1
|
Krevert C, Gunkel L, Sutter J, Meyer R, Schneider P, Nagata Y, Hunger J. Deciphering Spectroscopic Signatures of Competing Ca 2+ - Peptide Interactions. J Phys Chem B 2024; 128:10688-10698. [PMID: 39437793 PMCID: PMC11533179 DOI: 10.1021/acs.jpcb.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Calcium-protein interactions are of paramount importance in biochemistry. They are a key element in a number of biological processes, such as neuronal signaling. Therefore, an understanding of the interaction at the molecular level is highly desirable. Here, we study the zwitterionic model peptide l-alanyl-l-alanine (2Ala), which has two distinct and competing binding sites for Ca2+: The carbonyl of the peptide bond and the C-terminus, the carboxylate group. We perform linear and two-dimensional IR spectroscopy experiments and find that the spectroscopic signatures of both moieties in the IR spectra change in amplitude and peak position upon the addition of CaCl2: A blueshift of the asymmetric carboxylate band and a redshift for the amide I mode. Ab initio molecular dynamics simulations confirm the direct interaction of the Ca2+ ion at both the carboxylate and the amide CO site leading to different spectral responses. The blueshift of the asymmetric carboxylate band is caused by a localization of the charge, leading to a decoupling of the CO stretching modes of the carboxylate group. The slight redshift of the amide I mode of 2Ala upon the addition of CaCl2 contrasts the blueshift that has been observed for isolated amide motifs, such as N-methylacetamide (NMA). This difference is caused by the smaller number of water molecules being replaced by the Ca2+ ion for 2Ala's amide compared to less sterically hindered, isolated amide carbonyls, in conjunction with vibrational Stark effects. Our results highlight the importance of considering potential competing binding sites, such as the amide CO backbone, the termini and residues, as well as the nature of the hydration of both peptide and ion, when exploring ions' interacting with small peptides and larger proteins.
Collapse
Affiliation(s)
- Carola
S. Krevert
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Lucas Gunkel
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Johannes Sutter
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Raphael Meyer
- Department
of the Synthesis of Macromolecule, Max Planck
Insitute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Paul Schneider
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Johannes Hunger
- Department
of Molecular Spectroscopy, Max Planck Insitute
for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|
2
|
Photenhauer AL, Villafuerte-Vega RC, Cerqueira FM, Armbruster KM, Mareček F, Chen T, Wawrzak Z, Hopkins JB, Vander Kooi CW, Janeček Š, Ruotolo BT, Koropatkin NM. The Ruminococcus bromii amylosome protein Sas6 binds single and double helical α-glucan structures in starch. Nat Struct Mol Biol 2024; 31:255-265. [PMID: 38177679 PMCID: PMC11081458 DOI: 10.1038/s41594-023-01166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 10/27/2023] [Indexed: 01/06/2024]
Abstract
Resistant starch is a prebiotic accessed by gut bacteria with specialized amylases and starch-binding proteins. The human gut symbiont Ruminococcus bromii expresses Sas6 (Starch Adherence System member 6), which consists of two starch-specific carbohydrate-binding modules from family 26 (RbCBM26) and family 74 (RbCBM74). Here, we present the crystal structures of Sas6 and of RbCBM74 bound with a double helical dimer of maltodecaose. The RbCBM74 starch-binding groove complements the double helical α-glucan geometry of amylopectin, suggesting that this module selects this feature in starch granules. Isothermal titration calorimetry and native mass spectrometry demonstrate that RbCBM74 recognizes longer single and double helical α-glucans, while RbCBM26 binds short maltooligosaccharides. Bioinformatic analysis supports the conservation of the amylopectin-targeting platform in CBM74s from resistant-starch degrading bacteria. Our results suggest that RbCBM74 and RbCBM26 within Sas6 recognize discrete aspects of the starch granule, providing molecular insight into how this structure is accommodated by gut bacteria.
Collapse
Affiliation(s)
- Amanda L Photenhauer
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Filipe M Cerqueira
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Krista M Armbruster
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Filip Mareček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tiantian Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zdzislaw Wawrzak
- Northwestern Synchrotron Research Center-LS-CAT, Northwestern University, Argonne, IL, USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Nicole M Koropatkin
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Toiber-Estrella AL, Quintero-Martínez A, Rodríguez-Romero A, Riveros-Rosas H, Hernández-Santoyo A. Structural and evolutionary insights into the multidomain galectin from the red abalone Haliotis rufescens with specificity for sulfated glycans. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1264-1274. [PMID: 36400370 DOI: 10.1016/j.fsi.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Galectins are an evolutionarily ancient family of lectins characterized by their affinity for β-galactosides and a conserved binding site in the carbohydrate recognition domain (CRD). These lectins are involved in multiple physiological functions, including the recognition of glycans on the surface of viruses and bacteria. This feature supports their role in innate immune responses in marine mollusks. Here, we identified and characterized a galectin, from the mollusk Haliotis rufescens (named HrGal), with four CRDs that belong to the tandem-repeat type. HrGal was purified by affinity chromatography in a galactose-agarose resin and exhibited a molecular mass of 64.11 kDa determined by MALDI-TOF mass spectrometry. The identity of HrGal was verified by sequencing, confirming that it is a 555 amino acid protein with a mass of 63.86 kDa. This protein corresponds to a galectin reported in GenBank with accession number AHX26603. HrGal is stable in the presence of urea, reducing agents, and ions such as Cu2+ and Zn2+. The recombinant galectin (rHrGal) was purified from inclusion bodies in the presence of these ions. A theoretical model obtained with the AlphaFold server exhibits four non-identical CRDs, with a β sandwich folding and the representative motifs for binding β-galactosides. This allows us to classify HrGal within the tandem repeat galectin family. On the basis of a phylogenetic analysis, we found that the mollusk sequences form a monophyletic group of tetradomain galectins unrelated to vertebrate galectins. HrGal showed specificity for galactosides and glucosides but only the sulfated sugars heparin and ι-carrageenan inhibited its hemagglutinating activity with a minimum inhibitory concentration of 4 mM and 6.25 X 10-5% respectively. The position of the sulfate groups seemed crucial for binding, both by carrageenans and heparin.
