1
|
Zhao Y, Zhang L, Zou C, Han H, Li C, Li X, Song L. Chlorbenzuron downregulated HcLCP-17 expression by depressing two 20E-responsive transcription factors Br-C and βFTZ-F1 in Hyphantria cunea (Lepidoptera: Erebidae) larvae. PEST MANAGEMENT SCIENCE 2024. [PMID: 39212109 DOI: 10.1002/ps.8377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Cuticular proteins (CPs) play essential roles in forming cuticular structures in insects. However, the specific functions and regulatory mechanisms of CPs remain largely unexplored. In this study, the Larval cuticular protein 17 (HcLCP-17) gene was identified from Hyphantria cunea, a highly destructive and polyphagous forest pest. To investigate the role of HcLCP-17 in cuticular function and transcriptional regulation mediated by 20E-responsive transcription factors (ERTFs), we employed RNA interference (RNAi) and yeast one-hybrid assay techniques. Additionally, we examined the molecular mechanism by which chlorbenzuron, a type of benzoylphenylurea (BPU) that functions as a chitin synthesis inhibitor (CSI), affects the 20E signaling pathway and ultimately regulates HcLCP-17 expression. RESULTS HcLCP-17 encodes a polypeptide consisting of 393 amino acids, which includes a chitin-binding domain. Silencing HcLCP-17 resulted in a disturbance in the structural organization of the larval cuticle and a notable reduction in chitin levels. HcLCP-17 expression was controlled by the interaction between Broad-Complex (Br-C) and beta Fushi Tarazu Factor-1 (βFTZ-F1) with its promoter fragment. Furthermore, the inhibitory effect of chlorbenzuron on HcLCP-17 expression was found to be potentially mediated by Br-C and βFTZ-F1. CONCLUSION The study presents a novel mode of action for the 20E signaling pathway in regulating the expression of CPs and reveals the potential mode-of-action of BPUs in insect cuticles. These findings provide a theoretical basis for future utilization of LCP-17 as a pesticide target making a significant contribution to the development of effective pest management strategies. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuecheng Zhao
- School of Forestry, Northeast Forestry University, Harbin, P. R. China
- School of Forestry, Beihua University, Jilin, P. R. China
| | - Lu Zhang
- School of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Chuanshan Zou
- School of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Huilin Han
- School of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Chengde Li
- School of Forestry, Northeast Forestry University, Harbin, P. R. China
| | - Xingpeng Li
- School of Forestry, Beihua University, Jilin, P. R. China
| | - Liwen Song
- Jilin Provincial Academy of Forestry Sciences, Changchun, P. R. China
| |
Collapse
|
2
|
Zamora-Briseño JA, Schunke JM, Arteaga-Vázquez MA, Arredondo J, Tejeda MT, Ascencio-Ibáñez JT, Díaz-Fleischer F. Transcriptional response of laboratory-reared Mexican fruit flies ( Anastrepha ludens Loew) to desiccation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:563-570. [PMID: 39295441 DOI: 10.1017/s0007485324000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Confronting environments with low relative humidity is one of the main challenges faced by insects with expanding distribution ranges. Anastrepha ludens (the Mexican fruit fly) has evolved to cope with the variable conditions encountered during its lifetime, which allows it to colonise a wide range of environments. However, our understanding of the mechanisms underpinning the ability of this species to confront environments with low relative humidity is incomplete. In this sense, omic approaches such as transcriptomics can be helpful for advancing our knowledge on how this species copes with desiccation stress. Considering this, in this study, we performed transcriptomic analyses to compare the molecular responses of laboratory-reared A. ludens exposed and unexposed to desiccation. Data from the transcriptome analyses indicated that the responses to desiccation are shared by both sexes. We identified the up-regulation of transcripts encoding proteins involved in lipid metabolism and membrane remodelling, as well as proteases and cuticular proteins. Our results provide a framework for understanding the response to desiccation stress in one of the most invasive fruit fly species in the world.
Collapse
Affiliation(s)
| | - James M Schunke
- Department of Structural and Molecular Biochemistry, North Carolina State University
| | | | - José Arredondo
- PROGRAMA MOSCAMED, SADER-IICA, Metapa de Domínguez, Chiapas, México
| | - Marco T Tejeda
- PROGRAMA MOSCAMED, SADER-IICA, Metapa de Domínguez, Chiapas, México
| | | | | |
Collapse
|
3
|
He Q, Fan X, Wang S, Chen S, Chen J. Juvenile hormone inhibits adult cuticle formation in Drosophila melanogaster through Kr-h1/Dnmt2-mediated DNA methylation of Acp65A promoter. INSECT MOLECULAR BIOLOGY 2024; 33:124-135. [PMID: 37916965 DOI: 10.1111/imb.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Differentiation of imaginal epidermal cells of Drosophila melanogaster to form adult cuticles occurs at approximately 40-93 h after puparium formation. Juvenile hormone (JH) given at pupariation results in formation of a second pupal cuticle in the abdomen instead of the adult cuticle. Although the adult cuticle gene Acp65A has been reported to be down-regulated following JH treatment, the regulatory mechanism remains unclear. Here, we found that the JH primary response gene Krüppel homologue 1 (Kr-h1) plays a vital role in the repression of adult cuticle formation through the mediation of JH action. Overexpression of Kr-h1 mimicked-while knocking down of Kr-h1 attenuated-the inhibitory action of JH on the formation of the adult abdominal cuticle. Further, we found that Kr-h1 inhibited the transcription of Acp65A by directly binding to the consensus Kr-h1 binding site (KBS) within the Acp65A promoter region. Moreover, the DNA methyltransferase Dnmt2 was shown to interact with Kr-h1, combined with the KBS to promote the DNA methylation of sequences around the KBS, in turn inhibiting the transcription of Acp65A. This study advances our understanding of the molecular basis of the "status quo" action of JH on the Drosophila adult metamorphosis.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiaochun Fan
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shunxin Wang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
4
|
Zheng Y, Feng Y, Li Z, Wang J. Genome-wide identification of cuticle protein superfamily in Frankliniella occidentalis provide insight into the control of both insect vectors and plant virus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22102. [PMID: 38500452 DOI: 10.1002/arch.22102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/10/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The structural cuticle proteins (CPs) play important roles in the development and fitness of insects. However, knowledge about CP gene superfamily is limited in virus-transmitting insect vectors, although its importance on transmission of plant virus has been gradually emphasized. In this study, the genome-wide identification of CP superfamily was conducted in western flower thrips Frankliniella occidentalis that is the globally invasive pest and plant virus vector pest. The pest transmits notorious tomato spotted wilt virus (TSWV) around the world, causing large damage to a wide array of plants. One hundred and twenty-eight F. occidentalis CP genes (FoCPs) were annotated in this study and they were classified into 10 distinct families, including 68 CPRs, 16 CPAP1s, 6 CPAP3s, 2 CPCFCs, 10 Tweedles, 4 CPFs, 16 CPLCPs, and 6 CPGs. The comprehensive analysis was performed including phylogenetic relationship, gene location and gene expression profiles during different development stages of F. occidentalis. Transcriptome analysis revealed more than 30% FoCPs were upregulated at least 1.5-fold when F. occidentalis was infected by TSWV, indicating their potential involvement in TSWV interactions. Our study provided an overview of F. occidentalis CP superfamily. The study gave a better understand of CP's role in development and virus transmission, which provided clues for reducing viral damages through silencing CP genes in insect vectors.
Collapse
Affiliation(s)
- Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yinghao Feng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhejin Li
- College of Biological and Agricultural Sciences, HongHe University, Mengzi, China
| | - Junwen Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Liu W, Zhang C, Zhang H, Ma S, Deng J, Wang D, Chang Z, Yang J. Molecular basis for curvature formation in SepF polymerization. Proc Natl Acad Sci U S A 2024; 121:e2316922121. [PMID: 38381790 PMCID: PMC10907229 DOI: 10.1073/pnas.2316922121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 02/23/2024] Open
Abstract
The self-assembly of proteins into curved structures plays an important role in many cellular processes. One good example of this phenomenon is observed in the septum-forming protein (SepF), which forms polymerized structures with uniform curvatures. SepF is essential for regulating the thickness of the septum during bacteria cell division. In Bacillus subtilis, SepF polymerization involves two distinct interfaces, the β-β and α-α interfaces, which define the assembly unit and contact interfaces, respectively. However, the mechanism of curvature formation in this step is not yet fully understood. In this study, we employed solid-state NMR (SSNMR) to compare the structures of cyclic wild-type SepF assemblies with linear assemblies resulting from a mutation of G137 on the β-β interface. Our results demonstrate that while the sequence differences arise from the internal assembly unit, the dramatic changes in the shape of the assemblies depend on the α-α interface between the units. We further provide atomic-level insights into how the angular variation of the α2 helix on the α-α interface affects the curvature of the assemblies, using a combination of SSNMR, cryo-electron microscopy, and simulation methods. Our findings shed light on the shape control of protein assemblies and emphasize the importance of interhelical contacts in retaining curvature.
Collapse
Affiliation(s)
- Wenjing Liu
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Chang Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Huawei Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, People’s Republic of China
- Southern University of Science and Technology, Shenzhen518055, People’s Republic of China
| | - Shaojie Ma
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Jing Deng
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Daping Wang
- Southern University of Science and Technology, Shenzhen518055, People’s Republic of China
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Ziwei Chang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan430071, People’s Republic of China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan430081, People’s Republic of China
| |
Collapse
|
6
|
Zheng J, Wu P, Huang Y, Zhang Y, Qiu L. Identification of insect cuticular protein genes LCP17 and SgAbd5 from Helicoverpa armigera and evaluation their roles in fenvalerate resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105775. [PMID: 38458682 DOI: 10.1016/j.pestbp.2024.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
Insect cuticular protein (ICP) plays an important role in insect growth and development. However, research on the role of ICP in insecticide resistance is very limited. In this study, insect cuticular protein genes LCP17 and SgAbd5 were cloned and characterized in Helicoverpa armigera based on previous transcriptome data. The functions of LCP17 and SgAbd5 genes in fenvalerate resistance were assessed by RNA interference (RNAi), and their response to fenvalerate was further detected. The results showed that LCP17 and SgAbd5 were overexpressed in the fenvalerate-resistant strain comparing with a susceptible strain. The open reading frames of LCP17 and SgAbd5 genes were 423 bp and 369 bp, encoding 141 and 123 amino acids, respectively. LCP17 and SgAbd5 genes were highly expressed in the larval stage, but less expressed in the adult and pupal stages. The expression level of LCP17 and SgAbd5 genes increased significantly after fenvalerate treatment at 24 h. When the cotton bollworms larvae were exposed to fenvalerate at LD50 level, RNAi-mediated silencing of LCP17 and SgAbd5 genes increased the mortality from 50.68% to 68.67% and 63.89%, respectively; the mortality increased to even higher level, which was 73.61%, when these two genes were co-silenced. Moreover, silencing of these two genes caused the cuticle lamellar structure to become loose, which led to increased penetration of fenvalerate into the larvae. The results suggested that LCP17 and SgAbd5 may be involved in the resistance of cotton bollworm to fenvalerate, and LCP17 and SgAbd5 could serve as potential targets for H. armigera control.
