1
|
Luo J, Qin K, He RQ, Li JD, Huang ZG, Yin BT, Wu T, Chen YZ, Qin DY, Luo JY, Wu M, Chi BT, Chen G, Li JJ, Huang YB. ACTR10 Overexpression Facilitates the Progression and Tyrosine Kinase Inhibitor Resistance in Hepatocellular Carcinoma. World J Oncol 2024; 15:882-901. [PMID: 39697424 PMCID: PMC11650614 DOI: 10.14740/wjon1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Background In the present day, hepatocellular carcinoma (HCC) remains a formidable threat to human health. Actin-related protein 10 (ACTR10) is related to tyrosine kinase inhibitor (TKI) resistance. A comprehensive analysis of ACTR10 in HCC will further our understanding of the molecular mechanisms underlying this resistance phenomenon, shedding light on potential therapeutic strategies for combating TKI resistance in HCC. Methods We conducted an integration of high-throughput datasets across various centers, analyzing ACTR10 expression using the Cancer Cell Line Encyclopedia (CCLE) and assessing its implications through clustered regularly interspaced short palindromic repeats (CRISPR) knockout screen. Pathogenic mechanisms were elucidated through enrichment analysis. Prognostic assessment utilized Kaplan-Meier survival and univariate Cox analyses. An integrated analysis of gene expression profiles related to TKI in HCC was conducted, and TKI resistance mechanisms were explored through enrichment analysis. Potential therapeutic drugs were identified using the Drug Gene Budger database and molecular docking techniques. Results The standardized mean difference (SMD) of 0.34 (95% confidence interval (CI): 0.22 - 0.45, P < 0.05) and ACTR10-dependent growth in HCC cells confirm its upregulation in HCC. The area under the summary receiver operating characteristic (sROC) curve was 0.69, indicating moderate discriminative ability of ACTR10 in HCC patients. ACTR10 exerts its pro-cancer effect by influencing RNA splicing, mRNA processing and nucleocytoplasmic transport. A hazard ratio of 2.19 (95% CI: 1.56 - 3.08, P < 0.05) identifies ACTR10 as an independent prognostic risk factor. Additionally, the SMD of 0.88 (95% CI: 0.01 - 0.76, P < 0.05) validates ACTR10 as a TKI-resistance gene, mediating resistance via enhanced exocytosis, autophagy, and apoptosis in HCC patients. Trichostatin A emerges as a prospective targeted agent for HCC. Conclusion The upregulation of ACTR10 accelerates HCC progression, promotes TKI resistance, and emerges as a prospective target for the treatment of HCC.
Collapse
Affiliation(s)
- Jie Luo
- Department of Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
- These authors contributed equally to this work
| | - Kai Qin
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
- These authors contributed equally to this work
| | - Rong Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jian Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Zhi Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Bin Tong Yin
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Tong Wu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yu Zhen Chen
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Di Yuan Qin
- Department of Computer Science and Technology, School of Computer and Electronic Information, Guangxi University, Nanning 530004, Guangxi, China
| | - Jia Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Mei Wu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Bang Teng Chi
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Jian Jun Li
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Yu Bin Huang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| |
Collapse
|
2
|
Cheng S, Zhang J, Zhang Y, Wang H, Wang H. In Situ Synthesis and Visualization of Membrane SNAP25 Nano-Organization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20977-20985. [PMID: 39330215 DOI: 10.1021/acs.langmuir.4c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Cryo-electron tomography (cryo-ET) can provide insights into the structure and states of natural membrane environments to explore the role of SNARE proteins at membrane fusion and understand the relationship between their subcellular localization/formation and action mechanism. Nevertheless, the identification of individual molecules in crowded and low signal-to-noise ratio membrane environments remains a significant challenge. In this study, cryo-ET is employed to image near-physiological state 293T cell membranes, specifically utilizing in situ synthesized gold nanoparticles (AuNPs) bound with cysteine-rich protein tags to single-molecularly labeled synaptosomal-associated protein 25 (SNAP25) on the membrane surface. The high-resolution images reveal that SNAP25 is predominantly located in regions of high molecular density within the cell membrane and aggregates into smaller clusters, which may increase the fusion efficiency. Remarkably, a zigzag arrangement of SNAP25 is observed on the cell membrane. These findings provide valuable insights into the functional mechanisms of SNARE proteins.
Collapse
Affiliation(s)
- Sihang Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Yaxuan Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
3
|
Yuan J, Zhang X, Gao Y, Zhang X, Liu C, Xiang J, Li F. Adaptation and molecular evidence for convergence in decapod crustaceans from deep‐sea hydrothermal vent environments. Mol Ecol 2020; 29:3954-3969. [DOI: 10.1111/mec.15610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Jianbo Yuan
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Xiaojun Zhang
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Yi Gao
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Xiaoxi Zhang
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
| | - Chengzhang Liu
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Jianhai Xiang
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| | - Fuhua Li
- CAS Key Laboratory of Experimental Marine Biology Institute of OceanologyChinese Academy of Sciences Qingdao China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao China
- Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China
| |
Collapse
|
4
|
Sun W, Tian BX, Wang SH, Liu PJ, Wang YC. The function of SEC22B and its role in human diseases. Cytoskeleton (Hoboken) 2020; 77:303-312. [PMID: 32748571 DOI: 10.1002/cm.21628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 01/04/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are a large protein complex that is involved in the membrane fusion in vesicle trafficking, cell growth, cytokinesis, membrane repair, and synaptic transmission. As one of the SNARE proteins, SEC22B functions in membrane fusion of vesicle trafficking between the endoplasmic reticulum and the Golgi apparatus, antigen cross-presentation, secretory autophagy, and other biological processes. However, apart from not being SNARE proteins, there is little knowledge known about its two homologs (SEC22A and SEC22C). SEC22B alterations have been reported in many human diseases, especially, many mutations of SEC22B in human cancers have been detected. In this review, we will introduce the specific functions of SEC22B, and summarize the researches about SEC22B in human cancers and other diseases. These findings have laid the foundation for further studies to clarify the exact mechanism of SEC22B in the pathological process and to seek new therapeutic targets and better treatment strategies.
Collapse
Affiliation(s)
- Wei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Bi-Xia Tian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Shu-Hong Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pei-Jun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| | - Yao-Chun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Jiang Z, Wang T, Sun Y, Nong Y, Tang L, Gu T, Wang S, Li Z. Application of Pb(II) to probe the physiological responses of fungal intracellular vesicles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110441. [PMID: 32155484 DOI: 10.1016/j.ecoenv.2020.110441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/17/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Vesicles (Ves) within fungal cells are the critical linkage between intracellular and extracellular systems. This study explored the application of Pb2+ to probe the physiology of intracellular Ves in Rhodotorula mucilaginosa (Rho). At low Pb2+ levels (0-500 mg/L), there was no evident change in the content of extracellular polymeric substances (EPS) or microbial activity. At medium-high levels (1000-2000 mg/L), the sizes of Ves within the Rho cells were significantly enlarged, with abundant lead nano-particles (Pb NPs) formed either on the cell surface or interior, whereas the EPS content and bioactivity were still stable. At a high level (2500 mg/L), the Rho cells were severely deformed, with cell counts reduced by more than 99%. However, the EPS contents and the respiration rate of the surviving cells dramatically increased to the maximum values (i.e., 1785 mg/1010 cells and 37 mg C 10-10 cells h-1, respectively). The Ves surface adsorbed Pb cations with higher density, compared with the cell membrane. Moreover, fusion of some Ves to the membrane (functioning in transport) was observed under transmission electron microscope (TEM). Three pathways of detoxification via intracellular Ves were finally proposed, i.e., Ve-mediated transport (from intracellular to extracellular) of EPS components, absorption of Pb NPs on the Ve surface, and accumulation of Pb NPs within Ves. This study sheds light on the possibility of exploring microbial physiology via Pb2+ cations.
Collapse
Affiliation(s)
- Zhongquan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tong Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yalin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ying Nong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tingting Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Shimei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Harno E, Gali Ramamoorthy T, Coll AP, White A. POMC: The Physiological Power of Hormone Processing. Physiol Rev 2019; 98:2381-2430. [PMID: 30156493 DOI: 10.1152/physrev.00024.2017] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon.
Collapse
Affiliation(s)
- Erika Harno
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Thanuja Gali Ramamoorthy
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anthony P Coll
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| | - Anne White
- Division of Diabetes, Endocrinology and Gastrointestinal Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester , United Kingdom ; and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science , Cambridge , United Kingdom
| |
Collapse
|
7
|
Naslavsky N, Caplan S. The enigmatic endosome - sorting the ins and outs of endocytic trafficking. J Cell Sci 2018; 131:131/13/jcs216499. [PMID: 29980602 DOI: 10.1242/jcs.216499] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The early endosome (EE), also known as the sorting endosome (SE) is a crucial station for the sorting of cargoes, such as receptors and lipids, through the endocytic pathways. The term endosome relates to the receptacle-like nature of this organelle, to which endocytosed cargoes are funneled upon internalization from the plasma membrane. Having been delivered by the fusion of internalized vesicles with the EE or SE, cargo molecules are then sorted to a variety of endocytic pathways, including the endo-lysosomal pathway for degradation, direct or rapid recycling to the plasma membrane, and to a slower recycling pathway that involves a specialized form of endosome known as a recycling endosome (RE), often localized to the perinuclear endocytic recycling compartment (ERC). It is striking that 'the endosome', which plays such essential cellular roles, has managed to avoid a precise description, and its characteristics remain ambiguous and heterogeneous. Moreover, despite the rapid advances in scientific methodologies, including breakthroughs in light microscopy, overall, the endosome remains poorly defined. This Review will attempt to collate key characteristics of the different types of endosomes and provide a platform for discussion of this unique and fascinating collection of organelles. Moreover, under-developed, poorly understood and important open questions will be discussed.
