1
|
Liu Y, Trnka MJ, He L, Burlingame AL, Correia MA. In-Cell Chemical Crosslinking Identifies Hotspots for SQSTM-1/p62-IκBα Interaction That Underscore a Critical Role of p62 in Limiting NF-κB Activation Through IκBα Stabilization. Mol Cell Proteomics 2023; 22:100495. [PMID: 36634736 PMCID: PMC9947424 DOI: 10.1016/j.mcpro.2023.100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
We have previously documented that in liver cells, the multifunctional protein scaffold p62/SQSTM1 is closely associated with IκBα, an inhibitor of the transcriptional activator NF-κB. Such an intimate p62-IκBα association we now document leads to a marked 18-fold proteolytic IκBα-stabilization, enabling its nuclear entry and termination of the NF-κB-activation cycle. In p62-/--cells, such termination is abrogated resulting in the nuclear persistence and prolonged activation of NF-κB following inflammatory stimuli. Utilizing various approaches both classic (structural deletion, site-directed mutagenesis) as well as novel (in-cell chemical crosslinking), coupled with proteomic analyses, we have defined the precise structural hotspots of p62-IκBα association. Accordingly, we have identified such IκBα hotspots to reside around N-terminal (K38, K47, and K67) and C-terminal (K238/C239) residues in its fifth ankyrin repeat domain. These sites interact with two hotspots in p62: One in its PB-1 subdomain around K13, and the other comprised of a positively charged patch (R183/R186/K187/K189) between its ZZ- and TB-subdomains. APEX proximity analyses upon IκBα-cotransfection of cells with and without p62 have enabled the characterization of the p62 influence on IκBα-protein-protein interactions. Interestingly, consistent with p62's capacity to proteolytically stabilize IκBα, its presence greatly impaired IκBα's interactions with various 20S/26S proteasomal subunits. Furthermore, consistent with p62 interaction with IκBα on an interface opposite to that of its NF-κB-interacting interface, p62 failed to significantly affect IκBα-NF-κB interactions. These collective findings together with the known dynamic p62 nucleocytoplasmic shuttling leads us to speculate that it may be involved in "piggy-back" nuclear transport of IκBα following its NF-κB-elicited transcriptional activation and de novo synthesis, required for termination of the NF-κB-activation cycle. Consequently, mice carrying a liver-specific deletion of p62-residues 68 to 252 reveal age-dependent-enhanced liver inflammation. Our findings reveal yet another mode of p62-mediated pathophysiologically relevant regulation of NF-κB.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Liang He
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - A L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
2
|
Chen S, Ji X, Dedkova LM, Potuganti GR, Hecht SM. Site-Selective Tyrosine Phosphorylation in the Activation of the p50 Subunit of NF-κB for DNA Binding and Transcription. ACS Chem Biol 2023; 18:59-69. [PMID: 36534507 PMCID: PMC10026595 DOI: 10.1021/acschembio.2c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The family of NF-κB transcriptional activators controls the expression of many genes, including those involved in cell survival and development. The family consists of homo- and heterodimers constituted by combinations of five subunits. Subunit p50 includes 13 tyrosine residues, but the relationship between specific tyrosine phosphorylations and p50 function is not well understood. Subunits of p50 and p65 prepared in vitro formed a heterodimer, but this NF-κB would not bind to the interleukin-2 (IL-2) promoter DNA. Treatment of p50 with guanosine triphosphate (GTP) and a lysate from activated Jurkat cells, effected rapid p50 phosphorylation, and, in the presence of wild-type subunit p65, was accompanied on the same time scale by IL-2 promoter DNA binding. Modified p50s containing one of seven stoichiometrically phosphorylated tyrosines in NF-κB p50/p65 heterodimers, included three that facilitated binding to the IL-2 DNA promoter region to a greater extent than the wild type. One of these three stoichiometrically phosphorylated p50/p65 heterodimers of NF-κB, containing pTyr60 in the p50 subunit, was treated with a lysate from activated Jurkat cells + GTP and shown to be phosphorylated on the same time scale as wild-type p50. This modified NF-κB also developed IL-2 promoter DNA binding activity on the same time scale as the wild type but exhibited greater binding to the IL-2 DNA promoters than the wild type. The nature of this enhanced binding was studied in greater detail using a metabolically stable pTyr derivative at position 60 of p50 and cellular phosphatases. We suggest that enhanced DNA binding of modified NF-κB containing pTyr60 in the p50 subunit may reflect stoichiometric NF-κB phosphorylation at a site that is not normally fully phosphorylated, or not phosphorylated at all, and is relatively resistant to the effects of Jurkat cell tyrosine phosphatase activity. This conclusion was reinforced by demonstrating that modification of Tyr60 of p50 with a metabolically stable methylenephosphonate moiety further increased the stability of the formed NF-κB p50/p65 heterodimer against the action of activated Jurkat cell phosphatases.
Collapse
Affiliation(s)
- Shengxi Chen
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xun Ji
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Gal Reddy Potuganti
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
3
|
IκBα is required for full transcriptional induction of some NFκB-regulated genes in response to TNF in MCF-7 cells. NPJ Syst Biol Appl 2021; 7:42. [PMID: 34853340 PMCID: PMC8636565 DOI: 10.1038/s41540-021-00204-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory stimuli triggers the degradation of three inhibitory κB (IκB) proteins, allowing for nuclear translocation of nuclear factor-κB (NFκB) for transcriptional induction of its target genes. Of these three, IκBα is a well-known negative feedback regulator that limits the duration of NFκB activity. We sought to determine whether IκBα's role in enabling or limiting NFκB activation is important for tumor necrosis factor (TNF)-induced gene expression in human breast cancer cells (MCF-7). Contrary to our expectations, many more TNF-response genes showed reduced induction than enhanced induction in IκBα knockdown cells. Mathematical modeling was used to investigate the underlying mechanism. We found that the reduced activation of some NFκB target genes in IκBα-deficient cells could be explained by the incoherent feedforward loop (IFFL) model. In addition, for a subset of genes, prolonged NFκB activity due to loss of negative feedback control did not prolong their transient activation; this implied a multi-state transcription cycle control of gene induction. Genes encoding key inflammation-related transcription factors, such as JUNB and KLF10, were found to be best represented by a model that contained both the IFFL and the transcription cycle motif. Our analysis sheds light on the regulatory strategies that safeguard inflammatory gene expression from overproduction and repositions the function of IκBα not only as a negative feedback regulator of NFκB but also as an enabler of NFκB-regulated stimulus-responsive inflammatory gene expression. This study indicates the complex involvement of IκBα in the inflammatory response to TNF that is induced by radiation therapy in breast cancer.
Collapse
|
4
|
Chen S, Ji X, Dedkova LM, Hecht SM. Site-selective incorporation of phosphorylated tyrosine into the p50 subunit of NF-κB and activation of its downstream gene CD40. Chem Commun (Camb) 2021; 57:12651-12654. [PMID: 34766616 PMCID: PMC8843104 DOI: 10.1039/d1cc04726d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The NF-κB family of transcriptional activators is responsible for the expression of numerous genes that control key functions such as cell development and survival. Subunit p50 has been studied extensively and is known to include 13 tyrosines, but the extent and pattern of tyrosine phosphorylation that accompanies p50 function has not been defined in the literature, especially at the level of selectivity of gene expression. In this study, phosphorylated tyrosine (pTyr) was site-selectively incorporated into the p50 subunit using an E. coli in vitro expression system containing a modified ribosome. In human T cells, the NF-κBs containing a pTyr at position 60 or 82 of p50 strongly increased the expression of CD40, which is a potential target for cancer or viral immunotherapy. Promoter DNA binding was studied for CD40 promoters, and verified two pTyr residues in NF-κB p50/p65 heterodimers that facilitated this process, and that support the possible importance of phosphorylation stoichiometry. This study defines a new approach for studying tyrosine residues whose phosphorylation alters protein binding to DNA promoters, and contributes to the facility of DNA expression.
Collapse
Affiliation(s)
- Shengxi Chen
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe 85287, USA.
| | - Xun Ji
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe 85287, USA.
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe 85287, USA.
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe 85287, USA.
| |
Collapse
|
5
|
FGF23 ameliorates ischemia-reperfusion induced acute kidney injury via modulation of endothelial progenitor cells: targeting SDF-1/CXCR4 signaling. Cell Death Dis 2021; 12:409. [PMID: 33866326 PMCID: PMC8053200 DOI: 10.1038/s41419-021-03693-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
The levels of fibroblast growth factor 23 (FGF23) rapidly increases after acute kidney injury (AKI). However, the role of FGF23 in AKI is still unclear. Here, we observe that pretreatment with FGF23 protein into ischemia-reperfusion induced AKI mice ameliorates kidney injury by promoting renal tubular regeneration, proliferation, vascular repair, and attenuating tubular damage. In vitro assays demonstrate that SDF-1 induces upregulation of its receptor CXCR4 in endothelial progenitor cells (EPCs) via a non-canonical NF-κB signaling pathway. FGF23 crosstalks with the SDF-1/CXCR4 signaling and abrogates SDF-1-induced EPC senescence and migration, but not angiogenesis, in a Klotho-independent manner. The downregulated pro-angiogenic IL-6, IL-8, and VEGF-A expressions after SDF-1 infusion are rescued after adding FGF23. Diminished therapeutic ability of SDF-1-treated EPCs is counteracted by FGF23 in a SCID mouse in vivo AKI model. Together, these data highlight a revolutionary and important role that FGF23 plays in the nephroprotection of IR-AKI.