Collapse
Affiliation(s)
- Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Zhang ZT, Wang H, Dong H, Cong B. Comparative hemolymph proteomic analyses of the freezing and resistance-freezing Ostrinia furnacalis (Guenée). Sci Rep 2024; 14:2580. [PMID: 38297109 PMCID: PMC10830562 DOI: 10.1038/s41598-024-52792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
The Asian corn borer, Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae), is one of the most harmful pests of maize in Asia. It poses a significant threat to maize production, causing economic losses due to its strong ecological adaptation. In this study, we compared and analyzed the hemolymph proteome between freezing and resistance-freezing O. furnacalis strains using two-dimensional gel electrophoresis to gain insights into the mechanisms of cold resistance. The results revealed that 300-400 hemolymph protein spots were common, with 24 spots showing differences between the two strains. Spectrometry analysis revealed 21 protein spots, including 17 upregulated spots and 4 downregulated ones. The expression of upregulation/downregulation proteins plays a crucial role in the metabolism, energy supply, and defense reaction of insects. Proteomics research not only provides a method for investigating protein expression patterns but also identifies numerous attractive candidates for further exploration.
Collapse
Affiliation(s)
- Zhu-Ting Zhang
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
- Kaili University, 556011, Kaili, People's Republic of China
| | - Huan Wang
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Hui Dong
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Bin Cong
- Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| |
Collapse
|
8
|
Frka-Petesic B, Parton TG, Honorato-Rios C, Narkevicius A, Ballu K, Shen Q, Lu Z, Ogawa Y, Haataja JS, Droguet BE, Parker RM, Vignolini S. Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications. Chem Rev 2023; 123:12595-12756. [PMID: 38011110 PMCID: PMC10729353 DOI: 10.1021/acs.chemrev.2c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 11/29/2023]
Abstract
Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration. Much of this interest arises from the tendency of these colloidally stable nanoparticles to self-organize in water into a lyotropic cholesteric liquid crystal, which can be readily manipulated in terms of its periodicity, structure, and geometry. Importantly, this helicoidal ordering can be retained into the solid-state, offering an accessible route to complex nanostructured films, coatings, and particles. In this review, the process of forming iridescent, structurally colored films from suspensions of cellulose nanocrystals (CNCs) is summarized and the mechanisms underlying the chemical and physical phenomena at each stage in the process explored. Analogy is then drawn with chitin nanocrystals (ChNCs), allowing for key differences to be critically assessed and strategies toward structural coloration to be presented. Importantly, the progress toward translating this technology from academia to industry is summarized, with unresolved scientific and technical questions put forward as challenges to the community.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- International
Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Thomas G. Parton
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Camila Honorato-Rios
- Department
of Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Aurimas Narkevicius
- B
CUBE − Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kevin Ballu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Qingchen Shen
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Zihao Lu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yu Ogawa
- CERMAV-CNRS,
CS40700, 38041 Grenoble cedex 9, France
| | - Johannes S. Haataja
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box
15100, Aalto, Espoo FI-00076, Finland
| | - Benjamin E. Droguet
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Richard M. Parker
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
9
|
Ohkubo S, Shintaku T, Mine S, Yamamoto DS, Togawa T. Mosquitoes Possess Specialized Cuticular Proteins That Are Evolutionarily Related to the Elastic Protein Resilin. INSECTS 2023; 14:941. [PMID: 38132614 PMCID: PMC10743668 DOI: 10.3390/insects14120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Resilin is an elastic protein that is vital to insects' vigorous movement. Canonical resilin proteins possess the R&R Consensus, a chitin-binding domain conserved in a family of cuticular proteins, and highly repetitive sequences conferring elastic properties. In the malaria vector mosquito, Anopheles gambiae, however, a cuticular protein has been found that has an R&R Consensus resembling that of resilin but lacks the repetitive sequences (here, we call it resilin-related or resilin-r). The relationship between resilin-r and resilin was unclear. It was also unknown whether resilin-r is conserved in mosquitoes. In this paper, phylogenetic and structural analyses were performed to reveal the relationship of resilin homologous proteins from holometabolous insects. Their chitin-binding abilities were also assessed. A resilin-r was found in each mosquito species, and these proteins constitute a clade with resilin from other insects based on the R&R Consensus sequences, indicating an evolutionary relationship between resilin-r and resilin. The resilin-r showed chitin-binding activity as same as resilin, but had distinct structural features from resilin, suggesting that it plays specialized roles in the mosquito cuticle. Another resilin-like protein was found to exist in each holometabolous insect that possesses resilin-like repetitive sequences but lacks the R&R Consensus. These results suggest that similar evolutionary events occurred to create resilin-r and resilin-like proteins.
Collapse
Affiliation(s)
- Sakura Ohkubo
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
| | - Tohki Shintaku
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
| | - Shotaro Mine
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba 305-8634, Japan
| | - Daisuke S. Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Yakushiji 3311-1, Shimotsuke 329-0498, Japan;
| | - Toru Togawa
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
| |
Collapse
|
10
|
Huang Q, Gavor E, Tulsian NK, Fan J, Lin Q, Mok YK, Kini RM, Sivaraman J. Structural and functional characterization of Aedes aegypti pupal cuticle protein that controls dengue virus infection. Protein Sci 2023; 32:e4761. [PMID: 37593853 PMCID: PMC10510476 DOI: 10.1002/pro.4761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The pupal cuticle protein from Aedes aegypti (AaPC) inhibits dengue virus (DENV) infection; however, the underlying mechanism of this inhibition remains unknown. Here, we report that AaPC is an intrinsically disordered protein and interacts with domain I/II of the DENV envelope protein via residues Asp59, Asp61, Glu71, Asp73, Ser75, and Asp80. AaPC can directly bind to and cause the aggregation of DENV, which in turn blocks virus infection during the virus-cell fusion stage. AaPC may also influence viral recognition and attachment by interacting with human immune receptors DC-SIGN and CD4. These findings enhance our understanding of the role of AaPC in mitigating viral infection and suggest that AaPC is a potential target for developing inhibitors or antibodies to control dengue virus infection.
Collapse
Affiliation(s)
- Qingqing Huang
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Edem Gavor
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Nikhil Kumar Tulsian
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Department of BiochemistryNational University of SingaporeSingaporeSingapore
| | - Jingsong Fan
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Qingsong Lin
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Yu Keung Mok
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - R. Manjunatha Kini
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - J. Sivaraman
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
11
|
Wang X, Liu L, Guo S, Liu B, Zhai Y, Yan S, Shen J, Ullah F, Li Z. Tweedle gene family of Drosophila suzukii (Matsumura) larva enhances the basal tolerance to cold and hypoxia. PEST MANAGEMENT SCIENCE 2023; 79:3012-3021. [PMID: 36966456 DOI: 10.1002/ps.7476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Drosophila suzukii (Matsumura) is considered a quarantine pest in the A2 list because it causes serious infection and huge economic losses. Cold and controlled atmosphere treatments have been used to control immature stage pests in fresh fruits. Herein, the basal tolerance response of D. suzukii egg, larva and pupa to cold and hypoxia stress were studied, and underlying transcriptome mechanisms in the larva were pinpointed. RESULTS The third instar was more tolerant than 12-h-old egg and 8-day-old pupa when treated at 3 °C + 1% O2 for 7 days, with 34.00% ± 5.22% larval survival. Hypoxia influenced the effect of cold treatment on D. suzukii. Larval survival decreased at 3 °C + 1% O2 , but increased at 0 °C + 1% O2 . Survival increased with temperature between 0 and 5 °C + 1% O2 , but decreased significantly at 25 °C + 1% O2 . RNA-sequencing results showed that the Tweedle (Twdl) family was upregulated and uniquely enriched in larvae treated at 3 °C + 1% O2 . In addition, RNA interference-mediated silencing of a key Twdl gene reduced the survival rate after cold and hypoxia treatment. CONCLUSION Hypoxia was able to influence the effect of cold treatment on the survival of D. suzukii positively or negatively. Structural constituents of the chitin-based cuticle, in particular Twdl genes, body morphogenesis, and ATP synthesis-coupled proton transport were involved in the tolerance to cold and hypoxia. In future, the Twdl gene could be used as a nanocarrier delivering RNA pesticides to control D. suzukii in the field and so prevent its worldwide spread. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Lijun Liu
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Shaokun Guo
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Bo Liu
- Institute of Equipment Technology, Chinese Academy of Inspection and Quarantine, Beijing, P. R. China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, P. R. China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing, P. R. China
| |
Collapse
|
12
|
Tang PA, Hu HY, Du WW, Jian FJ, Chen EH. Identification of cuticular protein genes and analysis of their roles in phosphine resistance of the rusty grain beetle Cryptolestes ferrugineus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105491. [PMID: 37532352 DOI: 10.1016/j.pestbp.2023.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 08/04/2023]
Abstract
The rusty grain beetle, Cryptolestes ferrugineus (Stephens) is one of the most economically important stored grain pests, and it has evolved the high resistance to phosphine. Cuticular proteins (CPs) are the major structural components of insect cuticle, and previous studies have confirmed that CPs were involved in insecticide resistance. However, the CPs of C. ferrugineus are still poorly characterized, and thus we conducted transcriptome-wide identification of CP genes and analyze their possible relationships with phosphine resistance in this pest. In this study, a total of 122 putative CPs were annotated in the C. ferrugineus transcriptome data by blasting with the known CPs of Tribolium castaneum. The analysis of conserved motifs revealed these CPs of C. ferrugineus belonging to 9 different families, including 87 CPR, 13 CPAP1, 7 CPAP3, 3 Tweedle, 1 CPLCA, 1 CPLCG, 5 CPLCP, 2 CPCFC, and 3 CPFL proteins. The further phylogenetic analysis showed the different evolutionary patterns of CPs. Namely, we found some CPs (CPR family) formed species-specific protein clusters, indicating these CPs might occur independently among insect taxa, and while some other CPs (CPAP1 and CPAP3 family) shared a closer correlation based on the architecture of protein domains. Subsequently, the previous RNA-seq data were applied to establish the expression profiles of CPs in a phosphine susceptible and resistant populations of C. ferrugineus, and a large amount of CP genes were found to be over-expressed in resistant insects. Lastly, an up-regulated CP gene (CPR family) was selected for the further functional analysis, and after this gene was silenced via RNA interference (RNAi), the sensitivity to phosphine was significantly enhanced in C. ferrugineus. In conclusion, the present results provided us an overview of C. ferrugineus CPs, and which suggested that the CPs might play the critical roles in phosphine resistance.