Collapse
Affiliation(s)
- Naava Naslavsky
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Steve Caplan
- The Department of Biochemistry and Molecular Biology, The University of Nebraska Medical Center, Omaha, NE 68198, USA .,The Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Jia L, Chopp M, Wang L, Lu X, Szalad A, Zhang ZG. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy. FASEB J 2018; 32:fj201800597R. [PMID: 29932869 PMCID: PMC6219828 DOI: 10.1096/fj.201800597r] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Schwann cells actively interact with axons of dorsal root ganglia (DRG) neurons. Exosomes mediate intercellular communication by transferring their biomaterials, including microRNAs (miRs) into recipient cells. We hypothesized that exosomes derived from Schwann cells stimulated by high glucose (HG) exosomes accelerate development of diabetic peripheral neuropathy and that exosomal cargo miRs contribute to this process. We found that HG exosomes contained high levels of miR-28, -31a, and -130a compared to exosomes derived from non-HG-stimulated Schwann cells. In vitro, treatment of distal axons with HG exosomes resulted in reduction of axonal growth, which was associated with elevation of miR-28, -31a, and -130a and reduction of their target proteins of DNA methyltransferase-3α, NUMB (an endocytic adaptor protein), synaptosome associated protein 25, and growth-associated protein-43 in axons. In vivo, administration of HG exosomes to sciatic nerves of diabetic db/db mice at 7 wk of age promoted occurrence of peripheral neuropathy characterized by impairment of nerve conduction velocity and induction of mechanic and thermal hypoesthesia, which was associated with substantial decreases in intraepidermal nerve fibers. Our findings demonstrate a functional role of exosomes derived from HG-stimulated Schwann cells in mediating development of diabetic peripheral neuropathy.-Jia, L., Chopp, M., Wang, L., Lu, X., Szalad, A., Zhang, Z. G. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Longfei Jia
- Inovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Lei Wang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Xuerong Lu
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Alexandra Szalad
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA; and
| |
Collapse
|
9
|
Geist J, Ward CW, Kontrogianni-Konstantopoulos A. Structure before function: myosin binding protein-C slow is a structural protein with regulatory properties. FASEB J 2018; 32:fj201800624R. [PMID: 29874125 PMCID: PMC6219831 DOI: 10.1096/fj.201800624r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/14/2018] [Indexed: 01/12/2023]
Abstract
Myosin binding protein-C slow (sMyBP-C) comprises a family of accessory proteins in skeletal muscles that bind both myosin and actin filaments. Herein, we examined the role of sMyBP-C in adult skeletal muscles using in vivo gene transfer and clustered regularly interspaced short palindromic repeats technology to knock down all known sMyBP-C variants. Our findings, confirmed in two different skeletal muscles, demonstrated efficient knockdown (KD) of sMyBP-C (>70%) resulting in notably decreased levels of thick, but not thin, filament proteins ranging from ∼50% for slow and fast myosin to ∼20% for myomesin. Consistent with this, A bands were selectively distorted, and sarcomere length was significantly reduced. Contrary to earlier in vitro studies showing that addition of recombinant sMyBP-C slows down the formation of actomyosin crossbridges, our work demonstrates that KD of sMyBP-C in intact myofibers results in decreased contraction and relaxation kinetics under no-load conditions. Similarly, KD muscles develop markedly reduced twitch and tetanic force and contraction velocity. Taken together, our results show that sMyBP-C is essential for the regular organization and maintenance of myosin filaments into A bands and that its structural role precedes its ability to regulate actomyosin crossbridges.-Geist, J., Ward, C. W., Kontrogianni-Konstantopoulos, A. Structure before function: myosin binding protein-C slow is a structural protein with regulatory properties.
Collapse
Affiliation(s)
- Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher W. Ward
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
10
|
Wang J, Tian L, Zhang DD, Short DPG, Zhou L, Song SS, Liu Y, Wang D, Kong ZQ, Cui WY, Ma XF, Klosterman SJ, Subbarao KV, Chen JY, Dai XF. SNARE-Encoding Genes VdSec22 and VdSso1 Mediate Protein Secretion Required for Full Virulence in Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:651-664. [PMID: 29419372 DOI: 10.1094/mpmi-12-17-0289-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Proteins that mediate cellular and subcellular membrane fusion are key factors in vesicular trafficking in all eukaryotic cells, including the secretion and transport of plant pathogen virulence factors. In this study, we identified vesicle-fusion components that included 22 soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), four Sec1/Munc18 (SM) family proteins, and 10 Rab GTPases encoded in the genome of the vascular wilt pathogen Verticillium dahliae Vd991. Targeted deletion of two SNARE-encoding genes in V. dahliae, VdSec22 and VdSso1, significantly reduced virulence of both mutants on cotton, relative to the wild-type Vd991 strain. Comparative analyses of the secreted protein content (exoproteome) revealed that many enzymes involved in carbohydrate hydrolysis were regulated by VdSec22 or VdSso1. Consistent with a role of these enzymes in plant cell-wall degradation, pectin, cellulose, and xylan utilization were reduced in the VdSec22 or VdSso1 mutant strains along with a loss of exoproteome cytotoxic activity on cotton leaves. Comparisons with a pathogenicity-related exoproteome revealed that several known virulence factors were not regulated by VdSec22 or VdSso1, but some of the proteins regulated by VdSec22 or VdSso1 displayed different characteristics, including the lack of a typical signal peptide, suggesting that V. dahliae employs more than one secretory route to transport proteins to extracellular sites during infection.
Collapse
Affiliation(s)
- Jie Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Tian
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan-Dan Zhang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dylan P G Short
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Lei Zhou
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang-Shuang Song
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Yan Liu
- 3 College of Life Science, Qufu Normal University, Qufu, 273165, Shandong, China; and
| | - Dan Wang
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi-Qiang Kong
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei-Ye Cui
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue-Feng Ma
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- 4 United States Department of Agriculture, Agricultural Research Service, Salinas, CA, U.S.A
| | - Krishna V Subbarao
- 2 Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA, U.S.A
| | - Jie-Yin Chen
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- 1 Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
11
|
Li H, Hu T, Amombo E, Fu J. Transcriptome profilings of two tall fescue (Festuca arundinacea) cultivars in response to lead (Pb) stress. BMC Genomics 2017; 18:145. [PMID: 28183269 PMCID: PMC5301350 DOI: 10.1186/s12864-016-3479-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lead (Pb) is one of the most toxic heavy metal environmental pollutants. Tall fescue is an important cold season turf grass which can tolerate and accumulate substantial amount of Pb. To estimate genes related to Pb response and the molecular mechanism associated with Pb tolerance and accumulation, we analyzed the transcriptome of tall fescue in response to Pb treatment. RESULTS RNA-sequencing was performed in two tall fescue cultivars, Pb tolerant Silverado and Pb sensitive AST7001. A total of 810,146 assembled unique transcripts representing 25,415 unigenes were obtained from the tall fescue leaves. Among the panel, 3,696 differentially expressed genes (DEGs) were detected between the Pb treated (1000 mg/L) and untreated samples. Gene ontology (GO) and pathway enrichment analysis demonstrated that the DEGs were mainly implicated in energy metabolism, metabolism of terpenoids and polyketides, and carbohydrate metabolism related pathways. The expression patterns of 16 randomly selected genes were in consistent with that from the Solexa analysis using quantitative reverse-transcription PCR. In addition, compared to the common transcriptional response to Pb stress in both cultivars, the regulation of numerous genes including those involved in zeatin biosynthesis, limonene and pinene degradation, phagosome was exclusive to one cultivar. CONCLUSIONS The tall fescue assembled transcriptome provided substantial molecular resources for further genomics analysis of turfgrass in response to heavy metal stress. The significant expression difference of specific unigenes may account for Pb tolerance or accumulation in two different tall fescue cultivars. This study provided new insights for the investigation of the molecular basis of Pb tolerance and accumulation in tall fescue as well as other related turf grass species.
Collapse
Affiliation(s)
- Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Lumo street, Wuhan City, Hubei, 430074, People's Republic of China.
| |
Collapse
|
12
|
Beales PA, Ciani B, Cleasby AJ. Nature's lessons in design: nanomachines to scaffold, remodel and shape membrane compartments. Phys Chem Chem Phys 2015; 17:15489-507. [DOI: 10.1039/c5cp00480b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our understanding of the membrane sculpting capabilities of proteins from experimental model systems could be used to construct functional compartmentalised architectures for the engineering of synthetic cells.
Collapse
Affiliation(s)
- Paul A. Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Barbara Ciani
- Centre for Membrane Interaction and Dynamics
- Department of Chemistry
- University of Sheffield
- Sheffield S3 7HF
- UK
| | - Alexa J. Cleasby
- Centre for Membrane Interaction and Dynamics
- Department of Chemistry
- University of Sheffield
- Sheffield S3 7HF
- UK
| |
Collapse
|
13
|
Horling K, Schlegel G, Schulz S, Vierk R, Ullrich K, Santer R, Rune GM. Hippocampal synaptic connectivity in phenylketonuria. Hum Mol Genet 2014; 24:1007-18. [PMID: 25296915 DOI: 10.1093/hmg/ddu515] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In humans, lack of phenylalanine hydroxylase (Pah) activity results in phenylketonuria (PKU), which is associated with the development of severe mental retardation after birth. The underlying mechanisms, however, are poorly understood. Mutations of the Pah gene in Pah(enu2)/c57bl6 mice result in elevated levels of phenylalanine in serum similar to those in humans suffering from PKU. In our study, long-term potentiation (LTP) and paired-pulse facilitation, measured at CA3-CA1 Schaffer collateral synapses, were impaired in acute hippocampal slices of Pah(enu2)/c57bl6 mice. In addition, we found reduced expression of presynaptic proteins, such as synaptophysin and the synaptosomal-associated protein 25 (SNAP-25), and enhanced expression of postsynaptic marker proteins, such as synaptopodin and spinophilin. Stereological counting of spine synapses at the ultrastructural level revealed higher synaptic density in the hippocampus, commencing at 3 weeks and persisting up to 12 weeks after birth. Consistent effects were seen in response to phenylalanine treatment in cultures of dissociated hippocampal neurones. Most importantly, in the hippocampus of Pah(enu2)/c57bl6 mice, we found a significant reduction in microglia activity. Reorganization of hippocampal circuitry after birth, namely synaptic pruning, relies on elimination of weak synapses by activated microglia in response to neuronal activity. Hence, our data strongly suggest that reduced microglial activity in response to impaired synaptic transmission affects physiological postnatal remodelling of synapses in the hippocampus and may trigger the development of mental retardation in PKU patients after birth.
