong
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| | - Vikash Chandra Roy
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
- Department of Fisheries Technology Hajee Mohammad Danesh Science and Technology University Dinajpur Bangladesh
| | - Amellia Dwi Rizkyana
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| | - Byung‐Soo Chun
- Department of Food Science and Technology Pukyong National University Busan Republic of Korea
| |
Collapse
|
5
|
Boccanegra B, Verhaart IEC, Cappellari O, Vroom E, De Luca A. Safety issues and harmful pharmacological interactions of nutritional supplements in Duchenne muscular dystrophy: considerations for Standard of Care and emerging virus outbreaks. Pharmacol Res 2020; 158:104917. [PMID: 32485610 PMCID: PMC7261230 DOI: 10.1016/j.phrs.2020.104917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
Abstract
At the moment, little treatment options are available for Duchenne muscular dystrophy (DMD). The absence of the dystrophin protein leads to a complex cascade of pathogenic events in myofibres, including chronic inflammation and oxidative stress as well as altered metabolism. The attention towards dietary supplements in DMD is rapidly increasing, with the aim to counteract pathology-related alteration in nutrient intake, the consequences of catabolic distress or to enhance the immunological response of patients as nowadays for the COVID-19 pandemic emergency. By definition, supplements do not exert therapeutic actions, although a great confusion may arise in daily life by the improper distinction between supplements and therapeutic compounds. For most supplements, little research has been done and little evidence is available concerning their effects in DMD as well as their preventing actions against infections. Often these are not prescribed by clinicians and patients/caregivers do not discuss the use with their clinical team. Then, little is known about the real extent of supplement use in DMD patients. It is mistakenly assumed that, since compounds are of natural origin, if a supplement is not effective, it will also do no harm. However, supplements can have serious side effects and also have harmful interactions, in terms of reducing efficacy or leading to toxicity, with other therapies. It is therefore pivotal to shed light on this unclear scenario for the sake of patients. This review discusses the supplements mostly used by DMD patients, focusing on their potential toxicity, due to a variety of mechanisms including pharmacodynamic or pharmacokinetic interactions and contaminations, as well as on reports of adverse events. This overview underlines the need for caution in uncontrolled use of dietary supplements in fragile populations such as DMD patients. A culture of appropriate use has to be implemented between clinicians and patients' groups.
Collapse
Affiliation(s)
- Brigida Boccanegra
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Ingrid E C Verhaart
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands; Duchenne Parent Project, the Netherlands
| | - Ornella Cappellari
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elizabeth Vroom
- Duchenne Parent Project, the Netherlands; World Duchenne Organisation (UPPMD), the Netherlands
| | - Annamaria De Luca
- Unit of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
6
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2020; 1:CD006282. [PMID: 32006461 PMCID: PMC6995983 DOI: 10.1002/14651858.cd006282.pub5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a (point) mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. This is an update of a review first published in 2009 and previously updated in 2011. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA types II and III, and to assess if such therapy can be given safely. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. In October 2018, we also searched two trials registries to identify unpublished trials. SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a homozygous deletion or hemizygous deletion in combination with a point mutation in the second allele of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis. The primary outcome measure was change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full-time ventilation and adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1-replacement with viral vectors are out of the scope of this review, but a summary is given in Appendix 1. Drug treatment for SMA type I is the topic of a separate Cochrane Review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS The review authors found 10 randomised, placebo-controlled trials of treatments for SMA types II and III for inclusion in this review, with 717 participants. We added four of the trials at this update. The trials investigated creatine (55 participants), gabapentin (84 participants), hydroxyurea (57 participants), nusinersen (126 participants), olesoxime (165 participants), phenylbutyrate (107 participants), somatotropin (20 participants), thyrotropin-releasing hormone (TRH) (nine participants), valproic acid (33 participants), and combination therapy with valproic acid and acetyl-L-carnitine (ALC) (61 participants). Treatment duration was from three to 24 months. None of the studies investigated the same treatment and none was completely free of bias. All studies had adequate blinding, sequence generation and reporting of primary outcomes. Based on moderate-certainty evidence, intrathecal nusinersen improved motor function (disability) in children with SMA type II, with a 3.7-point improvement in the nusinersen group on the Hammersmith Functional Motor Scale Expanded (HFMSE; range of possible scores 0 to 66), compared to a 1.9-point decline on the HFMSE in the sham procedure group (P < 0.01; n = 126). On all motor function scales used, higher scores indicate better function. Based on moderate-certainty evidence from two studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: creatine (median change 1 higher, 95% confidence interval (CI) -1 to 2; on the Gross Motor Function Measure (GMFM), scale 0 to 264; n = 40); and combination therapy with valproic acid and carnitine (mean difference (MD) 0.64, 95% CI -1.1 to 2.38; on the Modified Hammersmith Functional Motor Scale (MHFMS), scale 0 to 40; n = 61). Based on low-certainty evidence from other single studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: gabapentin (median change 0 in the gabapentin group and -2 in the placebo group on the SMA Functional Rating Scale (SMAFRS), scale 0 to 50; n = 66); hydroxyurea (MD -1.88, 95% CI -3.89 to 0.13 on the GMFM, scale 0 to 264; n = 57), phenylbutyrate (MD -0.13, 95% CI -0.84 to 0.58 on the Hammersmith Functional Motor Scale (HFMS) scale 0 to 40; n = 90) and monotherapy of valproic acid (MD 0.06, 95% CI -1.32 to 1.44 on SMAFRS, scale 0 to 50; n = 31). Very low-certainty evidence suggested that the following interventions had little or no effect on motor function: olesoxime (MD 2, 95% -0.25 to 4.25 on the Motor Function Measure (MFM) D1 + D2, scale 0 to 75; n = 160) and somatotropin (median change at 3 months 0.25 higher, 95% CI -1 to 2.5 on the HFMSE, scale 0 to 66; n = 19). One small TRH trial did not report effects on motor function and the certainty of evidence for other outcomes from this trial were low or very low. Results of nine completed trials investigating 4-aminopyridine, acetyl-L-carnitine, CK-2127107, hydroxyurea, pyridostigmine, riluzole, RO6885247/RG7800, salbutamol and valproic acid were awaited and not available for analysis at the time of writing. Various trials and studies investigating treatment strategies other than nusinersen (e.g. SMN2-augmentation by small molecules), are currently ongoing. AUTHORS' CONCLUSIONS Nusinersen improves motor function in SMA type II, based on moderate-certainty evidence. Creatine, gabapentin, hydroxyurea, phenylbutyrate, valproic acid and the combination of valproic acid and ALC probably have no clinically important effect on motor function in SMA types II or III (or both) based on low-certainty evidence, and olesoxime and somatropin may also have little to no clinically important effect but evidence was of very low-certainty. One trial of TRH did not measure motor function.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
7
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst Rev 2019; 12:CD006281. [PMID: 31825542 PMCID: PMC6905354 DOI: 10.1002/14651858.cd006281.pub5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a point mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. By definition, children with SMA type I are never able to sit without support and usually die or become ventilator dependent before the age of two years. There have until very recently been no drug treatments to influence the course of SMA. We undertook this updated review to evaluate new evidence on emerging treatments for SMA type I. The review was first published in 2009 and previously updated in 2011. OBJECTIVES To assess the efficacy and safety of any drug therapy designed to slow or arrest progression of spinal muscular atrophy (SMA) type I. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. We also searched two trials registries to identify unpublished trials (October 2018). SELECTION CRITERIA We sought all randomised controlled trials (RCTs) or quasi-RCTs that examined the efficacy of drug treatment for SMA type I. Included participants had to fulfil clinical criteria and have a genetically confirmed deletion or mutation of the SMN1 gene (5q11.2-13.2). The primary outcome measure was age at death or full-time ventilation. Secondary outcome measures were acquisition of motor milestones, i.e. head control, rolling, sitting or standing, motor milestone response on disability scores within one year after the onset of treatment, and adverse events and serious adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1 gene replacement with viral vectors are out of the scope of this review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS We identified two RCTs: one trial of intrathecal nusinersen in comparison to a sham (control) procedure in 121 randomised infants with SMA type I, which was newly included at this update, and one small trial comparing riluzole treatment to placebo in 10 children with SMA type I. The RCT of intrathecally-injected nusinersen was stopped early for efficacy (based on a predefined Hammersmith Infant Neurological Examination-Section 2 (HINE-2) response). At the interim analyses after 183 days of treatment, 41% (21/51) of nusinersen-treated infants showed a predefined improvement on HINE-2, compared to 0% (0/27) of participants in the control group. This trial was largely at low risk of bias. Final analyses (ranging from 6 months to 13 months of treatment), showed that fewer participants died or required full-time ventilation (defined as more than 16 hours daily for 21 days or more) in the nusinersen-treated group than the control group (hazard ratio (HR) 0.53, 95% confidence interval (CI) 0.32 to 0.89; N = 121; a 47% lower risk; moderate-certainty evidence). A proportion of infants in the nusinersen group and none of 37 infants in the control group achieved motor milestones: 37/73 nusinersen-treated infants (51%) achieved a motor milestone response on HINE-2 (risk ratio (RR) 38.51, 95% CI 2.43 to 610.14; N = 110; moderate-certainty evidence); 16/73 achieved head control (RR 16.95, 95% CI 1.04 to 274.84; moderate-certainty evidence); 6/73 achieved independent sitting (RR 6.68, 95% CI 0.39 to 115.38; moderate-certainty evidence); 7/73 achieved rolling over (RR 7.70, 95% CI 0.45 to 131.29); and 1/73 achieved standing (RR 1.54, 95% CI 0.06 to 36.92; moderate-certainty evidence). Seventy-one per cent of nusinersen-treated infants versus 3% of infants in the control group were responders on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) measure of motor disability (RR 26.36, 95% CI 3.79 to 183.18; N = 110; moderate-certainty evidence). Adverse events and serious adverse events occurred in the majority of infants but were no more frequent in the nusinersen-treated group than the control group (RR 0.99, 95% CI 0.92 to 1.05 and RR 0.70, 95% CI 0.55 to 0.89, respectively; N = 121; moderate-certainty evidence). In the riluzole trial, three of seven children treated with riluzole were still alive at the ages of 30, 48, and 64 months, whereas all three children in the placebo group died. None of the children in the riluzole or placebo group developed the ability to sit, which was the only milestone reported. There were no adverse effects. The certainty of the evidence for all measured outcomes from this study was very low, because the study was too small to detect or rule out an effect, and had serious limitations, including baseline differences. This trial was stopped prematurely because the pharmaceutical company withdrew funding. Various trials and studies investigating treatment strategies other than nusinersen, such as SMN2 augmentation by small molecules, are ongoing. AUTHORS' CONCLUSIONS Based on the very limited evidence currently available regarding drug treatments for SMA type 1, intrathecal nusinersen probably prolongs ventilation-free and overall survival in infants with SMA type I. It is also probable that a greater proportion of infants treated with nusinersen than with a sham procedure achieve motor milestones and can be classed as responders to treatment on clinical assessments (HINE-2 and CHOP INTEND). The proportion of children experiencing adverse events and serious adverse events on nusinersen is no higher with nusinersen treatment than with a sham procedure, based on evidence of moderate certainty. It is uncertain whether riluzole has any effect in patients with SMA type I, based on the limited available evidence. Future trials could provide more high-certainty, longer-term evidence to confirm this result, or focus on comparing new treatments to nusinersen or evaluate them as an add-on therapy to nusinersen.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
8
|
Werneck LC, Lorenzoni PJ, Ducci RDP, Fustes OH, Kay CSK, Scola RH. Duchenne muscular dystrophy: an historical treatment review. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:579-589. [PMID: 31508685 DOI: 10.1590/0004-282x20190088] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/29/2019] [Indexed: 11/22/2022]
Abstract
In this review, we discuss the therapies used in the treatment of patients with Duchenne muscular dystrophy since the first description of the disease. A short description is given of the various theories based on disease pathogenesis, which give the substrates for the many therapeutic interventions. A brief review of the methods of evaluation used in therapeutic trials is made. Of all the treatments, the only drugs that are still considered able to modify the course of the disease are the corticosteroids (prednisone/prednisolone/deflazacort). Other drugs (coenzyme Q10 and creatine) have had a little effect in a few functions without adverse reactions. Idebenone seems to improve the respiratory function in the long term. The trials with mRNA transcription, through nonsense mutations or exon 51 skipping, show some beneficial results in a few functional tests, but they are limited to a small set of DMD patients.
Collapse
Affiliation(s)
- Lineu Cesar Werneck
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| | - Paulo José Lorenzoni
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| | - Renata Dal-Prá Ducci
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| | - Otto Hernández Fustes
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| | - Cláudia Suemi Kamoi Kay
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| | - Rosana Herminia Scola
- Universidade Federal do Paraná, Hospital de Clínicas, Serviço de Doenças Neuromusculares, Curitiba PR, Brasil
| |
Collapse
|
9
|
Bielecka-Dabrowa A, Fabis J, Mikhailidis DP, von Haehling S, Sahebkar A, Rysz J, Banach M. Prosarcopenic Effects of Statins May Limit Their Effectiveness in Patients with Heart Failure. Trends Pharmacol Sci 2018; 39:331-353. [DOI: 10.1016/j.tips.2018.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
|
10
|
Panneman DM, Smeitink JA, Rodenburg RJ. Mining for mitochondrial mechanisms: Linking known syndromes to mitochondrial function. Clin Genet 2017; 93:943-951. [PMID: 28686290 DOI: 10.1111/cge.13094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022]
Abstract
Mitochondrial disorders (MDs) are caused by defects in 1 or multiple complexes of the oxidative phosphorylation (OXPHOS) machinery. MDs are associated with a broad range of clinical signs and symptoms, and have considerable clinical overlap with other neuromuscular syndromes. This overlap might be due to involvement of mitochondrial pathways in some of these non-mitochondrial syndromes. Here, we give an overview of around 25 non-mitochondrial syndromes, diagnosed in patients who were initially suspected to have a MD on the basis of clinical and biochemical parameters. In addition, we highlight the mitochondrial connections of 6 of these non-mitochondrial syndromes (eg, Rett syndrome and Dravet syndrome) diagnosed in multiple patients. Further research to unravel the interplay between these genes and mitochondria may help to increase knowledge on these syndromes. Additionally, it may open new avenues for research on pathways interacting with mitochondrial function in order to find new targets for therapeutics to treat MDs. The data presented in this review underline the importance of careful assessment of clinical, genetic, and biochemical data in all patients suspected of a neuromuscular syndrome, and highlights the importance of the role of clinical geneticists, physicians, and clinical biochemists in recognizing the possible mitochondrial connection of non-mitochondrial syndromes.
Collapse
Affiliation(s)
- D M Panneman
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - J A Smeitink
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - R J Rodenburg
- Department of Pediatrics, Radboud Center for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
11
|
Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse. PLoS One 2017; 12:e0186247. [PMID: 29190290 PMCID: PMC5708611 DOI: 10.1371/journal.pone.0186247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/27/2017] [Indexed: 11/19/2022] Open
Abstract
Variation in the myostatin (MSTN) gene has been reported to be associated with race distance, body composition and skeletal muscle fibre composition in the horse. The aim of the present study was to test the hypothesis that MSTN variation influences mitochondrial phenotypes in equine skeletal muscle. Mitochondrial abundance and skeletal muscle fibre types were measured in whole muscle biopsies from the gluteus medius of n = 82 untrained (21 ± 3 months) Thoroughbred horses. Skeletal muscle fibre type proportions were significantly (p < 0.01) different among the three MSTN genotypes and mitochondrial content was significantly (p < 0.01) lower in the combined presence of the C-allele of SNP g.66493737C>T (C) and the SINE insertion 227 bp polymorphism (I). Evaluation of mitochondrial complex activities indicated higher combined mitochondrial complex I+III and II+III activities in the presence of the C-allele / I allele (p ≤ 0.05). The restoration of complex I+III and complex II+III activities following addition of exogenous coenzyme Q1 (ubiquinone1) (CoQ1) in vitro in the TT/NN (homozygous T allele/homozygous no insertion) cohort indicated decreased coenzyme Q in these animals. In addition, decreased gene expression in two coenzyme Q (CoQ) biosynthesis pathway genes (COQ4, p ≤ 0.05; ADCK3, p ≤ 0.01) in the TT/NN horses was observed. This study has identified several mitochondrial phenotypes associated with MSTN genotype in untrained Thoroughbred horses and in addition, our findings suggest that nutritional supplementation with CoQ may aid to restore coenzyme Q activity in TT/NN horses.
Collapse
|
12
|
Angelini C, Fanin M. Limb girdle muscular dystrophies: clinical-genetical diagnostic update and prospects for therapy. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1367283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Corrado Angelini
- Department of Neurodegenerative Disorders, Neuromuscular Center, San Camillo Hospital IRCCS, Venice, Italy
| | - Marina Fanin
- Department of Neurosciences, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Abstract
Coenzyme Q10 (CoQ10) is a provitamin manufactured by the body. It functions as a coenzyme for mitochondrial enzymes. It has been shown to be deficient in patients with cardiovascular disease, cancer, Acquired Immune Deficiency Syndrome (AIDS), muscular dystrophy, spontaneous abortion, male infertility, and periodontal disease. Studies of CoQ10 show preliminary efficacy in the treatment of cardiovascular disease, but there is not enough evidence to date to support its benefit in cancer, AIDS, muscular dystrophy, spontaneous abortion, male infertility and periodontal disease treatments. Additional research is needed to evaluate its benefits in the treatment of these other conditions.