Collapse
Affiliation(s)
- Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| | - Huai-Yue Hu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Wen-Wei Du
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Fu-Ji Jian
- Department of Biosystems Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
13
|
Reeves JT, Herzog C, Barnes CL, Davis CA, Fuhlendorf SD, Wilder SM. Variation among arthropod taxa in the amino acid content of exoskeleton and digestible tissue. Ecol Evol 2023; 13:e10348. [PMID: 37496760 PMCID: PMC10365971 DOI: 10.1002/ece3.10348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023] Open
Abstract
Arthropod consumption provides amino acids to invertebrates and vertebrates alike, but not all amino acids in arthropods may be digestible as some are bound in the exoskeleton. Consumers may not be able to digest exoskeleton in significant amounts or avoid it entirely (e.g., extraoral digestion). Hence, measures that do not separate digestible amino acids from those in exoskeleton may not accurately represent the amino acids available to consumers. Additionally, arthropods are taxonomically diverse, and it remains unclear if taxonomic differences also reflect differences in amino acid availability. Thus, we tested: (1) if there were consistent differences in the content and balance of amino acids between the digestible tissue and exoskeleton of arthropods and (2) if arthropod Orders differ in amino acid content and balance. We measured the amino acid content (mg/100 mg dry mass) and balance (mg/100 mg protein) of whole bodies and exoskeleton of a variety of arthropods using acid hydrolysis. Overall, there was higher amino acid content in digestible tissue. There were also significant differences in the amino acid balance of proteins in digestible tissue and exoskeleton. Amino acid content and balance also varied among Orders; digestible tissues of Hemiptera contained more of some essential amino acids than other Orders. These results demonstrate that arthropod taxa vary in amino acid content, which could have implications for prey choice by insectivores. In addition, exoskeleton and digestible tissue content differ in arthropods, which means that whole body amino acid content of an arthropod is not necessarily a predictor of amino acid intake of a predator that feeds on that arthropod.
Collapse
Affiliation(s)
- J. T. Reeves
- Department of Integrative BiologyOklahoma State UniversityStillwaterOklahomaUSA
| | - Colton Herzog
- Department of Integrative BiologyOklahoma State UniversityStillwaterOklahomaUSA
| | | | - Craig A. Davis
- Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Samuel D. Fuhlendorf
- Department of Natural Resource Ecology and ManagementOklahoma State UniversityStillwaterOklahomaUSA
| | - Shawn M. Wilder
- Department of Integrative BiologyOklahoma State UniversityStillwaterOklahomaUSA
| |
Collapse
|
14
|
Li F, Xing G, Li Y, Chen P, Hu Q, Chen M, Li Y, Cao H, Huang Y. Expressions and functions of RR-1 cuticular protein genes in the integument of Mythimna separata. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:963-972. [PMID: 36964708 DOI: 10.1093/jee/toad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 06/14/2023]
Abstract
As the most outer layer between itself and the environment, integuments are necessary for insects with various important functions. Cuticular proteins (CPs) are the main components in integuments, while the functions of CP genes remain unknown in Mythimna separata (Walker), which is a devastating agricultural pest. In this study, 79 CP genes were identified from the transcriptomes of larval integuments, 57 of which were from the family containing conserved Rebers & Riddiford (R&R) consensus (CPR family). Amongst these CPRs, 44 genes belonged to the subfamily with RR-1 motif (RR-1 genes) and clustered into three clades, with the top 15 most abundant RR-1 genes identified based on fragments per kilobase per million mapped fragments (FPKM) values. RT-qPCR analysis showed that most of RR-1 genes such as MsCPR1-4 were highly expressed at larval stages and in their integuments. The expression levels of RR-1 genes were generally decreased at the beginning but increased at the late stage of molting process. RNAi was applied for six RR-1 genes, and MsCPR1-4 were knocked down significantly. Silence of MsCPR2 resulted in abnormal integument formed after molting, while knockdown of MsCPR3 and MsCPR4 led to failure of molting, respectively. No phenotype was obtained for the RNAi of MsCPR1. Therefore, the expression of RR-1 genes and their functions were analyzed in the development of integuments in M. separata, providing new insights of RR-1 genes and potential targets for the development of growth regulators and new insecticides for M. separata.
Collapse
Affiliation(s)
- Fuyuan Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Gaoliang Xing
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yixuan Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Peng Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Qin Hu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Ming Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yiyu Li
- Institute of New Rural Development, Anhui Agricultural University, Hefei, PR China
| | - Haiqun Cao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yong Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
15
|
Zheng Y, Liu C, Wang S, Qian K, Feng Y, Yu F, Wang J. Genome-wide analysis of cuticle protein family genes in rice stem borer Chilo suppressalis: Insights into their role in environmental adaptation and insecticidal stress response. Int J Biol Macromol 2023:124989. [PMID: 37244330 DOI: 10.1016/j.ijbiomac.2023.124989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Insect cuticle plays a key role in insect survival, adaptation and prosperity by serving as the exoskeleton and the first barrier against environmental stresses. As the major components of insect cuticle, the diverse structural cuticle proteins (CPs) contribute to variation in physical properties and functions of cuticle. However, the roles of CPs in cuticular versatility, especially in the stress response or adaption, remain incompletely understood. In this study, we performed a genome-wide analysis of CP superfamily in the rice-boring pest Chilo suppressalis. A total of 211 CP genes were identified and their encoding proteins were classified into eleven families and three subfamilies (RR1, RR2, and RR3). The comparative genomic analysis of CPs revealed that C. suppressalis had fewer CP genes compared to other lepidopteran species, which largely resulted from a less expansion of his-rich RR2 genes involved in cuticular sclerotization, suggesting long-term boring life of C. suppressalis inside rice hosts might evolutionarily prefer cuticular elasticity rather than cuticular sclerotization. We also investigated the response pattern of all CP genes under insecticidal stresses. >50 % CsCPs were upregulated at least 2-fold under insecticidal stresses. Notably, the majority of the highly upregulated CsCPs formed gene pairs or gene clusters on chromosomes, indicating the rapid response of adjacent CsCPs to insecticidal stress. Most high-response CsCPs encoded AAPA/V/L motifs that are related to cuticular elasticity and >50 % of the sclerotization-related his-rich RR2 genes were also upregulated. These results suggested the potential roles of CsCPs in balancing the elasticity and sclerotization of cuticles, which is essential for the survival and adaptation of plant borers including C. suppressalis. Our study provides valuable information for further developing cuticle-based strategies of both pest management and biomimetic applications.
Collapse
Affiliation(s)
- Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou, China.
| | - Changpeng Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuang Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yinghao Feng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Fuhai Yu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, Shandong, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Ruhland F, Gabant G, Toussaint T, Nemcic M, Cadène M, Lucas C. Reproductives signature revealed by protein profiling and behavioral bioassays in termite. Sci Rep 2023; 13:7070. [PMID: 37127756 PMCID: PMC10151321 DOI: 10.1038/s41598-023-33252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Proteins are known to be social interaction signals in many species in the animal kingdom. Common mediators in mammals and aquatic species, they have seldom been identified as such in insects' behaviors. Yet, they could represent an important component to support social signals in social insects, as the numerous physical contacts between individuals would tend to favor the use of contact compounds in their interactions. However, their role in social interactions is largely unexplored: are they rare or simply underestimated? In this preliminary study, we show that, in the termite Reticulitermes flavipes, polar extracts from reproductives trigger body-shaking of workers (a vibratory behavior involved in reproductives recognition) while extracts from workers do not. Molecular profiling of these cuticular extracts using MALDI-TOF mass spectrometry reveals higher protein diversity in reproductives than in workers and a sex-specific composition exclusive to reproductives. While the effects observed with extracts are not as strong as with live termites, these results open up the intriguing possibility that social signaling may not be limited to cuticular hydrocarbons or other non-polar, volatile chemicals as classically accepted. Our results suggest that polar compounds, in particular some of the Cuticular Protein Compounds (CPCs) shown here by MALDI to be specific to reproductives, could play a significant role in insect societies. While this study is preliminary and further comprehensive molecular characterization is needed to correlate the body-shaking triggering effects with a given set of polar compounds, this exploratory study opens new perspectives for understanding the role of polar compounds such as proteins in caste discrimination, fertility signaling, or interspecific insect communication.
Collapse
Affiliation(s)
- Fanny Ruhland
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Guillaume Gabant
- Centre de Biophysique Moléculaire (UPR 4301), CNRS - University of Orléans, Orléans, France
| | - Timothée Toussaint
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France
| | - Matej Nemcic
- Centre de Biophysique Moléculaire (UPR 4301), CNRS - University of Orléans, Orléans, France
| | - Martine Cadène
- Centre de Biophysique Moléculaire (UPR 4301), CNRS - University of Orléans, Orléans, France
| | - Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS - University of Tours, Tours, France.
| |
Collapse
|
17
|
Fu X, Chen M, Xia R, Li X, Li Q, Li Y, Cao H, Liu Y. Genome-Wide Identification and Transcriptome-Based Expression Profile of Cuticular Protein Genes in Antheraea pernyi. Int J Mol Sci 2023; 24:6991. [PMID: 37108155 PMCID: PMC10138643 DOI: 10.3390/ijms24086991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Antheraea pernyi is one of the most famous edible and silk-producing wild silkworms of Saturniidae. Structural cuticular proteins (CPs) are the primary component of insect cuticle. In this paper, the CPs in the genome of A. pernyi were identified and compared with those of the lepidopteran model species Bombyx mori, and expression patterns were analyzed based on the transcriptomic data from the larval epidermis/integument (epidermis in the following) and some non-epidermis tissues/organs of two silkworm species. A total of 217 CPs was identified in the A. pernyi genome, a comparable number to B. mori (236 CPs), with CPLCP and CPG families being the main contribution to the number difference between two silkworm species. We found more RR-2 genes expressed in the larval epidermis of fifth instar of A. pernyi than B. mori, but less RR-2 genes expressed in the prothoracic gland of A. pernyi than B. mori, which suggests that the hardness difference in the larval epidermis and prothoracic gland between the two species may be caused by the number of RR-2 genes expressed. We also revealed that, in B. mori, the number of CP genes expressed in the corpus allatum and prothoracic gland of fifth instar was higher than that in the larval epidermis. Our work provided an overall framework for functional research into the CP genes of Saturniidae.
