1
|
Jeong M, Bojkovic K, Sagi V, Stankovic KM. Molecular and Clinical Significance of Fibroblast Growth Factor 2 in Development and Regeneration of the Auditory System. Front Mol Neurosci 2022; 14:757441. [PMID: 35002617 PMCID: PMC8733209 DOI: 10.3389/fnmol.2021.757441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/18/2021] [Indexed: 01/25/2023] Open
Abstract
The fibroblast growth factor 2 (FGF2) is a member of the FGF family which is involved in key biological processes including development, cellular proliferation, wound healing, and angiogenesis. Although the utility of the FGF family as therapeutic agents has attracted attention, and FGF2 has been studied in several clinical contexts, there remains an incomplete understanding of the molecular and clinical function of FGF2 in the auditory system. In this review, we highlight the role of FGF2 in inner ear development and hearing protection and present relevant clinical studies for tympanic membrane (TM) repair. We conclude by discussing the future implications of FGF2 as a potential therapeutic agent.
Collapse
Affiliation(s)
- Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Katarina Bojkovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Varun Sagi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,University of Minnesota Medical School, Minneapolis, MN, United States
| | - Konstantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Willardsen M, Hutcheson DA, Moore KB, Vetter ML. The ETS transcription factor Etv1 mediates FGF signaling to initiate proneural gene expression during Xenopus laevis retinal development. Mech Dev 2013; 131:57-67. [PMID: 24219979 DOI: 10.1016/j.mod.2013.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/27/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
Fibroblast growth factor signaling plays a significant role in the developing eye, regulating both patterning and neurogenesis. Members of the Pea3/Etv4-subfamily of ETS-domain transcription factors (Etv1, Etv4, and Etv5) are transcriptional activators that are downstream targets of FGF/MAPK signaling, but whether they are required for eye development is unknown. We show that in the developing Xenopus laevis retina, etv1 is transiently expressed at the onset of retinal neurogenesis. We found that etv1 is not required for eye specification, but is required for the expression of atonal-related proneural bHLH transcription factors, and is also required for retinal neuron differentiation. Using transgenic reporters we show that the distal atoh7 enhancer, which is required for the initiation of atoh7 expression in the Xenopus retina, is responsive to both FGF signaling and etv1 expression. Thus, we conclude that Etv1 acts downstream of FGF signaling to regulate the initiation of neurogenesis in the Xenopus retina.
Collapse
Affiliation(s)
- Minde Willardsen
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - David A Hutcheson
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kathryn B Moore
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
3
|
Le Bouffant R, Wang JH, Futel M, Buisson I, Umbhauer M, Riou JF. Retinoic acid-dependent control of MAP kinase phosphatase-3 is necessary for early kidney development in Xenopus. Biol Cell 2012; 104:516-32. [DOI: 10.1111/boc.201200005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022]
|
4
|
Pope AP, Liu C, Sater AK, Servetnick M. FGFR3 expression in Xenopus laevis. Gene Expr Patterns 2010; 10:87-92. [PMID: 20044036 DOI: 10.1016/j.gep.2009.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 12/03/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
We studied the expression of FGF receptor 3 (FGFR3) mRNA throughout early development of Xenopus laevis by RT-PCR and in situ hybridization. RT-PCR shows that FGFR3 mRNA is localized within the gastrula; regionalized staining is detected by the neural plate stage and continues throughout embryonic development. Strong expression is seen in developing neural structures, especially in the forebrain and hindbrain, including the developing eyes, and in lateral mesoderm. Comparison of these data with previous reports of FGF expression in this species suggests possible FGF-FGFR3 interactions. The pattern of FGFR3 expression appears to be strongly conserved among vertebrate embryos.
Collapse
|
5
|
Yamada S, Onishi M, Fujinawa R, Tadokoro Y, Okabayashi K, Asashima M, Sugahara K. Structural and functional changes of sulfated glycosaminoglycans in Xenopus laevis during embryogenesis. Glycobiology 2009; 19:488-98. [PMID: 19190026 DOI: 10.1093/glycob/cwp005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Xenopus laevis is an excellent animal for analyzing early vertebrate development. Various effects of glycosaminoglycans (GAGs) on growth factor-related cellular events during embryogenesis have been demonstrated in Xenopus. To elucidate the relationship between alterations in fine structure and changes in the specificity of growth factor binding during Xenopus development, heparan sulfate (HS) and chondroitin/dermatan sulfate (CS/DS) chains were isolated at four different embryonic stages and their structure and growth factor-binding capacities were compared. The total amounts of both HS and CS/DS chains decreased from the pre-midblastula transition to the gastrula stage, but increased exponentially during the following developmental stages. The length of HS chains was not significantly affected by development, whereas that of CS/DS chains increased with development. The disaccharide composition of GAGs in embryos also changed during development. The degree of sulfation of the HS chains gradually decreased with development. The predominant sulfation position in the CS/DS chains shifted from C4 to C6 of GalNAc during embryogenesis. Growth factor-binding experiments using a BIAcore system demonstrated that GAGs bound growth factors including fibroblast growth factors-1 and -2, midkine, and pleiotrophin, with comparable affinities. These affinities significantly varied during development, although the correlation between the structural alterations of GAGs and the change in the ability to bind growth factors remains to be clarified. The expression of saccharide sequences, which specifically interact with a growth factor, might be regulated during development.
Collapse
Affiliation(s)
- Shuhei Yamada
- Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University Graduate School of Life Science, Sapporo 001-0021, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Retinoic acid (RA) has pleiotropic functions during embryogenesis. In zebrafish, increasing or blocking RA signaling results in enlarged or reduced otic vesicles, respectively. Here we elucidate the mechanisms that underlie these changes and show that they have origins in different tissues. Excess RA leads to ectopic foxi1 expression throughout the entire preplacodal domain. Foxi1 provides competence to adopt an otic fate. Subsequently, pax8, the expression of which depends upon Foxi1 and Fgf, is also expressed throughout the preplacodal domain. By contrast, loss of RA signaling does not affect foxi1 expression or otic competence, but instead results in delayed onset of fgf3 expression and impaired otic induction. fgf8 mutants depleted of RA signaling produce few otic cells, and these cells fail to form a vesicle, indicating that Fgf8 is the primary factor responsible for otic induction in RA-depleted embryos. Otic induction is rescued by fgf8 overexpression in RA-depleted embryos, although otic vesicles never achieve a normal size, suggesting that an additional factor is required to maintain otic fate. fgf3;tcf2 double mutants form otic vesicles similar to RA-signaling-depleted embryos, suggesting a signal from rhombomere 5-6 may also be required for otic fate maintenance. We show that rhombomere 5 wnt8b expression is absent in both RA-signaling-depleted embryos and in fgf3;tcf2 double mutants, and inactivation of wnt8b in fgf3 mutants by morpholino injection results in small otic vesicles, similar to RA depletion in wild type. Thus, excess RA expands otic competence, whereas the loss of RA impairs the expression of fgf3 and wnt8b in the hindbrain, compromising the induction and maintenance of otic fate.