Collapse
Affiliation(s)
- Shahla Al-Hasso
- Clinical Pharmacist, Jim's Pharmacy, 2820 Griffin Avenue, Suite 102, Enumclaw, WA 98022
| |
Collapse
|
14
|
Woodman KG, Coles CA, Lamandé SR, White JD. Nutraceuticals and Their Potential to Treat Duchenne Muscular Dystrophy: Separating the Credible from the Conjecture. Nutrients 2016; 8:E713. [PMID: 27834844 PMCID: PMC5133099 DOI: 10.3390/nu8110713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022] Open
Abstract
In recent years, complementary and alternative medicine has become increasingly popular. This trend has not escaped the Duchenne Muscular Dystrophy community with one study showing that 80% of caregivers have provided their Duchenne patients with complementary and alternative medicine in conjunction with their traditional treatments. These statistics are concerning given that many supplements are taken based on purely "anecdotal" evidence. Many nutraceuticals are thought to have anti-inflammatory or anti-oxidant effects. Given that dystrophic pathology is exacerbated by inflammation and oxidative stress these nutraceuticals could have some therapeutic benefit for Duchenne Muscular Dystrophy (DMD). This review gathers and evaluates the peer-reviewed scientific studies that have used nutraceuticals in clinical or pre-clinical trials for DMD and thus separates the credible from the conjecture.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antioxidants/adverse effects
- Antioxidants/therapeutic use
- Biomedical Research/methods
- Biomedical Research/trends
- Combined Modality Therapy/adverse effects
- Dietary Supplements/adverse effects
- Evidence-Based Medicine
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/diet therapy
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/therapy
- Peer Review, Research/methods
- Peer Review, Research/trends
- Reproducibility of Results
- Severity of Illness Index
Collapse
Affiliation(s)
- Keryn G Woodman
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville 3010, Australia.
| | - Chantal A Coles
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
| | - Shireen R Lamandé
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
- Department of Pediatrics, The University of Melbourne, Parkville 3010, Australia.
| | - Jason D White
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville 3052, Australia.
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
15
|
Niyazov DM, Kahler SG, Frye RE. Primary Mitochondrial Disease and Secondary Mitochondrial Dysfunction: Importance of Distinction for Diagnosis and Treatment. Mol Syndromol 2016; 7:122-37. [PMID: 27587988 DOI: 10.1159/000446586] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial disease refers to a heterogeneous group of disorders resulting in defective cellular energy production due to abnormal oxidative phosphorylation (oxphos). Primary mitochondrial disease (PMD) is diagnosed clinically and ideally, but not always, confirmed by a known or indisputably pathogenic mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) mutation. The PMD genes either encode oxphos proteins directly or they affect oxphos function by impacting production of the complex machinery needed to run the oxphos process. However, many disorders have the 'mitochondrial' phenotype without an identifiable mtDNA or nDNA mutation or they have a variant of unknown clinical significance. Secondary mitochondrial dysfunction (SMD) can be caused by genes encoding neither function nor production of the oxphos proteins and accompanies many hereditary non-mitochondrial diseases. SMD may also be due to nongenetic causes such as environmental factors. In our practice, we see many patients with clinical signs of mitochondrial dysfunction based on phenotype, biomarkers, imaging, muscle biopsy, or negative/equivocal mtDNA or nDNA test results. In these cases, it is often tempting to assign a patient's phenotype to 'mitochondrial disease', but SMD is often challenging to distinguish from PMD. Fortunately, rapid advances in molecular testing, made possible by next generation sequencing, have been effective at least in some cases in establishing accurate diagnoses to distinguish between PMD and SMD. This is important, since their treatments and prognoses can be quite different. However, even in the absence of the ability to distinguish between PMD and SMD, treating SMD with standard treatments for PMD can be effective. We review the latest findings regarding mitochondrial disease/dysfunction and give representative examples in which differentiation between PMD and SMD has been crucial for diagnosis and treatment.
Collapse
Affiliation(s)
- Dmitriy M Niyazov
- Department of Pediatrics, Ochsner Clinic Foundation, New Orleans, La, USA
| | - Stephan G Kahler
- Department of Pediatrics, Arkansas Children's Hospital and Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, Ark., USA
| | - Richard E Frye
- Department of Pediatrics, Arkansas Children's Hospital and Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, Ark., USA
| |
Collapse
|
16
|
Rybalka E, Timpani CA, Stathis CG, Hayes A, Cooke MB. Metabogenic and Nutriceutical Approaches to Address Energy Dysregulation and Skeletal Muscle Wasting in Duchenne Muscular Dystrophy. Nutrients 2015; 7:9734-67. [PMID: 26703720 PMCID: PMC4690050 DOI: 10.3390/nu7125498] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/29/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal genetic muscle wasting disease with no current cure. A prominent, yet poorly treated feature of dystrophic muscle is the dysregulation of energy homeostasis which may be associated with intrinsic defects in key energy systems and promote muscle wasting. As such, supplementative nutriceuticals that target and augment the bioenergetical expansion of the metabolic pathways involved in cellular energy production have been widely investigated for their therapeutic efficacy in the treatment of DMD. We describe the metabolic nuances of dystrophin-deficient skeletal muscle and review the potential of various metabogenic and nutriceutical compounds to ameliorate the pathological and clinical progression of the disease.
Collapse
Affiliation(s)
- Emma Rybalka
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne 8001, Australia.
- Institute of Sport, Exercise & Healthy Living, Victoria University, Melbourne 8001, Australia.
- Australian Institute of Musculoskeletal Science, Western Health, Melbourne 3021, Australia.
| | - Cara A Timpani
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne 8001, Australia.
- Institute of Sport, Exercise & Healthy Living, Victoria University, Melbourne 8001, Australia.
| | - Christos G Stathis
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne 8001, Australia.
- Institute of Sport, Exercise & Healthy Living, Victoria University, Melbourne 8001, Australia.
- Australian Institute of Musculoskeletal Science, Western Health, Melbourne 3021, Australia.
| | - Alan Hayes
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne 8001, Australia.
- Institute of Sport, Exercise & Healthy Living, Victoria University, Melbourne 8001, Australia.
- Australian Institute of Musculoskeletal Science, Western Health, Melbourne 3021, Australia.
| | - Matthew B Cooke
- Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne 8001, Australia.
- Institute of Sport, Exercise & Healthy Living, Victoria University, Melbourne 8001, Australia.
- Australian Institute of Musculoskeletal Science, Western Health, Melbourne 3021, Australia.
| |
Collapse
|
17
|
Suksomboon N, Poolsup N, Juanak N. Effects of coenzyme Q10 supplementation on metabolic profile in diabetes: a systematic review and meta-analysis. J Clin Pharm Ther 2015; 40:413-8. [PMID: 25913756 DOI: 10.1111/jcpt.12280] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/08/2015] [Indexed: 12/21/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE CoenzymeQ10 (CoQ10 ), or ubiquinone, is an endogenous enzyme cofactor produced by most human cells. It is a potent antioxidant and is necessary for energy production in mitochondria. Diabetes mellitus is a chronic disease with multiple metabolic abnormalities, principally resulting from the inflammation and oxidative stress associated with mitochondrial dysfunctions. Clinical trials of the effects of supplementary CoQ10 on metabolic control in diabetes have reported inconsistent results. We undertook a systematic review and meta-analysis of randomized controlled trials to assess the effects of CoQ10 supplementation on glycaemic control, lipid profile and blood pressure in patients with diabetes. METHODS A systematic search was conducted on MEDLINE, The Cochrane Library, CINAHL, NCCAM, Web of Science, Scopus, ClinicalTrials.gov and historical search of reference lists of relevant articles. The bibliographic databases were searched from inception to February 2015. We included randomized, placebo-controlled trials of CoQ10 in diabetes lasting at least 12 weeks. HbA1c or fasting plasma glucose had to be reported. Primary outcome was glycemic control, and secondary outcomes were lipid profile and blood pressure. Treatment effect was estimated with mean difference. RESULTS AND DISCUSSION Seven trials were included in the meta-analysis, involving 356 patients. Neither CoQ10 alone nor CoQ10 plus fenofibrate improved glycemic control. In addition, CoQ10, alone or in combination with fenofibrate, did not alter LDL-C, HDL-C and blood pressure. Triglycerides levels were significantly reduced with CoQ10 (mean difference -0·26 mmol/L, 95% CI -0·05 mmol/L to -0·47 mmol/L, P = 0·02) and CoQ10 plus fenofibrate (mean difference -0·72 mmol/L, 95% CI -0·32 mmol/L to -1·12 mmol/L, P = 0·0004). CoQ10 plus fenofibrate also effectively reduced total cholesterol (mean difference: -0·45 mmol/L, 95% CI -0·06 mmol/L to -0·84 mmol/L, P = 0·02). WHAT IS NEW AND CONCLUSIONS CoQ10 supplementation has no beneficial effects on glycemic control, lipid profile or blood pressure in patients with diabetes. However, it may reduce triglycerides levels. Due to limited data availability, well-powered and well-designed randomized controlled trials are needed to clearly determine the effect of CoQ10 on metabolic profile in diabetes. Dosage effects should also be explored.
