1
|
Riachy L, Ferrand T, Chasserot-Golaz S, Galas L, Alexandre S, Montero-Hadjadje M. Advanced Imaging Approaches to Reveal Molecular Mechanisms Governing Neuroendocrine Secretion. Neuroendocrinology 2023; 113:107-119. [PMID: 34915491 DOI: 10.1159/000521457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022]
Abstract
Identification of the molecular mechanisms governing neuroendocrine secretion and resulting intercellular communication is one of the great challenges of cell biology to better understand organism physiology and neurosecretion disruption-related pathologies such as hypertension, neurodegenerative, or metabolic diseases. To visualize molecule distribution and dynamics at the nanoscale, many imaging approaches have been developed and are still emerging. In this review, we provide an overview of the pioneering studies using transmission electron microscopy, atomic force microscopy, total internal reflection microscopy, and super-resolution microscopy in neuroendocrine cells to visualize molecular mechanisms driving neurosecretion processes, including exocytosis and associated fusion pores, endocytosis and associated recycling vesicles, and protein-protein or protein-lipid interactions. Furthermore, the potential and the challenges of these different advanced imaging approaches for application in the study of neuroendocrine cell biology are discussed, aiming to guide researchers to select the best approach for their specific purpose around the crucial but not yet fully understood neurosecretion process.
Collapse
Affiliation(s)
- Lina Riachy
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Thomas Ferrand
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg University, Strasbourg, France
| | - Ludovic Galas
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Stéphane Alexandre
- Polymères, Biopolymères, Surfaces Laboratory, CNRS, Normandie University, UNIROUEN, UMR 6270, Rouen, France
| | - Maité Montero-Hadjadje
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| |
Collapse
|
2
|
Deng Y, Pakdel M, Blank B, Sundberg EL, Burd CG, von Blume J. Activity of the SPCA1 Calcium Pump Couples Sphingomyelin Synthesis to Sorting of Secretory Proteins in the Trans-Golgi Network. Dev Cell 2018; 47:464-478.e8. [PMID: 30393074 PMCID: PMC6261503 DOI: 10.1016/j.devcel.2018.10.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/29/2018] [Accepted: 10/05/2018] [Indexed: 12/24/2022]
Abstract
How the principal functions of the Golgi apparatus-protein processing, lipid synthesis, and sorting of macromolecules-are integrated to constitute cargo-specific trafficking pathways originating from the trans-Golgi network (TGN) is unknown. Here, we show that the activity of the Golgi localized SPCA1 calcium pump couples sorting and export of secreted proteins to synthesis of new lipid in the TGN membrane. A secreted Ca2+-binding protein, Cab45, constitutes the core component of a Ca2+-dependent, oligomerization-driven sorting mechanism whereby secreted proteins bound to Cab45 are packaged into a TGN-derived vesicular carrier whose membrane is enriched in sphingomyelin, a lipid implicated in TGN-to-cell surface transport. SPCA1 activity is controlled by the sphingomyelin content of the TGN membrane, such that local sphingomyelin synthesis promotes Ca2+ flux into the lumen of the TGN, which drives secretory protein sorting and export, thereby establishing a protein- and lipid-specific secretion pathway.
Collapse
Affiliation(s)
- Yongqiang Deng
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Mehrshad Pakdel
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Birgit Blank
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Emma L Sundberg
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher G Burd
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
3
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
4
|
Kögel T, Rudolf R, Hodneland E, Copier J, Regazzi R, Tooze SA, Gerdes HH. Rab3D is critical for secretory granule maturation in PC12 cells. PLoS One 2013; 8:e57321. [PMID: 23526941 PMCID: PMC3602456 DOI: 10.1371/journal.pone.0057321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
Neuropeptide- and hormone-containing secretory granules (SGs) are synthesized at the trans-Golgi network (TGN) as immature secretory granules (ISGs) and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs). Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I) decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs.
Collapse
Affiliation(s)
- Tanja Kögel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Rüdiger Rudolf
- Interdisciplinary Center of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | | | - John Copier
- London Research Institute Cancer Research United Kingdom, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Sharon A. Tooze
- London Research Institute Cancer Research United Kingdom, Lincoln's Inn Fields Laboratories, London, United Kingdom
| | - Hans-Hermann Gerdes
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Interdisciplinary Center of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Abstract
Since its first visualization in 1898, the Golgi has been a topic of intense morphological research. A typical mammalian Golgi consists of a pile of stapled cisternae, the Golgi stack, which is a key station for modification of newly synthesized proteins and lipids. Distinct stacks are interconnected by tubules to form the Golgi ribbon. At the entrance site of the Golgi, the cis-Golgi, vesicular tubular clusters (VTCs) form the intermediate between the endoplasmic reticulum and the Golgi stack. At the exit site of the Golgi, the trans-Golgi, the trans-Golgi network (TGN) is the major site of sorting proteins to distinct cellular locations. Golgi functioning can only be understood in light of its complex architecture, as was revealed by a range of distinct electron microscopy (EM) approaches. In this article, a general concept of mammalian Golgi architecture, including VTCs and the TGN, is described.
Collapse
Affiliation(s)
- Judith Klumperman
- Department of Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
6
|
Abstract
Lytic granules harbour many of the dangerous apoptosis-inducing molecules of the immune system, including perforin, granzymes and Fas ligand. Safe transport, storage and release of these lytic components is vital. As a secretory lysosome, the lytic granule is able to accomplish these roles, as well as conferring the lysosomal functions of cytotoxic T lymphocytes and natural killer cells. Secretory lysosomes are common to many other haemopoietic cells and also melanocytes. Many of the proteins used in lysosomal secretion are found in both melanocytes and hemopoietic cells, and are dysfunctional in genetic diseases with defects in these proteins. The genetically heterogeneous Hermansky-Pudlak syndrome represents an excellent model for revealing proteins involved in secretory lysosome functioning. However, studies of this disease reveal differences between the various different types of secretory lysosomes, including lytic granules.
Collapse
Affiliation(s)
- Richard Clark
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
7
|
Rindler MJ. Carboxypeptidase E, a peripheral membrane protein implicated in the targeting of hormones to secretory granules, co-aggregates with granule content proteins at acidic pH. J Biol Chem 1998; 273:31180-5. [PMID: 9813022 DOI: 10.1074/jbc.273.47.31180] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Carboxypeptidase E (CPE) is a prohormone-processing enzyme and peripheral membrane protein of endocrine/neuroendocrine secretory granules. CPE has been shown to bind to an amino-terminal peptide of pro-opiomelanocortin (N-POMC) at pH 5.5 and hypothesized to be critically involved in the targeting of hormones such as POMC to the regulated secretory pathway [Cool, D. R., Normant, E., Shen, F., Chen, H. C., Pannell, L., Zhang, Y., and Loh, Y. P. (1997) Cell 88, 73-83]. To further explore the possibility that CPE serves to mediate the association of content proteins with the membrane during granule biogenesis, the binding of CPE to granule content proteins was investigated using an in vitro aggregation assay in which the selective precipitation of granule content proteins is induced by titration of the pH to <6.0. CPE was observed to co-aggregate efficiently with pituitary and chromaffin granule content proteins at concentrations well below those that promote its self-aggregation. In addition, CPE co-precipitated at pH 5.8 with purified prolactin and with insulin, which homophillically self-aggregate yet are structurally distinct from N-POMC. N-POMC when added to the assays did not inhibit the aggregation of CPE with prolactin or insulin, indicating that these interactions do not involve a binding site for N-POMC. The data show that CPE interacts at acidic pH with a variety of different content proteins, resembling in this regard other granule membrane proteins. The results support the idea that co-aggregation of abundant membrane proteins with content proteins is an important general mechanism for the sorting and retention of secretory granule proteins during granule maturation.