Collapse
Affiliation(s)
- Xin Fu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Miaomiao Chen
- Research Group of Silkworm Breeding, Sericultural Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, 108 Fengshan Road, Fengcheng 118100, China
| | - Runxi Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Xinyu Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Qun Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yuping Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Huiying Cao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yanqun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| |
Collapse
|
18
|
He C, Liang J, Yang J, Xue H, Huang M, Fu B, Wei X, Liu S, Du T, Ji Y, Yin C, Gong P, Hu J, Du H, Zhang R, Xie W, Wang S, Wu Q, Zhou X, Yang X, Zhang Y. Over-expression of CP9 and CP83 increases whitefly cell cuticle thickness leading to imidacloprid resistance. Int J Biol Macromol 2023; 233:123647. [PMID: 36780959 DOI: 10.1016/j.ijbiomac.2023.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Cuticular proteins (CPs) play an important role in protecting insects from adverse environmental conditions, like neonicotinoid insecticides, which are heavily used for numerous pests and caused environmental problems and public health concerns worldwide. However, the relationship between CPs and insecticides resistance in Bemisia tabaci, a serious and developed high insecticide resistance, is lacking. In this study, 125 CPs genes were identified in B. tabaci. Further phylogenetic tree showed the RR-2-type genes formed large gene groups in B. tabaci. Transcriptional expression levels of CPs genes at different developmental stages revealed that some CPs genes may play a specific role in insect development. The TEM results indicated that the cuticle thickness of susceptible strain was thinner than imidacloprid-resistance strain. Furthermore, 16 CPs genes (5 in RR-1 subfamily, 7 in RR-2 subfamily, 3 in CPAP3 subfamily and 1 in CPCFC subfamily) were activated in response to imidacloprid. And RNAi results indicated that CP9 and CP83 involved in imidacloprid resistance. In conclusion, this study was the first time to establish a basic information framework and evolutionary relationship between CPs and imidacloprid resistance in B. tabaci, which provides a basis for proposing integrated pest management strategies.
Collapse
Affiliation(s)
- Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546-0091, USA.
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
19
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
20
|
Discovery of novel whitefly vector proteins that interact with a virus capsid component mediating virion retention and transmission. Int J Biol Macromol 2023; 226:1154-1165. [PMID: 36427615 DOI: 10.1016/j.ijbiomac.2022.11.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Specificity and efficiency of plant virus transmission depend largely on protein-protein interactions of vectors and viruses. Cucurbit chlorotic yellows virus (CCYV), transmitted specifically by tobacco whitefly, Bemisia tabaci, in a semi-persistent manner, has caused serious damage on cucurbit and vegetable crops around the world. However, the molecular mechanism of interaction during CCYV retention and transmission are still lacking. CCYV was proven to bind particularly to the whitefly foregut, and here, we confirmed that the minor coat protein (CPm) of CCYV is participated in the interaction with the vector. In order to identify proteins of B. tabaci that interact directly with CPm of CCYV, the immunoprecipitation (IP) assay and DUALmembrane cDNA library screening technology were applied. The cytochrome c oxidase subunit 5A (COX), tubulin beta chain (TUB) and keratin, type I cytoskeletal 9-like (KRT) of B. tabaci shown strong interactions with CPm and are closely associated with the retention within the vector and transmission of CCYV. These findings on whitefly protein-CCYV CPm interactions are crucial for a much better understanding the mechanism of semi-persistent plant virus transmission by insect vectors, as well as for implement new strategies for effective management of plant viruses and their vector insects.
Collapse
|
21
|
Liu W, Chang T, Zhao K, Sun X, Qiao H, Yan C, Wang Y. Genome-wide annotation of cuticular protein genes in non-biting midge Propsilocerus akamusi and transcriptome analysis of their response to heavy metal pollution. Int J Biol Macromol 2022; 223:555-566. [PMID: 36356871 DOI: 10.1016/j.ijbiomac.2022.10.279] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
The insect cuticle is a sophisticated chitin-protein extracellular structure for mutable functions. The cuticles varied their structures and properties in different species, and the same species but in different regions or at different stages, to fill the requirements of different functions. The alteration of cuticle structures may also be induced due to challenges by some environmental crises, such as pollution exposures. The physical properties of the cuticle were determined by the cuticle proteins (CPs) they contain. The cuticle proteins are large protein groups in all insects, which are commonly divided into different families according to their conserved protein sequence motifs. Although Chironomidae is an abundant and universal insect in global aquatic ecosystems and a popular model for aquatic toxicology, no systematic annotation of CPs was done for any species in Chironomidae before. In this work, we annotated the CP genes of Propsilocerus akamusi, the most abundant Chironomidae species in Asia. A total of 160 CP genes were identified, and 97 of them could be well classified into eight CP families: 76 CPR genes can be subdivided into three groups (further divided into three subgroups: 36 RR1 genes, 37 RR2 genes, and 3 RR3 genes), 2 CPF genes, 3 CPLCA genes, 1 CPLCG gene, 8 CPAP genes, and 3 Tweedle genes. Additionally, we analyzed the response of P. akamusi CP genes at expression level to Cu exposure, which is related to the high heavy metal tolerance and the earlier onset of pupariation in heavy metal polluted water.
Collapse
Affiliation(s)
- Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Tong Chang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Kangzhu Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| |
Collapse
|
22
|
Tan D, Hu H, Tong X, Han M, Gai T, Lou J, Yan Z, Xiong G, Lu C, Dai F. Mutation of a lepidopteran-specific PMP-like protein, BmLSPMP-like, induces a stick body shape in silkworm, Bombyx mori. PEST MANAGEMENT SCIENCE 2022; 78:5334-5346. [PMID: 36039742 DOI: 10.1002/ps.7156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lepidoptera is one of the largest orders of insects, some of which are major pests of crops and forests. The cuticles of lepidopteran pests play important roles in defense against insecticides and pathogens, and are indispensable for constructing and maintaining extracellular structures and locomotion during their life cycle. Lepidopteran-specific cuticular proteins could be potential targets for lepidopteran pest control. But information on this is limited. Our research aimed to screen the lepidopteran-specific cuticular proteins using the lepidopteran model, the silkworm, to explore the molecular mechanism underlying the involvement of cuticular proteins in body shape construction. RESULTS Positional cloning showed that BmLSPMP-like, a gene encoding a lepidopteran-specific peritrophic matrix protein (PMP) like protein which includes a peritrophin A-type chitin-binding domain (CBM_14), is responsible for the stick (sk) mutation. BmLSPMP-like is an evolutionarily conserved gene that exhibits synteny in Lepidoptera and underwent purifying selection during evolution. Expression profiles demonstrated that BmLSPMP-like is expressed in chitin-forming tissues, testis and ovary, and accumulates in the cuticle. BmLSPMP-like knockout, generated with CRISPR/Cas9, resulted in a stick-like larval body shape phenotype. Over-expression of BmLSPMP-like in the sk mutant rescued its abnormal body shape. The results showed that BmLSPMP-like may be involved in assemblage in the larval cuticle. CONCLUSION Our results suggested that the dysfunction of BmLSPMP-like may result in a stick body shape phenotype in silkworm, through the regulation of the arrangement of the chitinous laminae and cuticle thickness. Our study provides new evidence of the effects of LSPMP-likes on lepidopteran body shape formation, metamorphosis and mortality, which could be an eco-friendly target for lepidopteran pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Tingting Gai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jinghou Lou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhengwen Yan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Gao Xiong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Zhang C, Guo X, Li T, Cheng P, Gong M. New insights into cypermethrin insecticide resistance mechanisms of Culex pipiens pallens by proteome analysis. PEST MANAGEMENT SCIENCE 2022; 78:4579-4588. [PMID: 35837767 DOI: 10.1002/ps.7077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/24/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Due to the development of insecticide resistance in mosquitoes, with worldwide mosquito-borne diseases resurgence in recent years, recent advances in proteome technology have facilitated a proteome-wide analysis of insecticide resistance-associated proteins in mosquitoes. Understanding the complexity of the molecular basis of insecticide resistance mechanisms employed by mosquitoes will help in designing the most effective and sustainable mosquito control methods. RESULTS After 30 generations, insecticide-selected strains showed elevated resistance levels to the cypermethrin used for selection. Proteome data allowed the detection of 2892 proteins, of which 2885 differentially expressed proteins (DEPs) achieved quantitative significances in four stages (egg, larvae, pupae, adult) of Culex pipiens pallens cypermethrin-resistant strain as compared to the susceptible strain. Among them, a significant enrichment of proteins, including cuticular proteins, enzymes involved in the detoxification (cytochrome P450, glutathione S-transferases, esterase, ATP-binding cassette) and some biological pathways (oxidative phosphorylation, hippo signalling) that are potentially involved in cypermethrin resistance, was observed. Thirty-one representative DEPs (cytochrome P450, glutathione S-transferase, cuticle protein) during Cx. pipiens pallens developmental stages were confirmed by a parallel reaction monitoring strategy. CONCLUSIONS The present study confirmed the power of isobaric tags for relative and absolute quantification for identifying concomitantly quantitative proteome changes associated with cypermethrin in Cx. pipiens pallens. Proteome analysis suggests that proteome modifications can be selected rapidly by cypermethrin, and multiple resistance mechanisms operate simultaneously in cypermethrin-resistance of Cx. pipiens pallens, Our results interpret that an up-regulated expression of proteins and enzymes like cytochrome P450, glutathione S-transferases, esterase etc. has an impact in insecticide resistance. Previously neglected penetration resistance (cuticular proteins) may play an important role in the adaptive response of Cx. pipiens pallens to insecticides. This information may serve as a basis for future work concerning the possible role of these proteins in cypermethrin resistance in mosquito Cx. pipiens pallens. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Tao Li
- Nanning MHelix ProTech Co., Ltd, Nanning Hi-tech Zone Bioengineering Center, Nanning, P. R. China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, P.R. China
| |
Collapse
|
24
|
Li J, Li F, Gao H, Zhang Y, Liu Z. Characterization of cuticular proteins in CPR family in the wolf spider, Pardosa pseudoannulata, and the response of one subfamily genes to environmental stresses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 150:103859. [PMID: 36265807 DOI: 10.1016/j.ibmb.2022.103859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Cuticular protein (CP) plays an essential role in the construction and function of exoskeleton in arthropods. CPR family, CP with Rebers and Riddiford (R&R) Consensus, is the largest CP family in insects, but it lacks systematic research in non-insect arthropods. In this study, we explored CPRs in the wolf spider, Pardosa pseudoannulata, a predator to many insect pests. We totally identified 152 CPRs in P. pseudoannulata genome, which were divided into two subgroups based on R&R Consensus sequences, with 12 CPRs in RR-1 and 140 in RR-2. All RR-2 members presented a novel Consensus with 34 amino acids, G-x(8)-G-x(6)-Y-x-A-x(3)-G-x(7)-N-E-x-G, which was a common characteristic for RR-2 CPRs in chelicerates. Transcriptome data was used to document the expression patterns of CPR genes in different tissues and ecdysis processes. The specific expressions were found for part CPR genes, such as five RR-2 genes that were specifically expressed in male genital bulbs and eleven RR-1 genes that were highly expressed in the integument. Due to the limited number and integument-specific expression of RR-1 genes, we further analyzed their responses to different environmental stresses at the transcriptional level. Except for PapsCPR11, ten RR-1 genes responded to at least one environmental stress, among with the expression of PapsCPR12 was significantly changed by three stresses (dryness, low temperature and imidacloprid treatments). Silencing PapsCPR12 increased the tolerance of P. pseudoannulata to imidacloprid. Overall, the results presented novel Consensus characteristics of CPRs in P. pseudoannulata, which was helpful for the identification and evolution analysis of CPRs in non-insect arthropods.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangfang Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Kim BY, Kim YH, Choi YS, Lee MY, Lee KS, Jin BR. Antimicrobial Activity of Apidermin 2 from the Honeybee Apis mellifera. INSECTS 2022; 13:insects13100958. [PMID: 36292906 PMCID: PMC9604307 DOI: 10.3390/insects13100958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 05/15/2023]
Abstract
Apidermins (APDs) are known as structural cuticular proteins in insects, but their additional roles are poorly understood. In this study, we characterized the honeybee, Apis mellifera, APD 2 (AmAPD 2), which displays activity suggesting antimicrobial properties. In A. mellifera worker bees, the AmAPD 2 gene is transcribed in the epidermis, hypopharyngeal glands, and fat body, and induced upon microbial ingestion. Particularly in the epidermis of A. mellifera worker bees, the AmAPD 2 gene showed high expression and responded strongly to microbial challenge. Using a recombinant AmAPD 2 peptide, which was produced in baculovirus-infected insect cells, we showed that AmAPD 2 is heat-stable and binds to live bacteria and fungi as well as carbohydrates of microbial cell wall molecules. This binding action ultimately induced structural damage to microbial cell walls, which resulted in microbicidal activity. These findings demonstrate the antimicrobial role of AmAPD 2 in honeybees.