Collapse
Affiliation(s)
| | - Adrián Quintero-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | - Héctor Riveros-Rosas
- Depto. Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán, 04510, Mexico
| | | |
Collapse
|
4
|
Altmannova V, Spirek M, Orlic L, Jēkabsons A, Clarence T, Henggeler A, Mlcouskova J, Chaleil RA, Matos J, Krejci L. The role of bivalent ions in the regulation of D-loop extension mediated by DMC1 during meiotic recombination. iScience 2022; 25:105439. [PMID: 36388968 PMCID: PMC9641244 DOI: 10.1016/j.isci.2022.105439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
During meiosis, programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination. DMC1, a conserved recombinase, plays a central role in this process. DMC1 promotes DNA strand exchange between homologous chromosomes, thus creating the physical linkage between them. Its function is regulated not only by several accessory proteins but also by bivalent ions. Here, we show that whereas calcium ions in the presence of ATP cause a conformational change within DMC1, stimulating its DNA binding and D-loop formation, they inhibit the extension of the invading strand within the D-loop. Based on structural studies, we have generated mutants of two highly conserved amino acids - E162 and D317 - in human DMC1, which are deficient in calcium regulation. In vivo studies of their yeast homologues further showed that they exhibit severe defects in meiosis, thus emphasizing the importance of calcium ions in the regulation of DMC1 function and meiotic recombination.
Collapse
Affiliation(s)
- Veronika Altmannova
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | - Mario Spirek
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | - Lucija Orlic
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9 1030 Vienna, Austria
| | - Atis Jēkabsons
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | - Tereza Clarence
- Biomolecular Modelling Laboratory, The Francis Crick Institute, London, UK
| | - Adrian Henggeler
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9 1030 Vienna, Austria
| | - Jarmila Mlcouskova
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
| | | | - Joao Matos
- Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9 1030 Vienna, Austria
| | - Lumir Krejci
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno 65691, Czech Republic
- National Center for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
5
|
Manna D, Cordara G, Krengel U. Crystal structure of MOA in complex with a peptide fragment: A protease caught in flagranti. Curr Res Struct Biol 2020; 2:56-67. [PMID: 34235469 PMCID: PMC8244254 DOI: 10.1016/j.crstbi.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
The Marasmius oreades agglutinin (MOA) is the holotype of an emerging family of fungal chimerolectins and an active Ca2+/Mn2+-dependent protease, which exhibits a unique papain-like fold with special active site features. Here we investigated the functional significance of the structural elements differentiating MOA from other papain-like cysteine proteases. X-ray crystal structures of MOA co-crystallized with two synthetic substrates reveal cleaved peptides bound to the catalytic site, corresponding to the final products of the proteolytic reaction. Anomalous diffraction data on crystals grown in the presence of calcium and manganese, cadmium or zinc resolve the calcium/manganese preference of MOA and elucidate the inhibitory roles of zinc and cadmium towards papain-like cysteine proteases in general. The reported structures, together with activity data of MOA active site variants, point to a conservation of the general proteolysis mechanism established for papain. Ultimately, the findings suggest that papain and the papain-like domain of MOA are the product of convergent evolution.
Collapse
Affiliation(s)
- Dipankar Manna
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| | - Gabriele Cordara
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, PO Box 1033 Blindern, 0315, Oslo, Norway
| |
Collapse
|
6
|
Ahmad MS, Akbar Z, Choudhary MI. Insight into the binding affinity of thiourea in the calcium binding pocket of proteinase K, through high resolution X-ray crystallography. Bioorg Chem 2019; 94:103443. [PMID: 31812259 DOI: 10.1016/j.bioorg.2019.103443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/20/2019] [Accepted: 11/13/2019] [Indexed: 12/01/2022]
Abstract
Proteinase K is a stable serine protease, crystallized and extensively used in the study of molecular interactions at the atomic level. During the current study, crystal structure of proteinase K with thiourea (TU) was solved at 1.45 Å (angstrom) resolution. Proteinase K showed its binding affinity with thiourea after soaking with 200 mM (millimolar) concentration of thiourea solution for 6 h. The binding affinity of proteinase K was evaluated with three different molecules i.e., thiourea, acetamide, and thiosemicarbazide. Interestingly, only the thiourea went into the calcium-binding region, and showed interactions with those amino acids which have also displayed interactions with calcium previously. Pro175 (proline 175), Ser197 (Serine 197), Val198 (valine 198), and Asp200 (aspartic acid 200) were the key amino acids involved in the binding of thiourea with proteinase K. Thiourea showed strong hydrogen bondings with Pro175 (2.85 Å), Ser197 (2.88 Å), and Asp200 (2.90 Å, and 3.30 Å), as the key interactions involved in the binding of thiourea with proteinase K. This study provides an insight into the binding mechanism of thiourea with calcium-binding pocket of proteinase K, and thus can be extrapolated to other calcium-binding proteins.