Collapse
Affiliation(s)
- M J Rindler
- Department of Cell Biology and Kaplan Cancer Center, New York University Medical Center, New York, New York 10016, USA.
| |
Collapse
|
8
|
Klumperman J, Schweizer A, Clausen H, Tang BL, Hong W, Oorschot V, Hauri HP. The recycling pathway of protein ERGIC-53 and dynamics of the ER-Golgi intermediate compartment. J Cell Sci 1998; 111 ( Pt 22):3411-25. [PMID: 9788882 DOI: 10.1242/jcs.111.22.3411] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To establish recycling routes in the early secretory pathway we have studied the recycling of the ER-Golgi intermediate compartment (ERGIC) marker ERGIC-53 in HepG2 cells. Immunofluorescence microscopy showed progressive concentration of ERGIC-53 in the Golgi area at 15 degreesC. Upon rewarming to 37 degreesC ERGIC-53 redistributed into the cell periphery often via tubular processes that largely excluded anterograde transported albumin. Immunogold labeling of cells cultured at 37 degreesC revealed ERGIC-53 predominantly in characteristic beta-COP-positive tubulo-vesicular clusters both near the Golgi apparatus and in the cell periphery. Concentration of ERGIC-53 at 15 degreesC resulted from both accumulation of ERGIC-53 in the ERGIC and movement of ERGIC membranes closer to the Golgi apparatus. Upon rewarming to 37 degreesC the labeling of ERGIC-53 in the ERGIC rapidly returned to normal levels whereas ERGIC-53's labeling in the cis-Golgi was unchanged. Temperature manipulations had no effect on the average number of ERGIC-53 clusters. Density gradient centrifugation indicated that the surplus ERGIC-53 accumulating in the ERGIC at 15 degreesC was rapidly transported to the ER upon rewarming. These results suggest that the ERGIC is a dynamic membrane system composed of a constant average number of clusters and that the major recycling pathway of ERGIC-53 bypasses the Golgi apparatus.
Collapse
Affiliation(s)
- J Klumperman
- Department of Cell Biology, School of Medicine, Utrecht University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
9
|
Hsu VW, Peters PJ. Current views in intracellular transport: insights from studies in immunology. Adv Immunol 1998; 70:369-415. [PMID: 9755342 DOI: 10.1016/s0065-2776(08)60391-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- V W Hsu
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
10
|
Batenburg JJ, Haagsman HP. The lipids of pulmonary surfactant: dynamics and interactions with proteins. Prog Lipid Res 1998; 37:235-76. [PMID: 10193527 DOI: 10.1016/s0163-7827(98)00011-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- J J Batenburg
- Laboratory of Veterinary Biochemistry, Graduate School of Animal Health, Utrecht University, The Netherlands.
| | | |
Collapse
|
11
|
Pouli AE, Kennedy HJ, Schofield JG, Rutter GA. Insulin targeting to the regulated secretory pathway after fusion with green fluorescent protein and firefly luciferase. Biochem J 1998; 331 ( Pt 2):669-75. [PMID: 9531511 PMCID: PMC1219402 DOI: 10.1042/bj3310669] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have prepared recombinant cDNAs encoding chimaeras between human preproinsulin (sp.B.C.A., for B-, Connecting- and A-peptides) and a thermostable mutant of green fluorescent protein (GFPS65T,V163A, GFP*). The subcellular localization of the expressed chimaeras was monitored in living insulin-secreting INS-1 beta-cells by laser scanning confocal microscopy. When GFP* was fused at the immediate N-terminus of the B-chain (sp.[GFP*].B.C.A.myc) two distinct patterns of fluorescence were apparent. In 1530/1740 cells examined, fluorescence was confined to a reticular, exclusively extranuclear structure, and closely co-localized with the endoplasmic reticulum marker, calreticulin. However, 210/1740 (12.1%) of cells displayed punctate fluorescence, which partially co-localized with the trans-Golgi network marker, TGN 38, and with the dense core secretory granule marker, phogrin. Since secretion of GFP* fluorescence into the medium could not readily be measured, we prepared a chimaera in which firefly luciferase was fused at the C-terminus of proinsulin (sp.B.C.A.myc.[Luc]). This chimaera displayed a distribution closely similar to that of sp.[GFP*].B.C.A. myc, but with a lower proportion (15/310, 4.8%) of the cells showing clear punctate distribution. At substimulatory glucose concentrations (3 mM) secretion of sp.B.C.A.myc.[Luc] could not be detected (rate of release into the medium identical with that of the cytosolic Renilla reniformis luciferase), indicating that the chimaera did not enter the constitutive secretory pathway. However, elevated (30 mM) glucose stimulated the release of the sp.B.C.A.myc. [Luc] luciferase chimaera, without a detectable effect on R. reniformis luciferase release. These data suggest that fusion of insulin, and the much larger photoproteins GFP* and luciferase, leads predominantly to misfolding and retention in the endoplasmic reticulum. However, the properly folded chimaeras are apparently still correctly targeted to the regulated, rather than the constitutive, secretory pathway. These chimaeras should therefore be valuable tools to monitor the exocytosis of insulin in real time.