Collapse
Affiliation(s)
- Stefan Hans
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
7
|
Fgf-dependent otic induction requires competence provided by Foxi1 and Dlx3b. BMC DEVELOPMENTAL BIOLOGY 2007; 7:5. [PMID: 17239227 PMCID: PMC1794237 DOI: 10.1186/1471-213x-7-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 01/19/2007] [Indexed: 01/21/2023]
Abstract
Background The inner ear arises from a specialized set of cells, the otic placode, that forms at the lateral edge of the neural plate adjacent to the hindbrain. Previous studies indicated that fibroblast growth factors (Fgfs) are required for otic induction; in zebrafish, loss of both Fgf3 and Fgf8 results in total ablation of otic tissue. Furthermore, gain-of-function studies suggested that Fgf signaling is not only necessary but also sufficient for otic induction, although the amount of induced ectopic otic tissue reported after misexpression of fgf3 or fgf8 varies among different studies. We previously suggested that Foxi1 and Dlx3b may provide competence to form the ear because loss of both foxi1 and dlx3b results in ablation of all otic tissue even in the presence of a fully functional Fgf signaling pathway. Results Using a transgenic line that allows us to misexpress fgf8 under the control of the zebrafish temperature-inducible hsp70 promoter, we readdressed the role of Fgf signaling and otic competence during placode induction. We find that misexpression of fgf8 fails to induce formation of ectopic otic vesicles outside of the endogenous ear field and has different consequences depending upon the developmental stage. Overexpression of fgf8 from 1-cell to midgastrula stages leads to formation of no or small otic vesicles, respectively. Overexpression of fgf8 at these stages never leads to ectopic expression of foxi1 or dlx3b, contrary to previous studies that indicated that foxi1 is activated by Fgf signaling. Consistent with our results we find that pharmacological inhibition of Fgf signaling has no effect on foxi1 or dlx3b expression, but instead, Bmp signaling activates foxi1, directly and dlx3b, indirectly. In contrast to early activation of fgf8, fgf8 overexpression at the end of gastrulation, when otic induction begins, leads to much larger otic vesicles. We further show that application of a low dose of retinoic acid that does not perturb patterning of the anterior neural plate leads to expansion of foxi1 and to a massive Fgf-dependent otic induction. Conclusion These results provide further support for the hypothesis that Foxi1 and Dlx3b provide competence for cells to respond to Fgf and form an otic placode.
Collapse
|
8
|
Peres JN, McNulty CL, Durston AJ. Interaction between X-Delta-2 and Hox genes regulates segmentation and patterning of the anteroposterior axis. Mech Dev 2006; 123:321-33. [PMID: 16644189 DOI: 10.1016/j.mod.2006.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 02/28/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
In vertebrates, the paraxial mesoderm already exhibits a complex Hox gene pattern by the time that segmentation occurs and somites are formed. The anterior boundaries of the Hox genes are always maintained at the same somite number, suggesting coordination between somite formation and Hox expression. To study this interaction, we used morpholinos to knockdown either the somitogenesis gene X-Delta-2 or the complete Hox paralogous group 1 (PG1) in Xenopus laevis. When X-Delta-2 is knocked down, Hox genes from different paralogous groups are downregulated from the beginning of their expression at gastrula stages. This effect is not via the canonical Notch pathway, as it is independent of the Notch effector Su(H). We also reveal for the first time a clear role for Hox genes in somitogenesis, as loss of PG1 gene function results in the perturbation of somite formation and downregulation of the X-Delta-2 expression in the PSM. This effect on X-Delta-2 expression is also observed during neurula stages, before the somites are formed. These results show that somitogenesis and patterning of the anteroposterior axis are closely linked via a feedback loop involving Hox genes and X-Delta-2, suggesting the existence of a coordination mechanism between somite formation and anteroposterior patterning. Such a mechanism is likely to be functional during gastrulation, before the formation of the first pair of somites, as suggested by the early X-Delta-2 regulation of the Hox genes.
Collapse
Affiliation(s)
- João N Peres
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands.
| | | | | |
Collapse
|
9
|
Abstract
The Drosophila Delta gene and its vertebrate homologues are ligands for the Notch receptor and are involved in a variety of developmental processes, including neurogenesis, boundary formation, and axon guidance. This study deals with the ectodermal expression and function of X-Delta-2 during early Xenopus laevis development. X-Delta-2 is expressed, from early neurula stages on, throughout the central nervous system (CNS; forebrain, eyes, midbrain, hindbrain, and spinal cord) and in the majority of the cranial placodes. Loss of function experiments using a morpholino knockdown approach revealed that X-Delta-2 is necessary for hindbrain segmentation and the correct specification of the anterior CNS. X-Delta-2 also seems to be important in the determination of the size of the eyes. Furthermore, our results suggest that X-Delta-2 is involved in the migration of the cranial placodes cells, as well the migration of the cranial neural crest cells.
Collapse
Affiliation(s)
- João N Peres
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Utrecht, The Netherlands
| | | |
Collapse
|
10
|
Abstract
How important is the contribution of mRNAs and proteins stored in the oocyte for determining the body plan of the Xenopus embryo? Here we review the current understanding of the roles of maternally supplied transcription factors, signaling molecules, and signaling regulators in establishing the ectoderm, mesoderm, and endoderm germ layers and the embryonic axes. Key essential asymmetries of VegT, Wnt11, and Ectodermin are described, as well as the complexity of maternal transcription factors that are involved in the initial expression of early zygotic genes.
Collapse
Affiliation(s)
- Janet Heasman
- Division of Developmental Biology ML7007, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
11
|
Cinaroglu A, Ozmen Y, Ozdemir A, Ozcan F, Ergorul C, Cayirlioglu P, Hicks D, Bugra K. Expression and possible function of fibroblast growth factor 9 (FGF9) and its cognate receptors FGFR2 and FGFR3 in postnatal and adult retina. J Neurosci Res 2005; 79:329-39. [PMID: 15614790 DOI: 10.1002/jnr.20363] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibroblast growth factors (FGFs) are important regulators of retinal development and survival. We examined the expression and distribution of FGF9 and its preferred receptors FGFR2IIIc and FGFR3IIIc in this tissue. FGF9 transcripts in whole rat retina were detected by RT-PCR but were not present in purified cultured Muller glia. Transcripts appeared as 3.2-kb and 4.0-kb bands on Northern blots, and Western blotting of whole retina revealed FGF9-immunoreactive bands at 30 and 55 kDa. FGF9 mRNA demonstrated a biphasic expression profile, elevated at birth and adulthood, but relatively decreased during terminal retinal differentiation (4-14 days postnatal). Antibody labeling broadly reflected these findings: staining in vivo was observed mainly in the inner retina (and outer plexiform layer in adults) whereas FGF9 was not detectable in cultured Muller glia. In adults, FGF9 in situ hybridization also showed a detectable signal in inner retina. FGFR2IIIc and FGFR3IIIc were detected by RT-PCR, and Western blotting showed both FGFRs existed as multiple forms between approximately 100-200 kDa. FGFR2 and FGFR3 antibodies showed prominent labeling in the inner retina, especially in proliferating cultured Muller glia. Exogenous FGF9 elicited a dose-dependent increase in Muller glial proliferation in vitro. These data suggest a role for FGF9 in retinal differentiation and maturation, possibly representing a neuronally derived factor acting upon glial (and other) cells.