Collapse
Affiliation(s)
- Bo-Yeon Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Yun-Hui Kim
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
| | - Yong-Soo Choi
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea
| | - Man-Young Lee
- Department of Agricultural Biology, National Academy of Agricultural Science, Wanju 55365, Korea
| | - Kwang-Sik Lee
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
- Correspondence: (K.-S.L.); (B.-R.J.)
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Korea
- Correspondence: (K.-S.L.); (B.-R.J.)
| |
Collapse
|
26
|
Tan S, Li G, Guo H, Li H, Tian M, Liu Q, Wang Y, Xu B, Guo X. Identification of the cuticle protein AccCPR2 gene in Apis cerana cerana and its response to environmental stress. INSECT MOLECULAR BIOLOGY 2022; 31:634-646. [PMID: 35619242 DOI: 10.1111/imb.12792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Cuticular proteins (CPs) are known to play important roles in insect development and defence responses. The loss of CP genes can lead to changes in insect morphology and sensitivity to the external environment. In this study, we identified the AccCPR2 gene, which belongs to the CPR family (including the R&R consensus motif) of CPs, and explored its function in the response of Apis cerana cerana to adverse external stresses. Our results demonstrated that AccCPR2 was highly expressed in the late pupal stage and epidermis, and the expression of AccCPR2 may be induced or inhibited under different stressors. RNA interference experiments showed that knockdown of AccCPR2 reduced the activity of antioxidant enzymes, led to the accumulation of oxidative damage and suppressed the expression of several antioxidant genes. In addition, knockdown of AccCPR2 also reduced the pesticide resistance of A. cerana cerana. The overexpression of AccCPR2 in a prokaryotic system further confirmed its role in resistance to various stresses. In summary, AccCPR2 may play pivotal roles in the normal development and environmental stress response of A. cerana cerana. This study also enriched the theoretical knowledge of the resistance biology of bees.
Collapse
Affiliation(s)
- Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu, P. R. China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Ming Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| |
Collapse
|
27
|
Zhu F, Chen H, Han J, Zhou W, Tang Q, Yu Q, Ma S, Liu X, Huo S, Chen K. Proteomic and Targeted Metabolomic Studies on a Silkworm Model of Parkinson's Disease. J Proteome Res 2022; 21:2114-2123. [PMID: 35959672 DOI: 10.1021/acs.jproteome.2c00149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a chronic and progressive movement disorder that is characterized by the loss of dopaminergic neurons in the brain. Animal models of PD have become very popular in the past two decades to understand the etiology, pathology, and molecular and cellular pathways associated with PD. In this study, we report the first neurotoxin-induced silkworm model for PD by chronic feeding with 6-hydroxydopamine (6-OHDA) and explore the possible molecular mechanisms associated with PD using proteomic and targeted metabolomic approaches. Although silkworm is phylogenetically distant from humans and rats, 6-OHDA treatment produced similar PD phenotypes, including motor dysfunction, dopaminergic neuron degeneration, and decreased levels of dopamine. Major neurotransmitters in the silkworm head tissue were profiled, revealing key molecules implicating neurodegenerative disorder. Proteomics analysis revealed a major downregulation of nearly 50 structural proteins constituting cuticles and microfilaments, indicating mechanical damage in the silkworm tissues. The results suggest that 6-OHDA treatment could induce PD-like symptoms in silkworms and activate similar proteomic and metabolic pathways to those in rats or higher animals. This study demonstrates the feasibility and value of the silkworm-based PD model, which may provide important clues for understanding the molecular and cellular mechanisms underlying PD. The mass spectrometry raw files have been deposited to iProx via the project ID IPX0004206000.
Collapse
|
28
|
Guo PL, Guo ZQ, Liu XD. Cuticular protein genes involve heat acclimation of insect larvae under global warming. INSECT MOLECULAR BIOLOGY 2022; 31:519-532. [PMID: 35403301 DOI: 10.1111/imb.12777] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Cuticular proteins (CPs) play important roles in insect growth and development. However, it is unknown whether CPs are related to heat tolerance. Cnaphalocrocis medinalis, a serious pest of rice, occurs in summer and exhibits strong adaptability to high temperature, but the underlying mechanism is unclear. Here, the role of CP genes in heat acclimation was studied. Heat tolerance of the heat-acclimated larvae was significantly stronger than the unacclimated larvae. The cuticular protein content in the heat-acclimated larvae was higher than that of the unacclimated larvae. 191 presumed CP genes of C. medinalis (CmCPs) were identified. Expression patterns of 14 CmCPs were different between the heat acclimated (S39) and unacclimated (S27) larvae under heat stress. CmCPs were specifically expressed in epidermis and the head except CmCPR20 mainly expressed in Malpighian tubules. CmCPR20 was upregulated in S39 while downregulated in S27, but CmTweedle1 and CmCPG1 were upregulated in S27 and downregulated in S39. RNAi CmTweedle1 or CmCPG1 remarkably decreased heat tolerance and cuticular protein content of the heat-acclimated larvae but not the unacclimated larvae. RNAi CmCPR20 decreased heat tolerance and cuticular protein content of the unacclimated larvae but not the heat-acclimated larvae. CmTweedle1 and CmCPG1 genes involve heat acclimation of C. medinalis.
Collapse
Affiliation(s)
- Pan-Long Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Qian Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Rodríguez-Rodríguez M, Barroso FG, Fabrikov D, Sánchez-Muros MJ. In Vitro Crude Protein Digestibility of Insects: A Review. INSECTS 2022; 13:insects13080682. [PMID: 36005307 PMCID: PMC9409466 DOI: 10.3390/insects13080682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023]
Abstract
The high protein content of insects has been widely studied. They can be a good food alternative, and therefore it is important to study the effect of digestion on their protein. This review examines the different in vitro protein digestibility methodologies used in the study of different edible insects in articles published up to 2021. The most important variables to be taken into account in in vitro hydrolysis are the following: phases (oral, gastric and intestinal), enzymes, incubation time and temperature, method of quantification of protein hydrolysis and sample preprocessing. Insects have high digestibility data, which can increase or decrease depending on the processing of the insect prior to digestion, so it is important to investigate which processing methods improve digestibility. The most commonly used methods are gut extraction, different methods of slaughtering (freezing or blanching), obtaining protein isolates, defatting, thermal processing (drying or cooking) and extrusion. Some limitations have been encountered in discussing the results due to the diversity of methodologies used for digestion and digestibility calculation. In addition, articles evaluating the effect of insect processing are very limited. It is concluded that there is a need for the standardisation of in vitro hydrolysis protocols and their quantification to facilitate comparisons in future research.
Collapse
Affiliation(s)
- María Rodríguez-Rodríguez
- Department of Applied Biology, CECOUAL, University of Almería, 04120 Almería, Spain;
- Correspondence: ; Tel.: +34-649-129-692
| | - Fernando G. Barroso
- Department of Applied Biology, CECOUAL, University of Almería, 04120 Almería, Spain;
- Department of Applied Biology, CEImar, University of Almería, 04120 Almería, Spain
| | - Dmitri Fabrikov
- Department of Applied Biology, University of Almería, 04120 Almería, Spain;
| | | |
Collapse
|
30
|
Pasini G, Cullere M, Vegro M, Simonato B, Dalle Zotte A. Potentiality of protein fractions from the house cricket (Acheta domesticus) and yellow mealworm (Tenebrio molitor) for pasta formulation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Martelli F, Falcon T, Pinheiro DG, Simões ZLP, Nunes FMF. Worker bees (Apis mellifera) deprived of pollen in the first week of adulthood exhibit signs of premature aging. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 146:103774. [PMID: 35470035 DOI: 10.1016/j.ibmb.2022.103774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Pollinator populations, including bees, are in rapid decline in many parts of the world, raising concerns over the future of ecosystems and food production. Among the factors involved in these declines, poor nutrition deserves attention. The diet consumed by adult worker honeybees (Apis mellifera) is crucial for their behavioral maturation, i.e., the progressive division of labor they perform, such as nurse bees initially and later in life as foragers. Poor pollen nutrition is known to reduce the workers' lifespan, but the underlying physiological and genetic mechanisms are not fully understood. Here we investigate how the lack of pollen in the diet of workers during their first week of adult life can affect age-related phenotypes. During the first seven days of adult life, newly emerged workers were fed either a pollen-deprived (PD) diet mimicking that of an older bee, or a control pollen-rich (PR) diet, as typically consumed by young bees. The PD-fed bees showed alterations in their fat body transcriptome, such as a switch from a protein-lipid based metabolism to a carbohydrate-based metabolism, and a reduced expression of genes involved with immune response. The absence of pollen in the diet also led to an accumulation of oxidative stress markers in fat body tissue and alterations in the cuticular hydrocarbon profiles, which became similar to those of chronologically older bees. Together, our data indicate that the absence of pollen during first week of adulthood triggers the premature onset of an aging-related worker phenotype.