Collapse
Affiliation(s)
- A E Pouli
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, U.K
| | | | | | | |
Collapse
|
12
|
Hauri H, Schweizer A. The
ER
–Golgi Membrane System: Compartmental Organization and Protein Traffic. Compr Physiol 1997. [DOI: 10.1002/cphy.cp140115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Nur-E-Kamal MS, Reverey H, Ponimaskin E, Schroth-Diez B, Herrmann A, Schmidt MF. Targeted delivery of human neurofibromin and c-Raf-1 mutants to the cytoplasmic membrane by use of the influenza virus hemagglutinin. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1338:233-43. [PMID: 9128141 DOI: 10.1016/s0167-4838(96)00206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutants of human neurofibromin and c-Raf-1 genes were fused to the 3' end of the hemagglutinin (HA) gene of influenza A virus by oligonucleotide-directed polymerase chain reaction (PCR). The two resulting chimeric genes, HA (1-534)/NF1 (1441-1518) and HA (1-534)/Raf-1 (51-132) which we designated HN and HR, respectively, were cloned in a vaccinia virus expression vector (pTMI) under the control of a T7 RNA polymerase promoter. The clones were expressed in a monkey cell line (CV-1) and the resulting chimeric proteins analysed. We found that expression levels of the chimeric proteins were similar to that of wild-type HA protein. Comparative endoglycosidase treatment revealed that the expressed chimeric proteins HN and HR were processed as wild-type HA, and FACS-analysis showed that both chimeric expression products localised in the cell membrane as the wild-type control. HN and HR expressing cells showed similar fusogenic activity as CV-1 cells transfected with wild-type HA indicating the correct topology of the fusion inducing portion (HA) of these chimera in the membrane. These findings show that the influenza virus hemagglutinin (HA) is a suitable vehicle to target foreign proteins with therapeutical potential into the cell membrane. In this respect HN and HR could potentially be used to block the abnormal signals generated by particular proteins in the cell membrane that lead to cell transformation.
Collapse
Affiliation(s)
- M S Nur-E-Kamal
- Institut für Immunologie und Molekularbiologie, Fachbereich Veterinämedizin der Freien Universität Berlin, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Chilcoat ND, Melia SM, Haddad A, Turkewitz AP. Granule lattice protein 1 (Grl1p), an acidic, calcium-binding protein in Tetrahymena thermophila dense-core secretory granules, influences granule size, shape, content organization, and release but not protein sorting or condensation. J Cell Biol 1996; 135:1775-87. [PMID: 8991090 PMCID: PMC2133959 DOI: 10.1083/jcb.135.6.1775] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The electron-dense cores of regulated secretory granules in the ciliate Tetrahymena thermophila are crystal lattices composed of multiple proteins. Granule synthesis involves a series of steps beginning with protein sorting, followed by the condensation and precise geometric assembly of the granule cargo. These steps may to various degrees be determined by the cargo proteins themselves. A prominent group of granule proteins, in ciliates as well as in vertebrate neuronal and endocrine cells, are acidic, heat-stable, and bind calcium. We focused on a protein with these characteristics named granule lattice protein 1 (Grl1p), which represents 16% of total granule contents, and we have now cloned the corresponding gene. Mutants in which the macronuclear copies of GRL1 have been disrupted continue to synthesize dense-core granules but are nonetheless defective in regulated protein secretion. To understand the nature of this defect, we characterized mutant and wild-type granules. In the absence of Grl1p, the sorting of the remaining granule proteins appears normal, and they condense to form a well-defined core. However, the condensed cores do not demonstrate a visible crystalline lattice, and are notably different from wild type in size and shape. The cellular secretion defect arises from failure of the aberrant granule cores to undergo rapid expansion and extrusion after exocytic fusion of the granule and plasma membranes. The results suggest that sorting, condensation, and precise granule assembly are distinct in their requirements for Grl1p.
Collapse
Affiliation(s)
- N D Chilcoat
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
15
|
Canaff L, Brechler V, Reudelhuber TL, Thibault G. Secretory granule targeting of atrial natriuretic peptide correlates with its calcium-mediated aggregation. Proc Natl Acad Sci U S A 1996; 93:9483-7. [PMID: 8790356 PMCID: PMC38454 DOI: 10.1073/pnas.93.18.9483] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Atrial natriuretic peptide (ANP) is a 28-aa peptide hormone secreted predominantly from atrial cardiocytes. ANP is first synthesized in the form of a 126-aa precursor (proANP) which is targeted to dense core granules of the regulated secretory pathway. ProANP is stored until the cell receives a signal that triggers the processing and release of the mature peptide (regulated secretion). Various models have been proposed to explain the targeting of selected proteins to the regulated secretory pathway, including specific "sorting receptors" and calcium-mediated aggregation. As potential calcium binding regions had previously been reported in the profragment of ANP, the current study was undertaken in an effort to determine the relationship between the ability of ANP to enter the regulated secretory pathway and its calcium-mediated aggregation. Deletion and site-directed mutagenesis of selected regions of the prosegment demonstrates that acidic amino acids at positions 23 and 24 are critical for both regulated secretion of proANP from transfected AtT-20 cells and calcium-mediated aggregation of purified recombinant proANP in vitro. These results demonstrate that the ability of certain proteins to enter secretory granules is directly linked to their calcium-mediated aggregation.
Collapse
Affiliation(s)
- L Canaff
- Medical Research Council Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, QC, Canada
| | | | | | | |
Collapse
|
16
|
Sönnichsen B, Watson R, Clausen H, Misteli T, Warren G. Sorting by COP I-coated vesicles under interphase and mitotic conditions. J Biophys Biochem Cytol 1996; 134:1411-25. [PMID: 8830771 PMCID: PMC2120996 DOI: 10.1083/jcb.134.6.1411] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
COP I-coated vesicles were analyzed for their content of resident Golgi enzymes (N-acetylgalactosaminyltransferase; N-acetylglucosaminyltransferase I; mannosidase II; galactosyltransferase), cargo (rat serum albumin; polyimmunoglobulin receptor), and recycling proteins (-KDEL receptor; ERGIC-53/p58) using biochemical and morphological techniques. The levels of these proteins were similar when the vesicles were prepared under interphase or mitotic conditions showing that sorting was unaffected. The average density relative to starting membranes for resident enzymes (14-30%), cargo (16-23%), and recycling proteins (81-125%) provides clues to the function of COP I vesicles in transport through the Golgi apparatus.
Collapse
Affiliation(s)
- B Sönnichsen
- Cell Biology Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G. Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 1995; 131:1715-26. [PMID: 8557739 PMCID: PMC2120691 DOI: 10.1083/jcb.131.6.1715] [Citation(s) in RCA: 690] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Antisera raised to a detergent- and salt-resistant matrix fraction from rat liver Golgi stacks were used to screen an expression library from rat liver cDNA. A full-length clone was obtained encoding a protein of 130 kD (termed GM130), the COOH-terminal domain of which was highly homologous to a Golgi human auto-antigen, golgin-95 (Fritzler et al., 1993). Biochemical data showed that GM130 is a peripheral cytoplasmic protein that is tightly bound to Golgi membranes and part of a larger oligomeric complex. Predictions from the protein sequence suggest that GM130 is an extended rod-like protein with coiled-coil domains. Immunofluorescence microscopy showed partial overlap with medial- and trans-Golgi markers but almost complete overlap with the cis-Golgi network (CGN) marker, syntaxin5. Immunoelectron microscopy confirmed this location showing that most of the GM130 was located in the CGN and in one or two cisternae on the cis-side of the Golgi stack. GM130 was not re-distributed to the ER in the presence of brefeldin A but maintained its overlap with syntaxin5 and a partial overlap with the ER-Golgi intermediate compartment marker, p53. Together these results suggest that GM130 is part of a cis-Golgi matrix and has a role in maintaining cis-Golgi structure.