Collapse
Affiliation(s)
- Katja Horling
- Institute of Neuroanatomy, Institute of Anatomy and Experimental Morphology and
| | | | | | | | - Kurt Ullrich
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | |
Collapse
|
14
|
Molecular mechanisms of treadmill therapy on neuromuscular atrophy induced via botulinum toxin A. Neural Plast 2013; 2013:593271. [PMID: 24327926 PMCID: PMC3845528 DOI: 10.1155/2013/593271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 09/13/2013] [Accepted: 10/01/2013] [Indexed: 01/09/2023] Open
Abstract
Botulinum toxin A (BoNT-A) is a bacterial zinc-dependent endopeptidase that acts specifically on neuromuscular junctions. BoNT-A blocks the release of acetylcholine, thereby decreasing the ability of a spastic muscle to generate forceful contraction, which results in a temporal local weakness and the atrophy of targeted muscles. BoNT-A-induced temporal muscle weakness has been used to manage skeletal muscle spasticity, such as poststroke spasticity, cerebral palsy, and cervical dystonia. However, the combined effect of treadmill exercise and BoNT-A treatment is not well understood. We previously demonstrated that for rats, following BoNT-A injection in the gastrocnemius muscle, treadmill running improved the recovery of the sciatic functional index (SFI), muscle contraction strength, and compound muscle action potential (CMAP) amplitude and area. Treadmill training had no influence on gastrocnemius mass that received BoNT-A injection, but it improved the maximal contraction force of the gastrocnemius, and upregulation of GAP-43, IGF-1, Myo-D, Myf-5, myogenin, and acetylcholine receptor (AChR) subunits α and β was found following treadmill training. Taken together, these results suggest that the upregulation of genes associated with neurite and AChR regeneration following treadmill training may contribute to enhanced gastrocnemius strength recovery following BoNT-A injection.
Collapse
|
15
|
Jovic M, Sharma M, Rahajeng J, Caplan S. The early endosome: a busy sorting station for proteins at the crossroads. Histol Histopathol 2010; 25:99-112. [PMID: 19924646 DOI: 10.14670/hh-25.99] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocytosis marks the entry of internalized receptors into the complex network of endocytic trafficking pathways. Endocytic vesicles are rapidly targeted to a distinct membrane-bound endocytic organelle referred to as the early endosome. Despite the existence of numerous internalization routes, early endosomes (EE) serve as a focal point of the endocytic pathway. Sorting events initiated at this compartment determine the subsequent fate of internalized proteins and lipids, destining them either for recycling to the plasma membrane, degradation in lysosomes or delivery to the trans-Golgi network. Sorting of endocytic cargo to the latter compartments is accomplished through the formation of distinct microdomains within early endosomes, through the coordinate recruitment and assembly of the sorting machinery. An elaborate network of interactions between endocytic regulatory proteins ensures synchronized sorting of cargo to microdomains followed by morphological changes at the early endosomal membranes. Consequently, the cargo targeted either for recycling back to the plasma membrane, or for retrograde transport to the trans-Golgi network, localizes to newly-formed tubular membranes. With a high ratio of membrane surface to lumenal volume, these tubules effectively concentrate the recycling cargo, ensuring efficient transport out of the EE. Conversely, receptors sorted for degradation cluster at the flat clathrin lattices involved in invaginations of the limiting membrane, associating with newly formed intralumenal vesicles. In this review we will discuss the characteristics of early endosomes, their role in the regulation of endocytic transport, and their aberrant function in a variety of diseases.
Collapse
Affiliation(s)
- Marko Jovic
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | |
Collapse
|
16
|
Selective interaction of syntaxin 1A with KCNQ2: possible implications for specific modulation of presynaptic activity. PLoS One 2009; 4:e6586. [PMID: 19675672 PMCID: PMC2721677 DOI: 10.1371/journal.pone.0006586] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 06/23/2009] [Indexed: 11/26/2022] Open
Abstract
KCNQ2/KCNQ3 channels are the molecular correlates of the neuronal M-channels, which play a major role in the control of neuronal excitability. Notably, they differ from homomeric KCNQ2 channels in their distribution pattern within neurons, with unique expression of KCNQ2 in axons and nerve terminals. Here, combined reciprocal coimmunoprecipitation and two-electrode voltage clamp analyses in Xenopus oocytes revealed a strong association of syntaxin 1A, a major component of the exocytotic SNARE complex, with KCNQ2 homomeric channels resulting in a ∼2-fold reduction in macroscopic conductance and ∼2-fold slower activation kinetics. Remarkably, the interaction of KCNQ2/Q3 heteromeric channels with syntaxin 1A was significantly weaker and KCNQ3 homomeric channels were practically resistant to syntaxin 1A. Analysis of different KCNQ2 and KCNQ3 chimeras and deletion mutants combined with in-vitro binding analysis pinpointed a crucial C-terminal syntaxin 1A-association domain in KCNQ2. Pull-down and coimmunoprecipitation analyses in hippocampal and cortical synaptosomes demonstrated a physical interaction of brain KCNQ2 with syntaxin 1A, and confocal immunofluorescence microscopy showed high colocalization of KCNQ2 and syntaxin 1A at presynaptic varicosities. The selective interaction of syntaxin 1A with KCNQ2, combined with a numerical simulation of syntaxin 1A's impact in a firing-neuron model, suggest that syntaxin 1A's interaction is targeted at regulating KCNQ2 channels to fine-tune presynaptic transmitter release, without interfering with the function of KCNQ2/3 channels in neuronal firing frequency adaptation.
Collapse
|
17
|
Wang Y, Tai G, Lu L, Johannes L, Hong W, Tang BL. Trans-Golgi network syntaxin 10 functions distinctly from syntaxins 6 and 16. Mol Membr Biol 2009; 22:313-25. [PMID: 16154903 DOI: 10.1080/09687860500143829] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Syntaxin 10 is a soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) protein localized to the trans-Golgi network (TGN), where two other members of the syntaxin family, syntaxins 6 and 16, also reside. The role of syntaxin 10 in regulating TGN protein traffic is not yet defined. Syntaxin 10 co-localizes well with syntaxins 6 and 16 at the TGN in interphase cells, and appears to interact with both syntaxin 6 and 16 as evidenced by co-immunoprecipitation analyses. However, unlike syntaxin 6 and 16, neither syntaxin 10 antibodies nor its cytosolic domain inhibits endosome-TGN transport of shiga toxin. Syntaxin 16 knockdown with small interfering RNA (siRNA) affects the TGN localization of syntaxin 6 but not syntaxin 10, and clearly inhibits endosome-TGN transport. On the other hand, knockdown of syntaxin 10 expressions had no significant effect on the TGN localization of syntaxin 6 and 16, and did not inhibit endosome-TGN transport. Unlike syntaxin 16, syntaxin 10 does not interact specifically with Vps45, the Sec1/Munc18 (SM) family member at the TGN. On the other hand, syntaxin 10 reciprocally co-immunoprecipitated endosomal syntaxin 12/13, and knockdown of syntaxin 10 expressions affects the surface expression of transferrin receptor (TfR) and seems to induce the formation of an immobile TfR pool. Therefore, in spite of its co-localization and possible interaction with syntaxin 16, syntaxin 10 is not part of the syntaxin 16-based SNARE complex involved in endosome-TGN transport, and may have a hitherto unrecognized function in the TGN-endosome boundary.
Collapse
Affiliation(s)
- Ya Wang
- Department of Biochemistry and Neurobiology Program, National University of Singapore, MD7, 8 Medical Drive, Singapore, 117597, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
18
|
Genomewide analysis reveals novel pathways affecting endoplasmic reticulum homeostasis, protein modification and quality control. Genetics 2009; 182:757-69. [PMID: 19433630 DOI: 10.1534/genetics.109.101105] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To gain new mechanistic insight into ER homeostasis and the biogenesis of secretory proteins, we screened a genomewide collection of yeast mutants for defective intracellular retention of the ER chaperone, Kar2p. We identified 87 Kar2p-secreting strains, including a number of known components in secretory protein modification and sorting. Further characterization of the 73 nonessential Kar2p retention mutants revealed roles for a number of novel gene products in protein glycosylation, GPI-anchor attachment, ER quality control, and retrieval of escaped ER residents. A subset of these mutants, required for ER retrieval, included the GET complex and two novel proteins that likely function similarly in membrane insertion of tail-anchored proteins. Finally, the variant histone, Htz1p, and its acetylation state seem to play an important role in maintaining ER retrieval pathways, suggesting a surprising link between chromatin remodeling and ER homeostasis.