Collapse
MESH Headings
- Aging/metabolism
- Animals
- Animals, Newborn
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Fibroblast Growth Factor 9
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/pharmacology
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Developmental/physiology
- Neuroglia/drug effects
- Neuroglia/metabolism
- Neurons/metabolism
- Protein Isoforms/metabolism
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/metabolism
- Retina/growth & development
- Retina/metabolism
Collapse
Affiliation(s)
- Ayca Cinaroglu
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sapieha PS, Peltier M, Rendahl KG, Manning WC, Di Polo A. Fibroblast growth factor-2 gene delivery stimulates axon growth by adult retinal ganglion cells after acute optic nerve injury. Mol Cell Neurosci 2004; 24:656-72. [PMID: 14664816 DOI: 10.1016/s1044-7431(03)00228-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Basic fibroblast growth factor (or FGF-2) has been shown to be a potent stimulator of retinal ganglion cell (RGC) axonal growth during development. Here we investigated if FGF-2 upregulation in adult RGCs promoted axon regrowth in vivo after acute optic nerve injury. Recombinant adeno-associated virus (AAV) was used to deliver the FGF-2 gene to adult RGCs providing a sustained source of this neurotrophic factor. FGF-2 gene transfer led to a 10-fold increase in the number of axons that extended past 0.5 mm from the lesion site compared to control nerves. Detection of AAV-mediated FGF-2 protein in injured RGC axons correlated with growth into the distal optic nerve. The response to FGF-2 upregulation was supported by our finding that FGF receptor-1 (FGFR-1) and heparan sulfate (HS), known to be essential for FGF-2 signaling, were expressed by adult rat RGCs. FGF-2 transgene expression led to only transient protection of injured RGCs. Thus the effect of this neurotrophic factor on axon extension could not be solely attributed to an increase in neuronal survival. Our data indicate that selective upregulation of FGF-2 in adult RGCs stimulates axon regrowth within the optic nerve, an environment that is highly inhibitory for regeneration. These results support the hypothesis that key factors involved in axon outgrowth during neural development may promote regeneration of adult injured neurons.
Collapse
Affiliation(s)
- Przemyslaw S Sapieha
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, Quebec H3T 1J4, Canada
| | | | | | | | | |
Collapse
|
13
|
Shiotsugu J, Katsuyama Y, Arima K, Baxter A, Koide T, Song J, Chandraratna RAS, Blumberg B. Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development 2004; 131:2653-67. [PMID: 15128657 DOI: 10.1242/dev.01129] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anteroposterior (AP) patterning of the developing CNS is crucial for both regional specification and the timing of neurogenesis. Several important factors are involved in AP patterning, including members of the WNT and FGF growth factor families, retinoic acid receptors, and HOX genes. We have examined the interactions between FGF and retinoic signaling pathways. Blockade of FGF signaling downregulates the expression of members of the RAR signaling pathway, RARalpha, RALDH2 and CYP26. Overexpression of a constitutively active RARalpha2 rescues the effects of FGF blockade on the expression of XCAD3 and HOXB9. This suggests that RARalpha2 is required as a downstream target of FGF signaling for the posterior expression of XCAD3 and HOXB9. Surprisingly, we found that posterior expression of FGFR1 and FGFR4 was dependent on the expression of RARalpha2. Anterior expression was also altered with FGFR1 expression being lost, whereas FGFR4 expression was expanded beyond its normal expression domain. RARalpha2 is required for the expression of XCAD3 and HOXB9, and for the ability of XCAD3 to induce HOXB9 expression. We conclude that RARalpha2 is required at multiple points in the posteriorization pathway, suggesting that correct AP neural patterning depends on a series of mutually interactive feedback loops among FGFs, RARs and HOX genes.
Collapse
MESH Headings
- Aldehyde Dehydrogenase 1 Family
- Aldehyde Oxidase
- Aldehyde Oxidoreductases/genetics
- Aldehyde Oxidoreductases/metabolism
- Animals
- Axis, Cervical Vertebra/embryology
- Axis, Cervical Vertebra/metabolism
- Body Patterning/genetics
- Cytochrome P-450 Enzyme System/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Embryo, Nonmammalian
- Epistasis, Genetic
- Fetal Proteins/genetics
- Fetal Proteins/metabolism
- Fibroblast Growth Factor 8
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 4
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinal Dehydrogenase
- Retinoic Acid 4-Hydroxylase
- Retinoic Acid Receptor alpha
- Signal Transduction
- Tretinoin/metabolism
- Xenopus/embryology
- Xenopus/genetics
- Xenopus/metabolism
- Xenopus Proteins/genetics
- Xenopus Proteins/metabolism
Collapse
Affiliation(s)
- Jason Shiotsugu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697-2300, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Moore KB, Mood K, Daar IO, Moody SA. Morphogenetic Movements Underlying Eye Field Formation Require Interactions between the FGF and ephrinB1 Signaling Pathways. Dev Cell 2004; 6:55-67. [PMID: 14723847 DOI: 10.1016/s1534-5807(03)00395-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The definitive retinal progenitors of the eye field are specified by transcription factors that both promote a retinal fate and control cell movements that are critical for eye field formation. However, the molecular signaling pathways that regulate these movements are largely undefined. We demonstrate that both the FGF and ephrin pathways impact eye field formation. Activating the FGF pathway before gastrulation represses cellular movements in the presumptive anterior neural plate and prevents cells from expressing a retinal fate, independent of mesoderm induction or anterior-posterior patterning. Inhibiting the FGF pathway promotes cell dispersal and significantly increases eye field contribution. ephrinB1 reverse signaling is required to promote cellular movements into the eye field, and can rescue the FGF receptor-induced repression of retinal fate. These results indicate that FGF modulation of ephrin signaling regulates the positioning of retinal progenitor cells within the definitive eye field.
Collapse
Affiliation(s)
- Kathryn B Moore
- Department of Anatomy and Cell Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
15
|
Galli A, Roure A, Zeller R, Dono R. Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos. Development 2003; 130:4919-29. [PMID: 12930779 DOI: 10.1242/dev.00706] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heparan sulphate proteoglycans such as glypicans are essential modulators of intercellular communication during embryogenesis. In Xenopus laevis embryos, the temporal and spatial distribution of Glypican 4 (Gpc4) transcripts during gastrulation and neurulation suggests functions in early development of the central nervous system. We have functionally analysed the role of Xenopus Gpc4 by using antisense morpholino oligonucleotides and show that Gpc4 is part of the signalling network that patterns the forebrain. Depletion of GPC4 protein results in a pleiotropic phenotype affecting both primary axis formation and early patterning of the anterior central nervous system. Molecular analysis shows that posterior axis elongation during gastrulation is affected in GPC4-depleted embryos, whereas head and neural induction are apparently normal. During neurulation, loss of GPC4 disrupts expression of dorsal forebrain genes, such as Emx2, whereas genes marking the ventral forebrain and posterior central nervous system continue to be expressed. This loss of GPC4 activity also causes apoptosis of forebrain progenitors during neural tube closure. Biochemical studies establish that GPC4 binds FGF2 and modulates FGF signal transduction. Inhibition of FGF signal transduction, by adding the chemical SU5402 to embryos from neural plate stages onwards, phenocopies the loss of gene expression and apoptosis in the forebrain. We propose that GPC4 regulates dorsoventral forebrain patterning by positive modulation of FGF signalling.
