1
|
Nieto-Panqueva F, Rubalcava-Gracia D, Hamel PP, González-Halphen D. The constraints of allotopic expression. Mitochondrion 2023; 73:30-50. [PMID: 37739243 DOI: 10.1016/j.mito.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Allotopic expression is the functional transfer of an organellar gene to the nucleus, followed by synthesis of the gene product in the cytosol and import into the appropriate organellar sub compartment. Here, we focus on mitochondrial genes encoding OXPHOS subunits that were naturally transferred to the nucleus, and critically review experimental evidence that claim their allotopic expression. We emphasize aspects that may have been overlooked before, i.e., when modifying a mitochondrial gene for allotopic expression━besides adapting the codon usage and including sequences encoding mitochondrial targeting signals━three additional constraints should be considered: (i) the average apparent free energy of membrane insertion (μΔGapp) of the transmembrane stretches (TMS) in proteins earmarked for the inner mitochondrial membrane, (ii) the final, functional topology attained by each membrane-bound OXPHOS subunit; and (iii) the defined mechanism by which the protein translocator TIM23 sorts cytosol-synthesized precursors. The mechanistic constraints imposed by TIM23 dictate the operation of two pathways through which alpha-helices in TMS are sorted, that eventually determine the final topology of membrane proteins. We used the biological hydrophobicity scale to assign an average apparent free energy of membrane insertion (μΔGapp) and a "traffic light" color code to all TMS of OXPHOS membrane proteins, thereby predicting which are more likely to be internalized into mitochondria if allotopically produced. We propose that the design of proteins for allotopic expression must make allowance for μΔGapp maximization of highly hydrophobic TMS in polypeptides whose corresponding genes have not been transferred to the nucleus in some organisms.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico; Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA; Vellore Institute of Technology (VIT), School of BioScience and Technology, Vellore, Tamil Nadu, India
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Chen BS, Yu-Wai-Man P. From Bench to Bedside-Delivering Gene Therapy for Leber Hereditary Optic Neuropathy. Cold Spring Harb Perspect Med 2022; 12:a041282. [PMID: 35863905 PMCID: PMC9310952 DOI: 10.1101/cshperspect.a041282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Leber hereditary optic neuropathy (LHON) is a rare, maternally inherited mitochondrial disorder that presents with severe bilateral sequential vision loss, due to the selective degeneration of retinal ganglion cells (RGCs). Since the mitochondrial genetic basis for LHON was uncovered in 1988, considerable progress has been made in understanding the pathogenetic mechanisms driving RGC loss, which has enabled the development of therapeutic approaches aimed at mitigating the underlying mitochondrial dysfunction. In this review, we explore the genetics of LHON, from bench to bedside, focusing on the pathogenetic mechanisms and how these have informed the development of different gene therapy approaches, in particular the technique of allotopic expression with adeno-associated viral vectors. Finally, we provide an overview of the recent gene therapy clinical trials and consider the unanswered questions, challenges, and future prospects.
Collapse
Affiliation(s)
- Benson S Chen
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge CB2 0QQ, United Kingdom
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge CB2 0QQ, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, United Kingdom
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| |
Collapse
|
3
|
Abstract
Progress in animal modeling of polymorphisms and mutations in mitochondrial DNA (mtDNA) is not as developed as nuclear transgenesis due to a host of cellular and physiological distinctions. mtDNA mutation modeling is of critical importance as mutations in the mitochondrial genome give rise to a variety of pathological conditions and play a contributing role in many others. Nuclear localization and transcription of mtDNA genes followed by cytoplasmic translation and transport into mitochondria (allotopic expression, AE) provide an opportunity to create in vivo modeling of a targeted mutation in mitochondrial genes. Accordingly, such technology has been suggested as a strategy for gene replacement therapy in patients harboring mitochondrial DNA mutations. Here, we use our AE approach to transgenic mouse modeling of the pathogenic human T8993G mutation in mtATP6 as a case study for designing AE animal models.