Collapse
|
19
|
Tsuk S, Lvov A, Michaelevski I, Chikvashvili D, Lotan I. Formation of the full SNARE complex eliminates interactions of its individual protein components with the Kv2.1 channel. Biochemistry 2008; 47:8342-9. [PMID: 18636750 DOI: 10.1021/bi800512p] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previously, we have demonstrated physical and functional interactions of the voltage-gated potassium channel Kv2.1 with the plasma membrane protein components of the exocytotic SNARE complex, syntaxin 1A, and the t-SNARE, syntaxin 1A/SNAP-25, complex. Importantly, the physical interaction of Kv2.1 with syntaxin was shown to be involved in the facilitation of secretion from PC12 cells, which was independent of potassium currents. Recently, we showed that also VAMP2, the vesicular SNARE, interacts physically and functionally with Kv2.1. Here, we first set out to test the interaction of the full SNARE, syntaxin/SNAP-25/VAMP2, complex with the channel. Using the interaction of VAMP2 with Kv2.1 in Xenopus oocytes as a probe, we showed that coexpression of the t-SNARE complex with VAMP2 abolished the VAMP2 effect on channel inactivation and reduced the amount of VAMP2 that coprecipitated with Kv2.1. Further, in vitro pull down assays showed that the full SNARE complex failed to interact with Kv2.1 N- and C-termini in tandem, in contrast to the individual SNARE components. This suggests that the interactions of the SNARE components with Kv2.1 are abolished upon their recruitment into a full SNARE complex, which does not interact with the channel. Other important findings arising from the in vitro study are that the t-SNARE complex, in addition to syntaxin, interacts with a specific C-terminal channel domain, C1a, shown to mediate the facilitation of release by Kv2.1 and that the presence of Kv2.1 N-terminus has crucial contribution to these interactions. These findings provide important insights into the understanding of the complex molecular events involved in the novel phenomenon of secretion facilitation in neuroendocrine cells by Kv2.1.
Collapse
Affiliation(s)
- Sharon Tsuk
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Israel
| | | | | | | | | |
Collapse
|
20
|
Lvov A, Chikvashvili D, Michaelevski I, Lotan I. VAMP2 interacts directly with the N terminus of Kv2.1 to enhance channel inactivation. Pflugers Arch 2008; 456:1121-36. [PMID: 18542995 DOI: 10.1007/s00424-008-0468-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/06/2008] [Accepted: 01/22/2008] [Indexed: 11/25/2022]
Abstract
Recently, we demonstrated that the Kv2.1 channel plays a role in regulated exocytosis of dense-core vesicles (DCVs) through direct interaction of its C terminus with syntaxin 1A, a plasma membrane soluble NSF attachment receptor (SNARE) component. We report here that Kv2.1 interacts with VAMP2, the vesicular SNARE partner that is also present at high concentration in neuronal plasma membrane. This is the first report of VAMP2 interaction with an ion channel. The interaction was demonstrated in brain membranes and characterized using electrophysiological and biochemical analyses in Xenopus oocytes combined with an in vitro binding analysis and protein modeling. Comparative study performed with wild-type and mutant Kv2.1, wild-type Kv1.5, and chimeric Kv1.5N/Kv2.1 channels revealed that VAMP2 enhanced the inactivation of Kv2.1, but not of Kv1.5, via direct interaction with the T1 domain of the N terminus of Kv2.1. Given the proposed role for surface VAMP2 in the regulation of the vesicle cycle and the important role for the sustained Kv2.1 current in the regulation of dendritic calcium entry during high-frequency stimulation, the interaction of VAMP2 with Kv2.1 N terminus may contribute, alongside with the interaction of syntaxin with Kv2.1 C terminus, to the activity dependence of DCV release.
Collapse
Affiliation(s)
- Anatoli Lvov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Ramat-Aviv, Israel
| | | | | | | |
Collapse
|
21
|
Abstract
This unit describes an in vitro assay that uses video-enhanced differential interference contrast (VE-DIC) microscopy to examine the motile interactions between isolated organelle fractions and microtubules (MTs). The method can be used to dissect the molecular requirements for organelle movement and membrane trafficking. A field of axoneme-nucleated MTs, growing and shortening as they would in a living cell (dynamic MTs), is generated in a simple microscope perfusion chamber. Various combinations of isolated endoplasmic reticulum (ER) and Golgi apparatus organelles, cytosol containing motor proteins and other soluble factors, nucleotides, and specific pharmacological reagents are then added to the dynamic MT, and the motile interactions between the organelles and MTs are observed by VE-DIC microscopy.
Collapse
|
22
|
Singer-Lahat D, Chikvashvili D, Lotan I. Direct interaction of endogenous Kv channels with syntaxin enhances exocytosis by neuroendocrine cells. PLoS One 2008; 3:e1381. [PMID: 18167541 PMCID: PMC2148073 DOI: 10.1371/journal.pone.0001381] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 11/26/2007] [Indexed: 11/18/2022] Open
Abstract
K+ efflux through voltage-gated K+ (Kv) channels can attenuate the release of neurotransmitters, neuropeptides and hormones by hyperpolarizing the membrane potential and attenuating Ca2+ influx. Notably, direct interaction between Kv2.1 channels overexpressed in PC12 cells and syntaxin has recently been shown to facilitate dense core vesicle (DCV)-mediated release. Here, we focus on endogenous Kv2.1 channels and show that disruption of their interaction with native syntaxin after ATP-dependent priming of the vesicles by Kv2.1 syntaxin–binding peptides inhibits Ca2+ -triggered exocytosis of DCVs from cracked PC12 cells in a specific and dose-dependent manner. The inhibition cannot simply be explained by the impairment of the interaction of syntaxin with its SNARE cognates. Thus, direct association between endogenous Kv2.1 and syntaxin enhances exocytosis and in combination with the Kv2.1 inhibitory effect to hyperpolarize the membrane potential, could contribute to the known activity dependence of DCV release in neuroendocrine cells and in dendrites where Kv2.1 commonly expresses and influences release.
Collapse
Affiliation(s)
- Dafna Singer-Lahat
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Israel
| | - Dodo Chikvashvili
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Israel
| | - Ilana Lotan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Israel
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs. Handb Exp Pharmacol 2008:461-82. [PMID: 18491064 DOI: 10.1007/978-3-540-72843-6_19] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coiled coils are bundles of intertwined alpha-helices that provide protein-protein interaction sites for the dynamic assembly and disassembly of protein complexes. The coiled-coil motif combines structural versatility and adaptability with mechanical strength and specificity. Multimeric proteins that rely on coiled-coil interactions are structurally and functionally very diverse, ranging from simple homodimeric transcription factors to elaborate heteromultimeric scaffolding clusters. Several coiled-coil-bearing proteins are of outstanding pharmacological importance, most notably SNARE proteins involved in vesicular trafficking of neurotransmitters and viral fusion proteins. Together with their crucial roles in many physiological and pathological processes, the structural simplicity and reversible nature of coiled-coil associations render them a promising target for pharmacological interference, as successfully exemplified by botulinum toxins and viral fusion inhibitors. The alpha-helical coiled coil is a ubiquitous protein domain that mediates highly specific homo- and heteromeric protein-protein interactions among a wide range of proteins. The coiled-coil motif was first proposed by Crick on the basis of X-ray diffraction data on alpha-keratin more than 50 years ago (Crick 1952, 1953) and nowadays belongs to the best-characterized protein interaction modules. By definition, a coiled coil is an oligomeric protein assembly consisting of several right-handed amphipathic alpha-helices that wind around each other into a superhelix (or a supercoil) in which the hydrophobic surfaces of the constituent helices are in continuous contact, forming a hydrophobic core. Both homomeric and heteromeric coiled coils with different stoichiometries are possible, and the helices can be aligned in either a parallel or an antiparallel topology (Harbury et al. 1993, 1994). Stoichiometry and topology are governed by the primary structure, that is, the sequence of the polypeptide chains, and a given protein can participate in multiple assembly-disassembly equilibria among several coiled coils differing in stoichiometry and topology (Portwich et al. 2007). Protein complexes whose oligomeric quaternary structures - and, hence, biological activities - depend on coiled-coil interactions include transcription factors, tRNA synthetases (Biou et al. 1994; Cusack et al. 1990), cytoskeletal and signal-transduction proteins, enzyme complexes, proteins involved in vesicular trafficking, viral coat proteins, and membrane proteins (Langosch and Heringa 1998). It is thus not surprising that coiled-coil motifs have gained great attention as potential targets for modulating protein-protein interactions implicated in a large number of diseases. In this review, we will first discuss some fundamental functional and structural aspects of a simple and well-characterized representative of coiled-coil transcription factors (Sect. 1) before considering two more complex coiled coils found in scaffolding proteins involved in mitosis and meiosis and vesicular trafficking Sect. 2). This will set the stage for addressing the role of coiled coils in viral infection (Sect. 3) as well as strategies of interfering with such protein-protein interactions therapeutically (Sect. 4 and 5).
Collapse
|
24
|
Michaelevski I, Korngreen A, Lotan I. Interaction of syntaxin with a single Kv1.1 channel: a possible mechanism for modulating neuronal excitability. Pflugers Arch 2007; 454:477-94. [PMID: 17401576 DOI: 10.1007/s00424-007-0223-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 12/18/2006] [Accepted: 01/26/2007] [Indexed: 12/01/2022]
Abstract
Voltage-gated K(+) channels are crucial for intrinsic neuronal plasticity and present a target for modulations by protein-protein interactions, notably, by exocytotic proteins demonstrated by us in several systems. Here, we investigated the interaction of a single Kv1.1 channel with syntaxin 1A. Syntaxin decreased the unitary conductance of all conductance states (two subconductances and a full conductance) and decreased their open probabilities by prolongation of mean closed dwell-times at depolarized potentials. However, at subthreshold potentials syntaxin 1A increased the probabilities of the subconductance states. Consequently, the macroscopic conductance is decreased at potentials above threshold and increased at threshold potentials. Numerical modeling based on steady-state and kinetic analyses suggests: (1) a mechanism whereby syntaxin controls activation gating by forcing the conductance pathway only via a sequence of discrete steps through the subconductance states, possibly via a breakdown of cooperative movements of voltage sensors that exist in Kv1.1; (2) a physiological effect, apparently paradoxical for an agent that reduces K(+) current, of attenuating neuronal firing frequency via an increase in K(+) shunting conductance. Such modulation of the gain of neuronal output in response to different levels of syntaxin is in accord with the suggested role for Kv1.1 in axonal excitability and synaptic efficacy.