Collapse
Affiliation(s)
- Antonella Galli
- Department of Developmental Biology, Faculty of Biology, Utrecht University, Padualaan 8, NL-3584CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Stephen T Brown
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West Third Street, Los Angeles, California 90057, USA
| | | | | |
Collapse
|
17
|
Kumano G, Smith WC. Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning. Dev Dyn 2002; 225:409-21. [PMID: 12454919 DOI: 10.1002/dvdy.10177] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A revised fate map of the gastrula Xenopus embryo predicts the existence of patterning mechanisms that operate within the animal/vegetal axis of the mesoderm-forming marginal zone. We review here molecular and embryologic data that demonstrate that such mechanisms are present and that they operate independently of the Spemann organizer. Evidence suggests that polarized fibroblast growth factor activity in the animal/vegetal axis patterns this axis. We present a model of mesoderm induction and patterning that integrates the new data on Spemann organizer-independent animal/vegetal patterning with data on other inductive pathways known to act on the gastrula marginal zone.
Collapse
Affiliation(s)
- Gaku Kumano
- Neuroscience Research Institute, and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | |
Collapse
|
18
|
Lin L, Taylor JSH, Chan SO. Changes in expression of fibroblast growth factor receptors during development of the mouse retinofugal pathway. J Comp Neurol 2002; 451:22-32. [PMID: 12209838 DOI: 10.1002/cne.10337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Retinal axons undergo several changes in organization as they pass through the region of the optic chiasm and optic tract. We used immunocytochemistry to examine the possible involvement of fibroblast growth factor receptors (FGFR) in these changes in retinal axon growth. In the retina, at all ages examined, prominent staining for FGFR was seen in the optic fiber layer and at the optic disk. At embryonic day 15 (E15), FGFR immunoreactivity was also detected in the ganglion cell layer, as defined by immunoreactivity for islet-1. At later developmental stages (E16 to postnatal day 0), FGFR were found in the optic fiber layer and the inner plexiform layer. In the ventral diencephalon, immunostaining for FGFR was first detected at E13 in a group of cells posterior to the chiasm. These cells appeared to match the neurons that are immunopositive for the stage-specific embryonic antigen-1 (SSEA-1). FGFR staining was also found on the retinal axons at E13. At E14-E16, when most axons are growing across the chiasm and the tract, a dynamic pattern of FGFR immunoreactivity was observed on the retinal axons. The staining was reduced when axons reached the midline but was increased when axons reached the threshold of the optic tract. These results suggest that axon growth and fiber patterning in distinct regions of the retinofugal pathway are in part controlled by a regulated expression of FGFR. Furthermore, the axons with elevated FGFR expression in the optic tract have a posterior border of rich FGFR expression in the lateral part of the diencephalon. This region overlaps with a lateral extension of the SSEA-1-positive cells, suggesting a possible relation of these cells to the elevated expression of FGFR.
Collapse
Affiliation(s)
- Ling Lin
- Department of Anatomy, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
19
|
Kumano G, Ezal C, Smith WC. Boundaries and functional domains in the animal/vegetal axis of Xenopus gastrula mesoderm. Dev Biol 2001; 236:465-77. [PMID: 11476585 DOI: 10.1006/dbio.2001.0341] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patterning of the Xenopus gastrula marginal zone in the axis running equatorially from the Spemann organizer-the so--called "dorsal/ventral axis"--has been extensively studied. It is now evident that patterning in the animal/vegetal axis also needs to be taken into consideration. We have shown that an animal/vegetal pattern is apparent in the marginal zone by midgastrulation in the polarized expression domains of Xenopus brachyury (Xbra) and Xenopus nodal-related factor 2 (Xnr2). In this report, we have followed cells expressing Xbra in the presumptive trunk and tail at the gastrula stage, and find that they fate to presumptive somite, but not to ventrolateral mesoderm of the tailbud embryo. From this, we speculate that the boundary between the Xbra- and Xnr2-expressing cells at gastrula corresponds to a future tissue boundary. In further experiments, we show that the level of mitogen-activated protein kinase (MAPK) activation is polarized along the animal/vegetal axis, with the Xnr2-expressing cells in the vegetal marginal zone having no detectable activated MAPK. We show that inhibition of MAPK activation in Xenopus animal caps results in the conversion of Xnr2 from a dorsal mesoderm inducer to a ventral mesoderm inducer, supporting a role for Xnr2 in induction of ventral mesoderm.
Collapse
Affiliation(s)
- G Kumano
- Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
20
|
Cannata SM, Bagni C, Bernardini S, Christen B, Filoni S. Nerve-independence of limb regeneration in larval Xenopus laevis is correlated to the level of fgf-2 mRNA expression in limb tissues. Dev Biol 2001; 231:436-46. [PMID: 11237471 DOI: 10.1006/dbio.2001.0161] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In both larval and adult urodele amphibians, limb blastema formation requires the presence of an adequate nerve supply. In previous research, we demonstrated that the hindlimb of early Xenopus laevis larvae formed a regeneration blastema even when denervated, while the denervated limb of late larvae did not. We hypothesized that the nerve-independence was due to the autonomous synthesis of a mitogenic neurotrophic-like factor by undifferentiated limb bud cells. In this paper, we demonstrate that fgf-2 mRNA is present in larval limb tissues and that its level is correlated to the extent of mesenchymal cells populating the limb: in early limbs, fgf-2 mRNA is present at high levels all over the limb, while, in late limbs, the fgf-2 expression is low and detectable only in the distal autopodium. After denervation, fgf-2 mRNA synthesis increases in amputated early limbs but not in amputated late limbs. The implantation of anti-FGF-2 beads into amputated early limbs hardly lowers the mitotic activity of blastema cells. However, FGF-2 beads implanted into the blastema of late limbs prevent the denervation-induced inhibition of mitosis and oppose blastema regression. Our data indicate that FGF-2 is a good candidate for the endogenous mitogenic factor responsible for blastema formation and growth in amputated and denervated early limbs. However, in amputated late limbs, the very limited fgf-2 expression is not sufficient to promote blastema formation in the absence of nerves.
Collapse
Affiliation(s)
- S M Cannata
- Dipartimento di Biologia, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, Rome, 00133, Italy
| | | | | | | | | |
Collapse
|
21
|
Abstract
Heart induction in Xenopus occurs in paired regions of the dorsoanterior mesoderm in response to signals from the Spemann organizer and underlying dorsoanterior endoderm. These tissues together are sufficient to induce heart formation in noncardiogenic ventral marginal zone mesoderm. Similarly, in avians the underlying definitive endoderm induces cardiogenesis in precardiac mesoderm. Heart-inducing factors in amphibians are not known, and although certain BMPs and FGFs can mimic aspects of cardiogenesis in avians, neither can induce the full range of activities elicited by the inducing tissues. Here we report that the Wnt antagonists Dkk-1 and Crescent can induce heart formation in explants of ventral marginal zone mesoderm. Other Wnt antagonists, including the frizzled domain-containing proteins Frzb and Szl, lacked this activity. Unlike Wnt antagonism, inhibition of BMP signaling did not promote cardiogenesis. Ectopic expression of GSK3beta, which inhibits beta-catenin-mediated Wnt signaling, also induced cardiogenesis in ventral mesoderm. Analysis of Wnt proteins expressed during gastrulation revealed that Wnt3A and Wnt8, but not Wnt5A or Wnt11, inhibited endogenous heart induction. These results indicate that diffusion of Dkk-1 and Crescent from the organizer initiate cardiogenesis in adjacent mesoderm by establishing a zone of low Wnt3A and Wnt8 activity.