Collapse
Affiliation(s)
- N Suksomboon
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - N Poolsup
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon-Pathom, Thailand
| | - N Juanak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
18
|
Pagano G, Aiello Talamanca A, Castello G, Cordero MD, d'Ischia M, Gadaleta MN, Pallardó FV, Petrović S, Tiano L, Zatterale A. Current experience in testing mitochondrial nutrients in disorders featuring oxidative stress and mitochondrial dysfunction: rational design of chemoprevention trials. Int J Mol Sci 2014; 15:20169-208. [PMID: 25380523 PMCID: PMC4264162 DOI: 10.3390/ijms151120169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023] Open
Abstract
An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed "mitochondrial nutrients" (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with "classical" antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed.
Collapse
Affiliation(s)
- Giovanni Pagano
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Annarita Aiello Talamanca
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Giuseppe Castello
- Istituto Nazionale Tumori Fondazione G. Pascale-Cancer Research Center at Mercogliano (CROM)-IRCCS, Naples I-80131, Italy.
| | - Mario D Cordero
- Research Laboratory, Dental School, Universidad de Sevilla, Sevilla 41009, Spain.
| | - Marco d'Ischia
- Department of Chemical Sciences, University of Naples "Federico II", Naples I-80126, Italy.
| | - Maria Nicola Gadaleta
- National Research Council, Institute of Biomembranes and Bioenergetics, Bari I-70126, Italy.
| | - Federico V Pallardó
- CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), University of Valencia-INCLIVA, Valencia 46010, Spain.
| | - Sandra Petrović
- Vinca" Institute of Nuclear Sciences, University of Belgrade, Belgrade 11001, Serbia.
| | - Luca Tiano
- Biochemistry Unit, Department of Clinical and Dental Sciences, Polytechnical University of Marche, Ancona I-60131, Italy.
| | - Adriana Zatterale
- Genetics Unit, Azienda Sanitaria Locale (ASL) Napoli 1 Centro, Naples I-80136, Italy.
| |
Collapse
|
19
|
Beltran E, Shelton GD, Guo LT, Dennis R, Sanchez-Masian D, Robinson D, De Risio L. Dystrophin-deficient muscular dystrophy in a Norfolk terrier. J Small Anim Pract 2014; 56:351-4. [PMID: 25353637 DOI: 10.1111/jsap.12292] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/07/2014] [Accepted: 08/29/2014] [Indexed: 11/29/2022]
Abstract
A six-month-old male entire Norfolk terrier was presented with a 3-month history of poor development, reluctance to exercise and progressive and diffuse muscle atrophy. Serum creatine kinase concentration was markedly elevated. Magnetic resonance imaging of the epaxial muscles revealed asymmetrical streaky signal changes aligned within the muscle fibres (hyperintense on T2-weighted images and short-tau inversion recovery with moderate contrast enhancement on T1-weighted images). Electromyography revealed pseudomyotonic discharges and fibrillation potentials localised at the level of the supraspinatus, epaxial muscles and tibial cranialis muscles. Muscle biopsy results were consistent with dystrophin-deficient muscular dystrophy. The dog remained stable 7 months after diagnosis with coenzyme Q10 and l-carnitine; however after that time, there was a marked deterioration and the owners elected euthanasia. This case report describes the clinical presentation, magnetic resonance imaging, electrodiagnostic and histopathological findings with immunohistochemical analysis in a Norfolk terrier with confirmed dystrophin-deficient muscular dystrophy, which has not been previously described in this breed.
Collapse
Affiliation(s)
- E Beltran
- Centre for Small Animal Studies, Animal Health Trust, Newmarket, Suffolk, CB87UU
| | | | | | | | | | | | | |
Collapse
|
20
|
El-Abassi R, England JD, Carter GT. Charcot-Marie-Tooth disease: an overview of genotypes, phenotypes, and clinical management strategies. PM R 2014; 6:342-55. [PMID: 24434692 DOI: 10.1016/j.pmrj.2013.08.611] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 08/10/2013] [Accepted: 08/31/2013] [Indexed: 11/30/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease, which encompasses several hereditary motor and sensory neuropathies, is one of the most common neuromuscular disorders. Our understanding of the molecular genotypes of CMT and the resultant clinical and electrophysiological phenotypes has increased greatly in the past decade. Characterized by electrodiagnostic studies into demyelinating (type 1) and axonal (type 2) forms, subsequent genetic testing often provides an exact diagnosis of a specific subtype of CMT. These advancements have made diagnostic paradigms fairly straightforward. Still, the nature and extent of neuromuscular disability is often complex in persons with CMT, and no curative treatments are yet available. Genotypically homologous animal models of CMT have improved exploration of disease-modifying treatments, of which molecular genetic manipulation and stem cell therapies appear to be the most promising. Research is also needed to develop better rehabilitative strategies that may limit disease burden and improve physical performance and psychosocial integration. Clinical management should be multidisciplinary, including neurologists, physiatrists, neurogeneticists, neuromuscular nurse practitioners, and orthopedists, along with physical and occupational therapists, speech-language pathologists, orthotists, vocational counselors, social workers, and other rehabilitation clinicians. Goals should include maximizing functional independence and quality of life while minimizing disability and secondary morbidity.
Collapse
Affiliation(s)
- Rima El-Abassi
- Department of Neurology at the Louisiana State University School of Medicine, New Orleans, LA(∗)
| | - John D England
- Department of Neurology at the Louisiana State University School of Medicine, New Orleans, LA(†)
| | | |
Collapse
|
21
|
Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications. Mol Neurobiol 2013; 48:883-903. [PMID: 23761046 DOI: 10.1007/s12035-013-8477-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/29/2013] [Indexed: 12/18/2022]
Abstract
Coenzyme Q10 (CoQ10) is an antioxidant, a membrane stabilizer, and a vital cofactor in the mitochondrial electron transport chain, enabling the generation of adenosine triphosphate. It additionally regulates gene expression and apoptosis; is an essential cofactor of uncoupling proteins; and has anti-inflammatory, redox modulatory, and neuroprotective effects. This paper reviews the known physiological role of CoQ10 in cellular metabolism, cell death, differentiation and gene regulation, and examines the potential repercussions of CoQ10 depletion including its role in illnesses such as Parkinson's disease, depression, myalgic encephalomyelitis/chronic fatigue syndrome, and fibromyalgia. CoQ10 depletion may play a role in the pathophysiology of these disorders by modulating cellular processes including hydrogen peroxide formation, gene regulation, cytoprotection, bioenegetic performance, and regulation of cellular metabolism. CoQ10 treatment improves quality of life in patients with Parkinson's disease and may play a role in delaying the progression of that disorder. Administration of CoQ10 has antidepressive effects. CoQ10 treatment significantly reduces fatigue and improves ergonomic performance during exercise and thus may have potential in alleviating the exercise intolerance and exhaustion displayed by people with myalgic encepholamyletis/chronic fatigue syndrome. Administration of CoQ10 improves hyperalgesia and quality of life in patients with fibromyalgia. The evidence base for the effectiveness of treatment with CoQ10 may be explained via its ability to ameliorate oxidative stress and protect mitochondria.
Collapse
|
22
|
Fogagnolo P, Sacchi M, Ceresara G, Paderni R, Lapadula P, Orzalesi N, Rossetti L. The effects of topical coenzyme Q10 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate after cataract surgery: a clinical and in vivo confocal study. ACTA ACUST UNITED AC 2012; 229:26-31. [PMID: 23011409 DOI: 10.1159/000342196] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/26/2012] [Indexed: 11/19/2022]
Abstract
PURPOSE To evaluate the postoperative effects of topical coenzyme Q(10) + vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate (CoQ(10)) after cataract surgery. METHODS 40 consecutive patients were randomized to receive CoQ(10) or saline solution (SS) twice daily for 9 months after uneventful cataract surgery with a temporal port. Before surgery, on day 14 and at months 3, 6 and 9, they underwent non-invasive break-up time (NIBUT) testing, Schirmer test, BUT, aesthesiometry as well as in vivo confocal microscopy of the subbasal nerve plexus of the cornea (SBP). The density of the subbasal nerves was calculated in the central (CFD) and temporal (TFD) cornea (number of fibres per field). RESULTS On day 14, surgery reduced CFD and TFD, respectively, by 25-35 and 50%; indices of ocular surface stability were all impaired. The treatment with CoQ(10) was associated with faster nerve regeneration than SS (at month 3, CFD +1.5 ± 1.9 vs. +0.2 ± 1.8, p = 0.04, and TFD +2.5 ± 1.7 vs. +1.0 ± 1.6, p = 0.007; at month 6, TFD +2.7 ± 1.9 vs. +1.4 ± 1.5, p = 0.02) and better stability of ocular surface (NIBUT and BUT) throughout the study. No relevant side effects were found, apart from occasional burning in 10% of CoQ(10) patients. CONCLUSIONS Changes of the corneal nerves occurring after cataract surgery may influence the integrity of the ocular surface. Treatment with topical CoQ(10) has a positive effect in restoring SBP anatomy and ocular surface stability.