Collapse
Affiliation(s)
- Izhak Michaelevski
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, 69978, Ramat-Aviv, Israel
| | | | | |
Collapse
|
25
|
Singer-Lahat D, Sheinin A, Chikvashvili D, Tsuk S, Greitzer D, Friedrich R, Feinshreiber L, Ashery U, Benveniste M, Levitan ES, Lotan I. K+ channel facilitation of exocytosis by dynamic interaction with syntaxin. J Neurosci 2007; 27:1651-8. [PMID: 17301173 PMCID: PMC6673747 DOI: 10.1523/jneurosci.4006-06.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kv channels inhibit release indirectly by hyperpolarizing membrane potential, but the significance of Kv channel interaction with the secretory apparatus is not known. The Kv2.1 channel is commonly expressed in the soma and dendrites of neurons, where it could influence the release of neuropeptides and neurotrophins, and in neuroendocrine cells, where it could influence hormone release. Here we show that Kv2.1 channels increase dense-core vesicle (DCV)-mediated release after elevation of cytoplasmic Ca2+. This facilitation occurs even after disruption of pore function and cannot be explained by changes in membrane potential and cytoplasmic Ca2+. However, triggering release increases channel binding to syntaxin, a secretory apparatus protein. Disrupting this interaction with competing peptides or by deleting the syntaxin association domain of the channel at the C terminus blocks facilitation of release. Thus, direct association of Kv2.1 with syntaxin promotes exocytosis. The dual functioning of the Kv channel to influence release, through its pore to hyperpolarize the membrane potential and through its C-terminal association with syntaxin to directly facilitate release, reinforces the requirements for repetitive firing for exocytosis of DCVs in neuroendocrine cells and in dendrites.
Collapse
Affiliation(s)
- Dafna Singer-Lahat
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and
| | - Anton Sheinin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and
| | - Dodo Chikvashvili
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and
| | - Sharon Tsuk
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and
| | - Dafna Greitzer
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and
| | - Reut Friedrich
- Department of Neurobiochemistry, Life Sciences Institute, Tel-Aviv University, 69978 Ramat-Aviv, Israel
| | - Lori Feinshreiber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and
| | - Uri Ashery
- Department of Neurobiochemistry, Life Sciences Institute, Tel-Aviv University, 69978 Ramat-Aviv, Israel
| | - Morris Benveniste
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Edwin S. Levitan
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, and
| | - Ilana Lotan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and
| |
Collapse
|
26
|
Howell GJ, Holloway ZG, Cobbold C, Monaco AP, Ponnambalam S. Cell biology of membrane trafficking in human disease. ACTA ACUST UNITED AC 2007; 252:1-69. [PMID: 16984815 PMCID: PMC7112332 DOI: 10.1016/s0074-7696(06)52005-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the molecular and cellular mechanisms underlying membrane traffic pathways is crucial to the treatment and cure of human disease. Various human diseases caused by changes in cellular homeostasis arise through a single gene mutation(s) resulting in compromised membrane trafficking. Many pathogenic agents such as viruses, bacteria, or parasites have evolved mechanisms to subvert the host cell response to infection, or have hijacked cellular mechanisms to proliferate and ensure pathogen survival. Understanding the consequence of genetic mutations or pathogenic infection on membrane traffic has also enabled greater understanding of the interactions between organisms and the surrounding environment. This review focuses on human genetic defects and molecular mechanisms that underlie eukaryote exocytosis and endocytosis and current and future prospects for alleviation of a variety of human diseases.
Collapse
Affiliation(s)
- Gareth J Howell
- Endothelial Cell Biology Unit, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
Choi J, Richards KL, Cinar HN, Newman AP. N-ethylmaleimide sensitive factor is required for fusion of the C. elegans uterine anchor cell. Dev Biol 2006; 297:87-102. [PMID: 16769048 DOI: 10.1016/j.ydbio.2006.04.471] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 01/17/2023]
Abstract
The fusion of the Caenorhabditis elegans uterine anchor cell (AC) with the uterine-seam cell (utse) is an excellent model system for studying cell-cell fusion, which is essential to animal development. We obtained an egg-laying defective (Egl) mutant in which the AC fails to fuse with the utse. This defect is highly specific: other aspects of utse development and other cell fusions appear to occur normally. We find that defect is due to a missense mutation in the nsf-1 gene, which encodes N-ethylmaleimide-sensitive factor (NSF), an intracellular membrane fusion factor. There are two NSF-1 isoforms, which are expressed in distinct tissues through two separate promoters. NSF-1L is expressed in the uterus, including the AC. We find that nsf-1 is required cell-autonomously in the AC for its fusion with the utse. Our results establish AC fusion as a paradigm for studying cell fusion at single cell resolution and demonstrate that the NSF ATPase is a key player in this process.
Collapse
Affiliation(s)
- Jaebok Choi
- Verna and Marrs Maclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
28
|
Song J, Lee MH, Lee GJ, Yoo CM, Hwang I. Arabidopsis EPSIN1 plays an important role in vacuolar trafficking of soluble cargo proteins in plant cells via interactions with clathrin, AP-1, VTI11, and VSR1. THE PLANT CELL 2006; 18:2258-74. [PMID: 16905657 PMCID: PMC1560928 DOI: 10.1105/tpc.105.039123] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Epsin and related proteins play important roles in various steps of protein trafficking in animal and yeast cells. Many epsin homologs have been identified in plant cells from analysis of genome sequences. However, their roles have not been elucidated. Here, we investigate the expression, localization, and biological role in protein trafficking of an epsin homolog, Arabidopsis thaliana EPSIN1, which is expressed in most tissues we examined. In the cell, one pool of EPSIN1 is associated with actin filaments, producing a network pattern, and a second pool localizes primarily to the Golgi complex with a minor portion to the prevacuolar compartment, producing a punctate staining pattern. Protein pull-down and coimmunoprecipitation experiments reveal that Arabidopsis EPSIN1 interacts with clathrin, VTI11, gamma-adaptin-related protein (gamma-ADR), and vacuolar sorting receptor1 (VSR1). In addition, EPSIN1 colocalizes with clathrin and VTI11. The epsin1 mutant, which has a T-DNA insertion in EPSIN1, displays a defect in the vacuolar trafficking of sporamin:green fluorescent protein (GFP), but not in the secretion of invertase:GFP into the medium. Stably expressed HA:EPSIN1 complements this trafficking defect. Based on these data, we propose that EPSIN1 plays an important role in the vacuolar trafficking of soluble proteins at the trans-Golgi network via its interaction with gamma-ADR, VTI11, VSR1, and clathrin.
Collapse
Affiliation(s)
- Jinhee Song
- Division of Molecular and Life Sciences and Center for Plant Intracellular Trafficking, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | |
Collapse
|
29
|
Reales E, Mora-López F, Rivas V, García-Poley A, Brieva JA, Campos-Caro A. Identification of soluble N-ethylmaleimide-sensitive factor attachment protein receptor exocytotic machinery in human plasma cells: SNAP-23 is essential for antibody secretion. THE JOURNAL OF IMMUNOLOGY 2006; 175:6686-93. [PMID: 16272324 DOI: 10.4049/jimmunol.175.10.6686] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma cells (PC) are B-lymphocytes terminally differentiated in a postmitotic state, with the unique purpose of manufacturing and exporting Igs. Despite the importance of this process in the survival of vertebrates, no studies have been made to understand the molecular events that regulate Ig exocytosis by PC. The present study explores the possible presence of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) system in human PC, and examines its functional role in Ig secretion. Syntaxin-2, Syntaxin-3, Syntaxin-4, vesicle-associated membrane protein (VAMP)-2, VAMP-3, and synaptosome-associated protein (SNAP)-23 could be readily detected in normal human PC obtained from intestinal lamina propria and blood, as well as in human PC lines. Because SNAP-23 plays a central role in SNAREs complex formation, it was chosen to examine possible functional implications of the SNARE system in PC Ig secretion. When recombinant SNAP-23 fusion protein was introduced into the cells, a complete abolishment of Ig production was observed in the culture supernatants of PC lines, as well as in those of normal PC. These results provide insights, for the first time, into the molecular machinery of constitutive vesicular trafficking in human PC Ig secretion and present evidence indicating that at least SNAP-23 is essential for Ab production.
Collapse
Affiliation(s)
- Elena Reales
- Unidad de Investigación, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
30
|
Andrés-Mateos E, Renart J, Cruces J, Solís-Garrido LM, Serantes R, de Lucas-Cerrillo AM, Aldea M, García AG, Montiel C. Dynamic association of the Ca2+channel α1Asubunit and SNAP-25 in round or neurite-emitting chromaffin cells. Eur J Neurosci 2005; 22:2187-98. [PMID: 16262657 DOI: 10.1111/j.1460-9568.2005.04385.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although the specific interaction between synaptic protein SNAP-25 and the alpha1A subunit of the Cav2.1 channels, which conduct P/Q-type Ca2+ currents, has been confirmed in in vitro-translated proteins and brain membrane studies, the question of how native proteins can establish this association in situ in developing neurons remains to be elucidated. Here we report data regarding this interaction in bovine chromaffin cells natively expressing both proteins. The two carboxyl-terminal splice variants of the alpha1A subunit identified in these cells share a synaptic protein interaction ('synprint') site within the II/III loop segment and are immunodetected by a specific antibody against bovine alpha1A protein. Moreover, both alpha1A isoforms form part of the P/Q-channels-SNARE complexes in situ because they are coimmunoprecipitated from solubilized chromaffin cell membranes by a monoclonal SNAP-25 antibody. The distribution of alpha1A and SNAP-25 was studied in round or transdifferentiated chromaffin cells using confocal microscopy and specific antibodies: the two proteins are colocalized at the cell body membrane in both natural cell types. However, during the first stages of the cell transdifferentiation process, SNAP-25 migrates alone out to the developing growth cone and what will become the nerve endings and varicosities of the mature neurites; alpha1A follows and colocalizes to SNAP-25 in the now mature processes. These observations lead us to propose that the association between SNAP-25 and alpha1A during neuritogenesis might promote not only the efficient coupling of the exocytotic machinery but also the correct insertion of P/Q-type channels at specialized active zones in presynaptic neuronal terminals.