Collapse
Affiliation(s)
- V A Schneider
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
22
|
Abstract
According to the three-signal model of mesoderm patterning in Xenopus, all mesoderm, with the exception of the Spemann organizer, is originally specified as ventral type, such as lateral plate and primary blood islands. It is proposed that the blood islands become restricted to the ventralmost mesoderm because they are not exposed to the BMP-inhibiting activity of the Spemann organizer. We present evidence here that, contrary to predictions of this model, the blood islands remain ventrally restricted even in the absence of Spemann organizer signaling. We further observed that inhibition of FGF signaling with a dominant negative receptor resulted in the expansion of the blood island-forming territory with a concomitant loss of somite. The requirement for FGF signaling in specifying somite versus blood island territories was observed as early as midgastrulation. The nonoverlapping expression domains of Xnr-2 and Xbra in the gastrula marginal zone appear to mark presumptive blood island and somite, respectively. Inhibition of FGF signaling with dominant negative receptor leads to an expansion of Xnr-2 expression and to a corresponding reduction in Xbra expression. On the other hand, we found no evidence that manipulation of BMP signaling, either positively or negatively, altered the expression domains of Xnr-2 and Xbra. These results suggest that FGF signaling, rather than BMP-inhibiting activity, is essential for restriction of the ventral blood islands to ventral mesoderm.
Collapse
Affiliation(s)
- G Kumano
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | | |
Collapse
|
23
|
Abstract
In Xenopus embryos, the maternally encoded transcription factor VegT (also known as Xombi, Antipodean, Brat, and Xtbx6) is essential for normal endoderm and mesoderm formation. This finding and the localization of VegT mRNA in the vegetal hemisphere of the oocyte are consistent with several models of germ layer patterning. Specific models have been proposed in which (1) combinations of cytoplasmic determinants, (2) inductive signals, or (3) intracellular concentration (morphogen effects) predominate. We test predictions of these models. We show that contrary to previous proposals, FGF does not suppress endoderm formation and so cannot be an anti-endoderm mesodermal determinant. We further show that, at the right dose, VegT can induce mesodermal marker expression cell autonomously and that it induces mesoderm at concentrations below those that induce endoderm. These results are consistent with a dual mechanism of mesoderm establishment in which both VegT-initiated inductive signals and an intracellular VegT morphogen gradient play a part.
Collapse
Affiliation(s)
- A I Kavka
- Department of Cancer Biology, Dana Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
24
|
Vendrell V, Carnicero E, Giraldez F, Alonso MT, Schimmang T. Induction of inner ear fate by FGF3. Development 2000; 127:2011-9. [PMID: 10769226 DOI: 10.1242/dev.127.10.2011] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loss-of-function experiments in avians and mammals have provided conflicting results on the capacity of fibroblast growth factor 3 (FGF3) to act as a secreted growth factor responsible for induction and morphogenesis of the vertebrate inner ear. Using a novel technique for gene transfer into chicken embryos, we have readdressed the role of FGF3 during inner ear development in avians. We find that ectopic expression of FGF3 results in the formation of ectopic placodes which express otic marker genes. The ectopically induced placodes form vesicles which show the characteristic gene expression pattern of a developing inner ear. Ectopic expression of FGF3 also influences the formation of the normal orthotopic inner ear, whereas another member of the FGF family, FGF2, shows no effects on inner ear induction. These results demonstrate that a single gene can induce inner ear fate and reveal an unexpectedly widespread competence of the surface ectoderm to form sensory placodes in higher vertebrates.
Collapse
Affiliation(s)
- V Vendrell
- Instituto de Biología y Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Cientificas, Departamento de Bioquímica, Biología Molecular y Fisiología, Facultad de Medicina, E-47005 Valladolid, Spain
| | | | | | | | | |
Collapse
|
25
|
Blanco RE, L�pez-Roca A, Soto J, Blagburn JM. Basic fibroblast growth factor applied to the optic nerve after injury increases long-term cell survival in the frog retina. J Comp Neurol 2000. [DOI: 10.1002/1096-9861(20000807)423:4<646::aid-cne9>3.0.co;2-u] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Affiliation(s)
- M Keresztes
- Department of Biochemistry, Albert Szent-Györgyi Medical University, Szeged, Hungary
| | | |
Collapse
|
27
|
Christen B, Slack JM. Spatial response to fibroblast growth factor signalling in Xenopus embryos. Development 1999; 126:119-25. [PMID: 9834191 DOI: 10.1242/dev.126.1.119] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the spatial pattern of activation of the extracellular signal-regulated protein kinase (ERK) during Xenopus development, and show that it closely resembles the expression of various fibroblast growth factors (FGFs). Until the tailbud stage of development, all ERK activation domains are sensitive to the dominant negative FGF receptor, showing that activation is generated by endogenous FGF signalling. ERK is not activated by application of other growth factors like BMP4 or activin, nor is endogenous activation blocked by the respective dominant negative receptors. This shows that various domains of FGF expression, including the periblastoporal region and the midbrain-hindbrain boundary, are also sites of FGF signalling in vivo. Wounding induces a transient (<60 minutes) activation of ERK which is not significantly reduced by the dominant negative FGF receptor. An artificial FGF source, created by injection of eFGF mRNA into cleavage stage embryos, provokes ERK activation outside of its injection site over a range of several cell diameters. The range and extent of ERK activation outside the source region is unchanged by co-injection of a dominant negative form of Ras, which blocks ERK-activation within the source. This suggests that FGF protein can diffuse over several cell diameters.
Collapse
Affiliation(s)
- B Christen
- Developmental Biology Programme, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | |
Collapse
|
28
|
Münchberg SR, Steinbeisser H. The Xenopus Ets transcription factor XER81 is a target of the FGF signaling pathway. Mech Dev 1999; 80:53-65. [PMID: 10096063 DOI: 10.1016/s0925-4773(98)00193-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We report the cloning of a cDNA encoding a Xenopus laevis Ets-type transcription factor. This new Xenopus gene belongs to the PEA3 subfamily of Ets proteins and shows the highest degree of sequence similarity to the mouse and human ER81 genes. The Xenopus ER81 gene (XER81) is transcribed in the embryo after mid blastula transition (MBT) and three transcripts of 3, 4 and 6 kb are detected throughout embryogenesis. XER81 mRNA is localized in the animal pole of the late blastula stage and higher levels of XER81 transcripts are detected in the marginal zone at the onset of gastrulation. In later embryogenesis XER81 transcripts are found in neural crest cells, eyes, otic vesicles and pronephros. The transcription of XER81 can be stimulated by bFGF and eFGF in animal and vegetal cap explants. Expression of the dominant negative FGF receptor mutant in animal caps and embryos blocks XER81 transcription, arguing that the expression of this Ets gene requires active FGF signaling. The spatial overlap of eFGF and XER81 expression domains supports the idea that XER81 transcription could be a marker for regions with active FGF signaling in the embryo.