Collapse
Affiliation(s)
- Paolo Fogagnolo
- G.B. Bietti Foundation for the Study and Research in Ophthalmology, IRCCS, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wadman RI, Bosboom WMJ, van der Pol WL, van den Berg LH, Wokke JHJ, Iannaccone ST, Vrancken AFJE. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2012:CD006282. [PMID: 22513940 DOI: 10.1002/14651858.cd006282.pub4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. This is an update of a review first published in 2009. OBJECTIVES To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA types II and III and to assess if such therapy can be given safely. Drug treatment for SMA type I is the topic of a separate updated Cochrane review. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to March 8 2011). We also searched clinicaltrials.gov to identify as yet unpublished trials (8 March 2011). SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a deletion or mutation of the survival motor neuron 1 (SMN1) gene (5q11.2-13.2) that was confirmed by genetic analysis.The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled standardised mean differences were to be calculated to assess treatment efficacy. Risk of bias was systematically analysed. MAIN RESULTS Six randomised placebo-controlled trials on treatment for SMA types II and III were found and included in the review: the four in the original review and two trials added in this update. The treatments were creatine (55 participants), phenylbutyrate (107 participants), gabapentin (84 participants), thyrotropin releasing hormone (9 participants), hydroxyurea (57 participants), and combination therapy with valproate and acetyl-L-carnitine (61 participants). None of these studies were completely free of bias. All studies had adequate blinding, sequence generation and reports of primary outcomes.None of the included trials showed any statistically significant effects on the outcome measures in participants with SMA types II and III. One participant died due to suffocation in the hydroxyurea trial and one participant died in the creatine trial. No participants in any of the other four trials died or reached the state of full time ventilation. Serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA types II and III.
Collapse
Affiliation(s)
- Renske I Wadman
- Department of Neurology, University Medical Center Utrecht, Utrecht, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
24
|
Yerramilli-Rao P, Beal MF, Watanabe D, Kieburtz K, Blieck EAD, Kitano M, Hosoe K, Funahashi I, Cudkowicz ME. Oral repeated-dose toxicity studies of coenzyme Q10 in beagle dogs. Int J Toxicol 2012; 31:58-69. [PMID: 22267890 DOI: 10.1177/1091581811425256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To support phase III testing of coenzyme Q10 (CoQ₁₀) in humans, we conducted pharmacokinetic and toxicology studies in beagle dogs. Following single gavage administration of CoQ₁₀ at 600, 1200, 1800, or 2400 mg/kg per d no obvious dose response was observed in maximum concentration (C(max)) or area under the curve (AUC) versus time curve at the 3 highest dosages. In a repeated-dose study of CoQ₁₀ at 600, 1200, 1800, or 2400 mg/kg per d for 4 weeks, CoQ₁₀ reached steady state in plasma by 2 weeks at all dosages. Both C (max) and AUC increased with increasing dosage of CoQ₁₀. The highest plasma levels were recorded at 1800 mg/kg per d. In a 39-week chronic toxicity study of CoQ₁₀ at 1200 and 1800 mg/kg per d or placebo, CoQ₁₀ reached steady state in plasma by 13 weeks. Behaviors, blood chemistries, and detailed histopathology were normal. No deaths occurred. These results support the use of a 2400 mg/d dosage of CoQ₁₀ in human clinical trials.
Collapse
Affiliation(s)
- Padmaja Yerramilli-Rao
- Neurology Clinical Trials Unit, Massachusetts General Hospital, 13th Street, Building 149, Room 2274, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wadman RI, Bosboom WM, van den Berg LH, Wokke JH, Iannaccone ST, Vrancken AF. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2011:CD006282. [PMID: 22161400 DOI: 10.1002/14651858.cd006282.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. This is an update of a review first published in 2009. OBJECTIVES To evaluate whether drug treatment is able to slow or arrest the disease progression of SMA types II and III and to assess if such therapy can be given safely. Drug treatment for SMA type I is the topic of a separate updated Cochrane review. SEARCH METHODS We searched the Cochrane Neuromuscular Disease Group Specialized Register (8 March 2011), Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 1), MEDLINE (January 1991 to February 2011), EMBASE (January 1991 to February 2011) and ISI Web of Knowledge (January 1991 to March 8 2011). We also searched clinicaltrials.gov to identify as yet unpublished trials (8 March 2011). SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a deletion or mutation of the survival motor neuron 1 (SMN1) gene (5q11.2-13.2) that was confirmed by genetic analysis.The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled standardised mean differences were to be calculated to assess treatment efficacy. Risk of bias was systematically analysed. MAIN RESULTS Six randomised placebo-controlled trials on treatment for SMA types II and III were found and included in the review: the four in the original review and two trials added in this update. The treatments were creatine (55 participants), phenylbutyrate (107 participants), gabapentin (84 participants), thyrotropin releasing hormone (9 participants), hydroxyurea (57 participants), and combination therapy with valproate and acetyl-L-carnitine (61 participants). None of these studies were completely free of bias. All studies had adequate blinding, sequence generation and reports of primary outcomes.None of the included trials showed any statistically significant effects on the outcome measures in participants with SMA types II and III. One participant died due to suffocation in the hydroxyurea trial and one participant died in the creatine trial. No participants in any of the other four trials died or reached the state of full time ventilation. Serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA types II and III.
Collapse
Affiliation(s)
- Renske I Wadman
- Department of Neurology, University Medical Center Utrecht, Rudolf Magnus Institute for Neuroscience, Universiteitsweg 100, Utrecht, Netherlands, 3584 CG
| | | | | | | | | | | |
Collapse
|
26
|
Spurney CF, Rocha CT, Henricson E, Florence J, Mayhew J, Gorni K, Pasquali L, Pestronk A, Martin GR, Hu F, Nie L, Connolly AM, Escolar DM. CINRG pilot trial of coenzyme Q10 in steroid-treated Duchenne muscular dystrophy. Muscle Nerve 2011; 44:174-8. [PMID: 21698649 DOI: 10.1002/mus.22047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2011] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Corticosteroid treatment slows disease progression and is the standard of care for Duchenne muscular dystrophy (DMD). Coenzyme Q10 (CoQ10) is a potent antioxidant that may improve function in dystrophin-deficient muscle. METHODS We performed an open-label, "add-on" pilot study of CoQ10 in thirteen 5-10-year-old DMD patients on steroids. The primary outcome measure was the total quantitative muscle testing (QMT) score. RESULTS Twelve of 16 children (mean age 8.03 ± 1.64 years) completed the trial. Target serum levels of CoQ10 (≥2.5 μg/ml) were shown to be subject- and administration-dependent. Nine of 12 subjects showed an increase in total QMT score. Overall, CoQ10 treatment resulted in an 8.5% increase in muscle strength (P = 0.03). CONCLUSIONS Addition of CoQ10 to prednisone therapy in DMD patients resulted in an increase in muscle strength. These results warrant a larger, controlled trial of CoQ10 in DMD.
Collapse
Affiliation(s)
- Christopher F Spurney
- Children's National Medical Center, George Washington University, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wilton SD, Fletcher S. Novel compounds for the treatment of Duchenne muscular dystrophy: emerging therapeutic agents. APPLICATION OF CLINICAL GENETICS 2011; 4:29-44. [PMID: 23776365 PMCID: PMC3681176 DOI: 10.2147/tacg.s8762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The identification of dystrophin and the causative role of mutations in this gene in Duchenne and Becker muscular dystrophies (D/BMD) was expected to lead to timely development of effective therapies. Despite over 20 years of research, corticosteroids remain the only available pharmacological treatment for DMD, although significant benefits and extended life have resulted from advances in the clinical care and management of DMD individuals. Effective treatment of DMD will require dystrophin restitution in skeletal, cardiac, and smooth muscles and nonmuscle tissues; however, modulation of muscle loss and regeneration has the potential to play an important role in altering the natural history of DMD, particularly in combination with other treatments. Emerging biological, molecular, and small molecule therapeutics are showing promise in ameliorating this devastating disease, and it is anticipated that regulatory environments will need to display some flexibility in order to accommodate the new treatment paradigms.
Collapse
Affiliation(s)
- Steve D Wilton
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, Perth, WA, Australia
| | | |
Collapse
|
28
|
|
29
|
Nierobisz LS, McFarland DC, Mozdziak PE. MitoQ10 induces adipogenesis and oxidative metabolism in myotube cultures. Comp Biochem Physiol B Biochem Mol Biol 2011; 158:125-31. [DOI: 10.1016/j.cbpb.2010.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 12/25/2022]
|
30
|
Villalba JM, Parrado C, Santos-Gonzalez M, Alcain FJ. Therapeutic use of coenzyme Q10 and coenzyme Q10-related compounds and formulations. Expert Opin Investig Drugs 2010; 19:535-54. [PMID: 20367194 DOI: 10.1517/13543781003727495] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IMPORTANCE OF THE FIELD Coenzyme Q(10) (CoQ(10)) is found in blood and in all organs. CoQ(10) deficiencies are due to autosomal recessive mutations, ageing-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer and muscular and cardiovascular diseases have been associated with low CoQ(10) levels, as well as different ataxias and encephalomyopathies. AREAS COVERED IN THIS REVIEW We review the efficacy of a variety of commercial formulations which have been developed to solubilise CoQ(10) and promote its better absorption in vivo, and its use in the therapy of pathologies associated with low CoQ(10) levels, with emphasis in the results of the clinical trials. Also, we review the use of its analogues idebenone and MitoQ. WHAT THE READER WILL GAIN This review covers the most relevant aspects related with the therapeutic use of CoQ(10), including existing formulations and their effects on its bioavailability. TAKE HOME MESSAGE CoQ(10) does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ(10) absorption. Oral CoQ(10) is a viable antioxidant strategy in many diseases, providing a significant to mild symptomatic benefit. Idebenone and MitoQ are promising substitutive CoQ(10)-related drugs which are well tolerated and safe.