Collapse
Affiliation(s)
- N Nakamura
- Cell Biology Laboratory, Imperial Cancer Research Fund, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hoe MH, Slusarewicz P, Misteli T, Watson R, Warren G. Evidence for recycling of the resident medial/trans Golgi enzyme, N-acetylglucosaminyltransferase I, in ldlD cells. J Biol Chem 1995; 270:25057-63. [PMID: 7559636 DOI: 10.1074/jbc.270.42.25057] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
ldlD cells, which lack the UDP-Gal/UDP-GalNAc 4-epimerase, were stably transfected with a Myc-tagged version of N-acetylglucosaminyltransferase I (Myc-Glc-NAc-T I). In the absence of GalNAc and Gal, newly synthesized GlcNAc-T I did not acquire O-linked oligosaccharides but was catalytically active and was transported to the Golgi region as defined using both immunofluorescence and immunoelectron microscopy. After addition of cycloheximide to prevent further synthesis, GalNAc and Gal were added, and the unglycosylated GlcNAc-T I was found to acquire mature, O-linked oligosaccharides with a half-time of about 150 min. The addition of these sugars was sensitive to N-ethylmaleimide and okadaic acid, both inhibitors of vesicle-mediated traffic. Together, these results suggest that Myc-Glc-NAc-T I undergoes retrograde transport to the early part of the Golgi apparatus where the first O-linked sugar, GalNAc, is added followed by anterograde transport back to the Golgi stack, where addition of Gal and sialic acid occurs.
Collapse
Affiliation(s)
- M H Hoe
- Cell Biology Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Abstract
The progress that has resulted from the convergence of biochemistry with yeast genetics has accelerated the pace at which the molecular events of membrane transport are being elucidated. Future research will focus not only on testing the proposed sequence of protein-protein interactions but also on identifying how calcium regulation is imposed on this system. As our understanding of the basic mechanisms of neurosecretion increases, attention will undoubtedly shift to how the molecules of release are modified to produce changes in synaptic efficacy.
Collapse
Affiliation(s)
- S M Bajjalieh
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University, California 94305-5426
| | | |
Collapse
|
20
|
Abstract
Lytic granules are specialized secretory organelles which appear after activation of CTLs and NK cells. The lytic granules contain a series of proteins that mediate target cell destruction after secretion from the cell. In addition, these organelles serve as the lysosomes of these lymphocytes. At the EM level three types of granules with distinct regions are distinguished. Intriguingly, lytic and lysosomal proteins are localized in distinct regions. This is particularly interesting because lysosomal and lytic proteins can use the same sorting mechanisms to be targeted to this compartment. We favor the idea that a combination of sorting mechanisms result in this final segregation: the MPR receptor sorts both lysosomal proteins and granzymes from the Golgi complex, but a second event, such as selective aggregation with proteoglycans, then results in the segregation of lytic and lysosomal proteins in the granule. Lytic granules provide a way to store and simultaneously secrete the lytic proteins in a highly specific fashion. The granules are able to move along microtubules using a kinesin-like motor, and thus can cluster at the site of membrane contact with a target cell. Once polarized, the granules exocytose their contents, using a molecular machinery that is as yet poorly defined. Understanding the machinery involved in both functions of the lytic granules will provide ways to control the action of cytotoxic lymphocytes, ultimately in clinical situations.
Collapse
|
21
|
Carnell L, Moore HP. Transport via the regulated secretory pathway in semi-intact PC12 cells: role of intra-cisternal calcium and pH in the transport and sorting of secretogranin II. J Biophys Biochem Cytol 1994; 127:693-705. [PMID: 7962053 PMCID: PMC2120230 DOI: 10.1083/jcb.127.3.693] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To gain insight into the mechanisms governing protein sorting, we have developed a system that reconstitutes both the formation of immature secretory granules and their fusion with the plasma membrane. Semi-intact PC12 cells were incubated with ATP and cytosol for 15 min to allow immature granules to form, and then in a buffer containing 30 microM [Ca2+]free to induce exocytosis. Transport via the regulated pathway, as assayed by the release of secretogranin II (SgII) labeled in the TGN, was inhibited by depletion of ATP, or by the inclusion of 100 microM GTP gamma S, 50 microM AlF3-5 or 5 micrograms/ml BFA. When added after immature granules had formed, GTP gamma S stimulated rather than inhibited exocytosis. Thus, exocytosis of immature granules in this system resembles the characteristics of fully matured granules. Transport of SgII via the regulated pathway occurred at a fourfold higher efficiency than glycosaminoglycan chains, indicating that SgII is sorted to some extent upon exit from the TGN. Addition of A23187 to release Ca2+ from the TGN had no significant effect on sorting of SgII into immature granules. In contrast, depletion of lumenal calcium inhibited the endoproteolytic cleavage of POMC and proinsulin. These results establish the importance of intra-cisternal Ca2+ in prohormone processing, but raise the question whether lumenal calcium is required for proper sorting of SgII into immature granules. Disruption of organelle pH gradients with an ionophore or a weak base resulted in the inhibition of transport via both the constitutive and the regulated pathways.
Collapse
Affiliation(s)
- L Carnell
- University of California, Department of Molecular and Cell Biology, Berkeley 94720-3200
| | | |
Collapse
|
22
|
Rajasekaran AK, Humphrey JS, Wagner M, Miesenböck G, Le Bivic A, Bonifacino JS, Rodriguez-Boulan E. TGN38 recycles basolaterally in polarized Madin-Darby canine kidney cells. Mol Biol Cell 1994; 5:1093-103. [PMID: 7865877 PMCID: PMC301133 DOI: 10.1091/mbc.5.10.1093] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sorting of newly synthesized plasma membrane proteins to the apical or basolateral surface domains of polarized cells is currently thought to take place within the trans-Golgi network (TGN). To explore the relationship between protein localization to the TGN and sorting to the plasma membrane in polarized epithelial cells, we have expressed constructs encoding the TGN marker, TGN38, in Madin-Darby canine kidney (MDCK) cells. We report that TGN38 is predominantly localized to the TGN of these cells and recycles via the basolateral membrane. Analyses of the distribution of Tac-TGN38 chimeric proteins in MDCK cells suggest that the cytoplasmic domain of TGN38 has information leading to both TGN localization and cycling through the basolateral surface. Mutations of the cytoplasmic domain that disrupt TGN localization also lead to nonpolarized delivery of the chimeric proteins to both surface domains. These results demonstrate an apparent equivalence of basolateral and TGN localization determinants and support an evolutionary relationship between TGN and plasma membrane sorting processes.