Collapse
|
6
|
Elmasry MF, Hassan E, Rashed LA, Abdel Halim DM. Role of resolvin D1 in psoriasis before and after narrowband ultraviolet B phototherapy: A case-control study. Dermatol Ther 2021; 34:e14879. [PMID: 33586174 DOI: 10.1111/dth.14879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Accepted: 02/13/2021] [Indexed: 01/01/2023]
Abstract
Resolvin D1 (RvD1) is an endogenous lipid mediator that originated from docosahexaenoic acid that stimulates a bimodal mechanism in the anti-inflammatory activity in addition to regulation of the inflammatory reaction. The study aimed at assessing the tissue level of RvD1 in psoriasis to study its role in the etiopathogenesis of psoriasis, studying the action of NB-UVB on the level of resolvin D1 in psoriasis, and raising the possibility of using resolvin D1 as a new therapy for psoriasis in the future. This case-control study included 20 psoriasis patients and 20 healthy controls. Patients took narrowband ultraviolet B (NB-UVB) for 36 sessions. Skin biopsies were taken before and after treatment from patients and from controls to assess the expression of RvD1 by a quantitative real-time polymerase chain reaction. Our findings revealed a statistically significant difference (P < .001) between psoriasis patients (either before or after treatment) and controls with lower levels of RvD1 in psoriasis patients. On comparing the RvD1 levels in psoriasis patients before and after treatment, a statistically significant increase was detected after treatment (P < .001). Tissue RvD1 levels in psoriasis patients were lower than healthy controls and increased after NB-UVB treatment in psoriasis patients. Thus, it is suggested that RvD1 might have a role in the etiopathogenesis of psoriasis. Moreover, the significantly up-regulated tissue levels of RvD1 in patients after treatment with NB-UVB highlighted a novel mechanism of phototherapy-mediated response in psoriasis by up-regulating RvD1 level.
Collapse
Affiliation(s)
- Maha Fathy Elmasry
- Dermatology Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman Hassan
- Kobry ElKobba Military Hospital, Cairo, Egypt
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology Department, Kasr Alainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
7
|
Liu Y, Trnka MJ, Guan S, Kwon D, Kim DH, Chen JJ, Greer PA, Burlingame AL, Correia MA. A Novel Mechanism for NF-κB-activation via IκB-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation. Mol Cell Proteomics 2020; 19:1968-1986. [PMID: 32912968 PMCID: PMC7710137 DOI: 10.1074/mcp.ra120.002316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBβ into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.
Collapse
Affiliation(s)
- Yi Liu
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shenheng Guan
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Doyoung Kwon
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Do-Hyung Kim
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - J-J Chen
- Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - A L Burlingame
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
8
|
Shadab M, Millar MW, Slavin SA, Leonard A, Fazal F, Rahman A. Autophagy protein ATG7 is a critical regulator of endothelial cell inflammation and permeability. Sci Rep 2020; 10:13708. [PMID: 32792588 PMCID: PMC7426828 DOI: 10.1038/s41598-020-70126-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
Abstract
Endothelial cell (EC) inflammation and permeability are critical pathogenic mechanisms in many inflammatory conditions including acute lung injury. In this study, we investigated the role of ATG7, an essential autophagy regulator with no autophagy-unrelated functions, in the mechanism of EC inflammation and permeability. Knockdown of ATG7 using si-RNA significantly attenuated thrombin-induced expression of proinflammatory molecules such as IL-6, MCP-1, ICAM-1 and VCAM-1. Mechanistic study implicated reduced NF-κB activity in the inhibition of EC inflammation in ATG7-silenced cells. Moreover, depletion of ATG7 markedly reduced the binding of RelA/p65 to DNA in the nucleus. Surprisingly, the thrombin-induced degradation of IκBα in the cytosol was not affected in ATG7-depleted cells, suggesting a defect in the translocation of released RelA/p65 to the nucleus in these cells. This is likely due to suppression of thrombin-induced phosphorylation and thereby inactivation of Cofilin1, an actin-depolymerizing protein, in ATG7-depleted cells. Actin stress fiber dynamics are required for thrombin-induced translocation of RelA/p65 to the nucleus, and indeed our results showed that ATG7 silencing inhibited this response via inactivation of Cofilin1. ATG7 silencing also reduced thrombin-mediated EC permeability by inhibiting the disassembly of VE-cadherin at adherens junctions. Together, these data uncover a novel function of ATG7 in mediating EC inflammation and permeability, and provide a mechanistic basis for the linkage between autophagy and EC dysfunction.
Collapse
Affiliation(s)
- Mohammad Shadab
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Michelle Warren Millar
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Spencer A Slavin
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Antony Leonard
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Fabeha Fazal
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | - Arshad Rahman
- Department of Pediatrics, Lung Biology and Disease Program, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.
| |
Collapse
|
9
|
Lambrou GI, Hatziagapiou K, Vlahopoulos S. Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Mol Biol Rep 2020; 47:4047-4063. [PMID: 32239468 DOI: 10.1007/s11033-020-05410-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Disruption of tissue function activates cellular stress which triggers a number of mechanisms that protect the tissue from further damage. These mechanisms involve a number of homeostatic modules, which are regulated at the level of gene expression by the transactivator NF-κB. This transcription factor shifts between activation and repression of discrete, cell-dependent gene expression clusters. Some of its target genes provide feedback to NF-κB itself, thereby strengthening the inflammatory response of the tissue and later terminating inflammation to facilitate restoration of tissue homeostasis. Disruption of key feedback modules for NF-κB in certain cell types facilitates the survival of clones with genomic aberrations, and protects them from being recognized and eliminated by the immune system, to enable thereby carcinogenesis.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece.
| |
Collapse
|
10
|
Esposito G, Raffrenato E, Lukamba SD, Adnane M, Irons PC, Cormican P, Tasara T, Chapwanya A. Characterization of metabolic and inflammatory profiles of transition dairy cows fed an energy-restricted diet. J Anim Sci 2020; 98:skz391. [PMID: 31917830 PMCID: PMC6984754 DOI: 10.1093/jas/skz391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
Periparturient diseases of dairy cows are caused by disproportionate energy metabolism, mineral imbalance, and perturbed immune function. The aim of the present study was to characterize metabolism, innate immune endometrial gene expression, and uterine microbial populations of transition animals receiving normal or restricted energy diets. Pregnant multiparous Holstein cows (n = 14) were randomly assigned to one of the two dietary treatments from 20 d prepartum until 35 d postpartum (DPP). One group was fed a diet providing 100% energy requirements (NE), whereas the other received an energy-restricted diet providing 80% energy requirements (RE). Feed intake, milk yield, body weight, body condition score, temperature, respiratory, and pulse rate were recorded. After calving, blood was collected weekly to analyze nonesterified fatty acids (NEFAs), β-hydroxybutyrate (BHB), and total cholesterol (TC). Endometrial cytobrushes were collected for gene expression analysis of inflammatory markers, microbial populations determination, and cytological evaluation. The restricted energy diet did not alter feed intake or milk yield but changed energy balance and metabolites levels (P < 0.05). In fact, RE animals had high NEFA and BHB levels, and low TC concentrations (P < 0.05). Moreover, RE animals had upregulated gene expression of serum amyloid A3 (SAA3) at 35 DPP (P < 0.05) and CXC chemokine receptor 2 (CXCR2) at 14 DPP (P < 0.01). Interleukin (IL) 1 and IL8 genes were downregulated 14 DPP but upregulated 35 DPP in RE animals, whereas IL6 and lipopolysaccharide-binding protein (LBP) genes were upregulated at 14 DPP (P ≤ 0.05). The most abundant phyla in RE animals (n = 3) were Bacteroidetes and Fusobacteria, whereas Proteobacteria was the least abundant at both 14 and 35 DPP. In conclusion, it can be speculated that energy balance is one of the main drivers for uterine inflammation by affecting metabolism, immune function, and uterine microbiota. However, these findings should be validated in a larger sample size.
Collapse
Affiliation(s)
- Giulia Esposito
- Department of Animal Sciences, Faculty of Agricultural Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Emiliano Raffrenato
- Department of Animal Sciences, Faculty of Agricultural Science, Stellenbosch University, Stellenbosch, South Africa
| | - Somwe D Lukamba
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Mounir Adnane
- Institute of Veterinary Sciences, Ibn-Khaldoun University, Tiaret, Algeria
| | - Pete C Irons
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- School of Veterinary and Life Science, Murdoch University, Perth, Australia
| | - Paul Cormican
- Department of Animal and Grassland Research, Animal Bioscience Research Centre, Teagasc, Ireland
| | - Taurai Tasara
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
| | - Aspinas Chapwanya
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| |
Collapse
|
11
|
Kaneda K, Yu A, Tanizaki H, Kurokawa T, Yamamoto Y, Furukawa F, Moriwaki S. Ghrelin attenuates imiquimod‐induced psoriasiform skin inflammation in mice. JOURNAL OF CUTANEOUS IMMUNOLOGY AND ALLERGY 2019. [DOI: 10.1002/cia2.12086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Kazuma Kaneda
- Department of Dermatology Osaka Medical College Takatsuki Japan
| | - Akitoshi Yu
- Department of Dermatology Osaka Medical College Takatsuki Japan
| | | | - Teruo Kurokawa
- Department of Dermatology Osaka Medical College Takatsuki Japan
| | - Yuki Yamamoto
- Department of Dermatology Wakayama Medical University Wakayama Japan
| | - Fukumi Furukawa
- Department of Dermatology Japanese Red Cross Society Takatsuki Hospital Takatsuki Japan
| | | |
Collapse
|
12
|
Wang H, Yu Q, Ding X, Hu X, Hou K, Liu X, Nie S, Xie M. RNA-seq based elucidation of mechanism underlying Ganoderma atrum polysaccharide induced immune activation of murine myeloid-derived dendritic cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
13
|
Shaheen ZR, Christmann BS, Stafford JD, Moran JM, Buller RML, Corbett JA. CCR5 is a required signaling receptor for macrophage expression of inflammatory genes in response to viral double-stranded RNA. Am J Physiol Regul Integr Comp Physiol 2019; 316:R525-R534. [PMID: 30811246 DOI: 10.1152/ajpregu.00019.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Double-stranded (ds) RNA, both synthetic and produced during virus replication, rapidly stimulates MAPK and NF-κB signaling that results in expression of the inflammatory genes inducible nitric oxide synthase, cyclooxygenase 2, and IL-1β by macrophages. Using biochemical and genetic approaches, we have identified the chemokine ligand-binding C-C chemokine receptor type 5 (CCR5) as a cell surface signaling receptor required for macrophage expression of inflammatory genes in response to dsRNA. Activation of macrophages by synthetic dsRNA does not require known dsRNA receptors, as poly(inosinic:cytidylic) acid [poly(I:C)] activates signaling pathways leading to expression of inflammatory genes to similar levels in wild-type and Toll-like receptor 3- or melanoma differentiation antigen 5-deficient macrophages. In contrast, macrophage activation in response to poly(I:C) is attenuated in macrophages isolated from mice lacking CCR5. These findings support a role for CCR5 as a cell surface signaling receptor that participates in activation of inflammatory genes in macrophages in response to the viral dsRNA mimetic poly(inosinic:cytidylic) acid by pathways that are distinct from classical dsRNA receptor-mediated responses.