Collapse
Affiliation(s)
- Jose M Villalba
- Universidad de Córdoba, Facultad de Ciencias, Departamento de Biología Celular, Fisiología e Inmunología, Campus Universitario de Rabanales, Edificio Severo Ochoa, 3a planta 14014 Córdoba, Spain.
| | | | | | | |
Collapse
|
31
|
Bosboom WMJ, Vrancken AFJE, van den Berg LH, Wokke JHJ, Iannaccone ST. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2009:CD006282. [PMID: 19160275 DOI: 10.1002/14651858.cd006282.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA type II and III, and to assess if such therapy can be given safely. Drug treatment for SMA type I will be the topic of a separate Cochrane review. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Trials Register (September 30 2008), The Cochrane Library (Issue 3, 2008), MEDLINE (January 1966 to June 2008), EMBASE (January 1980 to June 2008), ISI (January 1988 to June 2008), and ACP Journal Club (January 1991 to June 2008). SELECTION CRITERIA We sought all randomized or quasi-randomized trials that examined the efficacy of drug treatment for SMA type II and III. Participants had to fulfil the clinical criteria and, in studies including genetic analysis to confirm the diagnosis, have a deletion or mutation of the SMN1 gene (5q11.2-13.2)The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation, and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled weighted standardized mean differences were to be calculated to assess treatment efficacy MAIN RESULTS Four randomized placebo-controlled trials on treatment for SMA type II and III were found and included in the review. The treatments were creatine, phenylbutyrate, gabapentin and thyrotropin releasing hormone. None of these trials showed any effect on the outcome measures in patients with SMA type II and III. None of the patients in any of the four trials died or reached the state of full time ventilation and serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA type II and III.
Collapse
Affiliation(s)
- Wendy M J Bosboom
- Department of Neurology, Sint Lucas Andreas Hospital, Jan Tooropstraat 164, Amsterdam, Netherlands, 1061 AE.
| | | | | | | | | |
Collapse
|
32
|
Natural History and Treatment of Peripheral Inherited Neuropathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:207-24. [DOI: 10.1007/978-90-481-2813-6_14] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
33
|
Herrmann DN. Experimental therapeutics in hereditary neuropathies: the past, the present, and the future. Neurotherapeutics 2008; 5:507-15. [PMID: 19019301 PMCID: PMC4514696 DOI: 10.1016/j.nurt.2008.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Hereditary neuropathies represent approximately 40% of undiagnosed neuropathies in a tertiary clinic setting. The Charcot-Marie-Tooth neuropathies (CMT) are the most common. Mutations in more than 40 genes have been identified to date in CMT. Approximately 50% of CMT cases are accounted for by CMT type 1A, due to a duplication within the peripheral myelin protein 22 gene (PMP22). Mutations in the gap junction beta 1 gene (GJB1), the myelin protein zero gene (MPZ), and the mitofusin 2 gene (MFN2) account for a substantial proportion of other genetically definable CMT. Some 15% of demyelinating CMT and 70% of axonal CMT await genetic clarification. Other hereditary neuropathies include the hereditary sensory and autonomic neuropathies, the familial amyloid polyneuropathies, and multisystem disorders (e.g., lipid storage diseases and inherited ataxias) that have peripheral neuropathy as a major or minor component. This review surveys the challenges of developing effective therapies for hereditary neuropathies in terms of past, present, and future experimental therapeutics in CMT.
Collapse
Affiliation(s)
- David N Herrmann
- Department of Neurology-NMD, University of Rochester Medical Center, Rochester, New York 14642, USA.
| |
Collapse
|
34
|
Abstract
BACKGROUND Charcot-Marie-Tooth disease (CMT) comprises a large variety of different forms of motor and sensory neuropathies. The most frequent are demyelinating forms (CMT1) and axonal forms (CMT2). The molecular basis of several CMT forms has been clarified during the last 15 years. Since muscle wasting and sensory disturbance are the main features of these syndromes, treatments aim to improve motor impairment and sensory disturbances. Specific treatment trials are rare. OBJECTIVES The objective was to review systematically all randomised and quasi-randomised studies of any treatment for CMT. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Trials Register, MEDLINE (January 1966 to August 2007), EMBASE (January 1980 to August 2007), LILACS (January 1982 to August 2007) for randomised controlled trials of treatment for CMT. SELECTION CRITERIA We included randomised and quasi-randomised trials of any treatment for people with CMT. Where a study aimed to evaluate the treatment of general neuromuscular symptoms of people with peripheral neuropathy including CMT, we included the study if we were able to identify the effect of treatment in the CMT group. Observational studies and case reports on the treatment of people with CMT were not included. DATA COLLECTION AND ANALYSIS Two review authors (PY and TBB) extracted the data, assessed study quality and performed data extraction independently. MAIN RESULTS Only one trial with only eight participants met all the inclusion criteria and provided the primary outcome measure for this review. In this trial, four participants treated with neurotrophin-3 had more improvement after six months on the Neuropathy Impairment Score, mean difference -9.50 (95% CI -13.77 to -5.23), than those four treated with placebo. Small trials of exercise training, creatine monohydrate, orthoses and purified bovine brain ganglioside injections (Cronassial) showed no significant benefit in people with genetically undefined CMT1 or CMT2. AUTHORS' CONCLUSIONS Small trials of exercise, creatine, purified brain gangliosides, and orthoses have been performed. None showed significant benefit. A very small trial of neurotrophin-3 showed possible minor benefit which needs to be replicated in a larger trial. None of the two trials were large enough to detect moderate benefit or harm. Larger RCTs are needed for any form of pharmacological intervention as well as as for any form of physical intervention. Outcome measures should include a validated composite scale such as the Charcot-Marie-Tooth neuropathy scale.
Collapse
Affiliation(s)
- P Young
- University of Münster, Department of Neurology, Albert-Schweitzer-Str.33, Münster, Germany, 48129.
| | | | | | | |
Collapse
|
35
|
|
36
|
Molfino A, Costelli P, Aversa Z, Baccino FM, Fanelli FR, Muscaritoli M. Statins, coenzyme Q10, and cachexia: what's the link? Am J Cardiol 2007; 100:1497-8. [PMID: 17950821 DOI: 10.1016/j.amjcard.2007.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 07/02/2007] [Accepted: 07/03/2007] [Indexed: 10/23/2022]
|
37
|
Verma DD, Hartner WC, Thakkar V, Levchenko TS, Torchilin VP. Protective effect of coenzyme Q10-loaded liposomes on the myocardium in rabbits with an acute experimental myocardial infarction. Pharm Res 2007; 24:2131-7. [PMID: 17657597 DOI: 10.1007/s11095-007-9334-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/02/2007] [Indexed: 11/27/2022]
Abstract
PURPOSE We assessed whether the infusion of Coenzyme Q10-loaded liposomes (CoQ10-L) in rabbits with an experimental myocardial infarction can result in increased intracellular delivery of CoQ10 and thus limit the fraction of the irreversibly damaged myocardium. METHODS CoQ10-L, empty liposomes (EL), or Krebs-Henseleit (KH) buffer were administered by intracoronary infusion, followed by 30 min of occlusion and 3 h of reperfusion. Unisperse Blue dye was used to demarcate the net size of the occlusion-induced ischemic zone ("area at risk") while nitroblue tetrazolium staining was used to detect the final fraction of the irreversibly damaged myocardium within the total area at risk. RESULTS The total size of the area at risk in all experimental animals was approx. 20% wt. of the left ventricle (LV). The final irreversible damage in CoQ10-L-treated animals was only ca. 30% of the total area at risk as compared with ca. 60% in the group treated with EL (p < 0.006) and ca. 70% in the KH buffer-treated group (p < 0.001). CONCLUSIONS CoQ10-L effectively protected the ischemic heart muscle by enhancing the intracellular delivery of CoQ10 in hypoxic cardiocytes in rabbits with an experimental myocardial infarction as evidenced by a significantly decreased fraction of the irreversibly damaged heart within the total area at risk. CoQ10-L may provide an effective exogenous source of the CoQ10 in vivo to protect ischemic cells.