Collapse
Affiliation(s)
- A K Rajasekaran
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, New York 10021
| | | | | | | | | | | | | |
Collapse
|
23
|
Shennan K, Taylor N, Docherty K. Calcium- and pH-dependent aggregation and membrane association of the precursor of the prohormone convertase PC2. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32358-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
24
|
Affiliation(s)
- P A Halban
- Laboratoires de Recherche Louis Jeantet, Centre Médical Universitaire, Geneva, Switzerland
| | | |
Collapse
|
25
|
Irminger J, Vollenweider F, Neerman-Arbez M, Halban P. Human proinsulin conversion in the regulated and the constitutive pathways of transfected AtT20 cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42092-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
26
|
Voorhout WF, Weaver TE, Haagsman HP, Geuze HJ, Van Golde LM. Biosynthetic routing of pulmonary surfactant proteins in alveolar type II cells. Microsc Res Tech 1993; 26:366-73. [PMID: 8286782 DOI: 10.1002/jemt.1070260504] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Surfactant proteins A, B, and C (SP-A, SP-B, and SP-C) are synthesized in alveolar type II cells. SP-B and SP-C are both synthesized as large precursor molecules that are proteolytically processed to their mature sizes. In a previous immunoelectron microscopic study, we showed that precursor SP-B is processed to its mature size in multivesicular bodies. In the present study, using a specific antibody against precursor SP-C, we demonstrate that precursor SP-C is present in the same intracellular compartments of the biosynthetic pathway, i.e., endoplasmic reticulum, Golgi complex, and multivesicular bodies, as precursor SP-B. Since mature SP-C is known to be present in multilamellar bodies, this suggests a biosynthetic routing and site of processing of this protein similar to those of SP-B. Double-labeling experiments using antibodies against SP-A, precursor SP-B, precursor SP-C, and an antibody against HA I, an adaptor protein involved in the budding of transport vesicles from the Golgi complex, showed that the different surfactant proteins traverse and exit the Golgi complex via the same route. The surfactant proteins do not exit the Golgi complex via HA I-positive coated buds or vesicles. These data are in accordance with the concept that SP-A, SP-B, and SP-C are transported together through the same biosynthetic pathway via multivesicular bodies to multilamellar bodies.
Collapse
Affiliation(s)
- W F Voorhout
- Laboratory of Veterinary Biochemistry, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Machamer CE, Grim MG, Esquela A, Chung SW, Rolls M, Ryan K, Swift AM. Retention of a cis Golgi protein requires polar residues on one face of a predicted alpha-helix in the transmembrane domain. Mol Biol Cell 1993; 4:695-704. [PMID: 8400455 PMCID: PMC300979 DOI: 10.1091/mbc.4.7.695] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The first membrane-spanning domain (m1) of the model cis Golgi protein M (formerly called E1) from the avian coronavirus infectious bronchitis virus is required for targeting to the Golgi complex. When inserted in place of the membrane-spanning domain of a plasma membrane protein (vesicular stomatitis virus G protein), the chimeric protein ("Gm1") is retained in the Golgi complex of transfected cells. To determine the precise features of the m1 domain responsible for Golgi targeting, we produced single amino acid substitutions in m1 and analyzed their effects on localization of Gm1. Expression at the plasma membrane was used as the criterion for loss of Golgi retention. Rates of oligosaccharide processing were used as a measure of rate and efficiency of transport through the Golgi complex. We identified four uncharged polar residues that are critical for Golgi retention of Gm1 (Asn465, Thr469, Thr476, and Gln480). These residues line one face of a predicted alpha-helix. Interestingly, when the m1 domain of the homologous M protein from mouse hepatitis virus is inserted into the G protein reporter, the chimeric protein is not efficiently retained in the Golgi complex, but transported to the cell surface. Although it possesses three of the four residues we identified as important in the avian m1 sequence, other residues in the membrane-spanning domain from the mouse protein must prevent efficient recognition of the polar face within the lipid bilayer of the cis Golgi.
Collapse
Affiliation(s)
- C E Machamer
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | | | |
Collapse
|
28
|
Garcia M, Mirre C, Quaroni A, Reggio H, Le Bivic A. GPI-anchored proteins associate to form microdomains during their intracellular transport in Caco-2 cells. J Cell Sci 1993; 104 ( Pt 4):1281-90. [PMID: 8314905 DOI: 10.1242/jcs.104.4.1281] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this study, we have investigated the possibility that glycosyl-phosphatidylinositol (GPI)-anchored proteins form insoluble membrane complexes in Caco-2 cells and that transmembrane proteins are associated with these complexes. GPI-anchored proteins were mainly resistant to Triton X-100 (TX-100) extraction at 4 degrees C but fully soluble in n-octyl-glucoside. Resistance to Triton X-100 extraction was not observed in the endoplasmic reticulum but appeared during transport through the Golgi complex. It was not dependent upon N-glycosylation processing, or pH variation from 6.5 to 8.5, and was not affected by sterol-binding agents. Other apical or basolateral transmembrane proteins were well solubilized in TX-100, with the exception of sucrase-isomaltase, which was partly insoluble. We isolated a membrane fraction from Caco-2 cells that contained GPI-anchored proteins and sucrase-isomaltase but no antigen 525, a basolateral marker, or dipeptidylpeptidase IV, an apical one. These data suggest that GPI-anchored proteins cluster to form membrane microdomains together with an apical transmembrane protein, providing a possible apical sorting mechanism for intestinal cells in vitro that might be related to apical sorting in MDCK cells, and that other mechanisms might exist to sort proteins to the apical membrane.
Collapse
Affiliation(s)
- M Garcia
- Biologie de la Différenciation Cellulaire, U.R.A. 179, Faculté des Sciences de Luminy, Marseille, France
| | | | | | | | | |
Collapse
|
29
|
Humphrey JS, Peters PJ, Yuan LC, Bonifacino JS. Localization of TGN38 to the trans-Golgi network: involvement of a cytoplasmic tyrosine-containing sequence. J Cell Biol 1993; 120:1123-35. [PMID: 8436587 PMCID: PMC2119736 DOI: 10.1083/jcb.120.5.1123] [Citation(s) in RCA: 217] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Protein localization to the TGN was investigated by examining the subcellular distribution of chimeric proteins in which the cytoplasmic and/or transmembrane domains of the TGN protein, TGN38, were substituted for the analogous domains of the plasma membrane protein, Tac. Using immunofluorescence and immunoelectron microscopy, the COOH-terminal cytoplasmic domain of TGN38 was found to be sufficient for localization of the chimeric proteins to the TGN. Deletion analysis identified an 11-amino acid segment containing the critical sequence, YQRL, as being sufficient for TGN localization. TGN localization was abrogated by mutation of the tyrosine or leucine residues in this sequence to alanine, or of the arginine residue to aspartate. In addition to specifying TGN localization, the 11-amino acid segment was active as an internalization signal, although the property of internalization alone was insufficient to confer TGN localization. Overexpression of chimeric proteins containing TGN localization determinants resulted in their detection at the plasma membrane and in intracellular vesicles, and abolished detection of endogenous TGN38. These results suggest that discrete cytoplasmic determinants can mediate protein localization to the TGN, and reveal a novel role for tyrosine-based motifs in this process.