Collapse
Affiliation(s)
- Malik Shoaib Ahmad
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Zeeshan Akbar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21412, Saudi Arabia
| |
Collapse
|
7
|
Role of structural ions on the dynamics of the Pseudomonas fluorescens 07A metalloprotease. Food Chem 2019; 286:309-315. [DOI: 10.1016/j.foodchem.2019.01.204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
|
8
|
Predicting nonspecific ion binding using DelPhi. Biophys J 2012; 102:2885-93. [PMID: 22735539 DOI: 10.1016/j.bpj.2012.05.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/29/2012] [Accepted: 05/01/2012] [Indexed: 11/24/2022] Open
Abstract
Ions are an important component of the cell and affect the corresponding biological macromolecules either via direct binding or as a screening ion cloud. Although some ion binding is highly specific and frequently associated with the function of the macromolecule, other ions bind to the protein surface nonspecifically, presumably because the electrostatic attraction is strong enough to immobilize them. Here, we test such a scenario and demonstrate that experimentally identified surface-bound ions are located at a potential that facilitates binding, which indicates that the major driving force is the electrostatics. Without taking into consideration geometrical factors and structural fluctuations, we show that ions tend to be bound onto the protein surface at positions with strong potential but with polarity opposite to that of the ion. This observation is used to develop a method that uses a DelPhi-calculated potential map in conjunction with an in-house-developed clustering algorithm to predict nonspecific ion-binding sites. Although this approach distinguishes only the polarity of the ions, and not their chemical nature, it can predict nonspecific binding of positively or negatively charged ions with acceptable accuracy. One can use the predictions in the Poisson-Boltzmann approach by placing explicit ions in the predicted positions, which in turn will reduce the magnitude of the local potential and extend the limits of the Poisson-Boltzmann equation. In addition, one can use this approach to place the desired number of ions before conducting molecular-dynamics simulations to neutralize the net charge of the protein, because it was shown to perform better than standard screened Coulomb canned routines, or to predict ion-binding sites in proteins. This latter is especially true for proteins that are involved in ion transport, because such ions are loosely bound and very difficult to detect experimentally.
Collapse
|
9
|
Structural characterization of a lectin from the mushroom Marasmius oreades in complex with the blood group B trisaccharide and calcium. J Mol Biol 2009; 390:457-66. [PMID: 19426740 DOI: 10.1016/j.jmb.2009.04.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 11/21/2022]
Abstract
MOA (Marasmius oreades agglutinin), a lectin isolated from fruiting bodies of the mushroom M. oreades, specifically binds nonreducing terminal Galalpha(1,3)Gal carbohydrates, such as that which occurs in the xenotransplantation epitope Galalpha(1,3)Galbeta(1,4)GlcNAc and the branched blood group B determinant Galalpha(1,3)[Fucalpha(1,2)]Gal. Here, we present the crystal structure of MOA in complex with the blood group B trisaccharide solved at 1.8 A resolution. To our knowledge, this is the first blood-group-B-specific structure reported in complex with a blood group B determinant. The carbohydrate ligand binds to all three binding sites of the N-terminal beta-trefoil domain. Also, in this work, Ca(2+) was included in the crystals, and binding of Ca(2+) to the MOA homodimer altered the conformation of the C-terminal domain by opening up the cleft containing a putative catalytic site.
Collapse
|
10
|
Kamachi T, Takahata M, Toraya T, Yoshizawa K. What is the Identity of the Metal Ions in the Active Sites of Coenzyme B12-Dependent Diol Dehydratase? A Computational Mutation Analysis. J Phys Chem B 2009; 113:8435-8. [DOI: 10.1021/jp9001737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takashi Kamachi
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan, and Department of Bioscience and Biotechnology, Okayama University, Okayama 700-8530, Japan
| | - Masanori Takahata
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan, and Department of Bioscience and Biotechnology, Okayama University, Okayama 700-8530, Japan
| | - Tetsuo Toraya
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan, and Department of Bioscience and Biotechnology, Okayama University, Okayama 700-8530, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395, Japan, and Department of Bioscience and Biotechnology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
11
|
Verdino P, Westritschnig K, Valenta R, Keller W. The cross-reactive calcium-binding pollen allergen, Phl p 7, reveals a novel dimer assembly. EMBO J 2002; 21:5007-16. [PMID: 12356717 PMCID: PMC129048 DOI: 10.1093/emboj/cdf526] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The timothy grass pollen allergen Phl p 7 assembles most of the IgE epitopes of a novel family of 2 EF-hand calcium-binding proteins and therefore represents a diagnostic marker allergen and vaccine candidate for immunotherapy. Here we report the first three-dimensional structure of a representative of the 2 EF-hand allergen family, Phl p 7, in the calcium-bound form. The protein occurs as a novel dimer assembly with unique features: in contrast to well known EF-hand proteins such as calmodulin, parvalbumin or the S100 proteins, Phl p 7 adopts an extended conformation. Two protein monomers assemble in a head-to-tail arrangement with domain-swapped EF-hand pairing. The intertwined dimer adopts a barrel-like structure with an extended hydrophobic cavity providing a ligand-binding site. Calcium binding acts as a conformational switch between an open and a closed dimeric form of Phl p 7. These findings are interesting in the context of lipid- and calcium-dependent pollen tube growth. Furthermore, the structure of Phl p 7 allows for the rational development of vaccine strategies for treatment of sensitized allergic patients.