Collapse
Affiliation(s)
- Felipe Martelli
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Tiago Falcon
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Daniel G Pinheiro
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Zilá L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil; Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Francis M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil; Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luís - km 235, 13565-905, São Carlos, SP, Brazil.
| |
Collapse
|
32
|
Lu JB, Guo JS, Chen X, Cheng C, Luo XM, Zhang XY, Moussian B, Chen JP, Li JM, Zhang CX. Chitin synthase 1 and five cuticle protein genes are involved in serosal cuticle formation during early embryogenesis to enhance eggshells in Nilaparvata lugens. INSECT SCIENCE 2022; 29:363-378. [PMID: 34498803 DOI: 10.1111/1744-7917.12937] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Many holo- and hemimetabolous insects enhance their eggshells during embryogenesis by forming a serosal cuticle (SC). To date, scholarly understanding of the SC composition and SC-related gene functions has been limited, especially for hemimetabolous insects. In this study, we initially performed transmission electron microscopic (TEM) observation and chitin staining of the SC in Nilaparvata lugens, a hemimetabolous rice pest known as the brown planthopper (BPH). We confirmed that the SC was a chitin-rich lamellar structure deposited gradually during the early embryogenesis. Parental RNA interference (RNAi) against Nilaparvata lugens chitin synthase 1 (NlCHS1) in newly emerged and matured females resulted in decreases of egg hatchability by 100% and 76%, respectively. Ultrastructural analyses revealed loss of the lamellar structure of the SC in dsNlCHS1-treated eggs. According to temporal expression profiles, five cuticle protein coding genes, NlugCpr1/2/3/8/90, were specifically or highly expressed during the SC formation period, and NlugCpr1/2/3/90 were further detected in 72 h eggshells extract by ultra-performance liquid chromatography-tandem mass spectrometry/mass spectrometry. NlugCpr2/3/90 were likely three SC-specific cuticle proteins. TEM observations of the SC following parental RNAi against NlugCpr1/2/3/8/90 demonstrated that NlugCpr3/8/90 were essential for SC formation. The study provided an understanding of the SC formation process and SC-related cuticle proteins in BPHs, which offer potential targets for pest control in the egg stage as well.
Collapse
Affiliation(s)
- Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Jian-Sheng Guo
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuan Chen
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chen Cheng
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Xu-Mei Luo
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Xiao-Ya Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Bernard Moussian
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Nice, France
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang Province, China
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Zhao X, Shao T, Su Y, Zhang J, Gou X, Liu W, Zhang J. Cuticle Protein LmACP19 Is Required for the Stability of Epidermal Cells in Wing Development and Morphogenesis of Locusta migratoria. Int J Mol Sci 2022; 23:ijms23063106. [PMID: 35328528 PMCID: PMC8950940 DOI: 10.3390/ijms23063106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Insect wing consists of a double layer of epidermal cells that produce and secrete the dorsal and ventral cuticular components. It is important for the stability of epidermal cells during wing development and morphogenesis, but its specific gene expression and physiological function during this process remain unclear. In our previous work, a wing cuticle protein gene LmACP19 was identified in Locusta migratoria based on transcriptomic data. Here, we report on its roles in wing development and morphogenesis. LmACP19 encodes a chitin-binding protein belonging to RR-2 subfamily of CPR family, which is highly homologous to CP19-like proteins in other insect species. RT-qPCR analysis revealed that LmACP19 is highly expressed in wing pads of fifth-instar nymphs, and its encoded protein is located in two layers of epidermal cells but not in the cuticle. Suppression of LmACP19 by RNA interference led to abnormal wing pad and wing morphogenesis with curved, unclosed, and wrinkled phenotypes during nymph-to-nymph and nymph-to-adult transition, respectively. Furthermore, deficiency of LmACP19 affected arrangement of epidermal cells, resulting in apoptosis. Our results indicate that LmACP19 is indispensable for wing development and normal morphological structure by maintaining the stability of epidermal cells during L. migratoria molting.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- Correspondence: (X.Z.); (J.Z.)
| | - Ti Shao
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Yazhi Su
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jing Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xin Gou
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Weimin Liu
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan 030006, China; (T.S.); (Y.S.); (J.Z.); (X.G.); (W.L.)
- Correspondence: (X.Z.); (J.Z.)
| |
Collapse
|
34
|
Murata S, Rivera J, Noh MY, Hiyoshi N, Yang W, Parkinson DY, Barnard HS, Arakane Y, Kisailus D, Arakaki A. Unveiling characteristic proteins for the structural development of beetle elytra. Acta Biomater 2022; 140:467-480. [PMID: 34954417 DOI: 10.1016/j.actbio.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/12/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Beetles possess a set of highly modified and tanned forewings, elytra, which are lightweight yet rigid and tough. Immediately after eclosion, the elytra are initially thin, pale and soft. However, they rapidly expand and subsequently become hardened and often dark, resulting from both pigmentation and sclerotization. Here, we identified changes in protein composition during the developmental processes of the elytra in the Japanese rhinoceros beetle, Trypoxylus dichotomus. Using mass spectrometry, a total of 414 proteins were identified from both untanned and tanned elytra, including 31 cuticular proteins (CPs), which constitute one of the major components of insect cuticles. Moreover, CPs containing Rebers and Riddiford motifs (CPR), the most abundant CP family, were separated into two groups based on their expression and amino acid sequences, such as a Gly-rich sequence region and Ala-Ala-Pro repeats. These protein groups may play crucial roles in elytra formation at different time points, likely including self-assembly of chitin nanofibers that control elytral macro and microstructures and dictate changes in other properties (i.e., mechanical property). Clarification of the protein functions will enhance the understanding of elytra formation and potentially benefit the development of lightweight materials for industrial and biomedical applications. STATEMENT OF SIGNIFICANCE: The beetle elytron is a light-weight natural bio-composite which displays high stiffness and toughness. This structure is composed of chitin fibrils and proteins, some of which are responsible for architectural development and hardening. This work, which involves insights from molecular biology and materials science, investigated changes in proteomic, architectural, and localized mechanical characteristics of elytra from the Japanese rhinoceros beetle to understand molecular mechanisms driving elytra development. In the present study, we identified a set of new protein groups which are likely related to the structural development of elytra and has potential for new pathways for processing green materials.
Collapse
Affiliation(s)
- Satoshi Murata
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Jesus Rivera
- Materials Science and Engineering Program, University of California at Riverside, CA 92521, USA
| | - Mi Yong Noh
- Department of Forestry, Chonnam National University, Gwangju 500-757, South Korea
| | - Naoya Hiyoshi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Wen Yang
- Department of Materials Science and Engineering, University of California at Irvine, CA 92697, USA
| | | | | | - Yasuyuki Arakane
- Department of Applied Biology, Chonnam National University, Gwangju 500-757, South Korea
| | - David Kisailus
- Materials Science and Engineering Program, University of California at Riverside, CA 92521, USA; Department of Materials Science and Engineering, University of California at Irvine, CA 92697, USA
| | - Atsushi Arakaki
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
35
|
Psarianos M, Dimopoulos G, Ojha S, Cavini ACM, Bußler S, Taoukis P, Schlüter OK. Effect of pulsed electric fields on cricket (Acheta domesticus) flour: Extraction yield (protein, fat and chitin) and techno-functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Characterization of protein in cricket (Acheta domesticus), locust (Locusta migratoria), and silk worm pupae (Bombyx mori) insect powders. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112314] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Chen XD, Neupane S, Gill TA, Gossett H, Pelz-Stelinski KS, Stelinski LL. Comparative transcriptome analysis of thiamethoxam susceptible and resistant Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), using RNA-sequencing. INSECT SCIENCE 2021; 28:1708-1720. [PMID: 33475237 DOI: 10.1111/1744-7917.12901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/10/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), transmits the causal pathogen of huanglongbing and is a global pest of citrus. D. citri populations exhibit resistance to multiple insecticide modes of action in areas where these chemicals have been overused. We performed genome-wide transcriptional analysis for two field populations of D. citri (Wauchula and Lake Alfred, Florida, USA) that exhibit 1300-fold resistance to the neonicotinoid insecticide, thiamethoxam, and compared it to that of susceptible psyllids collected from the same area and without imposed selection. The Lake Alfred population responded to insecticide resistance by up-regulation of 240 genes and down-regulation of 148 others. The Wauchula population exhibited similar patterns to the Lake Alfred population with up-regulation of 253 genes and down-regulation of 115 others. Gene Ontology annotation associated with cellular processes, cell, and catalytic activity were assigned to differentially expressed genes (DEGs). The DEGs from Lake Alfred and Wauchula populations were mapped to Kyoto Encyclopedia of Gene and Genomes pathways and implicated enrichment of metabolic pathways, oxidative phosphorylation, extracellular matrix-receptor interaction, terpenoid backbone biosynthesis, and insect hormone biosynthesis in the resistant populations. Up-regulation of 60s ribosomal proteins, UDP-gluscoyltransferases, cytochrome c oxidases, and CYP and ABC transporters among thiamethoxam-resistant D. citri implicates a broad array of novel and conventionally understood resistance mechanisms.