Collapse
Affiliation(s)
- J S Humphrey
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
30
|
Rambourg A, Clermont Y, Chrétien M, Olivier L. Modulation of the Golgi apparatus in stimulated and nonstimulated prolactin cells of female rats. Anat Rec (Hoboken) 1993; 235:353-62. [PMID: 8430905 DOI: 10.1002/ar.1092350304] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The three-dimensional structure of the Golgi apparatus and its compartments in prolactin cells has been examined in lactating rats in which secretion of prolactin was suppressed by removing the litter or stimulated by allowing the pups to suckle again. As soon as 2 hr after removal of the litter, large irregular progranules and numerous large pale vesicles accumulated in the trans-Golgi area together with vesicular or tubular fragments. The cis-tubular network was no longer recognizable on the cis-face of the Golgi ribbon; the saccules of the midcompartment were partitioned by narrow fissures and also became perforated in register by numerous fenestrations of various sizes and irregular contours. The concomitant appearance of numerous vesicles in the cavities thus formed as well as in the surrounding cytoplasm indicated that they probably arose by the progressive cavitation and fragmentation of saccules of the mid compartment. Such a process, which reached a maximum between 4 and 6 hr after removal of the litter from the mother, was no longer observed at 8 and 12 hr, at which time intervals the Golgi apparatus was reduced in size with no cis-tubular elements and progranules on its trans-aspect and few vesicles in its surroundings. When mothers, separated from their litters for a period of 12 hr, were returned to their pups for 20 min, the cis-tubular network reappeared on the cis-aspect of the Golgi stacks and presumably formed by fusion of vesicles and anastomosed tubules located next to the cisternae of the rough endoplasmic reticulum. In addition, the structure of the midsaccules returned to the stimulated condition, and early progranules were again segregated within the trans-most saccules of the Golgi stack. Hence, the Golgi apparatus of prolactin cells was rapidly and deeply modified in the presence or absence of stimulation.
Collapse
Affiliation(s)
- A Rambourg
- Département de biologie cellulaire et moléculaire du CEA, Centre d'études nucléaires de Saclay, Paris, France
| | | | | | | |
Collapse
|
31
|
Griffiths GM, Isaaz S. Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor. J Cell Biol 1993; 120:885-96. [PMID: 8432729 PMCID: PMC2200067 DOI: 10.1083/jcb.120.4.885] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
To investigate the question of whether lytic granules share a common biogenesis with lysosomes, cloned cytolytic T cell lines were derived from a patient with I-cell disease. The targeting of two soluble lytic granule components, granzymes A and B, was studied in these cells which lack a functional mannose-6-phosphate (Man-6-P) receptor-mediated pathway to lysosomes. Using antibodies and enzymatic substrates to detect the lytic proteins, I-cells were found to constitutively secrete granzymes A and B in contrast to normal cells in which these proteins were stored for regulated secretion. These results suggest that granzymes A and B are normally targeted to the lytic granules of activated lymphocytes by the Man-6-P receptor. In normal cells, the granzymes bear Man-6-P residues, since the oligosaccharide side chains of granzymes A and B, as well as radioactive phosphate on granzyme A from labeled cells, were removed by endoglycosidase H (Endo H). However, in I-cells, granzymes cannot bear Man-6-P and granzyme B acquires complex glycans, becoming Endo H resistant. Although the levels of granzymes A and B in cytolytic I-cell lymphocytes are < 30% of the normal levels, immunolocalization and cell fractionation of granzyme A demonstrated that this reduced amount is correctly localized in the lytic granules. Therefore, a Man-6-P receptor-independent pathway to the lytic granules must also exist. Cathepsin B colocalizes with granzyme A in both normal and I-cells indicating that lysosomal proteins can also use the Man-6-P receptor-independent pathway in these cells. The complete overlap of these lysosomal and lytic markers implies that the lytic granules perform both lysosomal and secretory roles in cytolytic lymphocytes. The secretory role of lytic granules formed by the Man-6-P receptor-independent pathway is intact as assessed by the ability of I-cell lymphocytes to lyse target cells by regulated secretion.
Collapse
|
32
|
Pley U, Parham P. Clathrin: its role in receptor-mediated vesicular transport and specialized functions in neurons. Crit Rev Biochem Mol Biol 1993; 28:431-64. [PMID: 8269710 DOI: 10.3109/10409239309078441] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Clathrin constitutes the coat of vesicles involved in three receptor-mediated intracellular transport pathways; the export of aggregated material from the trans-Golgi network for regulated secretion, the transfer of lysosomal hydrolases from the trans-Golgi network to lysosomes and receptor-mediated endocytosis at the plasma membrane. The clathrin subunits and the other major coat constituents, the adaptor polypeptides, interact in specific ways to build the characteristic polygonal clathrin lattice and to attach the coat to integral membrane receptors. Both clathrin coat assembly and disassembly on the cytoplasmic side of the membrane are multistep processes that are regulated by the coat constituents themselves and by cytosolic proteins and factors. Neurons represent a cell type with distinct morphology and special demands on exocytic and endocytic pathways that requires neuron-specific constituents and modifications of clathrin-coated vesicles.
Collapse
Affiliation(s)
- U Pley
- Department of Microbiology and Immunology, Stanford University, School of Medicine, CA 94305
| | | |
Collapse
|
33
|
|
34
|
Régnier-Vigouroux A, Huttner WB. Biogenesis of small synaptic vesicles and synaptic-like microvesicles. Neurochem Res 1993; 18:59-64. [PMID: 8464536 DOI: 10.1007/bf00966923] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
35
|
Saraste J, Kuismanen E. Pathways of protein sorting and membrane traffic between the rough endoplasmic reticulum and the Golgi complex. SEMINARS IN CELL BIOLOGY 1992; 3:343-55. [PMID: 1457777 PMCID: PMC7128811 DOI: 10.1016/1043-4682(92)90020-v] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent results have provided increasing evidence for the existence of an intermediate membrane compartment between the rough endoplasmic reticulum and the Golgi complex which seems to function in protein sorting and the regulation of membrane traffic in the early part of the exocytic pathway. Localization of resident marker proteins has shown that this compartment consists of both peripheral and central elements. The aim of the present review is to combine the data on the pre-Golgi compartment with previous ideas of membrane traffic at the ER-Golgi interface. We propose a model which describes how mobile, endosome-like elements of the pre-Golgi compartment function in the generation of the compositional and functional boundary between the widely distributed ER and the more centrally located Golgi stacks.