Collapse
Affiliation(s)
| | - Kerstin Westritschnig
- Institute of Chemistry, Structural Biology Group, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz and
Department of Pathophysiology, Molecular Immunopathology Group, General Hospital, University of Vienna, Waehringerguertel 18–20, A-1090 Vienna, Austria Corresponding author e-mail:
| | - Rudolf Valenta
- Institute of Chemistry, Structural Biology Group, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz and
Department of Pathophysiology, Molecular Immunopathology Group, General Hospital, University of Vienna, Waehringerguertel 18–20, A-1090 Vienna, Austria Corresponding author e-mail:
| | - Walter Keller
- Institute of Chemistry, Structural Biology Group, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz and
Department of Pathophysiology, Molecular Immunopathology Group, General Hospital, University of Vienna, Waehringerguertel 18–20, A-1090 Vienna, Austria Corresponding author e-mail:
| |
Collapse
|
12
|
Grote M, Hayek B, Reichelt R, Kraft D, Valenta R. Immunogold electron microscopic localization of the cross-reactive two-EF-hand calcium-binding birch pollen allergen Bet v 4 in dry and rehydrated birch pollen. Int Arch Allergy Immunol 1999; 120:287-94. [PMID: 10640912 DOI: 10.1159/000024281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, a novel family of low-molecular-weight (8-9 kD), two-EF-hand calcium-binding proteins has been described as allergens in plant pollens. Approximately 10% of pollen-allergic patients have IgE antibodies which cross-react with the two-EF-hand allergens in tree, grass and weed pollens. The aim of the present study was to localize Bet v 4, the two-EF-hand allergen from birch, in mature, dry pollen and to study the release of this allergen after hydration of the pollen by immunogold electron microscopy. METHODS Using completely anhydrous fixation techniques in combination with immunogold electron microscopy, we localized Bet v 4 and, for control purposes, the major birch pollen allergen Bet v 1, in dry birch pollen as well as in pollen grains after different periods of hydration. Parallel with these morphological studies, we monitored the release of Bet v 4 and Bet v 1 into aqueous supernatants of hydrated birch pollen grains by immunoblotting. RESULTS Bet v 4 was found in the electron-dense cytosol, in particular between the vesicles and cisternae of the endoplasmic reticulum, inside mitochondria and in the vegetative as well as in the generative nucleus. Bet v 1 was localized in similar cellular compartments except for the mitochondria. After 30 s to 1 min of hydration, Bet v 4 migrated into the pollen exine and into the aqueous supernatants. Bet v 1 also moved out of the pollen grain, though not as quickly as Bet v 4. CONCLUSION Bet v 4 represents an intracellular pollen protein which, following hydration of pollen grains, rapidly migrates to the pollen surface (exine) and is washed out. This behavior explains how Bet v 4, being primarily an intracellular pollen protein, becomes available to sensitize patients.
Collapse
Affiliation(s)
- M Grote
- Institute of Medical Physics and Biophysis, University of Münster, Münster, Germany.
| | | | | | | | | |
Collapse
|
13
|
Kuroki R, Yutani K. Structural and thermodynamic responses of mutations at a Ca2+ binding site engineered into human lysozyme. J Biol Chem 1998; 273:34310-5. [PMID: 9852096 DOI: 10.1074/jbc.273.51.34310] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural determinants of Ca2+ binding sites within proteins typically comprise several acidic residues in appropriate juxtaposition. Three residues (Ala-83, Gln-86, and Ala-92) in human lysozyme are characteristically mutated to Lys, Asp, and Asp, respectively, in natural Ca2+ binding lysozymes and alpha-lactalbumins. The effects of these mutations on the stability and Ca2+ binding properties of human lysozyme were investigated using calorimetry and were interpreted with crystal structures. The double mutant, in which Glu-86 and Ala-92 were replaced with Asp, clearly showed Ca2+ binding affinity, whereas neither point mutant showed Ca2+ affinity, indicating that both residues are essential. The further mutation of Ala-83 --> Lys did not affect the Ca2+ binding of the double mutant. The point mutations Ala-83 --> Lys and Glu-86 --> Asp did not affect the stability, whereas the mutation Ala-92 --> Asp was about 1.3 kcal/mol less stable. Structural analyses showed that both Asp-86 and Lys-83 were exposed to solvent. Side chains of Asp-86 and Asp-91 were rotated in opposite directions about chi1 angle, as if to reduce the electrostatic repulsion. The charged amino acids at the Ca2+ binding site did not significantly affect stability of the protein, possibly because of the local conformational change of the side chains.