Collapse
|
4
|
Lewis CJ, Dixit B, Batiuk E, Hall CJ, O'Connor MS, Boominathan A. Codon optimization is an essential parameter for the efficient allotopic expression of mtDNA genes. Redox Biol 2020; 30:101429. [PMID: 31981894 PMCID: PMC6976934 DOI: 10.1016/j.redox.2020.101429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 11/29/2022] Open
Abstract
Mutations in mitochondrial DNA can be inherited or occur de novo leading to several debilitating myopathies with no curative option and few or no effective treatments. Allotopic expression of recoded mitochondrial genes from the nucleus has potential as a gene therapy strategy for such conditions, however progress in this field has been hampered by technical challenges. Here we employed codon optimization as a tool to re-engineer the protein-coding genes of the human mitochondrial genome for robust, efficient expression from the nucleus. All 13 codon-optimized constructs exhibited substantially higher protein expression than minimally-recoded genes when expressed transiently, and steady-state mRNA levels for optimized gene constructs were 5-180 fold enriched over recoded versions in stably-selected wildtype cells. Eight of thirteen mitochondria-encoded oxidative phosphorylation (OxPhos) proteins maintained protein expression following stable selection, with mitochondrial localization of expression products. We also assessed the utility of this strategy in rescuing mitochondrial disease cell models and found the rescue capacity of allotopic expression constructs to be gene specific. Allotopic expression of codon optimized ATP8 in disease models could restore protein levels and respiratory function, however, rescue of the pathogenic phenotype for another gene, ND1 was only partially successful. These results imply that though codon-optimization alone is not sufficient for functional allotopic expression of most mitochondrial genes, it is an essential consideration in their design.
Collapse
Affiliation(s)
- Caitlin J Lewis
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Bhavna Dixit
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Elizabeth Batiuk
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Carter J Hall
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA
| | - Matthew S O'Connor
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA.
| | - Amutha Boominathan
- Department of Mitochondrial Research, SENS Research Foundation, Mountain View, CA, 94041, USA.
| |
Collapse
|
5
|
Artika IM. Allotopic expression of mitochondrial genes: Basic strategy and progress. Genes Dis 2019; 7:578-584. [PMID: 33335957 PMCID: PMC7729113 DOI: 10.1016/j.gendis.2019.08.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/23/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
Allotopic expression of mitochondrial genes is a deliberate functional relocation of mitochondrial genes into the nucleus followed by import of the gene-encoded polypeptide from the cytoplasm into the mitochondria. For successful allotopic expression of a mitochondrial gene, several key aspects must be considered. These include the different codon dictionary used by the mitochondrial and nuclear genomes, different codon preferences between mitochondrial and nuclear-cytosolic translation systems, and the provision of an import signal to ensure that the newly translated protein in the cytosol is successfully imported into mitochondria. The allotopic expression strategy was first developed in yeast, a useful model organism for studying human and other eukaryotic cells. Currently, a number of mitochondrial genes have been successfully recoded and nuclearly expressed in yeast and human cells. In addition to its use in evolutionary and molecular biology studies, the allotopic expression strategy has been developed as a potential approach to treat mitochondrial genetic disorders. Substantial progress has been recently achieved, and the development of this technique for therapy of the mitochondrial disease Leber's hereditary optic neuropathy (LHON) has entered phase III clinical trials. However, a number of challenges remain to be overcome to accelerate the successful application of this technique. These include improvement of nuclear gene expression, import into mitochondria, processing, and functional integration of the allotopically expressed polypeptides into mitochondrial protein complexes. This review discusses the current basic strategy, progress, challenges, and prospects of the allotopic expression strategy for mitochondrial genes.
Collapse
Affiliation(s)
- I. Made Artika
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia
- Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia
| |
Collapse
|
6
|
Dunn DA, Pinkert CA. Allotopic expression of ATP6 in the mouse as a transgenic model of mitochondrial disease. Methods Mol Biol 2015; 1265:255-69. [PMID: 25634280 DOI: 10.1007/978-1-4939-2288-8_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Progress in animal modeling of polymorphisms and mutations in mitochondrial DNA (mtDNA) is not as developed as nuclear transgenesis due to a host of cellular and physiological distinctions. mtDNA mutation modeling is of critical importance as mutations in the mitochondrial genome give rise to a variety of pathological conditions and play a contributing role in many others. Nuclear localization and transcription of mtDNA genes followed by cytoplasmic translation and transport into mitochondria (allotopic expression, AE) provide an opportunity to create in vivo modeling of a targeted mutation in mitochondrial genes and has been suggested as a strategy for gene replacement therapy in patients harboring mitochondrial DNA mutations. Here, we use our AE approach to transgenic mouse modeling of the pathogenic human T8993G mutation in mtATP6 as a case study for designing AE animal models.