Collapse
Affiliation(s)
- J Saraste
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| | | |
Collapse
|
36
|
Lahtinen U, Dahllöf B, Saraste J. Characterization of a 58 kDa cis-Golgi protein in pancreatic exocrine cells. J Cell Sci 1992; 103 ( Pt 2):321-33. [PMID: 1478936 DOI: 10.1242/jcs.103.2.321] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have studied the biochemical characteristics and localization of a 58 kDa cis-Golgi marker protein (p58) in rat pancreatic exocrine cells. The protein remained associated with membranes after extraction at alkaline pH and was largely resistant to proteases, added to intact microsomes. By electrophoresis p58 could be resolved into two bands which in two-dimensional gels separated into several charge variants around pI 5.5. This size and charge heterogeneity of p58 did not appear to be due to acylation, glycosylation or phosphorylation. In non-reduced gels p58 migrated as two kinetically related, high relative molecular mass forms, apparently corresponding to disulfide-linked homo-dimers and -hexamers. Immuno-electron microscopy localized p58 to both the fenestrated cis-Golgi cisternae and small Golgi vesicles or buds as well as large, pleiomorphic structures, scattered throughout the cells and associated with distinct smooth ER (endoplasmic reticulum) clusters. These findings correlated with cell fractionation results showing the concentration of p58 in two microsomal subfractions, banding at intermediate densities between the rough ER and trans-Golgi in sucrose gradients. Our results indicate that p58 is a major component of pre- and cis-Golgi elements and could be part of the transport machinery that operates in these membranes. Together with results obtained with other cell types, these observations suggest that the peripheral smooth ER clusters are involved in the early stages of the secretory pathway in the pancreatic acinar cells.
Collapse
Affiliation(s)
- U Lahtinen
- Ludwig Institute for Cancer Research, Stockholm Branch, Sweden
| | | | | |
Collapse
|
37
|
Milgram SL, Johnson RC, Mains RE. Expression of individual forms of peptidylglycine alpha-amidating monooxygenase in AtT-20 cells: endoproteolytic processing and routing to secretory granules. J Biophys Biochem Cytol 1992; 117:717-28. [PMID: 1577852 PMCID: PMC2289459 DOI: 10.1083/jcb.117.4.717] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM: EC 1.14.17.3) is a bifunctional protein which catalyzes the COOH-terminal amidation of bioactive peptides; the NH2-terminal monooxygenase and mid-region lyase act in sequence to perform the peptide alpha-amidation reaction. Alternative splicing of the single PAM gene gives rise to mRNAs generating PAM proteins with and without a putative transmembrane domain, with and without a linker region between the two enzymes, and forms containing only the monooxygenase domain. The expression, endoproteolytic processing, storage, and secretion of this secretory granule-associated protein were examined after stable transfection of AtT-20 mouse pituitary cells with naturally occurring and truncated PAM proteins. The transfected proteins were examined using enzyme assays, subcellular fractionation, Western blotting, and immunocytochemistry. Western blots of crude membrane and soluble fractions of transfected cells demonstrated that all PAM proteins were endoproteolytically processed. When the linker region was present between the monooxygenase and lyase domains, monofunctional soluble enzymes were generated from bifunctional PAM proteins; without the linker region, bifunctional enzymes were generated. Soluble forms of PAM expressed in AtT-20 cells and soluble proteins generated through selective endoproteolysis of membrane-associated PAM were secreted in an active form into the medium; secretion of the transfected proteins and endogenous hormone were stimulated in parallel by secretagogues. PAM proteins were localized by immunocytochemistry in the perinuclear region near the Golgi apparatus and in secretory granules, with the greatest intensity of staining in the perinuclear region in cell lines expressing integral membrane forms of PAM. Monofunctional and bifunctional PAM proteins that were soluble or membrane-associated were all packaged into regulated secretory granules in AtT-20 cells.
Collapse
Affiliation(s)
- S L Milgram
- Neuroscience Department, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | |
Collapse
|
38
|
Thibault G, Doubell AF. Binding and aggregation of pro-atrial natriuretic factor by calcium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1992; 262:C907-15. [PMID: 1533094 DOI: 10.1152/ajpcell.1992.262.4.c907] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Analysis of atrial secretory granule content by sodium dodecyl sulfate-gel electrophoresis followed by a 45Ca2+ overlay assay indicates that a 17,000 protein binds 45Ca2+. This protein, which can be immunostained by atrial natriuretic factor (ANF) antiserum, corresponds to proANF. Ca2+ binding is proportional to the amount of proANF and pH dependent. Generation of ANF-(1-98) by thrombin digestion of proANF does not affect Ca2+ binding. Blocking the carboxyl groups of proANF and the use of NH2-terminal fragments bearing those carboxyl groups demonstrated that the Ca(2+)-interaction site is probably located within the highly acidic portion (11-30) of the propeptide. Ca2+ binding to proANF induces its aggregation that can be verified by sedimentation. ProANF aggregation is Ca2+ dependent, being optimal at 10 mM, partially pH dependent, and greatly increased by high concentrations of proANF. However, because of its relatively low-binding affinity, Ca2+ can be substituted by other divalent cations such as Sr2+, Ba2+, or Mg2+. The high level of Ca2+ in atrial secretory granules and the aggregation of proANF in the presence of Ca2+ suggest a possible involvement of these physicochemical properties in the condensed state of the matrix of secretory granules. Indeed, detergent solubilization of the membrane of the secretory granules in presence of Ca2+ resulted only in a partial dissolution of the dense core matrix. We therefore postulate that, in the Golgi complex, proANF and Ca2+ associate to form a condensed aggregate that helps package secretory material into secretory vesicles.
Collapse
Affiliation(s)
- G Thibault
- Laboratory of Cell Biology of Hypertension, University of Montreal, Quebec, Canada
| | | |
Collapse
|
39
|
Affiliation(s)
- I Mellman
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
40
|
Pimplikar S, Huttner W. Chromogranin B (secretogranin I), a secretory protein of the regulated pathway, is also present in a tightly membrane-associated form in PC12 cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50636-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Abstract
A combination of biochemistry in animal cell-free systems and genetics in yeast is revealing the molecular machinery of the secretory pathway of eukaryotes. Transporting vesicles have a simple coat structure and employ a general mechanism for fusion that is conserved in evolution.
Collapse
Affiliation(s)
- J E Rothman
- Program of Cellular Biochemistry and Biophysics, Rockefeller Research Laboratory, Sloan-Kettering Institute, New York, New York 10021
| | | |
Collapse
|
42
|
Chanat E, Huttner WB. Milieu-induced, selective aggregation of regulated secretory proteins in the trans-Golgi network. J Biophys Biochem Cytol 1991; 115:1505-19. [PMID: 1757460 PMCID: PMC2289203 DOI: 10.1083/jcb.115.6.1505] [Citation(s) in RCA: 362] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Regulated secretory proteins are thought to be sorted in the trans-Golgi network (TGN) via selective aggregation. The factors responsible for this aggregation are unknown. We show here that two widespread regulated secretory proteins, chromogranin B and secretogranin II (granins), remain in an aggregated state when TGN vesicles from neuroendocrine cells (PC12) are permeabilized at pH 6.4 in 1-10 mM calcium, conditions believed to exist in this compartment. Permeabilization of immature secretory granules under these conditions allowed the recovery of electron dense cores. The granin aggregates in the TGN largely excluded glycosaminoglycan chains which served as constitutively secreted bulk flow markers. The low pH, high calcium milieu was sufficient to induce granin aggregation in the RER. In the TGN of pituitary GH4C1 cells, the proportion of granins conserved as aggregates was higher upon hormonal treatment known to increase secretory granule formation. Our data suggest that a decrease in pH and an increase in calcium are sufficient to trigger the selective aggregation of the granins in the TGN, segregating them from constitutive secretory proteins.