Collapse
Affiliation(s)
- R Kuroki
- Central Laboratories for Key Technology, Kirin Brewery Co. Ltd., 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236 Japan.
| | | |
Collapse
|
14
|
Valenta R, Hayek B, Seiberler S, Bugajska-Schretter A, Niederberger V, Twardosz A, Natter S, Vangelista L, Pastore A, Spitzauer S, Kraft D. Calcium-binding allergens: from plants to man. Int Arch Allergy Immunol 1998; 117:160-6. [PMID: 9935306 DOI: 10.1159/000024005] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Calcium-binding proteins contain a variable number of motifs, termed EF-hands, which consist of two perpendicularly placed alpha-helics and an inter-helical loop forming a single calcium-binding site. Due to their ability to bind and transport calcium as well as to interact with a variety of ligands in a calcium-dependent manner, they fulfill important biological functions in eukaryotic cells. After parvalbumin, a three EF-hand fish allergen, calcium-binding allergens were discovered in pollens of trees. grasses and weeds and, recently, as autoallergens in man. Although only a small percentage of atopic individuals displays IgE reactivity to calcium-binding allergens, these allergens may be important because of their ability to cross-sensitize allergic individuals. Confrontation and stability++ as well as IgE recognition of calcium-binding allergens greatly depend on the presence of protein-bound calcium ions. It is thus likely that hypoallergenic derivatives of calcium-binding allergens can be engineered by recombinant DNA technology for immunotherapy++ of sensitized patients.
Collapse
Affiliation(s)
- R Valenta
- Department of General and Experimental Pathology, University of Vienna,Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bugajska-Schretter A, Elfman L, Fuchs T, Kapiotis S, Rumpold H, Valenta R, Spitzauer S. Parvalbumin, a cross-reactive fish allergen, contains IgE-binding epitopes sensitive to periodate treatment and Ca2+ depletion. J Allergy Clin Immunol 1998; 101:67-74. [PMID: 9449503 DOI: 10.1016/s0091-6749(98)70195-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Type I allergy to fish is a severe health problem in countries in which a large percentage of the population derive income from fishing. OBJECTIVE The aim of the study was to characterize cross-reactive IgE-binding components in six different fish species (cod, tuna, salmon, perch, carp, and eel). The effect of reducing extraction conditions, periodate treatment, and depletion of Ca2+ on binding of IgE to the allergens was investigated. METHODS Extracts were prepared under nonreducing and reducing conditions. IgE-binding components were characterized by IgE immunoblotting, and cross-reactive epitopes were studied by IgE-immunoblot inhibition experiments. To reveal calcium-sensitive or carbohydrate-containing epitopes, nitrocellulose-blotted extracts were exposed to ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) and periodate. RESULTS Sera from all patients allergic to fish (n = 30) displayed IgE reactivity to parvalbumin, a 12 kd protein present in fish extracts from six different species. Reducing extraction conditions had no effect on IgE binding to parvalbumins, whereas periodate treatment and depletion of protein-bound calcium led to a substantial reduction of IgE binding. Parvalbumins from six different species contained cross-reactive IgE epitopes. CONCLUSION Parvalbumin represents a cross-reactive fish allergen. It contains IgE epitopes that are sensitive to periodate treatment and Ca2+-depletion.
Collapse
Affiliation(s)
- A Bugajska-Schretter
- Institute of Medical and Chemical Laboratory Diagnostics, AKH, University of Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
16
|
Strynadka NC, Cherney M, Sielecki AR, Li MX, Smillie LB, James MN. Structural details of a calcium-induced molecular switch: X-ray crystallographic analysis of the calcium-saturated N-terminal domain of troponin C at 1.75 A resolution. J Mol Biol 1997; 273:238-55. [PMID: 9367759 DOI: 10.1006/jmbi.1997.1257] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have solved and refined the crystal and molecular structures of the calcium-saturated N-terminal domain of troponin C (TnC) to 1.75 A resolution. This has allowed for the first detailed analysis of the calcium binding sites of this molecular switch in the calcium-loaded state. The results provide support for the proposed binding order and qualitatively, for the affinity of calcium in the two regulatory calcium binding sites. Based on a comparison with the high-resolution apo-form of TnC we propose a possible mechanism for the calcium-mediated exposure of a large hydrophobic surface that is central to the initiation of muscle contraction within the cell.
Collapse
Affiliation(s)
- N C Strynadka
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Houdusse A, Cohen C. Structure of the regulatory domain of scallop myosin at 2 A resolution: implications for regulation. Structure 1996; 4:21-32. [PMID: 8805510 DOI: 10.1016/s0969-2126(96)00006-8] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND In contrast to the myosins of vertebrate skeletal muscle, molluscan myosins are regulated molecules whose enzymatic activity is switched on by the direct binding of Ca2+. The head portion (S1) of the molecule consists of a motor domain and a regulatory domain (RD) containing a 'regulatory' and an 'essential' light chain (RLC and ELC, respectively). The structures of scallop myosin RD with bound Ca2+, as well as the S1 fragment of chicken skeletal muscle myosin, have been determined previously to 2.8 A resolution. RESULTS We have determined the structure at 2.0 A resolution of scallop myosin RD with bound Ca2+. The unusual coordination at the specific Ca(2+)-binding site in the ELC has now been clarified, as has the structural basis for Mg2+ binding to the RLC. A comparison of the scallop RD structure with that in the chicken S1 structure shows differences in the bending of the two RDs in two different places. CONCLUSIONS Based on these structural results, a model for regulation is proposed in which the Ca(2+)-bound RD is a rigid structure, and transient flexibility of the Ca(2+)-free RD allows the myosin heads to make stabilizing intramolecular linkage which shut off the motor.
Collapse
Affiliation(s)
- A Houdusse
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02254-9110, USA
| | | |
Collapse
|
18
|
Abstract
NMR structures of calmodulin, troponin C and related proteins are providing the atomic details of the conformational changes that transduce Ca2+ signals into mechanical or metabolic responses.