Collapse
Affiliation(s)
- S R Münchberg
- Max-Planck-Institute for Developmental Biology, Department of Cell Biology, Tübingen, Germany
| | | |
Collapse
|
29
|
Riou JF, Delarue M, Méndez AP, Boucaut JC. Role of fibroblast growth factor during early midbrain development in Xenopus. Mech Dev 1998; 78:3-15. [PMID: 9858666 DOI: 10.1016/s0925-4773(98)00118-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genes encoding fibroblast growth factors (FGFs) are expressed in early Xenopus neurulae in the prospective midbrain-hindbrain boundary (MHB) region of the neural plate. These expression domains overlap those of XWnt-1 and XEn-2, raising the question of the role of FGF signalling in the regulation of these genes, and more generally about the function of FGF during Xenopus midbrain development. We report that explants from the prospective MHB grafted into the anterior neural plate in midneurula stage embryos induce XWnt-1 expression and, at a lower frequency, XEn-2 expression in the vicinity of the graft. Such a process is likely to involve FGF signalling. Implantation of FGF4- or FGF8-soaked beads in the prospective forebrain at neurula and tailbud stages causes the up-regulation of XWnt-1 and XEn-2 in the dorsal and lateral region of the anterior midbrain. This effect is not relayed by endogenous FGF genes since exogenous FGFs inhibit the expression of endogenous XFGF3 or XFGF8. However, consequences of grafting MHB or implanting FGF4 or FGF8 beads on tadpole brain development are different. MHB grafts induce ectopic mesencephalic structures, strongly suggesting that a region homologous to the isthmic organizer of amniotes is specified as early as the midneurula stage. In contrast, exogenous FGFs do not cause the formation of ectopic mesencephalic structures but an overgrowth of mesencephalon and diencephalon. We propose that FGF signals from the prospective MHB play a crucial role in the spatial regulation of XWnt-1 and XEn-2 expression in the posterior midbrain, but that the full organizing activity of the MHB involves other factors in combination with FGF.
Collapse
Affiliation(s)
- J F Riou
- Laboratoire de Biologie Moléculaire et Cellulaire du Développement, groupe Biologie Expérimentale, UMR CNRS 7622, Université Paris VI, 9 quai Saint-Bernard, 75005, Paris, France
| | | | | | | |
Collapse
|
30
|
McFarlane S, Zuber ME, Holt CE. A role for the fibroblast growth factor receptor in cell fate decisions in the developing vertebrate retina. Development 1998; 125:3967-75. [PMID: 9735358 DOI: 10.1242/dev.125.20.3967] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mature vertebrate retina contains seven major cell types that develop from an apparently homogenous population of precursor cells. Clonal analyses have suggested that environmental influences play a major role in specifying retinal cell identity. Fibroblast growth factor-2 is present in the developing retina and regulates the survival, proliferation and differentiation of developing retinal cells in culture. Here we have tested whether fibroblast growth factor receptor signaling biases retinal cell fate decisions in vivo. Fibroblast growth factor receptors were inhibited in retinal precursors in Xenopus embryos by expressing a dominant negative form of the receptor, XFD. Dorsal animal blastomeres that give rise to the retina were injected with cDNA expression constructs for XFD and a control non-functional mutant receptor, D48, and the cell fates of transgene-expressing cells in the mature retina determined. Fibroblast growth factor receptor blockade results in almost a 50% loss of photoreceptors and amacrine cells, and a concurrent 3.5-fold increase in Muller glia, suggesting a shift towards a Muller cell fate in the absence of a fibroblast growth factor receptor signal. Inhibition of non-fibroblast-growth-factor-mediated receptor signaling with a third mutant receptor, HAVO, alters cell fate in an opposite manner. These results suggest that it is the balance of fibroblast growth factor and non-fibroblast growth factor ligand signals that influences retinal cell genesis.
Collapse
Affiliation(s)
- S McFarlane
- Department of Cell Biology and Anatomy, Neuroscience Research Group, HMRB Room 171, University of Calgary, Calgary, Alberta, Canada, T2N 4N1.
| | | | | |
Collapse
|
31
|
Abstract
We have investigated postgastrulation functions of FGFs in Xenopus development by the implantation of heparin beads soaked in FGF2 to various positions at various stages. Anterior implantations show different effects depending on whether they are made to early neurulae or to later stages. At stage 13-14 there is a total or partial suppression of anterior structures including the forebrain, eyes, and midbrain. From stage 15 onwards there is no loss of anterior parts but there is a change in the structure of the eye such that the neural retina remains continuous with the wall of the diencephalon and the territories normally forming the optic stalk and pigment epithelium instead become neural retina. Posterior implantations cause a disruption of somite segmentation without affecting the differentiation of muscle cells. This is associated with a prolongation of the uniform expression of X-Delta-2 during the phase of segmental determination. There is also an induction of ectopic otocysts, which can lie either ipsilateral or contralateral to the FGF-bead. The results are discussed in terms of the known late expression domains of the various Xenopus FGFs, and of the late functions of FGFs in higher vertebrates. They provide new evidence for a role of endogenous FGFs in the development of the eye, somites, and otocysts.
Collapse
Affiliation(s)
- A Lombardo
- Department of Biology and Biochemistry, University of Bath, United Kingdom.
| | | |
Collapse
|
32
|
Yamane Y, Tohno-oka R, Yamada S, Furuya S, Shiokawa K, Hirabayashi Y, Sugino H, Sugahara K. Molecular characterization of Xenopus embryo heparan sulfate. Differential structural requirements for the specific binding to basic fibroblast growth factor and follistatin. J Biol Chem 1998; 273:7375-81. [PMID: 9516434 DOI: 10.1074/jbc.273.13.7375] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymatic elimination of heparan sulfate (HS) causes abnormal mesodermal and neural formation in Xenopus embryos, and HS plays an indispensable role in establishing the embryogenesis and tissue morphogenesis during early Xenopus development (Furuya, S., Sera, M., Tohno-oka, R., Sugahara, K., Shiokawa, K., and Hirabayashi, Y. (1995) Dev. Growth Differ. 37, 337-346). In this study, HS was purified from Xenopus embryos to investigate its disaccharide composition and binding ability to basic fibroblast growth factor (bFGF) and follistatin (FS), the latter being provided in two isoforms with core sequences of 315 and 288 amino acids (designated FS-315 and FS-288) originating from alternative mRNA splicing. Disaccharide composition analysis of the purified Xenopus HS showed the preponderance of a disulfated disaccharide unit with uronic acid 2-O-sulfate and glucosamine 2-N-sulfate, which has been implicated in the interactions with bFGF. Specific binding of the HS to bFGF and FS-288, the COOH-terminal truncated form, was observed in the filter binding assay, whereas HS did not bind to FS-315, indicating that the acidic Glu-rich domain of FS-315 precluded the binding. The binding of the HS to bFGF or FS-288 was markedly inhibited by heparin (HP) and various HS preparations, but not by chondroitin sulfate, supporting the binding specificity of HS. The binding specificity was further investigated using FS-288 and bovine intestinal [3H]HS. Competitive inhibition assays of the HS binding to FS-288 using size-defined HP oligosaccharides revealed that the minimum size required for significant inhibition was a dodecasaccharide, which is larger than the pentasaccharide required for bFGF binding. The binding affinity of FS to HS increased in the presence of activin, a growth/differentiation factor, which could be inactivated by direct binding to FS. These results, taken together, indicate that the structural requirement for binding of HS to bFGF and FS is different. HS may undergo dynamic changes in its structure during early Xenopus embryogenesis in response to the temporal and spatial expression of various growth/differentiation factors.