Collapse
Affiliation(s)
- Xue Dong Chen
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Surendra Neupane
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Torrence A Gill
- Biology Department, Chowan University, One University Place, Murfreesboro, NC, 27855, USA
| | - Hunter Gossett
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Kirsten S Pelz-Stelinski
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| | - Lukasz L Stelinski
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, 700 Experiment station Rd, Lake Alfred, FL, 33850, USA
| |
Collapse
|
38
|
Hou QL, Chen EH, Dou W, Wang JJ. Knockdown of specific cuticular proteins analogous to peritrophin 3 genes disrupt larval and ovarian development in Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2021; 28:1326-1337. [PMID: 32856386 DOI: 10.1111/1744-7917.12869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/12/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Cuticular proteins (CPs) are critical components of the insect cuticle and play important roles in maintaining normal insect development and defense against various environmental stresses. The oriental fruit fly (Bactrocera dorsalis) is one of the most destructive pests worldwide, and its eight CPs analogous to peritrophin 3 (BdCPAP3) family genes have been identified in our previous study. In the present study, we further explored the possible roles of CPAP3 genes in B. dorsalis development. Each sequence of BdCPAP3 genes contained three conserved ChtBD2 (chitin-binding) domains. Spatial and temporal expression patterns revealed that the four BdCPAP3 genes (BdCPAP3-A1, B, E, and E2) might play important roles in larval pupariation of B. dorsalis. Moreover, treatment with a juvenile hormone analog (methoprene) significantly restricted expression of these four CPAP3 genes, whereas treatment with 20-hydroxy-ecdysone induced expression. The RNA interference (RNAi) results revealed that down-regulated CPAP3 genes led to significant delay of pupariation, and injection of dsBdCPAP3-E into 5-d-old B. dorsalis larvae caused approximately 40% mortality. Interestingly, we also confirmed that BdCPAP3-D2 was involved in B. dorsalis ovarian development. This study showed that some specific CPAP3 genes had crucial roles in B. dorsalis development, and these CP genes could be used as potential targets to control this pest via RNAi.
Collapse
Affiliation(s)
- Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| |
Collapse
|
39
|
Politi Y, Bertinetti L, Fratzl P, Barth FG. The spider cuticle: a remarkable material toolbox for functional diversity. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200332. [PMID: 34334021 PMCID: PMC8326826 DOI: 10.1098/rsta.2020.0332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 06/13/2023]
Abstract
Engineered systems are typically based on a large variety of materials differing in composition and processing to provide the desired functionality. Nature, however, has evolved materials that are used for a wide range of functional challenges with minimal compositional changes. The exoskeletal cuticle of spiders, as well as of other arthropods such as insects and crustaceans, is based on a combination of chitin, protein, water and small amounts of organic cross-linkers or minerals. Spiders use it to obtain mechanical support structures and lever systems for locomotion, protection from adverse environmental influences, tools for piercing, cutting and interlocking, auxiliary structures for the transmission and filtering of sensory information, structural colours, transparent lenses for light manipulation and more. This paper illustrates the 'design space' of a single type of composite with varying internal architecture and its remarkable capability to serve a diversity of functions. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Yael Politi
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Luca Bertinetti
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Friedrich G. Barth
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Lin HY, Zhu CQ, Zhang HH, Shen ZC, Zhang CX, Ye YX. The Genetic Network of Forkhead Gene Family in Development of Brown Planthoppers. BIOLOGY 2021; 10:867. [PMID: 34571744 PMCID: PMC8469257 DOI: 10.3390/biology10090867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
We identified 18 distinct Fox genes in the genome of the brown planthopper, Nilaparvata lugens, and further found a novel insect-specific subfamily that we temporarily named FoxT. A total of 16 genes were highly expressed in the eggs, while NlFoxL2 and NlFoxT are female- and male-specific genes, respectively. Large scale RNAi and RNA-seq analyses were used to reveal the functions and potential targets of NlFoxs. In the eggs, NlFoxA, NlFoxN1 and NlFoxN2 are indispensable to early embryogenesis by regulating different target genes; NlFoxG and NlFoxQ co-regulate NlSix3 for brain development; and NlFoxC, NlFoxJ1 and NlFoxP have complementary effects on late embryogenesis. Moreover, NlFoxA, NlFoxNl and NlFoxQ have pleiotropism. NlFoxA and NlFoxQ regulate the expression of NlCHS1 and cuticular proteins, respectively, thereby participating in the formation of cuticles. NlFoxN1, which regulates the expression of NlKrt9 is involved in the formation of intermediate filament frameworks. Our previous studies have revealed that NlFoxL2 and NlFoxO play important roles in chorion formation and wing polyphenism. Altogether, N. lugens Fox genes exhibit functional diversity in embryonic development and organogenesis. This comprehensive study combines genomics, transcriptomics and phenomics, thereby constructing a complex genetic network that spans the entire life cycle of the brown planthopper.
Collapse
Affiliation(s)
- Hai-Yan Lin
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; (H.-Y.L.); (C.-Q.Z.)
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
| | - Cheng-Qi Zhu
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; (H.-Y.L.); (C.-Q.Z.)
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
| | - Hou-Hong Zhang
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
| | - Zhi-Cheng Shen
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
| | - Chuan-Xi Zhang
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yu-Xuan Ye
- The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; (H.-Y.L.); (C.-Q.Z.)
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (H.-H.Z.); (Z.-C.S.); (C.-X.Z.)
| |
Collapse
|
41
|
Li P, Li X, Wang W, Tan X, Wang X, Yang X. Transcriptional identification of differentially expressed genes during the prepupal-pupal transition in the oriental armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:485-498. [PMID: 33745467 DOI: 10.1017/s0007485321000171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The oriental armyworm, Mythimna separata (Walker) is a serious pest of agriculture that does particular damage to Gramineae crops in Asia, Europe, and Oceania. Metamorphosis is a key developmental stage in insects, although the genes underlying the metamorphic transition in M. separata remain largely unknown. Here, we sequenced the transcriptomes of five stages; mature larvae (ML), wandering (W), and pupation (1, 5, and 10 days after pupation, designated P1, P5, and P10) to identify transition-associated genes. Four libraries were generated, with 22,884, 23,534, 26,643, and 33,238 differentially expressed genes (DEGs) for the ML-vs-W, W-vs-P1, P1-vs-P5, and P5-vs-P10, respectively. Gene ontology enrichment analysis of DEGs showed that genes regulating the biosynthesis of the membrane and integral components of the membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs were enriched in the metabolic pathways. Of these DEGs, thirty CP, seventeen 20E, and seven JH genes were differentially expressed across the developmental stages. For transcriptome validation, ten CP, 20E, and JH-related genes were selected and verified by real-time PCR quantitative. Collectively, our results provided a basis for further studies of the molecular mechanism of metamorphosis in M. separata.
Collapse
Affiliation(s)
- Peirong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Xinru Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Wei Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Xiaoling Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Xiaoqi Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| |
Collapse
|
42
|
Hou QL, Chen EH. RNA-seq analysis of gene expression changes in cuticles during the larval-pupal metamorphosis of Plutella xylostella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100869. [PMID: 34171685 DOI: 10.1016/j.cbd.2021.100869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023]
Abstract
The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is a holometabolous insect that its cuticles must undergo the significant changes during the larval-pupal metamorphosis development. To elucidate these changes at molecular levels, RNA-seq analysis of cuticles from LLS (later fourth instar larval stage), PPS (prepupal stage) and PS (pupal stage) were performed in P. xylostella. In this paper, a total of 17,710 transcripts were obtained in the larval-pupal transition of P. xylostella, and out of which 2293 (881 up-regulated and 1412 down-regulated) and 2989 transcripts (2062 up-regulated and 927 down-regulated) were identified to be differentially expressed between LLS and PPS, as well as PPS and PS, respectively. The further GO and KEGG analysis of differentially expressed genes (DEGs) revealed that the 'structural constituent of cuticle', 'chitin metabolic process', 'chitin binding', 'tyrosine metabolism' and 'insect hormone biosynthesis' pathways were significantly enriched, indicating these pathways might be involved in the process of larval pupation in P. xylostella. Then, we found some genes that encoded cuticular proteins, chitinolytic enzymes, chitin synthesis enzymes, and cuticle tanning proteins changed their expression levels remarkably, indicating these genes might play important roles in the restruction (degradation and biosynthesis) of insect cuticles during the larval metamorphosis. Additionally, the significant changes in the mRNA levels of 20-hydroxyecdysone (20E) and juvenile hormone (JH) related genes suggested their crucial roles in regulating cuticle remodeling during the larval metamorphosis of P. xylostella. In conclusion, the present study provide us the comprehensive gene expression profiles to explore the molecular mechanisms of cuticle metamorphosis in P. xylostella, which laid a molecular basis to study roles of specific pathways and genes in insect development.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
43
|
Combined Transcriptomic and Proteomic Analysis of Myzus persicae, the Green Peach Aphid, Infected with Cucumber Mosaic Virus. INSECTS 2021; 12:insects12050372. [PMID: 33919000 PMCID: PMC8142985 DOI: 10.3390/insects12050372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary In this study, an integrated analysis of the mRNA and protein was performed to identify important putative regulators involved in the transmission of CMV (cucumber mosaic virus) by aphids. At the level of transcription, a total of 20,550 genes (≥2-fold expression difference) were identified as being differentially expressed genes (DEGs) 24 h after healthy aphid transfer to infected tobacco plants using the RNA-seq approach. At the protein level, 744 proteins were classified as being differentially abundant between virus-treated and control Myzus persicae using iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The combined mRNA and protein analysis enabled the identification of some viral putative regulators, such as cuticle proteins, ribosomal proteins, and cytochrome P450 enzymes. The results show that most of the key putative regulators were highly accumulated at the protein level. Based on those findings, we can speculate that the process by which aphids spread CMV is mainly related to post-translational regulation rather than transcription. Abstract Aphids transmit CMV (cucumber mosaic virus) in a non-persistent manner. However, little is known about the mechanism of CMV transmission. In this study, an integrated analysis of the mRNA and protein was performed to identify important putative regulators involved in the transmission of CMV by aphids. At the level of transcription, a total of 20,550 genes (≥2-fold expression difference) were identified as being differentially expressed genes (DEGs) 24 h after healthy aphid transfer to infected tobacco plants using the RNA-seq approach. At the protein level, 744 proteins were classified as being differentially abundant between virus-treated and control M. persicae using iTRAQ (isobaric tags for relative and absolute quantitation) analysis. The combined mRNA and protein analysis enabled the identification of some viral putative regulators, such as cuticle proteins, ribosomal proteins, and cytochrome P450 enzymes. The results show that most of the key putative regulators were highly accumulated at the protein level. Based on those findings, we can speculate that the process by which aphids spread CMV is mainly related to post-translational regulation rather than transcription.