Collapse
Affiliation(s)
- Zachary R Shaheen
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Benjamin S Christmann
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri
| | - Joshua D Stafford
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Jason M Moran
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri
| | - R Mark L Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine , St. Louis, Missouri
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
14
|
Xu J, Duan X, Hu F, Poorun D, Liu X, Wang X, Zhang S, Gan L, He M, Zhu K, Ming Z, Chen H. Resolvin D1 attenuates imiquimod-induced mice psoriasiform dermatitis through MAPKs and NF-κB pathways. J Dermatol Sci 2017; 89:127-135. [PMID: 29137840 DOI: 10.1016/j.jdermsci.2017.10.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 09/05/2017] [Accepted: 10/31/2017] [Indexed: 01/13/2023]
Abstract
BACKGROUND Resolvin D1 (RvD1), a pro-resolution lipid mediator derived from docosahexaenoic acid (DHA), has been described to promote several kinds of inflammatory resolution. However, the effects and anti-inflammatory mechanisms of RvD1 on psoriasis have not been previously reported. OBJECTIVE The present study aimed to determine the protective effects and the underlying mechanisms of RvD1 on imiquimod (IMQ)-induced psoriasiform dermatitis. METHODS Mice were topically treated with IMQ to develop psoriasiform dermatitis on their shaved back, pretreated intraperitoneally (i.p.) with or without RvD1 or tert-butoxycarbonyl Met-Leu-Phe peptide (Boc), a lipoxin A4 (ALX) receptor antagonist. The severity was monitored and graded using a modified human scoring system, the Psoriasis Area and Severity Index (PASI), histopathology, and the signature cytokines of psoriasis (IL-23, IL-17, IL-22 and TNF-α). The mRNA and protein levels of inflammatory cytokines were quantified by quantitative real-time PCR (QRT-PCR) and ELISA. The expressions of signaling proteins MAPKs and NF-κB p65 were analyzed using western blotting. Electrophoretic mobility shift assay (EMSA) was used to check NF-κB p65 DNA binding activity. RESULTS Our study showed that RvD1 alleviated IMQ-induced psoriasiform dermatitis and improved skin pathological changes. RvD1 markedly inhibited IMQ-induced activation of ERK1/2, p38, JNK (c-Jun N-terminal protein kinase, a subfamily of MAPKs), and NF-κB. Furthermore, pretreatment with Boc, would not exacerbate skin inflammation of IMQ-induced mice, but significantly reversed the beneficial effects of RvD1 on IMQ-induced psoriasiform inflammation. CONCLUSION RvD1 can obviously improve skin inflammation in IMQ-induced mice psoriasiform dermatitis. The protective mechanisms might be related to its selective reaction with lipoxin A4 receptor/Formyl-peptide receptor 2 (ALX/FPR2), by downregulating relevant cytokines of the IL-23/IL-17 axis expression, the inhibition of MAPKs and NF-κB signaling transduction pathways. Thus, these results show that RvD1 could be a possible candidate for psoriasis therapy.
Collapse
Affiliation(s)
- Juntao Xu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Xiaoru Duan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Hu
- Department of Dermatology, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Devesh Poorun
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinxin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lu Gan
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengwen He
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangyin Ming
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Building 149, 13th Street Charlestown, Boston, MA 02129, USA.
| |
Collapse
|
15
|
Qiu W, He JH, Zuo H, Niu S, Li C, Zhang S, Weng S, He J, Xu X. Identification, characterization, and function analysis of the NF-κB repressing factor (NKRF) gene from Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:83-92. [PMID: 28564581 DOI: 10.1016/j.dci.2017.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The NF-κB family transcription factors regulate a wide spectrum of biological processes, in particular immune responses. The studies in human suggest that the NF-κB repressing factor (NKRF) negatively regulates the activity of NF-κB through a direct protein-protein interaction. However, the function of NKRF has not been studied outside mammals up to now. The current study identified a NKRF gene (LvNKRF) from the Pacific white shrimp, Litopenaeus vannamei, which showed homology with NKRFs from insects, fishes and mammals. LvNKRF was high expressed in intestine, stomach and muscle tissues and was localized in the nucleus. LvNKRF could interact with both Dorsal and Relish, the two members of the shrimp NF-κB family. Interestingly, although sharing a similar protein structure with that of human NKRF, LvNKRF showed no inhibitory but instead enhancing effects on activities of Dorsal and Relish, which was contrary to those of mammalian NKRFs. The expression of LvNKRF could not be induced by Gram-positive and -negative bacteria and immunostimulants lipopolysaccharide (LPS) and poly (I:C) but was significantly up-regulated after white spot syndrome virus (WSSV) infection. Silencing of LvNKRF significantly decreased the mortalities of shrimp caused by WSSV infection and down-regulated the WSSV copies and the expression of WSSV structural gene in tissues. These suggested that LvNKRF could facilitate the infection of shrimp by WSSV, which may be an additional strategy for WSSV to hijack the host NF-κB pathway to favor its own replication. The current study could provide a valuable context for further investigating the evolutionary derivation of NKRFs and facilitate the study of regulatory mechanisms of invertebrate NF-κB pathways.
Collapse
Affiliation(s)
- Wei Qiu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China
| | - Jian-Hui He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China
| | - Shengwen Niu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shuang Zhang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), Guangzhou, PR China.
| |
Collapse
|
16
|
Gao S, Sun Y, Zhang X, Hu L, Liu Y, Chua CY, Phillips LM, Ren H, Fleming JB, Wang H, Chiao PJ, Hao J, Zhang W. IGFBP2 Activates the NF-κB Pathway to Drive Epithelial-Mesenchymal Transition and Invasive Character in Pancreatic Ductal Adenocarcinoma. Cancer Res 2016; 76:6543-6554. [PMID: 27659045 DOI: 10.1158/0008-5472.can-16-0438] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/27/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022]
Abstract
The molecular basis underlying the particularly aggressive nature of pancreatic ductal adenocarcinoma (PDAC) still remains unclear. Here we report evidence that the insulin-like growth factor-binding protein IGFBP2 acts as a potent oncogene to drive its extremely malignant character. We found that elevated IGFBP2 expression in primary tumors was associated with lymph node metastasis and shorter survival in patients with PDAC. Enforced expression of IGFBP2 promoted invasion and metastasis of PDAC cells in vitro and in vivo by inducing NF-κB-dependent epithelial-mesenchymal transition (EMT). Mechanistic investigations revealed that IGFBP2 induced the nuclear translocation and phosphorylation of the p65 NF-κB subunit through the PI3K/Akt/IKKβ pathway. Conversely, enforced expression of PTEN blunted this signaling pathway and restored an epithelial phenotype to PDAC cells in the presence of overexpressed IGFBP2. Overall, our results identify IGFBP2 as a pivotal regulator of an EMT axis in PDAC, the activation of which is sufficient to confer the characteristically aggressive clinical features of this disease. Cancer Res; 76(22); 6543-54. ©2016 AACR.
Collapse
Affiliation(s)
- Song Gao
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Yan Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Limei Hu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuexin Liu
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Corrine Yingxuan Chua
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynette M Phillips
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - He Ren
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China
| | - Jason B Fleming
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jihui Hao
- Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, P.R. China.
| | - Wei Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Cancer Biology, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| |
Collapse
|
17
|
Sanwald J, Albrecht U, Wagenpfeil J, Thomas M, Sawodny O, Bode JG, Feuer R. Modeling the LPS-induced effects on transcription factor activation and gene expression in murine macrophages. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:3989-92. [PMID: 26737168 DOI: 10.1109/embc.2015.7319268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages within the liver are of particular importance for a functional defense against bacterial infection. They exhibit a complex response to lipopolysaccharide and secrete a variety of pro-inflammatory cytokines and chemokines that both coordinate the immune response and regulate activity of the macrophages, themselves. In this context, the dynamic of pathway activation and gene expression is important for a better understanding of the role of activated macrophages in healthy and diseased states. Therefore, we present a representative model of LPS-induced macrophage activation that covers the principle regulatory motifs. Based on that, we propose a simplified model with a reduced number of states and parameters that allows estimation of transcription factor activity from gene expression data and can be easily extended to describe the full spectrum of gene regulation in LPS-activated macrophages.