Collapse
Affiliation(s)
- Daya D Verma
- Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
38
|
Haas RH. The evidence basis for coenzyme Q therapy in oxidative phosphorylation disease. Mitochondrion 2007; 7 Suppl:S136-45. [PMID: 17485245 DOI: 10.1016/j.mito.2007.03.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2007] [Accepted: 03/22/2007] [Indexed: 10/23/2022]
Abstract
The evidence supporting a treatment benefit for coenzyme Q10 (CoQ10) in primary mitochondrial disease (mitochondrial disease) whilst positive is limited. Mitochondrial disease in this context is defined as genetic disease causing an impairment in mitochondrial oxidative phosphorylation (OXPHOS). There are no treatment trials achieving the highest Level I evidence designation. Reasons for this include the relative rarity of mitochondrial disease, the heterogeneity of mitochondrial disease, the natural cofactor status and easy 'over the counter availability' of CoQ10 all of which make funding for the necessary large blinded clinical trials unlikely. At this time the best evidence for efficacy comes from controlled trials in common cardiovascular and neurodegenerative diseases with mitochondrial and OXPHOS dysfunction the etiology of which is most likely multifactorial with environmental factors playing on a background of genetic predisposition. There remain questions about dosing, bioavailability, tissue penetration and intracellular distribution of orally administered CoQ10, a compound which is endogenously produced within the mitochondria of all cells. In some mitochondrial diseases and other commoner disorders such as cardiac disease and Parkinson's disease low mitochondrial or tissue levels of CoQ10 have been demonstrated providing an obvious rationale for supplementation. This paper discusses the current state of the evidence supporting the use of CoQ10 in mitochondrial disease.
Collapse
Affiliation(s)
- Richard H Haas
- Department of Neurosciences, UCSD Mitochondrial and Metabolic Disease Center, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0935, USA.
| |
Collapse
|
39
|
Hathcock JN, Shao A. Risk assessment for coenzyme Q10 (Ubiquinone). Regul Toxicol Pharmacol 2006; 45:282-8. [PMID: 16814438 DOI: 10.1016/j.yrtph.2006.05.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Indexed: 02/05/2023]
Abstract
Coenzyme Q10 (CoQ10) widely occurs in organisms and tissues, and is produced and used as both a drug and dietary supplement. Increasing evidence of health benefits of orally administered CoQ10 are leading to daily consumption in larger amounts, and this increase justifies research and risk assessment to evaluate the safety. A large number of clinical trials have been conducted using a range of CoQ10 doses. Reports of nausea and other adverse gastrointestinal effects of CoQ10 cannot be causally related to the active ingredient because there is no dose-response relationship: the adverse effects are no more common at daily intakes of 1200 mg than at a 60 mg. Systematic evaluation of the research designs and data do not provide a basis for risk assessment and the usual safe upper level of intake (UL) derived from it unless the newer methods described as the observed safe level (OSL) or highest observed intake (HOI) are utilized. The OSL risk assessment method indicates that the evidence of safety is strong at intakes up to 1200 mg/day, and this level is identified as the OSL. Much higher levels have been tested without adverse effects and may be safe, but the data for intakes above 1200 mg/day are not sufficient for a confident conclusion of safety.
Collapse
Affiliation(s)
- John N Hathcock
- Council for Responsible Nutrition, 1828 L Street, NW, Suite 900, Washington, DC 20036-5114, USA.
| | | |
Collapse
|
40
|
Baker SK, Tarnopolsky MA. Targeting cellular energy production in neurological disorders. Expert Opin Investig Drugs 2005; 12:1655-79. [PMID: 14519086 DOI: 10.1517/13543784.12.10.1655] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The concepts of energy dysregulation and oxidative stress and their complicated interdependence have rapidly evolved to assume primary importance in understanding the pathophysiology of numerous neurological disorders. Therefore, neuroprotective strategies addressing specific bioenergetic defects hold particular promise in the treatment of these conditions (i.e., amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, Friedreich's ataxia, mitochondrial cytopathies and other neuromuscular diseases), all of which, to some extent, share 'the final common pathway' leading to cell death through either necrosis or apoptosis. Compounds such as creatine monohydrate and coenzyme Q(10) offer substantial neuroprotection against ischaemia, trauma, oxidative damage and neurotoxins. Miscellaneous agents, including alpha-lipoic acid, beta-OH-beta-methylbutyrate, riboflavin and nicotinamide, have also been shown to improve various metabolic parameters in brain and/or muscle. This review will highlight the biological function of each of the above mentioned compounds followed by a discussion of their utility in animal models and human neurological disease. The balance of this work will be comprised of discussions on the therapeutic applications of creatine and coenzyme Q(10).
Collapse
Affiliation(s)
- Steven K Baker
- Neurology and Rehabilitation, Room 4U4, Department of Medicine, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | |
Collapse
|
41
|
L'Her E, Sebert P. Effects of dichloroacetate and ubiquinone infusions on glycolysis activity and thermal sensitivity during sepsis. ACTA ACUST UNITED AC 2004; 143:352-7. [PMID: 15192651 DOI: 10.1016/j.lab.2004.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Energy-metabolism disturbances during sepsis are characterized by enhanced glycolytic fluxes and reduced mitochondrial respiration. However, it is not known whether these abnormalities are the result of a specific mitochondrial alteration, decreased pyruvate dehydrogenase (PDH) complex activity, depletion of ubiquinone (CoQ(10); electron donor for the mitochondrial complex III), or all 3. In this study we sought to specify metabolism disturbances in a murine model of sepsis, using either a PDH-activator infusion (dichloroacetate, DCA) or CoQ(10) supplementation. After anesthesia, Sprague-Dawley rats received intravenous saline solution (control; n = 5), DCA (n = 5; 20 mg/100 g), or CoQ(10) (n = 5; 1 mg/100 g), before the induction of sepsis. Increased plasma lactate levels and increased muscle glucose content were observed after 4 hours in the control group. In the DCA group, a decrease in the muscle content of lactate (P <.05) and an increase in muscle glucose content (P <.05) were observed at 4 hours, but no lactatemia variation was noted. In the CoQ(10) group, only increased plasma lactate levels were observed. Increased muscle glycolysis fluxes were observed after 4 hours in the control group, but to a slighter degree in both the DCA and CoQ(10) groups. Only DCA restored a normal temperature sensitivity in the hyperthermia range, but we noted no differences in survival time. In conclusion, only DCA infusion restores normal glycolysis function.
Collapse
Affiliation(s)
- Erwan L'Her
- Reánimation et Urgences Médicales, Centre Hospitalier Universitaire de la Cavale Blanche, Brest, France.
| | | |
Collapse
|
42
|
Palamakula A, Khan MA. Evaluation of cytotoxicity of oils used in coenzyme Q10 Self-Emulsifying Drug Delivery Systems (SEDDS). Int J Pharm 2004; 273:63-73. [PMID: 15010131 DOI: 10.1016/j.ijpharm.2003.12.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 12/12/2003] [Accepted: 12/12/2003] [Indexed: 10/26/2022]
Abstract
The objective of the present study was to develop a suitable method for evaluation of cytotoxicity of the oils used in Self-Emulsified Drug Delivery Systems (SEDDS) using Coenzyme Q10 (Co Q10) as a model compound. For this purpose, three methods of sample preparation were tested, namely (i) suspensions, (ii) homogenization, and (iii) nanoemulsions of oils in Dulbecco's Modified Eagle's Media (DMEM). Studies were carried out by incubating the sample or control with Caco-2 cells grown on transwell insert systems as well as in flat bottom 96-well plates. The cell viability was assessed by using WST-1 and propidium iodide reagents while the monolayer integrity was assessed by mannitol permeability and Trans Epithelial Electrical Resistance (TEER). The cytotoxicity of oils was found to be dependent on the method of sample preparation; nanoemulsions being the least cytotoxic. In conclusion, nanoemulsification is a useful tool for cytotoxicity evaluation of substances, which exhibit poor aqueous/dimethyl sulfoxide (DMSO) solubility.
Collapse
Affiliation(s)
- Anitha Palamakula
- School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter, Amarillo, TX 79106, USA
| | | |
Collapse
|
43
|
Marriage BJ, Clandinin MT, Macdonald IM, Glerum DM. Cofactor treatment improves ATP synthetic capacity in patients with oxidative phosphorylation disorders. Mol Genet Metab 2004; 81:263-72. [PMID: 15059613 DOI: 10.1016/j.ymgme.2003.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 12/18/2003] [Accepted: 12/18/2003] [Indexed: 11/29/2022]
Abstract
Marked progress has been made over the past 15 years in defining the specific biochemical defects and underlying molecular mechanisms of oxidative phosphorylation disorders, but limited information is currently available on the development and evaluation of effective treatment approaches. Metabolic therapies that have been reported to produce a positive effect include coenzyme Q(10) (ubiquinone), other antioxidants such as ascorbic acid and vitamin E, riboflavin, thiamine, niacin, vitamin K (phylloquinone and menadione), and carnitine. The goal of these therapies is to increase mitochondrial ATP production, and to slow or arrest the progression of clinical symptoms. In the present study, we demonstrate for the first time that there is a significant increase in ATP synthetic capacity in lymphocytes from patients undergoing cofactor treatment. We also examined in vitro cofactor supplementation in control lymphocytes in order to determine the effect of the individual components of the cofactor treatment on ATP synthesis. A dose-dependent increase in ATP synthesis with CoQ(10) incubation was demonstrated, which supports the proposal that CoQ(10) may have a beneficial effect in the treatment of oxidative phosphorylation (OXPHOS) disorders.