Collapse
|
44
|
Zhang C, Shi Q, Li T, Cheng P, Guo X, Song X, Gong M. Comparative proteomics reveals mechanisms that underlie insecticide resistance in Culex pipiens pallens Coquillett. PLoS Negl Trop Dis 2021; 15:e0009237. [PMID: 33764997 PMCID: PMC7993597 DOI: 10.1371/journal.pntd.0009237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
Mosquito control based on chemical insecticides is considered as an important element of the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of insecticide resistance of important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. In contrast to target site resistance, other mechanisms are far from being fully understood. Global protein profiles among cypermethrin-resistant, propoxur-resistant, dimethyl-dichloro-vinyl-phosphate-resistant and susceptible strain of Culex pipiens pallens were obtained and proteomic differences were evaluated by using isobaric tags for relative and absolute quantification labeling coupled with liquid chromatography/tandem mass spectrometric analysis. A susceptible strain of Culex pipiens pallens showed elevated resistance levels after 25 generations of insecticide selection, through iTRAQ data analysis detected 2,502 proteins, of which 1,513 were differentially expressed in insecticide-selected strains compared to the susceptible strain. Finally, midgut differential protein expression profiles were analyzed, and 62 proteins were selected for verification of differential expression using iTRAQ and parallel reaction monitoring strategy, respectively. iTRAQ profiles of adaptation selection to three insecticide strains combined with midgut profiles revealed that multiple insecticide resistance mechanisms operate simultaneously in resistant insects of Culex pipiens pallens. Significant molecular resources were developed for Culex pipiens pallens, potential candidates were involved in metabolic resistance and reducing penetration or sequestering insecticide. Future research that is targeted towards RNA interference of the identified metabolic targets, such as cuticular proteins, cytochrome P450s, glutathione S-transferases and ribosomal proteins proteins and biological pathways (drug metabolism—cytochrome P450, metabolism of xenobiotics by cytochrome P450, oxidative phosphorylation, ribosome) could lay the foundation for a better understanding of the genetic basis of insecticide resistance in Culex pipiens pallens. Global protein profiles were compared among a susceptible strain of Cx. pipiens pallens and strains that were cypermethrin-resistant, propoxur-resistant, and dimethyl-dichloro-vinyl-phosphate-resistant after 25 generations of selection by distinct chemical insecticide families, multiple mechanisms were found to operate simultaneously in resistant mosquitoes of Cx. pipiens pallens, including mechanisms to lower penetration of or sequester the insecticide or to increase biodegradation of the insecticide via subtle alterations in either the cuticular protein levels or the activities of detoxification enzymes (P450s and glutathione S-transferases).
Collapse
Affiliation(s)
- Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
- * E-mail: (ZCX); (GMQ)
| | - Qiqi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Tao Li
- Nanning MHelixProTech Co., Ltd., Nanning Hi-tech Zone Bioengineering Center, Nanning, P.R. China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Xiao Song
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
- * E-mail: (ZCX); (GMQ)
| |
Collapse
|
45
|
Kang DS, Kim S, Cotten MA, Sim C. Transcript Assembly and Quantification by RNA-Seq Reveals Significant Differences in Gene Expression and Genetic Variants in Mosquitoes of the Culex pipiens (Diptera: Culicidae) Complex. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:139-145. [PMID: 32865206 PMCID: PMC7801747 DOI: 10.1093/jme/tjaa167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Indexed: 06/11/2023]
Abstract
The taxonomy of Culex pipiens complex of mosquitoes is still debated, but in North America it is generally regarded to include Culex pipiens pipiens, Culex pipiens molestus, and Culex quinquefasciatus (or Culex pipiens quinquefasciatus). Although these mosquitoes have very similar morphometry, they each have unique life strategies specifically adapted to their ecological niche. Differences include the capability for overwintering diapause, bloodmeal preference, mating behaviors, and reliance on blood meals to produce eggs. Here, we used RNA-seq transcriptome analysis to investigate the differential gene expression and nucleotide polymorphisms that may link to the divergent traits specifically between Cx. pipiens pipiens and Cx. pipiens molestus.
Collapse
Affiliation(s)
- David S Kang
- Department of Biology, Baylor University, Waco, TX
| | - Sungshil Kim
- Department of Biology, Baylor University, Waco, TX
| | | | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX
| |
Collapse
|
46
|
Chironomus riparius Proteome Responses to Spinosad Exposure. TOXICS 2020; 8:toxics8040117. [PMID: 33322338 PMCID: PMC7768432 DOI: 10.3390/toxics8040117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/27/2023]
Abstract
The potential of proteome responses as early-warning indicators of insecticide exposure was evaluated using the non-biting midge Chironomus riparius (Meigen) as the model organism. Chironomus riparius larvae were exposed to environmentally relevant concentrations of the neurotoxic pesticide spinosad to uncover molecular events that may provide insights on the long-term individual and population level consequences. The iTRAQ labeling method was performed to quantify protein abundance changes between exposed and non-exposed organisms. Data analysis revealed a general dose-dependent decrease in the abundance of globin proteins as a result of spinosad exposure. Additionally, the downregulation of actin and a larval cuticle protein was also observed after spinosad exposure, which may be related to previously determined C. riparius life-history traits impairment and biochemical responses. Present results suggest that protein profile changes can be used as early warning biomarkers of pesticide exposure and may provide a better mechanistic interpretation of the toxic response of organisms, aiding in the assessment of the ecological effects of environmental contamination. This work also contributes to the understanding of the sublethal effects of insecticides in invertebrates and their molecular targets.
Collapse
|
47
|
Xin ZZ, Hou HX, Wei XQ, Xiao JH, Huang DW. Transcriptome analysis of the male polymorphisms of fig wasp species Philotrypesis tridentata. Int J Biol Macromol 2020; 164:1665-1674. [DOI: 10.1016/j.ijbiomac.2020.07.294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/28/2022]
|
48
|
Hu E, Meng Y, Ma Y, Song R, Hu Z, Li M, Hao Y, Fan X, Wei L, Fan S, Chen S, Zhai X, Li Y, Zhang W, Zhang Y, Guo Q, Bayin C. De novo assembly and analysis of the transcriptome of the Dermacentor marginatus genes differentially expressed after blood-feeding and long-term starvation. Parasit Vectors 2020; 13:563. [PMID: 33172483 PMCID: PMC7654163 DOI: 10.1186/s13071-020-04442-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background The ixodid tick Dermacentor marginatus is a vector of many pathogens wide spread in Eurasia. Studies of gene sequence on many tick species have greatly increased the information on tick protective antigen which might have the potential to function as effective vaccine candidates or drug targets for eco-friendly acaricide development. In the current study, RNA-seq was applied to identify D. marginatus sequences and analyze differentially expressed unigenes. Methods To obtain a broader picture of gene sequences and changes in expression level, RNA-seq was performed to obtain the whole-body transcriptome data of D. marginatus adult female ticks after engorgement and long-term starvation. Subsequently, the real-time quantitative PCR (RT-qPCR) was applied to validate the RNA-seq data. Results RNA-seq produced 30,251 unigenes, of which 32% were annotated. Gene expression was compared among groups that differed by status as newly molted, starved and engorged female adult ticks. Nearly one third of the unigenes in each group were differentially expressed compared to the other two groups, and the most numerous were genes encoding proteins involved in catalytic and binding activities and apoptosis. Selected up-regulated differentially expressed genes in each group were associated to protein, lipids, carbohydrate and chitin metabolism. Blood-feeding and long-term starvation also caused genes differentially expressed in the defense response and antioxidant response. RT-qPCR results indicated 6 differentially expressed transcripts showed similar trends in expression changes with RNA-seq results confirming that the gene expression profiles in transcriptome data is in consistent with RT-qPCR validation. Conclusions Obtaining the sequence information of D. marginatus and characterizing the expression pattern of the genes involved in blood-feeding and during starvation would be helpful in understanding molecular physiology of D. marginatus and provides data for anti-tick vaccine and drug development for controlling the tick.![]()
Collapse
Affiliation(s)
- Ercha Hu
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yuan Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Ying Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Ruiqi Song
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Zhengxiang Hu
- Bayingol Vocational and Technical College, Korla, 841000, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Min Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yunwei Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xinli Fan
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Liting Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Shilong Fan
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Songqin Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xuejie Zhai
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yongchang Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Wei Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yang Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Chahan Bayin
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
49
|
Volovych O, Lin Z, Du J, Jiang H, Zou Z. Identification and temporal expression profiles of cuticular proteins in the endoparasitoid wasp, Microplitis mediator. INSECT SCIENCE 2020; 27:998-1018. [PMID: 31317624 PMCID: PMC7497268 DOI: 10.1111/1744-7917.12711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 05/10/2023]
Abstract
Recently, parasitoid wasp species Microplitis mediator has evoked increasing research attention due to its possible use in the control of Lepidoptera insects. Because insect development involves changes in cuticle composition, identification and expression analysis of M. mediator cuticular proteins may clarify the mechanisms involved in parasite development processes. We found 70 cuticular proteins from the M. mediator transcriptome and divided them into seven distinct families. Expression profiling indicated that most of these cuticular protein genes have expression peaks specific for one particular developmental stage of M. mediator. Eggs and pupae have the highest number of transcriptionally active cuticular protein genes (47 and 52 respectively). Only 12 of these genes maintained high expression activity during late larval development. Functional analysis of two larval proteins, MmCPR3 and MmCPR14, suggested their important role in the proper organization of the cuticle layers of larvae. During M. mediator larval development, normal cuticle formation can be supported by a limited number of cuticular proteins.
Collapse
Affiliation(s)
- Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
50
|
Abstract
The evolution of insect metamorphosis is one of the most important sagas in animal history, transforming small, obscure soil arthropods into a dominant terrestrial group that has profoundly shaped the evolution of terrestrial life. The evolution of flight initiated the trajectory towards metamorphosis, favoring enhanced differences between juvenile and adult stages. The initial step modified postembryonic development, resulting in the nymph-adult differences characteristic of hemimetabolous species. The second step was to complete metamorphosis, holometaboly, and occurred by profoundly altering embryogenesis to produce a larval stage, the nymph becoming the pupa to accommodate the deferred development needed to make the adult. These changing life history patterns were intimately linked to two hormonal systems, the ecdysteroids and the juvenile hormones (JH), which function in both embryonic and postembryonic domains and control the stage-specifying genes Krüppel homolog 1 (Kr-h1), broad and E93. The ecdysteroids induce and direct molting through the ecdysone receptor (EcR), a nuclear hormone receptor with numerous targets including a conserved transcription factor network, the 'Ashburner cascade', which translates features of the ecdysteroid peak into the different phases of the molt. With the evolution of metamorphosis, ecdysteroids acquired a metamorphic function that exploited the repressor capacity of the unliganded EcR, making it a hormone-controlled gateway for the tissue development preceding metamorphosis. JH directs ecdysteroid action, controlling Kr-h1 expression which in turn regulates the other stage-specifying genes. JH appears in basal insect groups as their embryos shift from growth and patterning to differentiation. As a major portion of embryogenesis was deferred to postembryonic life with the evolution of holometaboly, JH also acquired a potent role in regulating postembryonic growth and development. Details of its involvement in broad expression and E93 suppression have been modified as life cycles became more complex and likely underlie some of the changes seen in the shift from incomplete to complete metamorphosis.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology and Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA.
| |
Collapse
|