Collapse
|
18
|
Guillot F, Kemppainen S, Levasseur G, Miettinen PO, Laroche S, Tanila H, Davis S. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 51:1157-1173. [PMID: 26923018 DOI: 10.3233/jad-150926] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although it is well established that insulin/IGF and BDNF signaling are dysfunctionally regulated in Alzheimer's disease, there are very few studies documenting changes in major target proteins in different murine models of the disease. We investigated a panel of proteins in the PI3K-Akt and MAPK/ERK cascades in parietal cortex, dentate gyrus and CA1 in 13-month-old AβPP/PS1 transgenic mice to determine whether amyloid pathology is associated with basal dysregulation of these proteins or following exposure to novelty. The most striking effect we found was that there was little common regulation of proteins either by pathology alone or exposure to novelty across the three structures, suggesting dysfunctional mechanisms that occur simultaneously have important structure specificity. CA1 shared certain dysfunctional regulation of proteins in the MAPK/ERK cascade, but shared dysfunctional regulation of the PI3K/Akt cascade with the dentate gyrus. Changes in ERK/CREB in transgenic mice did not result in coordinated dysfunction of the downstream transcription factor, Egr1, as it was overexpressed in a normal manner following exposure to novelty. In the PI3K-Akt cascade, there was a flagrant increase in the levels of proteins associated with inflammation, such as NFκB, and structure specific regulation of proteins associated with autophagy, such as mTOR and FOXO1 and lack of regulation of Beclin-1. Finally, Beclin-1 was increased by novelty in wild-type mice but deficient in transgenic mice. Results are interpreted in terms of structure-specific dysfunctional regulation of signaling mechanisms associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Florence Guillot
- Univ Paris-Saclay, Paris, France
- Univ Paris-Sud, Paris-Saclay Neuroscience Institute (Neuro-PSI), Orsay, France
- CNRS, Orsay, France
| | | | - Gregoire Levasseur
- Univ Paris-Saclay, Paris, France
- Univ Paris-Sud, Paris-Saclay Neuroscience Institute (Neuro-PSI), Orsay, France
- CNRS, Orsay, France
| | - Pasi O Miettinen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Serge Laroche
- Univ Paris-Saclay, Paris, France
- Univ Paris-Sud, Paris-Saclay Neuroscience Institute (Neuro-PSI), Orsay, France
- CNRS, Orsay, France
| | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Sabrina Davis
- Univ Paris-Saclay, Paris, France
- Univ Paris-Sud, Paris-Saclay Neuroscience Institute (Neuro-PSI), Orsay, France
- CNRS, Orsay, France
| |
Collapse
|
19
|
Crites KSM, Morin G, Orlando V, Patey N, Cantin C, Martel J, Brochiero E, Mailhot G. CFTR Knockdown induces proinflammatory changes in intestinal epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2015; 12:62. [PMID: 26549988 PMCID: PMC4636765 DOI: 10.1186/s12950-015-0107-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
Abstract
Background Hyperinflammation is a hallmark feature of cystic fibrosis (CF) airways. However, inflammation has also been documented systemically and, more recently, in extrapulmonary CF-affected tissues such as the pancreas and intestine. The pathogenesis of CF-related inflammation and more specifically the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in that respect are not entirely understood. We have tested the hypothesis that genetic depletion of CFTR will affect the inflammatory status of human intestinal epithelial cell lines. Methods CFTR expression was genetically depleted from Caco-2/15 and HT-29 cells using short hairpin RNA interference (shRNAi). Inflammatory conditions were induced by the addition of human recombinant tumor necrosis factor (TNF) or Interleukin-1β (IL-1β) for various periods of time. Gene expression, mRNA stability and secreted levels of interleukin (IL)-6, −8 and 10 were assessed. Analysis of pro- and anti-inflammatory signaling pathways including mitogen-activated protein kinases (p38, ERK 1/2 and JNK), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα), and nuclear factor-kappa B (NF-κB) was also performed. Eosinophils were counted in the jejunal mucosa of Cftr−/− and Cftr+/+ mice. Results CFTR gene and protein knockdown caused a significant increase in basal secretion of IL-8 as well as in IL-1β-induced secretion of IL-6 and −8. Release of the anti-inflammatory cytokine, IL-10, remained unaffected by CFTR depletion. The enhanced secretion of IL-8 stems in part from increased IL8 mRNA levels and greater activation of ERK1/2 MAPK, IκBα and NF-κB in the CFTR knockdown cells. By contrast, phosphorylation levels of p38 and JNK MAPK did not differ between control and knockdown cells. We also found a higher number of infiltrating eosinophils in the jejunal mucosa of Cftr −/− females, but not males, compared to Cftr +/+ mice, thus providing in vivo support to our in vitro findings. Conclusion Collectively, these data underscore the role played by CFTR in regulating the intestinal inflammatory responses. Such findings lend support to the theory that CFTR exerts functions that may go beyond its role as a chloride channel whereby its disruption may prevent cells to optimally respond to exogenous or endogenous challenges. These observations are of particular interest to CF patients who were found to display alterations in their intestinal microbiota, thus predisposing them to pathogens that may elicit exaggerated inflammatory responses. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0107-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Geneviève Morin
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Valérie Orlando
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Natacha Patey
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Catherine Cantin
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Judith Martel
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Emmanuelle Brochiero
- Research Center, CHUM, 900 Saint-Denis Street, Montreal, Quebec H2X 0A9 Canada ; Department of Medicine, Université de Montreal, 2900, Édouard-Montpetit Blvd, Montreal, Quebec H3T 1J4 Canada
| | - Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada ; Department of Nutrition, Université de Montreal, 2405 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1A8 Canada
| |
Collapse
|
20
|
Xu F, Li J, Zhang Y, Li X, Zhang Y, Xiang Z, Yu Z. CgIκB3, the third novel inhibitor of NF-kappa B (IκB) protein, is involved in the immune defense of the Pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2015; 46:648-655. [PMID: 26260316 DOI: 10.1016/j.fsi.2015.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Inhibitor of NF-κB (IκB), the important regulator of NF-κB/Rel signaling pathway, plays the crucial role in immune response of both vertebrates and invertebrates. Here, a novel homologue of IκB was cloned from Crassostrea gigas, and designated as CgIκB3. The complete CgIκB3 cDNA was 1282 bp in length, including a 942 bp open reading frame (ORF), a 51 bp 5' UTR and a 289 bp 3' UTR. The ORF encodes a putative protein of 313 amino acids with a predicted molecular weight of approximately 34.7 kDa. Sequence analysis reveals that CgIκB3 contains a conserved degradation motif but with only five ankyrin repeats. Neither a PEST domain nor a C-terminal casein kinase II phosphorylation site was identified through either alignment or bioinformatic prediction. Phylogenetic analysis suggested that CgIκB3 shares common ancestor with CgIκB1 rather CgIκB2, and theoretically it may originate from one duplication event prior to divergence of CgIκB1 and CgIκB2. Tissue expression analyses demonstrated that CgIκB3 mRNA is the most abundant in gills and heart. The expression following PAMP infection showed that CgIκB3 was significantly up-regulated in a similar pattern when challenged with LPS, HKLM or HKVA, respectively. Moreover, similar to CgIκB1 and CgIκB2, CgIκB3 can also inhibit Rel dependent NF-κB activation in HEK293 cells in a dose-dependent manner. In summary, these findings suggest that CgIκB3 can be as the functional inhibitor of NF-κB/Rel and involved in the host defense of C. gigas. The discovery of the third IκB emphasizes the complexity and importance of the regulation on NF-κB activation.
Collapse
Affiliation(s)
- Fengjiao Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Graduate School of the Chinese Academy of Sciences, Beijing 100049, China; Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Xiaomei Li
- School of Biological Science and Technology, Qiongzhou University, Sanya 572022, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China.
| |
Collapse
|
21
|
Furman JL, Norris CM. Calcineurin and glial signaling: neuroinflammation and beyond. J Neuroinflammation 2014; 11:158. [PMID: 25199950 PMCID: PMC4172899 DOI: 10.1186/s12974-014-0158-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Similar to peripheral immune/inflammatory cells, neuroglial cells appear to rely on calcineurin (CN) signaling pathways to regulate cytokine production and cellular activation. Several studies suggest that harmful immune/inflammatory responses may be the most impactful consequence of aberrant CN activity in glial cells. However, newly identified roles for CN in glutamate uptake, gap junction regulation, Ca2+ dyshomeostasis, and amyloid production suggest that CN's influence in glia may extend well beyond neuroinflammation. The following review will discuss the various actions of CN in glial cells, with particular emphasis on astrocytes, and consider the implications for neurologic dysfunction arising with aging, injury, and/or neurodegenerative disease.
Collapse
|
22
|
James C, Rush AM, Insley T, Vuković L, Adamiak L, Král P, Gianneschi NC. Poly(oligonucleotide). J Am Chem Soc 2014; 136:11216-9. [PMID: 25077676 PMCID: PMC4140503 DOI: 10.1021/ja503142s] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Indexed: 01/01/2023]
Abstract
Here we report the preparation of poly(oligonucleotide) brush polymers and amphiphilic brush copolymers from nucleic acid monomers via graft-through polymerization. We describe the polymerization of PNA-norbornyl monomers to yield poly-PNA (poly(peptide nucleic acid)) via ring-opening metathesis polymerization (ROMP) with the initiator, (IMesH2)(C5H5N)2(Cl)2RuCHPh.1 In addition, we present the preparation of poly-PNA nanoparticles from amphiphilic block copolymers and describe their hybridization to a complementary single-stranded DNA (ssDNA) oligonucleotide.
Collapse
Affiliation(s)
- Carrie
R. James
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Anthony M. Rush
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Thomas Insley
- Department of Chemistry, Department of Physics University
of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Lela Vuković
- Department of Chemistry, Department of Physics University
of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Lisa Adamiak
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Petr Král
- Department of Chemistry, Department of Physics University
of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Nathan C. Gianneschi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
23
|
Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology. Biosci Rep 2014; 34:BSR20140021. [PMID: 24877606 PMCID: PMC4069681 DOI: 10.1042/bsr20140021] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RhoGTPases, with RhoA, Cdc42 and Rac being major members, are a group of key ubiquitous proteins present in all eukaryotic organisms that subserve such important functions as cell migration, adhesion and differentiation. The NFκB (nuclear factor κB) is a family of constitutive and inducible transcription factors that through their diverse target genes, play a major role in processes such as cytokine expression, stress regulation, cell division and transformation. Research over the past decade has uncovered new molecular links between the RhoGTPases and the NFκB pathway, with the RhoGTPases playing a positive or negative regulatory role on NFκB activation depending on the context. The RhoA–NFκB interaction has been shown to be important in cytokine-activated NFκB processes, such as those induced by TNFα (tumour necrosis factor α). On the other hand, Rac is important for activating the NFκB response downstream of integrin activation, such as after phagocytosis. Specific residues of Rac1 are important for triggering NFκB activation, and mutations do obliterate this response. Other upstream triggers of the RhoGTPase–NFκB interactions include the suppressive p120 catenin, with implications for skin inflammation. The networks described here are not only important areas for further research, but are also significant for discovery of targets for translational medicine.