Collapse
Affiliation(s)
- Y Yamane
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Jones TL, Chong LD, Kim J, Xu RH, Kung HF, Daar IO. Loss of cell adhesion in Xenopus laevis embryos mediated by the cytoplasmic domain of XLerk, an erythropoietin-producing hepatocellular ligand. Proc Natl Acad Sci U S A 1998; 95:576-81. [PMID: 9435234 PMCID: PMC18462 DOI: 10.1073/pnas.95.2.576] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The erythropoietin-producing hepatocellular (Eph) family of ligands and receptors has been implicated in the control of axon guidance and the segmental restriction of cells during embryonic development. In this report, we show that ectopic expression of XLerk, a Xenopus homologue of the murine Lerk-2 (ephrin-B1) transmembrane ligand, causes dissociation of Xenopus embryonic blastomeres by the mid-blastula transition. Moreover, a mutant that lacks the extracellular receptor binding domain can induce this phenotype. The carboxyl-terminal 19 amino acids of the cytoplasmic domain of XLerk are necessary but not sufficient to induce cellular dissociation. Basic fibroblast growth factor, but not activin, can rescue both the loss of cell adhesion and mesoderm induction in ectodermal explants expressing XLerk. Collectively, these results show that the cytoplasmic domain of XLerk has a signaling function that is important for cell adhesion, and fibroblast growth factor signaling modulates this function.
Collapse
Affiliation(s)
- T L Jones
- Laboratory of Leukocyte Biology, Frederick Intramural Research Support Program, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bosco L, Venturini G, Willems D. In vitro lens transdifferentiation of Xenopus laevis outer cornea induced by Fibroblast Growth Factor (FGF). Development 1997; 124:421-8. [PMID: 9053318 DOI: 10.1242/dev.124.2.421] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been shown that lens regeneration from outer cornea of larval Xenopus laevis is dependent on neural retina both in vivo and in tissue culture. The isolated outer cornea cultured in the presence of bovine brain-derived acidic Fibroblast Growth Factor (aFGF) is able to reprogram the differentiation into lens fibers, although this transdifferentiative process is not coupled with the formation of a normally organized lens. The capacity of aFGF to promote lens differentiation from cornea is not linked to its mitogenic activity. The cultured corneal cells can transdifferentiate into lens fibers in the presence of aFGF when DNA replication and cell proliferation are prevented by addition of aphidicolin, a specific inhibitor of DNA polymerase in eukaryotes, to the culture medium.
Collapse
Affiliation(s)
- L Bosco
- Department of Animal and Human Biology, University La Sapienza, Rome, Italy
| | | | | |
Collapse
|
35
|
Itoh K, Sokol SY. Graded amounts of Xenopus dishevelled specify discrete anteroposterior cell fates in prospective ectoderm. Mech Dev 1997; 61:113-25. [PMID: 9076682 DOI: 10.1016/s0925-4773(96)00627-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Signals emitted from the prospective dorsal marginal zone (the organizer) are thought to specify neuroectodermal cell fates along the anteroposterior (AP) axis, but the mechanisms underlying this signaling event remain to be elucidated. To assess the effect of Xenopus Dishevelled (Xdsh), a proposed component of the Wnt, Notch and Frizzled signal transduction pathways, on AP axis determination, it was supplied in varying doses to presumptive ectodermal cells. Two-fold increments in levels of microinjected Xdsh mRNA revealed a gradual shift in cell fates along the AP axis. Lower doses of Xdsh mRNA activated anterior neuroectodermal markers, XAG1 and Xotx2, whereas the higher doses induced more posterior neural tissue markers such as En2, Krox20 and HoxB9. At the highest dose of Xdsh mRNA, explants contained maximal amount of HoxB9 transcripts and developed notochord and somites. When compared with Xdsh, Xwnt8 mRNA also activated anterior neuroectodermal markers, but failed to elicit mesoderm formation. Analysis of explants overexpressing Xdsh at the gastrula stage revealed activation of several organizer-specific genes which have been implicated in determination of neural tissue (Xotx2, noggin, chordin and follistatin). Whereas Goosecoid, Xlim1 and Xwnt8 were not induced in these explants, another early marginal zone marker, Xbra, was activated at the highest level of Xdsh mRNA. These observations suggest that the effects of Xdsh on AP axis specification may be mediated by combinatorial action of several early patterning genes. Increasing levels of Xdsh mRNA activate posterior markers, whereas increasing amounts of the organizer stimulate the extent of anterior development (Stewart, R.M. and Gerhart, J.C. (1990) Development 109, 363-372). These findings argue against induction of the entire organizer by Xdsh in ectodermal cells and implicate signal transduction pathways involving Xdsh in AP axis determination. Thus, different levels of a single molecule, Xdsh, can specify distinct cell states along the AP axis.
Collapse
Affiliation(s)
- K Itoh
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
36
|
Abstract
During early vertebrate development, the cells of the ectoderm choose between two possible fates: neural and epidermal. The process of neural induction was discovered nearly 70 years ago in vertebrates, and molecular analyses in recent years using Xenopus laevis embryos have identified several secreted factors with direct neural-inducing ability. There is considerable evidence that the mechanism of neuralization by these inducing factors is under inhibitory control and involves derepression. This review focuses on factors involved in the specification of neural fate within the frame of the default model of neural induction.
Collapse
Affiliation(s)
- A Hemmati-Brivanlou
- Center for Neurosciences, The Rockefeller University, New York, New York 10021-6399, USA
| | | |
Collapse
|
37
|
Pownall ME, Tucker AS, Slack JM, Isaacs HV. eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development 1996; 122:3881-92. [PMID: 9012508 DOI: 10.1242/dev.122.12.3881] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Classical embryological experiments suggest that a posterior signal is required for patterning the developing anteroposterior axis. In this paper, we investigate a potential role for FGF signalling in this process. During normal development, embryonic fibroblast growth factor (eFGF) is expressed in the posterior of the Xenopus embryo. We have previously shown that overexpression of eFGF from the start of gastrulation results in a posteriorised phenotype of reduced head and enlarged proctodaeum. We have now determined the molecular basis of this phenotype and we propose a role for eFGF in normal anteroposterior patterning. In this study, we show that the overexpression of eFGF causes the up-regulation of a number of posteriorly expressed genes, and prominent among these are Xcad3, a caudal homologue, and the Hox genes, in particular HoxA7. There is both an increase of expression within the normal domains and an extension of expression towards the anterior. Application of eFGF-loaded beads to specific regions of gastrulae reveals that anterior truncations arise from an effect on the developing dorsal axis. Similar anterior truncations are caused by the dorsal overexpression of Xcad3 or HoxA7. This suggests that this aspect of the eFGF overexpression phenotype is caused by the ectopic activation of posterior genes in anterior regions. Further results using the dominant negative FGF receptor show that the normal expression of posterior Hox genes is dependent on FGF signalling and that this regulation is likely mediated by the activation of Xcad3. The biological activity of eFGF, together with its expression in the posterior of the embryo, make it a good candidate to fulfil the role of the ‘transforming’ activity proposed by Nieuwkoop in his ‘activation and transformation’ model for neural patterning.