Collapse
Affiliation(s)
- Eva Andrés-Mateos
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li G, Yang Q, Alexander EA, Schwartz JH. Syntaxin 1A has a specific binding site in the H3 domain that is critical for targeting of H+-ATPase to apical membrane of renal epithelial cells. Am J Physiol Cell Physiol 2005; 289:C665-72. [PMID: 15872013 DOI: 10.1152/ajpcell.00041.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
H+ transport in the collecting duct is regulated by exocytic insertion of H+-ATPase-laden vesicles into the apical membrane. The soluble N-ethylmaleimide-sensitive fusion protein attachment protein (SNAP) receptor (SNARE) proteins are critical for exocytosis. Syntaxin 1A contains three main domains, SNARE N, H3, and carboxy-terminal transmembrane domain. Several syntaxin isoforms form SNARE fusion complexes through the H3 domain; only syntaxin 1A, through its H3 domain, also binds H+-ATPase. This raised the possibility that there are separate binding sites within the H3 domain of syntaxin 1A for H+-ATPase and for SNARE proteins. A series of truncations in the H3 domain of syntaxin 1A were made and expressed as glutathione S-transferase (GST) fusion proteins. We determined the amount of H+-ATPase and SNARE proteins in rat kidney homogenate that complexed with GST-syntaxin molecules. Full-length syntaxin isoforms and syntaxin-1AΔC [amino acids (aa) 1–264] formed complexes with H+-ATPase and SNAP23 and vesicle-associated membrane polypeptide (VAMP). A cassette within the H3 portion was found that bound H+-ATPase (aa 235–264) and another that bound SNAP23 and VAMP (aa 190–234) to an equivalent degree as full-length syntaxin. However, the aa 235–264 cassette alone without the SNARE N (aa 1–160) does not bind but requires ligation to the SNARE N to bind H+-ATPase. When this chimerical construct was transected into inner medullary collecting duct cells it inhibited intracellular pH recovery, an index of H+-ATPase mediated secretion. We conclude that within the H3 domain of syntaxin 1A is a unique cassette that participates in the binding of the H+-ATPase to the apical membrane and confers specificity of syntaxin 1A in the process of H+-ATPase exocytosis.
Collapse
Affiliation(s)
- Guangmu Li
- Renal Section, Boston University Medical Center, Massachusetts, USA
| | | | | | | |
Collapse
|
32
|
Fotso P, Koryakina Y, Pavliv O, Tsiomenko AB, Lupashin VV. Cog1p plays a central role in the organization of the yeast conserved oligomeric Golgi complex. J Biol Chem 2005; 280:27613-23. [PMID: 15932880 DOI: 10.1074/jbc.m504597200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conserved oligomeric Golgi (COG) complex is an evolutionarily conserved peripheral membrane oligomeric protein complex that is involved in intra-Golgi protein trafficking. The COG complex is composed of eight subunits that are located in two lobes; Lobe A contains COG1-4, and Lobe B is composed of COG5-8. Both in vivo and in vitro protein-protein interaction techniques were applied to characterize interactions between individual COG subunits. In vitro assays revealed binary interactions between Cog2p and Cog3p, Cog2p and Cog4p, and Cog6p and Cog8p and a strong interaction between Cog5p and Cog7p. The two-hybrid assay confirmed these findings and revealed that Cog1p interacted with subunits from both lobes of the complex. Antibodies to COG subunits were utilized to determine the protein levels and membrane association of COG subunits in yeast delta cog1-8 mutants. As a result, we created a model of the protein-protein interactions within the yeast COG complex and proposed that Cog1p is a bridging subunit between the two COG lobes. In support of this hypothesis, we have demonstrated that Cog1p is required for the stable association between two COG subcomplexes.
Collapse
Affiliation(s)
- Pierre Fotso
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
33
|
Tsuk S, Michaelevski I, Bentley GN, Joho RH, Chikvashvili D, Lotan I. Kv2.1 channel activation and inactivation is influenced by physical interactions of both syntaxin 1A and the syntaxin 1A/soluble N-ethylmaleimide-sensitive factor-25 (t-SNARE) complex with the C terminus of the channel. Mol Pharmacol 2004; 67:480-8. [PMID: 15525758 DOI: 10.1124/mol.104.005314] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kv2.1, the prevalent delayed-rectifier K(+) channel in neuroendocrine and endocrine cells, was suggested previously by our group to be modulated in islet beta-cells by syntaxin 1A (Syx) and soluble N-ethylmaleimide-sensitive factor attachment protein-25 (SNAP-25). We also demonstrated physical interactions in neuroendocrine cells between Kv2.1, Syx, and SNAP-25, characterized their effects on Kv2.1 activation and inactivation in Xenopus laevis oocytes, and suggested that they pertain to the assembly/disassembly of the Syx/SNAP-25 (t-SNARE) complex. In the present work, we established the existence of a causal relationship between the physical and the functional interactions of Syx with the Kv2.1 channel using three different peptides that compete with the channel for binding of Syx when injected into oocytes already coexpressing Syx with Kv2.1 in the plasma membrane: one peptide corresponding to the Syx-binding region on the N-type Ca(2+) channel, and two peptides corresponding to Syx-binding regions on the Kv2.1 C terminus. All peptides reversed the effects of Syx on Kv2.1, suggesting that the hyperpolarizing shifts of the steady-state inactivation and activation of Kv2.1 caused by Syx result from cell-surface protein-protein interactions and point to participation of the C terminus in such an interaction. In line with these findings, the effects of Syx were dissipated by partial deletions of the C terminus. Furthermore, the t-SNARE complex was shown to bind to the Kv2.1 C terminus, and its effects on the inactivation of Kv2.1 were dissipated by partial deletions of the C terminus. Taken together, these findings suggest that physical interactions of both Syx and the t-SNARE complex with the C terminus of Kv2.1 are involved in channel regulation.
Collapse
Affiliation(s)
- Sharon Tsuk
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Ramat-Aviv, Israel
| | | | | | | | | | | |
Collapse
|
34
|
Michaelevski I, Chikvashvili D, Tsuk S, Singer-Lahat D, Kang Y, Linial M, Gaisano HY, Fili O, Lotan I. Direct interaction of target SNAREs with the Kv2.1 channel. Modal regulation of channel activation and inactivation gating. J Biol Chem 2003; 278:34320-30. [PMID: 12807875 DOI: 10.1074/jbc.m304943200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we suggested that interaction between voltage-gated K+ channels and protein components of the exocytotic machinery regulated transmitter release. This study concerns the interaction between the Kv2.1 channel, the prevalent delayed rectifier K+ channel in neuroendocrine and endocrine cells, and syntaxin 1A and SNAP-25. We recently showed in islet beta-cells that the Kv2.1 K+ current is modulated by syntaxin 1A and SNAP-25. Here we demonstrate, using co-immunoprecipitation and immunocytochemistry analyses, the existence of a physical interaction in neuroendocrine cells between Kv2.1 and syntaxin 1A. Furthermore, using concomitant co-immunoprecipitation from plasma membranes and two-electrode voltage clamp analyses in Xenopus oocytes combined with in vitro binding analysis, we characterized the effects of these interactions on the Kv2.1 channel gating pertaining to the assembly/disassembly of the syntaxin 1A/SNAP-25 (target (t)-SNARE) complex. Syntaxin 1A alone binds strongly to Kv2.1 and shifts both activation and inactivation to hyperpolarized potentials. SNAP-25 alone binds weakly to Kv2.1 and probably has no effect by itself. Expression of SNAP-25 together with syntaxin 1A results in the formation of t-SNARE complexes, with consequent elimination of the effects of syntaxin 1A alone on both activation and inactivation. Moreover, inactivation is shifted to the opposite direction, toward depolarized potentials, and its extent and rate are attenuated. Based on these results we suggest that exocytosis in neuroendocrine cells is tuned by the dynamic coupling of the Kv2.1 channel gating to the assembly status of the t-SNARE complex.
Collapse
Affiliation(s)
- Izhak Michaelevski
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978 Ramat Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pagel P, Zatti A, Kimura T, Duffield A, Chauvet V, Rajendran V, Caplan MJ. Ion pump-interacting proteins: promising new partners. Ann N Y Acad Sci 2003; 986:360-8. [PMID: 12763851 DOI: 10.1111/j.1749-6632.2003.tb07215.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sorting and regulation of the Na,K and H,K-ATPases requires that the pump proteins must associate, at least transiently, with kinases, phosphatases, scaffolding molecules, and components of the cellular trafficking machinery. The identities of these interacting proteins and the nature of their associations with the pump polypeptides have yet to be elucidated. We have begun a series of yeast two-hybrid screens employing structurally defined segments of pump polypeptides as baits in order to gain insight into the nature and function of these interacting proteins.
Collapse
Affiliation(s)
- Philipp Pagel
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
This paper outlines the possibility that disruption of cell-to-cell biochemical signaling activates a cascade of events resulting in a diverse spectrum of behavioral and biological symptoms associated with autism spectrum disorders.