Collapse
|
24
|
Xu Y, Wang C, Klabnik JJ, O'Donnell JM. Novel therapeutic targets in depression and anxiety: antioxidants as a candidate treatment. Curr Neuropharmacol 2014; 12:108-19. [PMID: 24669206 PMCID: PMC3964743 DOI: 10.2174/1570159x11666131120231448] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 08/13/2013] [Accepted: 11/02/2013] [Indexed: 01/08/2023] Open
Abstract
There is growing evidence that the imbalance between oxidative stress and the antioxidant defense system may be associated with the development neuropsychiatric disorders, such as depression and anxiety. Major depression and anxiety are presently correlated with a lowered total antioxidant state and by an activated oxidative stress (OS) pathway. The classical antidepressants may produce therapeutic effects other than regulation of monoamines by increasing the antioxidant levels and normalizing the damage caused by OS processes. This chapter provides an overview of recent work on oxidative stress markers in the animal models of depression and anxiety, as well as patients with the aforementioned mood disorders. It is well documented that antioxidants can remove the reactive oxygen species (ROS) and reactive nitrogen species (RNS) through scavenging radicals and suppressing the OS pathway, which further protect against neuronal damage caused oxidative or nitrosative stress sources in the brain, hopefully resulting in remission of depression or anxiety symptoms. The functional understanding of the relationship between oxidative stress and depression and anxiety may pave the way for discovery of novel targets for treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Chuang Wang
- Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang 315211, PR China
| | - Jonathan J Klabnik
- Department of Behavioral Medicine and Psychiatry, West Virginia University, Morgantown, WV 26508, USA
| | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
25
|
Direct observation of a transient ternary complex during IκBα-mediated dissociation of NF-κB from DNA. Proc Natl Acad Sci U S A 2013; 111:225-30. [PMID: 24367071 DOI: 10.1073/pnas.1318115111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously demonstrated that IκBα markedly increases the dissociation rate of DNA from NF-κB. The mechanism of this process remained a puzzle because no ternary complex was observed, and structures show that the DNA and IκBα binding sites on NF-κB are overlapping. The kinetics of interaction of IκBα with NF-κB and its complex with DNA were analyzed by using stopped-flow experiments in which fluorescence changes in pyrene-labeled DNA or the native tryptophan in IκBα were monitored. Rate constants governing the individual steps in the reaction were obtained from analysis of the measured rate vs. concentration profiles. The NF-κB association with DNA is extremely rapid with a rate constant of 1.5 × 10(8) M(-1)⋅s(-1). The NF-κB-DNA complex dissociates with a rate constant of 0.41 s(-1), yielding a KD of 2.8 nM. When IκBα is added to the NF-κB-DNA complex, we observe the formation of a transient ternary complex in the first few milliseconds of the fluorescence trace, which rapidly rearranges to release DNA. The rate constant of this IκBα-mediated dissociation is nearly equal to the rate constant of association of IκBα with the NF-κB-DNA complex, showing that IκBα is optimized to repress transcription. The rate constants for the individual steps of a more folded mutant IκBα were also measured. This mutant associates with NF-κB more rapidly than wild-type IκBα, but it associates with the NF-κB-DNA complex more slowly and also is less efficient at mediating dissociation of the NF-κB-DNA complex.
Collapse
|
26
|
Zhang YK, Liu JT, Peng ZW, Fan H, Yao AH, Cheng P, Liu L, Ju G, Kuang F. Different TLR4 expression and microglia/macrophage activation induced by hemorrhage in the rat spinal cord after compressive injury. J Neuroinflammation 2013; 10:112. [PMID: 24015844 PMCID: PMC3847110 DOI: 10.1186/1742-2094-10-112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/30/2013] [Indexed: 02/01/2023] Open
Abstract
Background Hemorrhage is a direct consequence of traumatic injury to the central nervous system and may cause innate immune reactions including cerebral Toll-like receptor (TLR) 4 upregulation which usually leads to poor outcome in the traumatic brain injury. In spinal cord injury (SCI), however, how hemorrhage induces innate immune reaction in spinal parenchyma remains unknown. The present study aimed to see whether blood component and/or other factor(s) induce TLR4 and microglia/macrophages involved innate immune reactions in the rat spinal cord after traumatic injury. Methods Using the compressive SCI model of the rat, hemorrhage in the spinal cord was identified by hematoxylin-eosin staining. Microglia/macrophage activation, TLR4 expression, and cell apoptosis were investigated by immunohistochemistry. Nuclear factor (NF)-κB p50 level of the two segments of the cord was detected by western blotting assay. With carbon powder injection, blood origination of the hematoma was explored. The blood-spinal cord barrier (BSCB) states of the lesion site and the hematoma were compared with immunohistochemistry and tannic acid-ferric chloride staining. Results Histological observation found blood accumulated in the center of compression lesion site (epicenter) and in the hematoma approximately 1.5 cm away from the epicenter. TLR4 expression, microglia//macrophage activation, and subsequent apoptosis in the area of far-away hematoma were late and weak in comparison to that in epicenter. In addition, TLR4 positive microglia/macrophages appeared to be phagocytotic in the far-away hematoma more obviously than that in the epicenter. Injected carbon powder indicated that accumulated blood of the far-away hematoma originated from the bleeding of the lesion epicenter, and the BSCB around the hematoma was not compromised in the early phase. Accordingly, at 3 days post injury, NF-κB p50 was upregulated based on the similar levels of blood component hemoglobin, and cell apoptosis was obvious in the epicenter but not in the far-away hematoma. Conclusion These data suggest that besides blood component, BSCB compromise and the extent of tissue injury contribute more to TLR4 and microglia/macrophage responses to the spinal cord hemorrhage. Therefore, the innate immune environment is a necessary consideration for the SCI therapy targeting TLR4 and microglia/macrophages.
Collapse
Affiliation(s)
- Yu-Kai Zhang
- Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yara S, Lavoie JC, Beaulieu JF, Delvin E, Amre D, Marcil V, Seidman E, Levy E. Iron-ascorbate-mediated lipid peroxidation causes epigenetic changes in the antioxidant defense in intestinal epithelial cells: impact on inflammation. PLoS One 2013; 8:e63456. [PMID: 23717425 PMCID: PMC3661745 DOI: 10.1371/journal.pone.0063456] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The gastrointestinal tract is frequently exposed to noxious stimuli that may cause oxidative stress, inflammation and injury. Intraluminal pro-oxidants from ingested nutrients especially iron salts and ascorbic acid frequently consumed together, can lead to catalytic formation of oxygen-derived free radicals that ultimately overwhelm the cellular antioxidant defense and lead to cell damage. HYPOTHESIS Since the mechanisms remain sketchy, efforts have been exerted to evaluate the role of epigenetics in modulating components of endogenous enzymatic antioxidants in the intestine. To this end, Caco-2/15 cells were exposed to the iron-ascorbate oxygen radical-generating system. RESULTS Fe/Asc induced a significant increase in lipid peroxidation as reflected by the elevated formation of malondialdehyde along with the alteration of antioxidant defense as evidenced by raised superoxide dismutase 2 (SOD2) and diminished glutathione peroxidase (GPx) activities and genes. Consequently, there was an up-regulation of inflammatory processes illustrated by the activation of NF-κB transcription factor, the higher production of interleukin-6 and cycloxygenase-2 as well as the decrease of IκB. Assessment of promoter's methylation revealed decreased levels for SOD2 and increased degree for GPx2. On the other hand, pre-incubation of Caco-2/15 cells with 5-Aza-2'-deoxycytidine, a demethylating agent, or Trolox antioxidant normalized the activities of SOD2 and GPx, reduced lipid peroxidation and prevented inflammation. CONCLUSION Redox and inflammatory modifications in response to Fe/Asc -mediated lipid peroxidation may implicate epigenetic methylation.
Collapse
Affiliation(s)
- Sabrina Yara
- Department of Nutrition, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Claude Lavoie
- Department of Pediatrics, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-François Beaulieu
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Edgard Delvin
- Department of Biochemistry, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Devendra Amre
- Department of Pediatrics, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Valerie Marcil
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada
| | - Ernest Seidman
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Institute, McGill University, Campus MGH, C10.148.6, Montreal, Quebec, Canada
| | - Emile Levy
- Department of Nutrition, Research Centre, CHU-Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
- Canadian Institutes for Health Research Team on the Digestive Epithelium, Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
28
|
Brown DR. Gene regulation as a potential avenue for the treatment of neurodegenerative disorders. Expert Opin Drug Discov 2013; 4:515-24. [PMID: 23485084 DOI: 10.1517/17460440902849237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND As more people live to an older age, the frequency of diseases associated with longer life begins to increase. Neurodegenerative disorders are the worst of these in that there is now no treatment that offers any real improvement. For this reason, any new avenue of research that could lead to a treatment needs to be rigorously pursued. In many cases, neurodegenerative diseases are associated with the expression of a protein with an altered conformation or that generates a breakdown product associated with the cause. Clearly, the prevention of this process is a key therapeutic target. OBJECTIVE In this review, the potential for regulating gene expression to prevent or reverse neurodegenerative disease is explored. CONCLUSIONS Whereas much research has been directed at the proteins associated with neurodegeneration, understanding what controls their expression presents a new way this issue could be studied.