Collapse
Affiliation(s)
- Barbara J Marriage
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
44
|
Muscaritoli M, Costelli P, Bossola M, Grieco G, Bonelli G, Bellantone R, Doglietto GB, Rossi-Fanelli F, Baccino FM. Effects of simvastatin administration in an experimental model of cancer cachexia. Nutrition 2003; 19:936-9. [PMID: 14624942 DOI: 10.1016/j.nut.2003.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE We evaluated whether statins, in view of their anti-inflammatory properties, may effectively prevent the onset or modulate the severity of muscle wasting during cancer cachexia. METHODS Simvastatin was administered to rats bearing the Yoshida AH-130 ascites hepatoma, a well-studied cytokine-dependent experimental model of cancer cachexia. RESULTS Quite surprisingly, the drug negatively affected the wasting pattern induced by the AH-130 hepatoma. In fact, the administration of simvastatin to tumor hosts induced a further weight reduction of all the tissues examined except for the soleus, in the absence of significant effects of simvastatin on tumor growth or on food intake. No effects were observed after simvastatin administration in control animals, with the exception of a significant (P < 0.05) reduction in heart weight. CONCLUSIONS Simvastatin administration, although capable of negatively modulating the inflammatory response, did not prevent muscle wasting in this experimental model of cancer cachexia. Moreover, the further muscle loss observed in simvastatin-treated tumor-bearing animals suggests that a note of caution should be introduced in treating cancer patients with statins in view of the possible occurrence of harmful side effects.
Collapse
|
45
|
Saifi GM, Szigeti K, Snipes GJ, Garcia CA, Lupski JR. Molecular Mechanisms, Diagnosis, and Rational Approaches to Management of and Therapy for Charcot-Marie-Tooth Disease and Related Peripheral Neuropathies. J Investig Med 2003. [DOI: 10.1177/108155890305100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During the last decade, 18 genes and 11 additional loci harboring candidate genes have been associated with Charcot-Marie-Tooth disease (CMT) and related peripheral neuropathies. Ten of these 18 genes have been identified in the last 2 years. This phenomenal pace of CMT gene discovery has fomented an unprecedented explosion of information regarding peripheral nerve biology and its pathologic manifestations in CMT. This review integrates molecular genetics with the clinical phenotypes and provides a flowchart for molecular-based diagnostics. In addition, we discuss rational approaches to molecular therapeutics, including novel biologic molecules (eg, small interfering ribonucleic acid [siRNA], antisense RNA, and ribozymes) that potentially could be used as drugs in the future. These may be applicable in attempts to normalize gene expression in cases of CMT type 1A, wherein a 1.5 Mb genomic duplication causes an increase in gene dosage that is associated with the majority of CMT cases. Aggresome formation by the PMP22 gene product, the disease-associated gene in the duplication cases, could thus be avoided. We also discuss alternative therapeutics, in light of other neurodegenerative disorders, to disrupt such aggresomes. Finally, we review rational therapeutic approaches, including the use of antioxidants such as vitamin E, coenzyme Q10, or lipoic acid to relax potential oxidative stress in peripheral nerves, for CMT management.
Collapse
Affiliation(s)
- Gulam Mustafa Saifi
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Kinga Szigeti
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | | | - Carlos A. Garcia
- Departments of Neurology and Pathology, Tulane University Health Sciences Center, New Orleans, LA
| | - James R. Lupski
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children's Hospital, Houston, TX
| |
Collapse
|
46
|
Marriage B, Clandinin MT, Glerum DM. Nutritional cofactor treatment in mitochondrial disorders. JOURNAL OF THE AMERICAN DIETETIC ASSOCIATION 2003; 103:1029-38. [PMID: 12891154 DOI: 10.1016/s0002-8223(03)00476-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial disorders are degenerative diseases characterized by a decrease in the ability of mitochondria to supply cellular energy requirements. Substantial progress has been made in defining the specific biochemical defects and underlying molecular mechanisms, but limited information is available about the development and evaluation of effective treatment approaches. The goal of nutritional cofactor therapy is to increase mitochondrial adenosine 5'-triphosphate production and slow or arrest the progression of clinical symptoms. Accumulation of toxic metabolites and reduction of electron transfer activity have prompted the use of antioxidants, electron transfer mediators (which bypass the defective site), and enzyme cofactors. Metabolic therapies that have been reported to produce a positive effect include Coenzyme Q(10) (ubiquinone); other antioxidants such as ascorbic acid, vitamin E, and lipoic acid; riboflavin; thiamin; niacin; vitamin K (phylloquinone and menadione); creatine; and carnitine. A literature review of the use of these supplements in mitochondrial disorders is presented.
Collapse
Affiliation(s)
- Barbara Marriage
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
47
|
|
48
|
Linnane AW, Zhang C, Yarovaya N, Kopsidas G, Kovalenko S, Papakostopoulos P, Eastwood H, Graves S, Richardson M. Human aging and global function of coenzyme Q10. Ann N Y Acad Sci 2002; 959:396-411; discussion 463-5. [PMID: 11976213 DOI: 10.1111/j.1749-6632.2002.tb02110.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this paper, we review two parts of our recent work on human skeletal muscle. The first part mainly describes changes occurring during aging, whereas the second part discusses the functions of coenzyme Q10 (CoQ10), particularly in relation to the aging process. During the lifetime of an individual, mtDNA undergoes a variety of mutation events and rearrangements. These mutations and their consequent bioenergenic decline, together with nuclear DNA damage, contribute to the reduced function of cells and organs, especially in postmitotic tissues. In skeletal muscle, this functional decline can be observed by means of changes with age in fiber type profile and the reduction in the number and size of the muscle fibers. In addition to the functions of coenzyme Q10 as an electron carrier in the respiratory chain and as an antioxidant, CoQ10 has been shown to regulate global gene expression in skeletal muscle. We hypothesize that this regulation is achieved via superoxide formation with H2O2 as a second messenger to the nucleus.
Collapse
Affiliation(s)
- Anthony W Linnane
- Centre for Molecular Biology and Medicine, Epworth Medical Centre, Richmond, Victoria 3121, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rozen TD, Oshinsky ML, Gebeline CA, Bradley KC, Young WB, Shechter AL, Silberstein SD. Open label trial of coenzyme Q10 as a migraine preventive. Cephalalgia 2002; 22:137-41. [PMID: 11972582 DOI: 10.1046/j.1468-2982.2002.00335.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The objective was to assess the efficacy of coenzyme Q10 as a preventive treatment for migraine headaches. Thirty-two patients (26 women, 6 men) with a history of episodic migraine with or without aura were treated with coenzyme Q10 at a dose of 150 mg per day. Thirty-one of 32 patients completed the study; 61.3% of patients had a greater than 50% reduction in number of days with migraine headache. The average number of days with migraine during the baseline period was 7.34 and this decreased to 2.95 after 3 months of therapy, which was a statistically significant response (P < 0.0001). Mean reduction in migraine frequency after 1 month of treatment was 13.1% and this increased to 55.3% by the end of 3 months. Mean migraine attack frequency was 4.85 during the baseline period and this decreased to 2.81 attacks by the end of the study period, which was a statistically significant response (P < 0.001). There were no side-effects noted with coenzyme Q10. From this open label investigation coenzyme Q10 appears to be a good migraine preventive. Placebo-controlled trials are now necessary to determine the true efficacy of coenzyme Q10 in migraine prevention.
Collapse
Affiliation(s)
- T D Rozen
- Jefferson Headache Center/Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Duchenne muscular dystrophy (DMD) is not treatable; there is no cure. More than a decade ago, randomized trials demonstrated that oral steroid therapy was of benefit to DMD patients by prolonging ambulation. Although few significant side effects were reported, study patients were followed for 18 months or less. However, when treating DMD with steroids, the clinician must consider beginning treatment in mid-childhood and continuing until adolescence or longer, a total of at least 10 years. There is no evidence that steroids are associated with prolonged life or with improved pulmonary or cardiac function in DMD. It is clear that the risk of side effects increases with duration of use of oral steroids. Therefore, oral steroids are not recommended for treatment of DMD on a routine basis. If, in certain cases, one does institute therapy, the patient should be monitored carefully for side effects, maintain dietary restriction, and exercise regularly.
Collapse
Affiliation(s)
- Susan T. Iannaccone
- Department of Neuromuscular Disease and Neurorehabilitation, The University of Texas Southwestern Medical Center, Texas Scottish Rite Hospital for Children, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | | |
Collapse
|