Collapse
|
37
|
Huang L, Feng L, Yang L, Zhou W, Zhao S, Li C. Screen and identification of proteins interacting with ADAM19 cytoplasmic tail. Mol Biol Rep 2002; 29:317-23. [PMID: 12463424 DOI: 10.1023/a:1020409217215] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ADAM family plays important roles in neurogenesis. The cytoplasmic tail of ADAM19 (ADAM19-CT) contains 193 residues. The presence of two putative SH3 ligand-binding sites suggests potential interactions with cytosolic proteins, which could be possibly linked to the functions of ADAM19. To address these issues, a yeast two-hybrid screen was performed in human fetal brain cDNA library to isolate proteins that interact with the cytoplasmic tail of ADAM19. Four proteins were obtained, ArgBP1, beta-cop, ubiquitin and a novel protein. GST-Pulldown assay has confirmed the interaction between AdAM19 and ArgBP1. By constructing series of deletion mutants of ADAM19-CT and ArgBP1 respectively, the interaction regions have been identified. They are the SH3 binding sites in ADAM19-CT and the P4 region in ArgBP1. And the interaction is specific. ArgBP1 does not bind to ADAM22, ADAM29 or ADAM9 (mouse). ArgBP1 may be the key protein, which accounts for the physiological function of ADAM19.
Collapse
Affiliation(s)
- Li Huang
- Institute of Genetics, Fudan University, Shanghai 200433, PR. China
| | | | | | | | | | | |
Collapse
|
38
|
Direct interaction of a brain voltage-gated K+ channel with syntaxin 1A: functional impact on channel gating. J Neurosci 2001. [PMID: 11245681 DOI: 10.1523/jneurosci.21-06-01964.2001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Presynaptic voltage-gated K(+) (Kv) channels play a physiological role in the regulation of transmitter release by virtue of their ability to shape presynaptic action potentials. However, the possibility of a direct interaction of these channels with the exocytotic apparatus has never been examined. We report the existence of a physical interaction in brain synaptosomes between Kvalpha1.1 and Kvbeta subunits with syntaxin 1A, occurring, at least partially, within the context of a macromolecular complex containing syntaxin, synaptotagmin, and SNAP-25. The interaction was altered after stimulation of neurotransmitter release. The interaction with syntaxin was further characterized in Xenopus oocytes by both overexpression and antisense knock-down of syntaxin. Direct physical interaction of syntaxin with the channel protein resulted in an increase in the extent of fast inactivation of the Kv1.1/Kvbeta1.1 channel. Syntaxin also affected the channel amplitude in a biphasic manner, depending on its concentration. At low syntaxin concentrations there was a significant increase in amplitudes, with no detectable change in cell-surface channel expression. At higher concentrations, however, the amplitudes decreased, probably because of a concomitant decrease in cell-surface channel expression, consistent with the role of syntaxin in regulation of vesicle trafficking. The observed physical and functional interactions between syntaxin 1A and a Kv channel may play a role in synaptic efficacy and neuronal excitability.
Collapse
|
39
|
Katz L, Brennwald P. Testing the 3Q:1R "rule": mutational analysis of the ionic "zero" layer in the yeast exocytic SNARE complex reveals no requirement for arginine. Mol Biol Cell 2000; 11:3849-58. [PMID: 11071911 PMCID: PMC15041 DOI: 10.1091/mbc.11.11.3849] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The crystal structure of the synaptic SNARE complex reveals a parallel four-helix coiled-coil arrangement; buried in the hydrophobic core of the complex is an unusual ionic layer composed of three glutamines and one arginine, each provided by a separate alpha-helix. The presence of glutamine or arginine residues in this position is highly conserved across the t- and v-SNARE families, and it was recently suggested that a 3Q:1R ratio is likely to be a general feature common to all SNARE complexes. In this study, we have used genetic and biochemical assays to test this prediction with the yeast exocytic SNARE complex. We have determined that the relative position of Qs and Rs within the layer is not critical for biological activity and that Q-to-R substitutions in the layer reduce complex stability and result in lethal or conditional lethal growth defects. Surprisingly, SNARE complexes composed of four glutamines are fully functional for assembly in vitro and exocytic function in vivo. We conclude that the 3Q:1R layer composition is not required within the yeast exocytic SNARE complex because complexes containing four Q residues in the ionic layer appear by all criteria to be functionally equivalent. The unexpected flexibility of this layer suggests that there is no strict requirement for the 3Q:1R combination and that the SNARE complexes at other stages of transport may be composed entirely of Q-SNAREs or other noncanonical combinations.
Collapse
Affiliation(s)
- L Katz
- Department of Cell Biology and Graduate Program in Cell Biology and Genetics, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | |
Collapse
|
40
|
Vignery A. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism. Int J Exp Pathol 2000; 81:291-304. [PMID: 11168677 PMCID: PMC2517739 DOI: 10.1111/j.1365-2613.2000.00164.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 07/18/2000] [Indexed: 11/29/2022] Open
Abstract
Membrane fusion is a ubiquitous event that occurs in a wide range of biological processes. While intracellular membrane fusion mediating organelle trafficking is well understood, much less is known about cell-cell fusion mediating sperm cell-oocyte, myoblast-myoblast and macrophage-macrophage fusion. In the case of mononuclear phagocytes, their fusion is not only associated with the differentiation of osteoclasts, cells which play a key role in the pathogenesis of osteoporosis, but also of giant cells that are present in chronic inflammatory reactions and in tumours. Despite the biological and pathophysiological importance of intercellular fusion events, the actual molecular mechanism of macrophage fusion is still unclear. One of the main research themes in my laboratory has been to investigate the molecular mechanism of mononuclear phagocyte fusion. Our hypothesis has been that macrophage-macrophage fusion, similar to virus-cell fusion, is mediated by specific cell surface proteins. But, in contrast with myoblasts and sperm cells, macrophage fusion is a rare event that occurs in specific instances. To test our hypothesis, we established an in vitro cell-cell fusion assay as a model system which uses alveolar macrophages. Upon multinucleation, these macrophages acquire the osteoclast phenotype. This indicates that multinucleation of macrophages leads to a specific and novel functional phenotype in macrophages. To identify the components of the fusion machinery, we generated four monoclonal antibodies (mAbs) which block the fusion of alveolar macrophages and purified the unique antigen recognized by these mAbs. This led us to the cloning of MFR (Macrophage Fusion Receptor). MFR was cloned simultaneously as P84/SHPS-1/SIRPalpha/BIT by other laboratories. We subsequently showed that the recombinant extracellular domain of MFR blocks fusion. Most recently, we identified a lower molecular weight form of MFR that is missing two extracellular immunoglobulin (Ig) C domains. Shortly after we cloned MFR, CD47 was reported to be a ligand for P84/SIRPalpha. We have since generated preliminary results which suggest that CD47 interacts with MFR during adhesion/fusion and is a member of the fusion machinery. We also identified CD44 as a plasma membrane protein which, like MFR, is highly expressed at the onset of fusion. The recombinant soluble extracellular domain of CD44 blocks fusion by interacting with a cell-surface binding site. We now propose a model in which both forms of MFR, CD44, and CD47 mediate macrophage adhesion/fusion and therefore the differentiation of osteoclasts and giant cells.
Collapse
Affiliation(s)
- A Vignery
- Yale University School of Medicine, Department of Orthopaedics and Rehabilitation, New Haven, CT 06510, USA.
| |
Collapse
|
41
|
Mullock BM, Smith CW, Ihrke G, Bright NA, Lindsay M, Parkinson EJ, Brooks DA, Parton RG, James DE, Luzio JP, Piper RC. Syntaxin 7 is localized to late endosome compartments, associates with Vamp 8, and Is required for late endosome-lysosome fusion. Mol Biol Cell 2000; 11:3137-53. [PMID: 10982406 PMCID: PMC14981 DOI: 10.1091/mbc.11.9.3137] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein traffic from the cell surface or the trans-Golgi network reaches the lysosome via a series of endosomal compartments. One of the last steps in the endocytic pathway is the fusion of late endosomes with lysosomes. This process has been reconstituted in vitro and has been shown to require NSF, alpha and gamma SNAP, and a Rab GTPase based on inhibition by Rab GDI. In Saccharomyces cerevisiae, fusion events to the lysosome-like vacuole are mediated by the syntaxin protein Vam3p, which is localized to the vacuolar membrane. In an effort to identify the molecular machinery that controls fusion events to the lysosome, we searched for mammalian homologues of Vam3p. One such candidate is syntaxin 7. Here we show that syntaxin 7 is concentrated in late endosomes and lysosomes. Coimmunoprecipitation experiments show that syntaxin 7 is associated with the endosomal v-SNARE Vamp 8, which partially colocalizes with syntaxin 7. Importantly, we show that syntaxin 7 is specifically required for the fusion of late endosomes with lysosomes in vitro, resulting in a hybrid organelle. Together, these data identify a SNARE complex that functions in the late endocytic system of animal cells.
Collapse
Affiliation(s)
- B M Mullock
- Wellcome Trust Centre for Molecular Mechanisms in Disease, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2XY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hirling H, Steiner P, Chaperon C, Marsault R, Regazzi R, Catsicas S. Syntaxin 13 is a developmentally regulated SNARE involved in neurite outgrowth and endosomal trafficking. Eur J Neurosci 2000; 12:1913-23. [PMID: 10886332 DOI: 10.1046/j.1460-9568.2000.00076.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to its role in exocytosis, SNAP-25 is essential for axonal outgrowth. In order to identify SNARE proteins involved in neurite growth we have used SNAP-25 antibodies to affinity-purify protein complexes enriched in developing rat brain membrane extracts. We have identified a complex between SNAP-25 and syntaxin 13 predominantly present in brain at embryonic or early postnatal stages. We show that syntaxin 13 is developmentally regulated with a decrease in adult brain. In differentiated neuroendocrine PC12 cells as well as primary cortical neurons the protein is localized to a punctated and tubular staining in the perinuclear region and along processes with high levels in the central region of growth cones. Carboxy-terminally tagged syntaxin 13 was also detected on the plasma membrane by in vivo surface-labelling where it colocalized with SNAP-25. Syntaxin 13 has recently been shown to be implicated in early endosomal trafficking. In our study, colocalization with internalized transferrin in the cell body and along neurites confirmed endosomal location in both compartments. Finally, overexpression of full-length syntaxin 13 enhanced neurite outgrowth in NGF-stimulated PC12 cells, whilst it had no effect on regulated secretion. The data suggest that a syntaxin 13-dependent endocytic trafficking step plays a limiting role in membrane expansion during neuronal development.