Collapse
Affiliation(s)
- David R Brown
- University of Bath, Department of Biology and Biochemistry, Bath, BA2 7AY, UK +44 1225 383133 ; +44 1225 386779 ;
| |
Collapse
|
29
|
Radhakrishnan P, Bryant VC, Blowers EC, Rajule RN, Gautam N, Anwar MM, Mohr AM, Grandgenett PM, Bunt SK, Arnst JL, Lele SM, Alnouti Y, Hollingsworth MA, Natarajan A. Targeting the NF-κB and mTOR pathways with a quinoxaline urea analog that inhibits IKKβ for pancreas cancer therapy. Clin Cancer Res 2013; 19:2025-35. [PMID: 23444213 DOI: 10.1158/1078-0432.ccr-12-2909] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE The presence of TNF-α in approximately 50% of surgically resected tumors suggests that the canonical NF-κB and the mTOR pathways are activated. Inhibitor of IκB kinase β (IKKβ) acts as the signaling node that regulates transcription via the p-IκBα/NF-κB axis and regulates translation via the mTOR/p-S6K/p-eIF4EBP axis. A kinome screen identified a quinoxaline urea analog 13-197 as an IKKβ inhibitor. We hypothesized that targeting the NF-κB and mTOR pathways with 13-197 will be effective in malignancies driven by these pathways. EXPERIMENTAL DESIGN Retrospective clinical and preclinical studies in pancreas cancers have implicated NF-κB. We examined the effects of 13-197 on the downstream targets of the NF-κB and mTOR pathways in pancreatic cancer cells, pharmacokinetics, toxicity and tumor growth, and metastases in vivo. RESULTS 13-197 inhibited the kinase activity of IKKβ in vitro and TNF-α-mediated NF-κB transcription in cells with low-μmol/L potency. 13-197 inhibited the phosphorylation of IκBα, S6K, and eIF4EBP, induced G1 arrest, and downregulated the expression of antiapoptotic proteins in pancreatic cancer cells. Prolonged administration of 13-197 did not induce granulocytosis and protected mice from lipopolysaccharide (LPS)-induced death. Results also show that 13-197 is orally available with extensive distribution to peripheral tissues and inhibited tumor growth and metastasis in an orthotopic pancreatic cancer model without any detectable toxicity. CONCLUSION These results suggest that 13-197 targets IKKβ and thereby inhibits mTOR and NF-κB pathways. Oral availability along with in vivo efficacy without obvious toxicities makes this quinoxaline urea chemotype a viable cancer therapeutic.
Collapse
Affiliation(s)
- Prakash Radhakrishnan
- Eppley Institute for Cancer Research and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zaidi A, Jelveh S, Mahmood J, Hill RP. Effects of lipopolysaccharide on the response of C57BL/6J mice to whole thorax irradiation. Radiother Oncol 2012; 105:341-9. [PMID: 22985778 DOI: 10.1016/j.radonc.2012.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/28/2012] [Accepted: 08/11/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE Inflammatory and fibrogenic processes play a crucial role in the radiation-induced injury in the lung. The aim of the present study was to examine whether additive LPS exposure in the lung (to simulate respiratory infection) would affect pneumonitis or fibrosis associated with lung irradiation. MATERIAL AND METHODS Wildtype C57Bl/6J (WT-C57) and TNFα, TNFR1 and TNFR2 knockout ((-/-)) mice, in C57Bl/6J background, were given whole thorax irradiation (10 Gy) with or without post-irradiation intratracheal administration of LPS (50μg/mice). Functional deficit was examined by measuring breathing rate at various times after treatment. Real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and immunohistochemistry were used to analyze the protein expression and m-RNA of Interleukin-1 alpha (IL-1α), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumour Necrosis Factor alpha (TNFα) and Transforming Growth Factor beta (TGFβ) in the lung at various times after treatment. Inflammatory cells were detected by Mac-3 (macrophages) and Toluidine Blue (mast cells) staining. Collagen content was estimated by hydroxyproline (total collagen) and Sircol assay (soluble collagen). Levels of oxidative damage were assessed by 8-hydroxy-2-deoxyguanosine (8-OHdG) staining. RESULTS LPS exposure significantly attenuated the breathing rate increases following irradiation of WT-C57, TNFR1(-/-) and TNFR2(-/-)mice and to a lesser extent in TNFα(-/-) mice. Collagen content was significantly reduced after LPS treatment in WT-C57, TNFR1(-/-) and TNFα(-/-) mice and there was a trend in TNFR2(-/-) mice. Similarly there were lower levels of inflammatory cells and cytokines in the LPS treated mice. CONCLUSIONS This study reveals a mitigating effect of early exposure to LPS on injury caused by irradiation on lungs of C57Bl mice. The results suggest that immediate infection post irradiation may not impact lung response negatively in radiation-accident victims, however, further studies are required in different animal models, and with specific infectious agents, to confirm and extend our findings.
Collapse
Affiliation(s)
- Asif Zaidi
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
31
|
Hong A, Han DD, Wright CJ, Burch T, Piper J, Osiowy C, Gao C, Chiang S, Magill T, Dick K, Booth TF, Li X, He R. The interaction between hepatitis B virus X protein and AIB1 oncogene is required for the activation of NFκB signal transduction. Biochem Biophys Res Commun 2012; 423:6-12. [PMID: 22627138 DOI: 10.1016/j.bbrc.2012.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/04/2012] [Indexed: 11/25/2022]
Abstract
We identified the interaction between HBV X (HBx) protein and the oncogene AIB1 (amplified in breast cancer 1). A serine/proline motif (SSPSPS) in HBx was found to be required for the interaction. Two LXD motifs [LLXX(X)L, X means any amino acids], LLRNSL and LLDQLHTLL in AIB1 were also found to be involved in the HBx-AIB1 interaction. The HBx-AIB1 interaction was important for the activation of NFκB signal transduction, the HBx mutant that did not interact with AIB1showed dramatically lower NFκB activation activity than the WT HBx. These findings contribute to the new understanding on signal transduction activation mechanisms of HBx.
Collapse
Affiliation(s)
- Andy Hong
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB,Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Eftekharzadeh B, Ramin M, Khodagholi F, Moradi S, Tabrizian K, Sharif R, Azami K, Beyer C, Sharifzadeh M. Inhibition of PKA attenuates memory deficits induced by β-amyloid (1–42), and decreases oxidative stress and NF-κB transcription factors. Behav Brain Res 2012; 226:301-8. [DOI: 10.1016/j.bbr.2011.08.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 08/02/2011] [Accepted: 08/07/2011] [Indexed: 10/17/2022]
|
33
|
Salim S, Chugh G, Asghar M. Inflammation in Anxiety. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY VOLUME 88 2012; 88:1-25. [DOI: 10.1016/b978-0-12-398314-5.00001-5] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Proteasome Inhibitor Reduces Astrocytic iNOS Expression and Functional Deficit after Experimental Intracerebral Hemorrhage in Rats. Transl Stroke Res 2011; 3:146-53. [PMID: 24323759 DOI: 10.1007/s12975-011-0108-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is associated with perihematoma inflammation and edema. We have recently shown cell death and a robust activation of the proinflammatory transcription factor, nuclear factor-κB (NF-κB) in brain areas adjacent to the hematoma. Proteasome represents a key component necessary for the activation of NF-κB. The aim of our present study was to examine if selective proteasome inhibition with a clinically relevant agent, PS-519, might influence the ICH pathogenesis, and improve functional outcome. ICH was induced in Sprague-Dawley rats by the double blood injection method. PS-519 was administered intravenously 4 h and 15 min after induction of ICH. Behavioral testing was performed 3, 5, and 7 days later. The animals were sacrificed on day 7, and their brains were evaluated for hemorrhage size and inflammation using immunohistochemistry with antibody to various inflammatory markers. Treatment with PS-519 significantly (p < 0.05) reduced behavioral impairment post-ICH as determined by the footfault test. This effect was not due to difference in ICH volume. The improved functional status of PS-519 treated animals correlated positively (p < 0.01) with reduced expression of astroglial iNOS in areas adjacent to the hemorrhage 7 days post-ICH. No delayed changes in expression of OX-42 and ED-1 (microglia/macrophages marker), or vimentin (intermediate filament; marker of astroglia activation) were detected in animals treated with PS-519. This data suggests that modulation of proteasome-activated processes may represent a strategic target for treatment of ICH in humans.
Collapse
|
35
|
Christmann BS, Moran JM, McGraw JA, Buller RML, Corbett JA. Ccr5 regulates inflammatory gene expression in response to encephalomyocarditis virus infection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2941-51. [PMID: 22001348 DOI: 10.1016/j.ajpath.2011.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 12/21/2022]
Abstract
Encephalomyocarditis virus (EMCV) is capable of stimulating inflammatory gene expression by macrophages as a result of interactions between EMCV capsid proteins and cell surface receptors. In this study, biochemical and genetic approaches identified a role for Ccr5, a chemokine receptor, in transducing the signals of EMCV infection that result in the expression of inflammatory genes in macrophages. Antibody neutralization and gene knockout strategies were used to show that the presence of Ccr5 is required for EMCV-stimulated mitogen-activated protein (MAP) kinase and nuclear factor-kappa B (NF-κB) activation, and the subsequent expression of the inflammatory gene-inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). Ccr5 appears to participate in the early control of virus replication: EMCV mRNA accumulates to sevenfold higher levels in Ccr5-deficient mice when compared to wild-type controls. These findings support a regulatory role for Ccr5 in the antiviral response to EMCV in which this chemokine receptor participates in regulation of inflammatory gene expression in response to virus infection.
Collapse
Affiliation(s)
- Benjamin S Christmann
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
36
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
37
|
Analysis of the effects of iron and vitamin C co-supplementation on oxidative damage, antioxidant response and inflammation in THP-1 macrophages. Clin Biochem 2011; 44:873-83. [PMID: 21549690 DOI: 10.1016/j.clinbiochem.2011.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/23/2011] [Accepted: 04/14/2011] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The aims of the study were to test the susceptibility of THP-1 macrophages to develop oxidative stress and to deploy antioxidant defense mechanisms that insure the balance between the pro- and antioxidant molecules. DESIGN AND METHODS Differentiated THP-1 were incubated in the presence or absence of iron-ascorbate (Fe/As) (100/1000μM) and the antioxidants Trolox, BHT, α-Tocopherol and NAC. RESULTS Fe/As promoted the production of lipid peroxidation as reflected by the formation of malondialdehyde and H(2)O(2) along with reduced PUFA levels and elevated glutathione disulfide/total glutathione ratio, a reliable index of cellular redox status. THP-1 macrophages developed an increase in cytoplasmic SOD activity due in part to high cytoplasmic SOD1. On the other hand, a decline was noted in mRNA and protein of extra-cellular SOD3, as well as the activity of GSH-peroxidase, GSH-transferase and ATOX-1 expression. CONCLUSIONS Macrophages activated under conditions of oxidative stress do not adequately deploy a powerful endogenous antioxidant response, a situation that can lead to an enhanced inflammatory response.