Collapse
Affiliation(s)
- M E Pownall
- Developmental Biology Programme, School of Biology and Biochemistry, University of Bath, UK
| | | | | | | |
Collapse
|
38
|
Bonnet H, Filhol O, Truchet I, Brethenou P, Cochet C, Amalric F, Bouche G. Fibroblast growth factor-2 binds to the regulatory beta subunit of CK2 and directly stimulates CK2 activity toward nucleolin. J Biol Chem 1996; 271:24781-7. [PMID: 8798749 DOI: 10.1074/jbc.271.40.24781] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The presence of fibroblast growth factor-2 (FGF-2) in the nucleus has now been reported both in vitro and in vivo, but its nuclear functions are unknown. Here, we show that FGF-2 added to nuclear extract binds to protein kinase CK2 and nucleolin, a CK2 natural substrate. Added to baculovirus-infected cell extracts overexpressing CK2 or its isolated subunits, FGF-2 binds to the enzyme through its regulatory beta subunit. Using purified proteins, FGF-2 is shown to directly interact with CK2 and to stimulate CK2 activity toward nucleolin. Furthermore, a mitogenic-deficient FGF-2 mutant protein has an impaired ability to interact with CK2 and to stimulate CK2 activity using nucleolin as substrate. We propose that in growing cells, one function of nuclear FGF-2 is to modulate CK2 activity through binding to its regulatory beta subunit.
Collapse
Affiliation(s)
- H Bonnet
- Laboratoire de Biologie Moléculaire Eucaryote, CNRS, 118 route de Narbonne, 31062 Toulouse Cedex, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
We have identified the Xenopus homologue of mammalian FGF-9 (XFGF-9). Sequence comparison between Xenopus and mammals shows that they share 93% identity at the amino acid level, making FGF-9 the most highly conserved member within the family. The sequence shows that there is no N-terminal signal sequence but that there is an internal hydrophobic sequence resembling a transmembrane domain. By using an in vitro translation system, we demonstrate that XFGF-9 can be glycosylated by microsomes but shows no signal peptide cleavage. This suggests that it can be secreted using the internal hydrophobic domain to cross the endoplasmic reticulum membrane. Expression studies using RNAse protections and in situ hybridization show that XFGF-9 is expressed both maternally and zygotically. The maternal mRNA is detected at a higher level than other forms (XFGF-2 and eFGF), mainly in the animal hemisphere. A proportion of the maternal transcript persists until the early gastrula stage when it is joined by zygotic expression around the blastopore region, and thereafter the mRNA content shows some increase during further development. Zygotic XFGF-9 is expressed uniformly along the dorsal axis, as well as in the head region. We have expressed recombinant XFGF-9 protein in bacteria, and show that it has a mesoderm-inducing activity in the animal cap assay, with a similar specific activity to other fibroblast growth factor (FGFs). We have injected a synthetic mRNA into eggs, and show that it has both mesoderm-inducing activity in animal caps and also a posteriorizing activity in whole embryos. The levels of biological activity shown by the XFGF-9 mRNA injections compared to XFGF-2 and eFGF show that there is at least some extracellular function. This supports the biochemical results, suggesting that the protein has at least some capacity to be secreted.
Collapse
Affiliation(s)
- J Song
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02412-1479, USA
| | | |
Collapse
|
40
|
Olsson L, Hanken J. Cranial neural-crest migration and chondrogenic fate in the oriental fire-bellied toadBombina orientalis: Defining the ancestral pattern of head development in anuran amphibians. J Morphol 1996; 229:105-120. [DOI: 10.1002/(sici)1097-4687(199607)229:1<105::aid-jmor7>3.0.co;2-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Abstract
Identification of the signalling molecules involved in mesoderm formation in amphibian embryos still presents problems. None of the original candidates, such as activin, have been definitively ruled out, and new factors, such as the nodal-related genes, have come on to the scene. Of the original candidates, activin has been definitively shown to act as a morphogen, whereas bone morphogenetic protein (BMP)-4 has emerged as a ventral inducer and an inhibitor of neural differentiation. The effects of BMP-4 are antagonized by chordin, a molecule related to the product of the Drosophila gene short gastrulation.
Collapse
Affiliation(s)
- J C Smith
- Division of Developmental Biology, National Institute for Medical Research, London, UK.
| |
Collapse
|
42
|
Abstract
In order to study anteroposterior neural patterning in Xenopus embryos, we have developed a novel assay using explants and tissue recombinants of early neural plate. We show, by using region-specific neural markers and lineage tracing, that posterior axial tissue induces midbrain and hindbrain fates from prospective forebrain. The growth factor bFGF mimics the effect of the posterior dorsal explant in that it (i) induces forebrain to express hindbrain markers, (ii) induces prospective hindbrain explants to make spinal cord, but not forebrain and midbrain, and (iii) induces posterior neural fate in ectodermal explants neuralized by the dominant negative activin receptor and follistatin without mesoderm induction. The competence of forebrain explants to respond to both posterior axial explants and bFGF is lost by neural groove stages. These findings demonstrate that posterior neural fate can be derived from anterior neural tissue, and identify a novel activity for the growth factor bFGF in neural patterning. Our observations suggest that full anteroposterior neural patterning may be achieved by caudalization of prospective anterior neural fate in the vertebrate embryo.
Collapse
Affiliation(s)
- W G Cox
- Laboratory of Molecular Embryology, Rockefeller University, New York, NY 10021-6399, USA
| | | |
Collapse
|
43
|
McFarlane S, McNeill L, Holt CE. FGF signaling and target recognition in the developing Xenopus visual system. Neuron 1995; 15:1017-28. [PMID: 7576646 DOI: 10.1016/0896-6273(95)90091-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report that the growth cones of Xenopus retinal ganglion cells express fibroblast growth factor receptors (FGFRs) and that bFGF stimulates neurite extension from cultured retinal neurons. Furthermore, bFGF is abundant in the developing optic tract but is reduced in the optic tectum. To test whether FGF signaling plays a role in axonal guidance in vivo, bFGF was exogenously applied to the developing optic pathway in "exposed brain" preparations. FGF-treated retinal axons navigate normally through the optic tract, but the majority veer aberrantly at the tectal border and bypass the target. Our results implicate FGF signaling in target recognition and suggest that diminished levels of bFGF in the tectum cause arriving axons to slow their growth.
Collapse
Affiliation(s)
- S McFarlane
- Department of Biology, University of California, San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
44
|
Cornell RA, Musci TJ, Kimelman D. FGF is a prospective competence factor for early activin-type signals in Xenopus mesoderm induction. Development 1995; 121:2429-37. [PMID: 7671807 DOI: 10.1242/dev.121.8.2429] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Normal pattern formation during embryonic development requires the regulation of cellular competence to respond to inductive signals. In the Xenopus blastula, vegetal cells release mesoderm-inducing factors but themselves become endoderm, suggesting that vegetal cells may be prevented from expressing mesodermal genes in response to the signals that they secrete. We show here that addition of low levels of basic fibroblast growth factor (bFGF) induces the ectopic expression of the mesodermal markers Xbra, MyoD and muscle actin in vegetal explants, even though vegetal cells express low levels of the FGF receptor. Activin, a potent mesoderm-inducing agent in explanted ectoderm (animal explants), does not induce ectopic expression of these markers in vegetal explants. However, activin-type signaling is present in vegetal cells, since the vegetal expression of Mix.1 and goosecoid is inhibited by the truncated activin receptor. These results, together with the observation that FGF is required for mesoderm induction by activin, support our proposal that a maternal FGF acts at the equator as a competence factor, permitting equatorial cells to express mesoderm in response to an activin-type signal. The overlap of FGF and activin-type signaling is proposed to restrict mesoderm to the equatorial region.
Collapse
Affiliation(s)
- R A Cornell
- Department of Biochemistry, School of Medicine, University of Washington, Seattle 98195-7350, USA
| | | | | |
Collapse
|