Collapse
Affiliation(s)
- E Chanat
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
43
|
Peters PJ, Borst J, Oorschot V, Fukuda M, Krähenbühl O, Tschopp J, Slot JW, Geuze HJ. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 1991; 173:1099-109. [PMID: 2022921 PMCID: PMC2118839 DOI: 10.1084/jem.173.5.1099] [Citation(s) in RCA: 522] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) contain granules that are exocytosed during specific interaction with target cells (TC). In this process, the granule contents, including the lethal protein perforin, as well as granzymes, a family of serine esterases, are delivered to the TC. Information regarding the routing of these proteins towards the granule and their exact localization within the granule is of primary importance to resolve the mechanism of granule-mediated TC killing. In this study, the subcellular localization of perforin, granzymes, and known endosomal and lysosomal marker proteins was determined in human and murine CTL, by immunogold labeling of ultrathin cryosections followed by electron microscopy. Perforin and granzymes can be detected in rough endoplasmic reticulum, Golgi complex, trans-Golgi reticulum, and in all cytotoxic granules. Within the granules, they have a similar distribution and are localized not only in the so-called dense core but also over the region containing small internal vesicles. This finding implies that perforin and granzymes can be released in membrane-enveloped and/or -associated form into the intercellular cleft formed upon CTL-TC interaction. On the basis of the present evidence, additional release of these molecules in soluble form cannot be excluded. The lysosomal membrane glycoproteins lamp-1, lamp-2, and CD63, are abundantly present on the granule-delimiting outer membrane, which becomes incorporated into the CTL plasma membrane during lethal hit delivery. In contrast, the cation-dependent mannose 6-phosphate receptor, known to be present in endosomes and absent from lysosomes, is found only in a minority of the granules. Together with our previous findings that the granules are acidic and connected to the endocytic pathway, these observations define CTL granules as secretory lysosomes.
Collapse
Affiliation(s)
- P J Peters
- Laboratory of Cell Biology, Medical School, University of Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Moore PJ, Swords KM, Lynch MA, Staehelin LA. Spatial organization of the assembly pathways of glycoproteins and complex polysaccharides in the Golgi apparatus of plants. J Biophys Biochem Cytol 1991; 112:589-602. [PMID: 1993733 PMCID: PMC2288847 DOI: 10.1083/jcb.112.4.589] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Golgi apparatus of plant cells is the site of assembly of glycoproteins, proteoglycans, and complex polysaccharides, but little is known about how the different assembly pathways are organized within the Golgi stacks. To study these questions we have employed immunocytochemical techniques and antibodies raised against the hydroxyproline-rich cell wall glycoprotein, extensin, and two types of complex polysaccharides, an acidic pectic polysaccharide known as rhamnogalacturonan I (RG-I), and the neutral hemicellulose, xyloglucan (XG). Our micrographs demonstrate that individual Golgi stacks can process simultaneously glycoproteins and complex polysaccharides. O-linked arabinosylation of the hydroxyproline residues of extensin occurs in cis-cisternae, and glycosylated molecules pass through all cisternae before they are packaged into secretory vesicles in the monensin-sensitive, trans-Golgi network. In contrast, in root tip cortical parenchyma cells, the anti-RG-I and the anti-XG antibodies are shown to bind to complementary subsets of Golgi cisternae, and several lines of indirect evidence suggest that these complex polysaccharides may also exit from different cisternae. Thus, RG-I type polysaccharides appear to be synthesized in cis- and medial cisternae, and have the potential to leave from a monensin-insensitive, medial cisternal compartment. The labeling pattern for XG suggests that it is assembled in trans-Golgi cisternae and departs from the monensin-sensitive trans-Golgi network. This physical separation of the synthesis/secretion pathways of major categories of complex polysaccharides may prevent the synthesis of mixed polysaccharides, and provides a means for producing secretory vesicles that can be targeted to different cell wall domains.
Collapse
Affiliation(s)
- P J Moore
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | | | |
Collapse
|
45
|
Meldolesi J, Madeddu L, Pozzan T. Intracellular Ca2+ storage organelles in non-muscle cells: heterogeneity and functional assignment. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1055:130-40. [PMID: 2242382 DOI: 10.1016/0167-4889(90)90113-r] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- J Meldolesi
- Department of Pharmacology, CNR Center of Cytopharmacology, University of Milan, Italy
| | | | | |
Collapse
|
46
|
Kreiner T, Moore HP. Membrane traffic between secretory compartments is differentially affected during mitosis. CELL REGULATION 1990; 1:415-24. [PMID: 2099191 PMCID: PMC361519 DOI: 10.1091/mbc.1.5.415] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Membrane traffic has been shown to be regulated during cell division. In particular, with the use of viral membrane proteins as markers, endoplasmic reticulum (ER)-to-Golgi transport in mitotic cells has been shown to be essentially blocked. However, the effect of mitosis on other steps in the secretory pathway is less clear, because an early block makes examination of following steps difficult. Here, we report studies on the functional characteristics of secretory pathways in mitotic mammalian tissue culture cells by the use of a variety of markers. Chinese hamster ovary cells were transfected with cDNAs encoding secretory proteins. Consistent with earlier results following viral membrane proteins, we found that the overall secretory pathway is nonfunctional in mitotic cells, and a major block to secretion is at the step between ER and Golgi: the overall rate of secretion of human growth hormone is reduced at least 10-fold in mitotic cells, and export of truncated vesicular stomatitis virus G protein from the ER is inhibited to about the same extent, as judged by acquisition of endoglycosidase H resistance. To ascertain the integrity of transport from the trans-Golgi to plasma membrane, we followed the secretion of sulfated glycosaminoglycan (GAG) chains, which are synthesized in the Golgi and thus are not subject to the earlier ER-to-Golgi block. GAG chains are valid markers for the pathway taken by constitutive secretory proteins; both protein secretion and GAG chain secretion are sensitive to treatment with n-ethyl-maleimide and monensin and are blocked at 19 degrees C. We found that the extent of GAG-chain secretion is not altered during mitosis, although the initial rate of secretion is reduced about twofold in mitotic compared with interphase cells. Thus, during mitosis, transport from the trans-Golgi to plasma membrane is much less hindered than ER-to-Golgi traffic. We conclude that transport steps are not affected to the same extent during mitosis.
Collapse
Affiliation(s)
- T Kreiner
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
47
|
The effects of foreign transmembrane domains on the biosynthesis of the influenza virus hemagglutinin. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39627-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|