Collapse
|
38
|
Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res 2010; 68:261-75. [PMID: 20804792 DOI: 10.1016/j.neures.2010.08.007] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 01/12/2023]
Abstract
Anxiety disorders, depression, and alcohol use disorder are common neuropsychiatric diseases that often occur together. Oxidative stress has been suggested to contribute to their etiology. Oxidative stress is a consequence of either increased generation of reactive oxygen species or impaired enzymatic or non-enzymatic defense against it. When excessive it leads to damage of all major classes of macromolecules, and therefore affects several fundamentally important cellular functions. Consequences that are especially detrimental to the proper functioning of the brain include mitochondrial dysfunction, altered neuronal signaling, and inhibition of neurogenesis. Each of these can further contribute to increased oxidative stress, leading to additional burden to the brain. In this review, we will provide an overview of recent work on oxidative stress markers in human patients with anxiety, depressive, or alcohol use disorders, and in relevant animal models. In addition, putative oxidative stress-related mechanisms important for neuropsychiatric diseases are discussed. Despite the considerable interest this field has obtained, the detailed mechanisms that link oxidative stress to the pathogenesis of neuropsychiatric diseases remain largely unknown. Since this pathway may be amenable to pharmacological intervention, further studies are warranted.
Collapse
Affiliation(s)
- Iiris Hovatta
- Research Program of Molecular Neurology, Faculty of Medicine, University of Helsinki, Finland.
| | | | | |
Collapse
|
39
|
Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers (Basel) 2010; 2:859-84. [PMID: 24281098 PMCID: PMC3835109 DOI: 10.3390/cancers2020859] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/12/2010] [Accepted: 05/06/2010] [Indexed: 12/11/2022] Open
Abstract
The term ‘‘oxidative stress” refers to a cell’s state characterized by excessive production of reactive oxygen species (ROS) and oxidative stress is one of the most important regulatory mechanisms for stem, cancer, and cancer stem cells. The concept of cancer stem cells arose from observations of similarities between the self-renewal mechanism of stem cells and that of cancer stem cells, but compared to normal stem cells, they are believed to have no control over the cell number. ROS have been implicated in diverse processes in various cancers, and generally the increase of ROS in cancer cells is known to play an important role in the initiation and progression of cancer. Additionally, ROS have been considered as the most significant mutagens in stem cells; when elevated, blocking self-renewal and at the same time, serving as a signal stimulating stem cell differentiation. Several signaling pathways enhanced by oxidative stress are suggested to have important roles in tumorigenesis of cancer or cancer stem cells and the self-renewal ability of stem or cancer stem cells. It is now well established that mitochondria play a prominent role in apoptosis and increasing evidence supports that apoptosis and autophagy are physiological phenomena closely linked with oxidative stress. This review elucidates the effect and the mechanism of the oxidative stress on the regulation of stem, cancer, and cancer stem cells and focuses on the cell signaling cascades stimulated by oxidative stress and their mechanism in cancer stem cell formation, as very little is known about the redox status in cancer stem cells. Moreover, we explain the link between ROS and both of apoptosis and autophagy and the impact on cancer development and treatment. Better understanding of this intricate link may shed light on mechanisms that lead to better modes of cancer treatment.
Collapse
|
40
|
Rohrer J, Wuertz BRK, Ondrey F. Cigarette smoke condensate induces nuclear factor kappa-b activity and proangiogenic growth factors in aerodigestive cells. Laryngoscope 2010; 120:1609-13. [DOI: 10.1002/lary.20972] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Makino H, Shimada H, Morioka D, Kunisaki C, Morita T, Matsuyama R, Kubota T, Shimizu D, Ichikawa Y, Tanaka K, Matsuo K, Togo S, Endo I, Nagashima Y, Okazaki Y, Hayashizaki Y. Analysis of gene expression profiles in fatal hepatic failure after hepatectomy in mice. J Surg Res 2010; 169:36-43. [PMID: 20444472 DOI: 10.1016/j.jss.2009.11.722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/17/2009] [Accepted: 11/19/2009] [Indexed: 11/29/2022]
Abstract
BACKGROUND We developed 90%-hepatectomized mice that were the fatal model, and analyzed the gene expression profiles using a complementary DNA (cDNA) microarray to clarify the mechanisms of hepatic failure after excessive hepatectomy. MATERIALS AND METHODS Ribonucleic acid (RNA)s from the remnant hepatic tissue of 70%- and 90%-hepatectomized mice were labeled with fluorescent dyes, and hybridized to the Riken set of 39,168 full-length enriched mouse cDNA arrays. The gene expression profiles in 90%- and 70%-hepatectomized mice were analyzed by scanning date for fluorescent dye signals. RESULTS The down-regulated genes in 90%-hepatectomized mice were genes activating extracellular matrix (ECM) remodeling (matrix metalloproteinases, laminins, and integrins), genes related to cytokines (tumor necrosis factor α converting enzyme, and Janus kinase 3) that were related to the priming, genes related to growth factor (heparin-binding epidermal growth factor-like growth factor and others), and genes promoting cell cycle progression (cyclin D1, D2, and E2) that were related to the progression of hepatocytes. The up-regulated genes were genes inhibiting ECM remodeling [plasminogen activator inhibitors (PAIs)]. CONCLUSIONS Hepatic failure after hepatectomy was characterized by the inhibition of hepatic cell cycle priming and progression both induced by ECM remodeling in liver regeneration. Particularly, the overexpression of PAIs was thought to play the major role in the first step of inhibition of ECM remodeling.
Collapse
Affiliation(s)
- Hirochika Makino
- Department of Gastroenterological Surgery, Yokohama City University School Graduate of Medicine, Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Freudenburg W, Moran JM, Lents NH, Baldassare JJ, Buller RML, Corbett JA. Phosphatidylinositol 3-kinase regulates macrophage responses to double-stranded RNA and encephalomyocarditis virus. J Innate Immun 2009; 2:77-86. [PMID: 20375625 DOI: 10.1159/000243785] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 08/07/2009] [Indexed: 12/19/2022] Open
Abstract
Virus infection of macrophages stimulates the expression of proinflammatory and antiviral genes interleukin-1 (IL-1), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In this study, we show that phosphatidylinositol 3-kinase (PI3K) is required for the inflammatory response of macrophages to virus infection. When macrophages are infected with encephalomyocarditis virus (EMCV) there is a rapid and transient activation of PI3K and phosphorylation of its downstream target Akt. Inhibitors of PI3K attenuate EMCV- and double-stranded RNA-induced iNOS, COX-2 and IL-1 beta expression in RAW264.7 cells and mouse peritoneal macrophages. The attenuation of inflammatory gene expression in response to PI3K inhibition correlates with the induction of macrophage apoptosis. The morphology of macrophages shifts from activation in response to EMCV infection to apoptosis in the cells treated with PI3K inhibitors and EMCV. These morphological changes are accompanied by the activation of caspase-3. These findings suggest that PI3K plays a central role in the regulation of macrophage responses to EMCV infection. When PI3K is activated, it participates in the regulation of inflammatory gene expression; however, if PI3K is inhibited macrophages are unable to mount an inflammatory antiviral response and die by apoptosis.
Collapse
Affiliation(s)
- Wieke Freudenburg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
43
|
Kim YE, Park JA, Nam KH, Kwon HJ, Lee Y. Pyrrolidine dithiocarbamate-induced activation of ERK and increased expression of c-Fos in mouse embryonic stem cells. BMB Rep 2009; 42:148-53. [PMID: 19336001 DOI: 10.5483/bmbrep.2009.42.3.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC) is a stable anti-oxidant or pro-oxidant, depending on the situation, and it is widely used to inhibit the activation of NF-kappaB. We recently reported that PDTC activates the MIP-2 gene in a NF-kappaB-independent and c-Jun-dependent manner in macrophage cells. In this work, we found that PDTC activates signal transduction pathways in mouse ES cells. Among the three different mitogen-activated protein kinase (MAPK) pathways, including the extracellular-signal-regulated kinase (ERK), p38 MAP kinase, and stress-activated protein kinase (SAPK)/Jun N-terminal kinase (JNK) pathways, only the ERK pathway was significantly activated in mouse ES cells after stimulation with PDTC. Additionally, we observed a synergistic activation of ERK and induction of c-Fos after stimulation with PDTC in the presence of mouse embryonic fibroblast (MEF) conditioned medium. In contrast, another NF-kappaB inhibitor, BMS-345541, did not activate the MAP kinase pathways or induce expression of c-Fos. These results suggest that changes in the presence of the NF-kappaB inhibitor PDTC should be carefully considered when it used with mouse ES cells.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | | | |
Collapse
|
44
|
Kim YE, Kang HB, Park JA, Nam KH, Kwon HJ, Lee Y. Upregulation of NF-kappaB upon differentiation of mouse embryonic stem cells. BMB Rep 2009; 41:705-9. [PMID: 18959816 DOI: 10.5483/bmbrep.2008.41.10.705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NF-kappaB is a transcriptional regulator involved in many biological processes including proliferation, survival, and differentiation. Recently, we reported that expression and activity of NF-kappaB is comparatively low in undifferentiated human embryonic stem (ES) cells, but increases during differentiation. Here, we found a lower expression of NF-kappaB p65 protein in mouse ES cells when compared with mouse embryonic fibroblast cells. Protein levels of NF-kappaB p65 and relB were clearly enhanced during retinoic acid-induced differentiation. Furthermore, increased DNA binding activity of NF-kappaB in response to TNF-alpha, an agonist of NF-kappaB signaling, was seen in differentiated but not undifferentiated mouse ES cells. Taken together with our previous data in human ES cells, it is likely that NF-kappaB expression and activity of the NF-kappaB signaling pathway is comparatively low in undifferentiated ES cells, but increases during differentiation of ES cells in general.