Collapse
|
19
|
Zhang M, Tanaka T, Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. NATURE STRUCTURAL BIOLOGY 1995; 2:758-67. [PMID: 7552747 DOI: 10.1038/nsb0995-758] [Citation(s) in RCA: 518] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The solution structure of Ca(2+)-free calmodulin has been determined by NMR spectroscopy, and is compared to the previously reported structure of the Ca(2+)-saturated form. The removal of Ca2+ causes the interhelical angles of four EF-hand motifs to increase by 36 degrees-44 degrees. This leads to major changes in surface properties, including the closure of the deep hydrophobic cavity essential for target protein recognition. Concerted movements of helices A and D with respect to B and C, and of helices E and H with respect to F and G are likely responsible for the cooperative Ca(2+)-binding property observed between two adjacent EF-hand sites in the amino- and carboxy-terminal domains.
Collapse
Affiliation(s)
- M Zhang
- Division of Molecular and Structural Biology, Ontario Cancer Institute, University of Toronto, Canada
| | | | | |
Collapse
|
20
|
MacKenzie CR, Clark ID, Evans SV, Hill IE, MacManus JP, Dubuc G, Bundle DR, Narang SA, Young NM, Szabo AG. Bifunctional fusion proteins consisting of a single-chain antibody and an engineered lanthanide-binding protein. IMMUNOTECHNOLOGY : AN INTERNATIONAL JOURNAL OF IMMUNOLOGICAL ENGINEERING 1995; 1:139-50. [PMID: 9373342 DOI: 10.1016/1380-2933(95)00015-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The combination of an antibody fragment with a lanthanide chelating protein has desirable characteristics for fluorescence-based immunoassays and tumor radioimmunotherapy. As a model for this design, a fusion protein consisting of a single-chain antibody linked to an engineered version of oncomodulin, a protein with two Ca(2+)-binding motifs (the CD and EF loops), was produced by secretion from Escherichia coli in good yield. The single-chain antibody was specific for a Salmonella O-polysaccharide. The CD loop of oncomodulin had been redesigned to bind lanthanide ions with high affinity. The fusion protein was shown to have antigen-binding activity that was comparable to that of the unfused single-chain antibody, to bind Tb3+ with very high affinity and to give strong, sensitized Tb3+ luminescence via excitation of the tryptophan residue in the CD loop. A second fusion protein containing a 30-residue helix-loop-helix motif as the lanthanide-binding component was also prepared, but showed considerably lower solubility. Competition for Tb3+ binding by a series of metal chelators indicated that the affinities of the oncomodulin and 30 residue fusions for Tb3+ were approximately 10(11) M-1 and 10(7) M-1, respectively. Time-resolved lanthanide luminescence photography of electrophoresis gels demonstrated that the helix-loop-helix Ca(2+)-binding could be used to specifically visualize the scFv fragment.
Collapse
Affiliation(s)
- C R MacKenzie
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Travé G, Pastore A, Hyvönen M, Saraste M. The C-terminal domain of alpha-spectrin is structurally related to calmodulin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:35-42. [PMID: 7851407 DOI: 10.1111/j.1432-1033.1995.tb20357.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An alignment of amino acid sequences suggests that the spectrin domain, which contains two EF-hand calcium-binding motifs, is structurally related to calmodulin. It is possible to align approximately 160 residues at the C-terminus of alpha-spectrin with the entire calmodulin sequence. We have expressed this domain in Escherichia coli and purified it. Circular dichroic and nuclear magnetic resonance spectroscopy show that the protein is folded and mostly helical. The conformation of the protein, as monitored spectroscopically, is sensitive to calcium at 0.1-1.0 mM. Equilibrium dialysis shows that there are two binding sites within this domain, with affinities in the 0.5 mM range. The domain can be split into N-terminal and C-terminal halves which fold independently. Only the N-terminal subdomain binds calcium. These data suggest that the C-terminus of alpha-spectrin has a domain with a calmodulin fold and two calcium-binding sites. Sequence alignments suggest that the related domains in alpha-actinin, and possibly in dystrophin, may share the same calmodulin-like structure. However, only non-muscle alpha-actinins appear to have one or two EF-hand(s) with the calcium-binding consensus sequence, and a strict consensus is not found in the muscle alpha-actinins or dystrophins.
Collapse
Affiliation(s)
- G Travé
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
22
|
Linse S, Forsén S. Determinants that govern high-affinity calcium binding. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1995; 30:89-151. [PMID: 7695999 DOI: 10.1016/s1040-7952(05)80005-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- S Linse
- Lund University, Chemical Centre, Sweden
| | | |
Collapse
|
23
|
Markus MA, Nakayama T, Matsudaira P, Wagner G. 1H, 15N, 13C and 13CO resonance assignments and secondary structure of villin 14T, a domain conserved among actin-severing proteins. JOURNAL OF BIOMOLECULAR NMR 1994; 4:553-574. [PMID: 8075541 DOI: 10.1007/bf00156620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Sequence-specific assignments have been made for the 1H, 15N, 13C and 13CO resonances of 14T, the 126-residue amino-terminal domain of the actin-severing protein villin. Villin is a member of a family of proteins that regulate cytoskeletal actin by severing, capping and nucleating actin filaments. Actin binding is dependent on calcium and disrupted by phosphatidyl inositol 4,5-bisphosphate. Actin-severing proteins are built from three or six repeats of a conserved domain, represented by 14T. Expression in Escherichia coli facilitated incorporation of 15N and 13C isotopes and application of triple-resonance, backbone-directed strategies for the sequential assignments. Elements of regular secondary structure have been identified by characteristic patterns of NOE cross peaks and values of vicinal 3JHNH alpha coupling constants. Amide protons that exchange slowly (rates less than 1.0 x 10(-4) per min) are concentrated in the central beta-sheet and the second and third alpha-helices, suggesting that these elements of secondary structure form very stable hydrogen bonds. Assignments for the amide nitrogens and protons have been examined as a function of pH and calcium concentration. Based on the conservation of chemical shifts in the core of the domain, villin 14T maintains the same overall fold in the pH range from 4.15 to 6.91 and the calcium range from 0 to 50 mM. The calcium data indicate the presence of two calcium-binding sites and suggest their locations.