Collapse
Affiliation(s)
- H Hirling
- Institut de Biologie Cellulaire et de Morphologie (IBCM), Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
43
|
Watson EL. GTP-binding proteins and regulated exocytosis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:284-306. [PMID: 10759410 DOI: 10.1177/10454411990100030301] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Regulated exocytosis, which occurs in response to stimuli, is a two-step process involving the docking of secretory granules (SGs) at specific sites on the plasma membrane (PM), with subsequent fusion and release of granule contents. This process plays a crucial role in a number of tissues, including exocrine glands, chromaffin cells, platelets, and mast cells. Over the years, our understanding of the proteins involved in vesicular trafficking has increased dramatically. Evidence from genetic, biochemical, immunological, and functional assays supports a role for ras-like monomeric GTP-binding proteins (smgs) as well as heterotrimeric GTP-binding protein (G-protein) subunits in various steps of the vesicular trafficking pathway, including the transport of secretory vesicles to the PM. Data suggest that the function of GTP-binding proteins is likely related to their localization to specific cellular compartments. The presence of both G-proteins and smgs on secretory vesicles/granules implicates a role for these proteins in the final stages of exocytosis. Molecular mechanisms of exocytosis have been postulated, with the identification of a number of proteins that modify, regulate, and interact with GTP-binding proteins, and with the advent of approaches that assess the functional importance of GTP-binding proteins in downstream, exocytotic events. Further, insight into vesicle targeting and fusion has come from the characterization of a SNAP receptor (SNARE) complex composed of vesicle, PM, and soluble membrane trafficking components, and identification of a functional linkage between GTP-binding and SNARES.
Collapse
Affiliation(s)
- E L Watson
- Department of Oral Biology, University of Washington, Health Sciences Center, Seattle 98195-7132, USA
| |
Collapse
|
44
|
Naren AP, Kirk KL. CFTR Chloride Channels: Binding Partners and Regulatory Networks. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 2000; 15:57-61. [PMID: 11390879 DOI: 10.1152/physiologyonline.2000.15.2.57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cystic fibrosis gene encodes a chloride channel (CFTR) that regulates transepithelial salt and water transport. Two classes of CFTR-binding proteins appear to link the opposing cytoplasmic tails of this channel to distinct regulatory networks. Such interactions may constitute new paradigms for modulating CFTR activity in health and disease.
Collapse
Affiliation(s)
- Anjaparavanda P. Naren
- Gregory Fleming James Cystic Fibrosis Research Center and the Department of Physiology and Biophysics at the University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | |
Collapse
|
45
|
Naren AP, Di A, Cormet-Boyaka E, Boyaka PN, McGhee JR, Zhou W, Akagawa K, Fujiwara T, Thome U, Engelhardt JF, Nelson DJ, Kirk KL. Syntaxin 1A is expressed in airway epithelial cells, where it modulates CFTR Cl(-) currents. J Clin Invest 2000; 105:377-86. [PMID: 10675364 PMCID: PMC377449 DOI: 10.1172/jci8631] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/1999] [Accepted: 12/15/1999] [Indexed: 11/17/2022] Open
Abstract
The CFTR Cl(-) channel controls salt and water transport across epithelial tissues. Previously, we showed that CFTR-mediated Cl(-) currents in the Xenopus oocyte expression system are inhibited by syntaxin 1A, a component of the membrane trafficking machinery. This negative modulation of CFTR function can be reversed by soluble syntaxin 1A peptides and by the syntaxin 1A binding protein, Munc-18. In the present study, we determined whether syntaxin 1A is expressed in native epithelial tissues that normally express CFTR and whether it modulates CFTR currents in these tissues. Using immunoblotting and immunofluorescence, we observed syntaxin 1A in native gut and airway epithelial tissues and showed that epithelial cells from these tissues express syntaxin 1A at >10-fold molar excess over CFTR. Syntaxin 1A is seen near the apical cell surfaces of human bronchial airway epithelium. Reagents that disrupt the CFTR-syntaxin 1A interaction, including soluble syntaxin 1A cytosolic domain and recombinant Munc-18, augmented cAMP-dependent CFTR Cl(-) currents by more than 2- to 4-fold in mouse tracheal epithelial cells and cells derived from human nasal polyps, but these reagents did not affect CaMK II-activated Cl(-) currents in these cells.
Collapse
Affiliation(s)
- A P Naren
- Gregory Fleming James Cystic Fibrosis Center and Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The Sec1 family of proteins is proposed to function in vesicle trafficking by forming complexes with target membrane SNAREs (soluble N-ethylmaleimide-sensitive factor [NSF] attachment protein [SNAP] receptors) of the syntaxin family. Here, we demonstrate, by using in vitro binding assays, nondenaturing gel electrophoresis, and specific neurotoxin treatment, that the interaction of syntaxin1A with the core SNARE components, SNAP-25 (synaptosome-associated protein of 25 kD) and VAMP2 (vesicle-associated membrane protein 2), precludes the interaction with nSec1 (also called Munc18 and rbSec1). Inversely, association of nSec1 and syntaxin1A prevents assembly of the ternary SNARE complex. Furthermore, using chemical cross-linking of rat brain membranes, we identified nSec1 complexes containing syntaxin1A, but not SNAP-25 or VAMP2. These results support the hypothesis that Sec1 proteins function as syntaxin chaperons during vesicle docking, priming, and membrane fusion.
Collapse
Affiliation(s)
- Bin Yang
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5428
| | - Martin Steegmaier
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5428
| | - Lino C. Gonzalez
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5428
| | - Richard H. Scheller
- Howard Hughes Medical Institute, Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5428
| |
Collapse
|
47
|
Faergeman NJ, Ballegaard T, Knudsen J, Black PN, DiRusso C. Possible roles of long-chain fatty Acyl-CoA esters in the fusion of biomembranes. Subcell Biochem 2000; 34:175-231. [PMID: 10808334 DOI: 10.1007/0-306-46824-7_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Affiliation(s)
- N J Faergeman
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York 12208, USA
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- M Linial
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| |
Collapse
|
49
|
Elmendorf JS, Boeglin DJ, Pessin JE. Temporal separation of insulin-stimulated GLUT4/IRAP vesicle plasma membrane docking and fusion in 3T3L1 adipocytes. J Biol Chem 1999; 274:37357-61. [PMID: 10601305 DOI: 10.1074/jbc.274.52.37357] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Examination of the time and temperature dependence of insulin-stimulated GLUT4/IRAP-containing vesicle trafficking demonstrated an approximate 7-fold increase in the half-time for plasma membrane translocation at 23 degrees C (t((1)/(2)) = approximately 30 min) compared with 37 degrees C (t((1)/(2)) = approximately 4 min) without a significant change in the extent of either GLUT4 or IRAP translocation. Localization of the endogenous GLUT4 and expressed GLUT4-enhanced green fluorescent protein fusion protein in intact 3T3L1 adipocytes demonstrated that at 23 degrees C there was a time-dependent accumulation of discrete GLUT4-containing vesicles adjacent to the inner face of the cell surface membrane but that was not contiguous and/or physically incorporated into the plasma membrane. Together, these data demonstrate that the temperature-dependent decrease in the rate of GLUT4 and IRAP translocation results from a reduction in GLUT4/IRAP-containing vesicle fusion and not trafficking or docking to the plasma membrane.
Collapse
Affiliation(s)
- J S Elmendorf
- Department of Physiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
50
|
Quiñones B, Riento K, Olkkonen VM, Hardy S, Bennett MK. Syntaxin 2 splice variants exhibit differential expression patterns, biochemical properties and subcellular localizations. J Cell Sci 1999; 112 ( Pt 23):4291-304. [PMID: 10564647 DOI: 10.1242/jcs.112.23.4291] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The syntaxins are a large protein family implicated in the targeting and fusion of intracellular transport vesicles. A subset of proteins of this family are the four syntaxin 2 splice variants, syntaxins 2A (2), 2B (2′), 2C (2″) and 2D. Each syntaxin 2 variant contains an identical, or nearly identical, amino-terminal cytoplasmic domain followed by a distinct hydrophobic (syntaxins 2A and 2B) or hydrophilic (syntaxins 2C and 2D) carboxyl-terminal domain. To investigate whether the difference among the syntaxin 2 variants is functionally important, we have examined comparatively their RNA transcript and protein expression patterns, membrane associations, protein-protein interactions and intracellular localizations. Analysis of the RNA transcript and protein expression patterns demonstrated that syntaxins 2A, 2B and 2C are broadly, but not uniformly, expressed while syntaxin 2D expression is restricted to the brain. Subcellular fractionation studies showed that syntaxins 2A and 2B behave as integral membrane proteins while syntaxin 2C is only partially associated with membranes. In vitro biochemical assays demonstrated that the syntaxin 2 variants exhibit similar yet distinct interactions with other proteins implicated in vesicular trafficking, including SNAP-25, SNAP-23, VAMP-2 and n-sec1. In a variety of nonpolarized cell types, syntaxins 2A and 2B localized to both the plasma membrane and endosomal membranes. However, in two polarized epithelial cell lines, MDCK and Caco-2, syntaxin 2A localized predominantly to the apical plasma membrane while syntaxin 2B was associated with both the apical and the basolateral membranes. These observations indicate that the distinct carboxyl-terminal domains of the syntaxin 2 variants influence their biochemical and localization properties and may therefore confer upon these variants different functional roles in the regulation of intracellular membrane trafficking.
Collapse
Affiliation(s)
- B Quiñones
- Department of Molecular Biology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|