Collapse
Affiliation(s)
- Young-Eun Kim
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | |
Collapse
|
45
|
Ch'en IL, Beisner DR, Degterev A, Lynch C, Yuan J, Hoffmann A, Hedrick SM. Antigen-mediated T cell expansion regulated by parallel pathways of death. Proc Natl Acad Sci U S A 2008; 105:17463-8. [PMID: 18981423 PMCID: PMC2582294 DOI: 10.1073/pnas.0808043105] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Indexed: 02/07/2023] Open
Abstract
T cells enigmatically require caspase-8, an inducer of apoptosis, for antigen-driven expansion and effective antiviral responses, and yet the pathways responsible for this effect have been elusive. A defect in caspase-8 expression does not affect progression through the cell cycle but causes an abnormally high rate of cell death that is distinct from apoptosis and does not involve a loss of NFkappaB activation. Instead, antigen or mitogen activated Casp8-deficient T cells exhibit an alternative type of cell death similar to programmed necrosis that depends on receptor interacting protein (Ripk1). The selective genetic ablation of caspase-8, NFkappaB, and Ripk1, reveals two forms of cell death that can regulate virus-specific T cell expansion.
Collapse
Affiliation(s)
- Irene L. Ch'en
- Division of Biological Sciences and Department of Cellular and Molecular Medicine and
| | - Daniel R. Beisner
- Division of Biological Sciences and Department of Cellular and Molecular Medicine and
| | - Alexei Degterev
- Department of Biochemistry, Tufts University Medical School, 136 Harrison Avenue, Stearns 703, Boston, MA 02111; and
| | - Candace Lynch
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093
| | - Stephen M. Hedrick
- Division of Biological Sciences and Department of Cellular and Molecular Medicine and
| |
Collapse
|
46
|
Canellada A, Alvarez I, Berod L, Gentile T. Estrogen and progesterone regulate the IL-6 signal transduction pathway in antibody secreting cells. J Steroid Biochem Mol Biol 2008; 111:255-61. [PMID: 18619543 DOI: 10.1016/j.jsbmb.2008.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 05/27/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
Regulation of the immune response is necessary to allow successful pregnancy. Asymmetric IgG antibodies are involved in fetal maintenance. We have previously demonstrated that estrogen (E2) and progesterone (P4) modulate the synthesis of asymmetric antibodies but the underlying mechanisms remain unclear. Since IL-6 and a progesterone-induced blocking factor (PIBF) were shown to regulate asymmetric antibody synthesis, in this work we analyzed whether E2 and P4 were able to modulate IL-6 signal transduction pathways and the ability of P4 to induce PIBF synthesis, in hybridoma B cells was also evaluated. We found that the IL-6 treatment induced an increase in the expression of gp130 and JAK1 by the hybridoma. E2 and P4 diminished the IL-6-induced gp130 expression in a dose-dependent manner, whereas the expression of JAK1 was not significantly affected. At 10(-6)M concentration, the steroids inhibited the phosphorylation of gp130 and diminished the IL-6-induced STAT3 phosphorylation and translocation to the nucleus. Maximal PIBF expression was observed when the hybridoma was cultured with 10(-10)M P4, compared to the control (p<0.05). Results demonstrate two molecular mechanisms, the modulation of the IL-6R signal transduction pathway and PIBF induction, which could be involved in the immunoregulatory role of sexual steroids during pregnancy.
Collapse
Affiliation(s)
- Andrea Canellada
- Instituto de Estudios de la Inmunidad Humoral Profesor Ricardo A. Margni (IDEHU), Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad de Buenos Aires, Junín 956, 4to piso (1113), Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
47
|
Abstract
OBJECTIVES/HYPOTHESIS It is well known that invasion is a seminal event in the progression of oral and other head and neck carcinoma sites. We have previously demonstrated tumor necrosis factor (TNF)-alpha and its dependent cytokines are upregulated in saliva during oral carcinogenesis. TNF-dependent events stimulate nuclear factor (NF)-kappaB and many NF-kappaB-dependent genes are associated with cancer progression. MATERIALS AND METHODS In the present study, we examined NF-kappaB stimulation of matrix metalloproteinase (MMP)-9 in a precancerous keratinocyte cell line that models leukoplakia (Rhek cells). We stimulated Rhek cells with both TNF-alpha and phorbol myristate acetate, known stimulants of NF-kappaB. We then assayed MMP-9 transcription and secretion by luciferase reporter genes, quantitative real-time polymerase chain reaction, and fluorometric enzyme-linked immunosorbent serologic assay. RESULTS We discovered that the MMP-9 promoter was significantly stimulated by phorbol myristate acetate and TNF-alpha on luciferase reporter gene assays. Further, we uncovered that functional MMP-9 promoter activation was accompanied by significant increases in MMP-9 gene expression, as judged by quantitative real-time polymerase chain reaction. Functional activation of the MMP-9 protein was stimulated by TNF-alpha and PMA on a fluorescent enzyme-linked immunosorbent serologic assay. Finally, we searched our salivary proteomic database for increases in MMP-9 and discovered it was the third most significant protein in salivas of oral cavity cancer patients over normal controls. CONCLUSIONS We conclude the milieu cytokine, TNF-alpha, has the capacity to provide stimulation of events related to early invasion of oral cavity cancer, as judged by its ability to stimulate MMP-9.
Collapse
|
48
|
Prolonged classical NF-kappaB activation prevents autophagy upon E. coli stimulation in vitro: a potential resolving mechanism of inflammation. Mediators Inflamm 2008; 2008:725854. [PMID: 18566685 PMCID: PMC2430012 DOI: 10.1155/2008/725854] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 02/15/2008] [Indexed: 12/19/2022] Open
Abstract
Activation of NF-kappaB is known to prevent apoptosis but may also act as proapoptotic factor in order to eliminate inflammatory cells. Here, we show that classical NF-kappaB activation in RAW 264.7 and bone marrow-derived macrophages upon short E. coli coculture is necessary to promote cell death at late time points. At 48 hours subsequent to short-term, E. coli challenge increased survival of NF-kappaB-suppressed macrophages was associated with pattern of autophagy whereas macrophages with normal NF-kappaB signalling die. Cell death of normal macrophages was indicated by preceding downregulation of autophagy associated genes atg5 and beclin1. Restimulation of macrophages with LPS at 48 hours after E. coli treatment results in augmented proinflammatory cytokine production in NF-kappaB-suppressed macrophages compared to control cells. We thus demonstrate that classical NF-kappaB activation inhibits autophagy and promotes delayed programmed cell death. This mechanism is likely to prevent the recovery of inflammatory cells and thus contributes to the resolution of inflammation.
Collapse
|
49
|
Cook N, Harris A, Hopkins A, Hughes K. Scintillation proximity assay (SPA) technology to study biomolecular interactions. ACTA ACUST UNITED AC 2008; Chapter 19:Unit 19.8. [PMID: 18429228 DOI: 10.1002/0471140864.ps1908s27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Scintillation proximity assay (SPA) is a versatile homogeneous technique for radioactive assays which eliminates the need for separation steps. In SPA, scintillant is incorporated into small fluomicrospheres. These microspheres or "beads" are constructed in such a way as to bind specific molecules. If a radioactive molecule is bound to the bead, it is brought into close enough proximity that it can stimulate the scintillant contained within to emit light. Otherwise, the unbound radioactivity is too distant, the energy released is dissipated before reaching the bead, and these disintegrations are not detected. In this unit, the application of SPA technology to measuring protein-protein interactions, Src Homology 2 (SH2) and 3 (SH3) domain binding to specific peptide sequences, and receptor-ligand interactions are described. Three other protocols discuss the application of SPA technology to cell-adhesion-molecule interactions, protein-DNA interactions, and radioimmunoassays. In addition, protocols are given for preparation of SK-N-MC cells and cell membranes.
Collapse
Affiliation(s)
- Neil Cook
- Amersham Biosciences Ltd., Cardiff, United Kingdom
| | | | | | | |
Collapse
|
50
|
Young CN, Koepke JI, Terlecky LJ, Borkin MS, Boyd SL, Terlecky SR. Reactive oxygen species in tumor necrosis factor-alpha-activated primary human keratinocytes: implications for psoriasis and inflammatory skin disease. J Invest Dermatol 2008; 128:2606-2614. [PMID: 18463678 DOI: 10.1038/jid.2008.122] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The multifunctional cytokine tumor necrosis factor-alpha (TNF-alpha) is known to play an important role in inflammatory and immunological responses in human skin. Although it has been documented that reactive oxygen species (ROS) are involved in TNF-alpha-induced signaling pathways associated with certain inflammatory diseases, their role in TNF-alpha signaling cascades has not been examined in primary human keratinocytes used as a model of inflammatory skin disease and psoriasis. Employing a series of in vitro and in cellulo approaches, we have demonstrated that in primary human keratinocytes (i) TNF-alpha rapidly induces ROS generation, IkappaB degradation, NF-kappaB p65 nuclear translocation, and ultimately production of inflammatory cytokines; (ii) TNF-alpha-induced cytokine production is mediated both by the mammalian target of rapamycin signaling pathway via NF-kappaB activation and by ROS; (iii) TNF-alpha-dependent NF-kappaB activation (that is, IkappaB degradation and NF-kappaB p65 nuclear translocation) is not mediated by ROS; and (iv) a cell-penetrating derivative of the antioxidant enzyme, catalase, as well as taurine and N-acetyl-cysteine attenuate the TNF-alpha-induced production of cytokines. These latter results suggest that catalase and perhaps other antioxidants should be considered as part of a more specific and effective therapy for the treatment of inflammatory skin diseases, including psoriasis.
Collapse
Affiliation(s)
- Chen N Young
- Department of Dermatology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jay I Koepke
- EXT Life Sciences Inc., TechOne Building, Detroit, Michigan, USA
| | - Laura J Terlecky
- EXT Life Sciences Inc., TechOne Building, Detroit, Michigan, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Michael S Borkin
- Department of Dermatology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Savoy L Boyd
- Department of Dermatology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Stanley R Terlecky
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|