Collapse
Affiliation(s)
- M A Markus
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138
| | | | | | | |
Collapse
|
24
|
Weber C, Lee V, Chazin W, Huang B. High level expression in Escherichia coli and characterization of the EF-hand calcium-binding protein caltractin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40750-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
Skelton NJ, Kördel J, Akke M, Forsén S, Chazin WJ. Signal transduction versus buffering activity in Ca(2+)-binding proteins. NATURE STRUCTURAL BIOLOGY 1994; 1:239-45. [PMID: 7656053 DOI: 10.1038/nsb0494-239] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The three-dimensional structure of calbindin D9k in the absence of Ca2+ has been determined using NMR spectroscopy in solution, allowing the first direct analysis of the consequences of Ca2+ binding for a member of the calmodulin superfamily of proteins. The overall response in calbindin D9k is much attenuated relative to the current model for calmodulin and troponin C. These results demonstrate a novel mechanism for modulating the conformational response to Ca(2+)-binding in calmodulin superfamily proteins and provide insights into how their Ca(2+)-binding domains can be fine-tuned to remain essentially intact or respond strongly to ion binding, in relation to their functional requirements.
Collapse
Affiliation(s)
- N J Skelton
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
26
|
Xie X, Harrison DH, Schlichting I, Sweet RM, Kalabokis VN, Szent-Györgyi AG, Cohen C. Structure of the regulatory domain of scallop myosin at 2.8 A resolution. Nature 1994; 368:306-12. [PMID: 8127365 DOI: 10.1038/368306a0] [Citation(s) in RCA: 247] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The regulatory domain of scallop myosin is a three-chain protein complex that switches on this motor in response to Ca2+ binding. This domain has been crystallized and the structure solved to 2.8 A resolution. Side-chain interactions link the two light chains in tandem to adjacent segments of the heavy chain bearing the IQ-sequence motif. The Ca(2+)-binding site is a novel EF-hand motif on the essential light chain and is stabilized by linkages involving the heavy chain and both light chains, accounting for the requirement of all three chains for Ca2+ binding and regulation in the intact myosin molecule.
Collapse
Affiliation(s)
- X Xie
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02254-9110
| | | | | | | | | | | | | |
Collapse
|
27
|
Markus MA, Nakayama T, Matsudaira P, Wagner G. Solution structure of villin 14T, a domain conserved among actin-severing proteins. Protein Sci 1994; 3:70-81. [PMID: 8142900 PMCID: PMC2142479 DOI: 10.1002/pro.5560030110] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The solution structure of the N-terminal domain of the actin-severing protein villin has been determined by multidimensional heteronuclear resonance spectroscopy. Villin is a member of a family of actin-severing proteins that regulate the organization of actin in the eukaryotic cytoskeleton. Members of this family are built from 3 or 6 homologous repeats of a structural domain of approximately 130 amino acids that is unrelated to any previously known structure. The N-terminal domain of villin (14T) contains a central beta-sheet with 4 antiparallel strands and a fifth parallel strand at one edge. This sheet is sandwiched between 2 helices on one side and a 2-stranded parallel beta-sheet with another helix on the other side. The strongly conserved sequence characteristic of the protein family corresponds to internal hydrophobic residues. Calcium titration experiments suggest that there are 2 binding sites for Ca2+, a stronger site near the N-terminal end of the longest helix, with a Kd of 1.8 +/- 0.4 mM, and a weaker site near the C-terminal end of the same helix, with a Kd of 11 +/- 2 mM. Mutational and biochemical studies of this domain in several members of the family suggest that the actin monomer binding site is near the parallel strand at the edge of the central beta-sheet.
Collapse
Affiliation(s)
- M A Markus
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | |
Collapse
|
28
|
Ngai S, Sönnichsen F, Hodges R. Photochemical cross-linking between native rabbit skeletal troponin C and benzoylbenzoyl-troponin I inhibitory peptide, residues 104-115. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42150-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Scott DL, Sigler PB. Structure and catalytic mechanism of secretory phospholipases A2. ADVANCES IN PROTEIN CHEMISTRY 1994; 45:53-88. [PMID: 8154374 DOI: 10.1016/s0065-3233(08)60638-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D L Scott
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | | |
Collapse
|
30
|
Mehler EL, Kushick JN, Weinstein H. Consequences of Sequential Ca2+Occupancy for the Structure and Dynamics of CalbindinD9K: Computational Simulations and Comparison to Experimental Determinations in Solution. MOLECULAR SIMULATION 1993. [DOI: 10.1080/08927029308022171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Linse S, Thulin E, Sellers P. Disulfide bonds in homo- and heterodimers of EF-hand subdomains of calbindin D9k: stability, calcium binding, and NMR studies. Protein Sci 1993; 2:985-1000. [PMID: 8318902 PMCID: PMC2142409 DOI: 10.1002/pro.5560020612] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of decreased protein flexibility on the stability and calcium binding properties of calbindin D9k has been addressed in studies of a disulfide bridged calbindin D9k mutant, denoted (L39C + P43M + I73C), with substitutions Leu 39-->Cys, Ile 73-->Cys, and Pro 43-->Met. Backbone 1H NMR assignments show that the disulfide bond, which forms spontaneously under air oxidation, is well accommodated. The disulfide is inserted on the opposite end of the protein molecule with respect to the calcium sites, to avoid direct interference with these sites, as confirmed by 113Cd NMR. The effect of the disulfide bond on calcium binding was assessed by titrations in the presence of a chromophoric chelator. A small but significant effect on the cooperativity was found, as well as a very modest reduction in calcium affinity. The disulfide bond increases Tm, the transition midpoint of thermal denaturation, of calcium free calbindin D9k from 85 to 95 degrees C and Cm, the urea concentration of half denaturation, from 5.3 to 8.0 M. Calbindins with one covalent bond linking the two EF-hand subdomains are equally stable regardless if the covalent link is the 43-44 peptide bond or the disulfide bond. Kinetic remixing experiments show that separated CNBr fragments of (L39C + P43M + I73C), each comprising one EF-hand, form disulfide linked homodimers. Each homodimer binds two calcium ions with positive co-operativity, and an average affinity of 10(6) M-1. Disulfide linkage dramatically increases the stability of each homodimer. For the homodimer of the C-terminal fragment Tm increases from 59 +/- 2 without covalent linkage to 91 +/- 2 degrees C with disulfide, and Cm from approximately 1.5 to 7.5 M. The overall topology of this homodimer is derived from 1H NMR assignments and a few key NOEs.
Collapse
Affiliation(s)
- S Linse
- Lund University, Chemical Center, Sweden
| | | | | |
Collapse
|
32
|
Hazes B, Magnus KA, Bonaventura C, Bonaventura J, Dauter Z, Kalk KH, Hol WG. Crystal structure of deoxygenated Limulus polyphemus subunit II hemocyanin at 2.18 A resolution: clues for a mechanism for allosteric regulation. Protein Sci 1993; 2:597-619. [PMID: 8518732 PMCID: PMC2142367 DOI: 10.1002/pro.5560020411] [Citation(s) in RCA: 264] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The crystal structure of Limulus polyphemus subunit type II hemocyanin in the deoxygenated state has been determined to a resolution of 2.18 A. Phase information for this first structure of a cheliceratan hemocyanin was obtained by molecular replacement using the crustacean hemocyanin structure of Panulirus interruptus. The most striking observation in the Limulus structure is the unexpectedly large distance of 4.6 A between both copper ions in the oxygen-binding site. Each copper has approximate trigonal planar coordination by three histidine N epsilon atoms. No bridging ligand between the copper ions could be detected. Other important new discoveries are (1) the presence of a cis-peptide bond between Glu 309 and Ser 310, with the carbonyl oxygen of the peptide plane hydrogen bonded to the N delta atom of the copper B ligand His 324; (2) localization of a chloride-binding site in the interface between the first and second domain; (3) localization of a putative calcium-binding site in the third domain. Furthermore, comparison of Limulus versus Panulirus hemocyanin revealed considerable tertiary and quaternary rigid body movements, although the overall folds are similar. Within the subunit, the first domain is rotated by about 7.5 degrees with respect to the other two domains, whereas within the hexamer the major movement is a 3.1 degrees rotation of the trimers with respect to each other. The rigid body rotation of the first domain suggests a structural mechanism for the allosteric regulation by chloride ions and probably causes the cooperative transition of the hexamer between low and high oxygen affinity states. In this postulated mechanism, the fully conserved Phe49 is the key residue that couples conformational changes of the dinuclear copper site into movements of the first domain.
Collapse
Affiliation(s)
- B Hazes
- BIOSON Research Institute, Department of Chemistry, University of Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Rashin AA. Aspects of protein energetics and dynamics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1993; 60:73-200. [PMID: 8362069 DOI: 10.1016/0079-6107(93)90017-e] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A A Rashin
- Biosym Technologies Inc, Parsippany, NJ 07054
| |
Collapse
|
34
|
Bigelow DJ, Inesi G. Contributions of chemical derivatization and spectroscopic studies to the characterization of the Ca2+ transport ATPase of sarcoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1113:323-38. [PMID: 1450205 DOI: 10.1016/0304-4157(92)90005-u] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- D J Bigelow
- Department of Biochemistry, University of Kansas, Lawrence
| | | |
Collapse
|
35
|
Debus RJ. The manganese and calcium ions of photosynthetic oxygen evolution. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1102:269-352. [PMID: 1390827 DOI: 10.1016/0005-2728(92)90133-m] [Citation(s) in RCA: 970] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R J Debus
- Department of Biochemistry, University of California Riverside 92521-0129
| |
Collapse
|
36
|
Affiliation(s)
- Z Grabarek
- Department of Muscle Research, Boston Biomedical Research Institute, MA 02114
| | | | | |
Collapse
|