Collapse
Affiliation(s)
- David A Dunn
- Department of Biological Sciences, State University of New York, Oswego, NY, USA
| | | |
Collapse
|
7
|
|
8
|
Won YW, Lim KS, Kim YH. Intracellular organelle-targeted non-viral gene delivery systems. J Control Release 2011; 152:99-109. [PMID: 21255626 DOI: 10.1016/j.jconrel.2011.01.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/30/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
Gene therapy is a rapidly growing approach for the treatment of various diseases. To achieve successful gene therapy, a gene delivery system is necessary to overcome several barriers in the extracellular and intracellular spaces. Polymers, peptides, liposomes and nanoparticles developed as gene carriers have achieved efficient cellular uptake of genes. Among these carriers, cationic polymers and peptides have been further developed as intracellular organelle-targeted delivery systems. The cytoplasm, nucleus and mitochondria have been considered primary targets for gene delivery using targeting moieties or environment-responsive materials. In this review, we explore recently developed non-viral gene carriers based on reducible systems specialized to target the cytoplasm, nucleus and mitochondria.
Collapse
Affiliation(s)
- Young-Wook Won
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, and Institute of Aging Society, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Republic of Korea
| | | | | |
Collapse
|
9
|
D'Souza GGM, Boddapati SV, Weissig V. Gene therapy of the other genome: the challenges of treating mitochondrial DNA defects. Pharm Res 2006; 24:228-38. [PMID: 17180727 DOI: 10.1007/s11095-006-9150-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 08/17/2006] [Indexed: 01/08/2023]
Abstract
Human mitochondrial DNA is a 16.5 kb circular DNA molecule located inside the mitochondrial matrix. Although accounting for only about 1% of total cellular DNA, defects in mitochondrial DNA have been found to have major effects on human health. A single mtDNA mutation may cause a bewildering variety of clinical symptoms mainly involving the neuromuscular system at any age of onset. Despite significant advances in the understanding of mitochondrial DNA defects at a molecular level, the clinical diagnosis of mtDNA diseases remains a significant challenge and effective therapies for such diseases are as yet unavailable. In contrast to gene therapy for chromosomal DNA defects, mitochondrial gene therapy is a field that is still in its infancy and attempts towards gene therapy of the mitochondrial genome are rare. In this review we outline what we believe are the unique challenges associated with the correction of mtDNA mutations and summarize current approaches to gene therapy for the "other genome".
Collapse
Affiliation(s)
- Gerard G M D'Souza
- Bouvé College of Health Sciences, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, 211 Mugar Building, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
10
|
ARTIKA IMADE. Allotopic Expression of a Gene Encoding FLAG Tagged-subunit 8 of Yeast Mitochondrial ATP Synthase. HAYATI JOURNAL OF BIOSCIENCES 2006. [DOI: 10.1016/s1978-3019(16)30377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
11
|
Stephens AN, Nagley P, Devenish RJ. Each yeast mitochondrial F1F0-ATP synthase complex contains a single copy of subunit 8. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1607:181-9. [PMID: 14670608 DOI: 10.1016/j.bbabio.2003.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The stoichiometry of subunit 8 in yeast mitochondrial F(1)F(0)-ATP synthase (mtATPase) has been evaluated using an immunoprecipitation approach. Single HA or FLAG epitopes were introduced at the N-terminus of subunit 8. Expression of each tagged subunit 8 variant in yeast cells lacking endogenous subunit 8 restored a respiratory phenotype and had little measurable effect on ATP hydrolase activity of the isolated enzyme. Moreover, the two epitope-tagged subunit 8 variants could be stably co-expressed in the same host cells and both of HA-Y8 and FLAG-Y8 could be detected in ATP synthase complexes isolated by native gel electrophoresis. Mitochondria isolated from each yeast strain were solubilized to release ATP synthase complexes in either the monomeric or dimeric forms. In each case, monoclonal antibodies directed against either the FLAG or HA epitope could immunoprecipitate intact ATP synthase complexes. When both HA-Y8 and FLAG-Y8 were co-expressed in cells, monomeric ATP synthases contained only a single subunit 8 variant after immunoprecipitation, corresponding to the particular antibody used (HA or FLAG). By contrast, both subunit 8 variants were recovered in samples of immunoprecipitated dimeric ATP synthase complexes, irrespective of the antibody used. We conclude that each monomeric yeast mitochondrial ATP synthase complex contains a single copy of subunit 8.
Collapse
Affiliation(s)
- Andrew N Stephens
- Department of Biochemistry and Molecular Biology, and ARC Centre for Structural and Functional Microbial Genomics, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
12
|
Stephens AN, Khan MA, Roucou X, Nagley P, Devenish RJ. The molecular neighborhood of subunit 8 of yeast mitochondrial F1F0-ATP synthase probed by cysteine scanning mutagenesis and chemical modification. J Biol Chem 2003; 278:17867-75. [PMID: 12626501 DOI: 10.1074/jbc.m300967200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The detailed membrane topography and neighboring polypeptides of subunit 8 in yeast mitochondrial ATP synthase have been determined using a combination of cysteine scanning mutagenesis and chemical modification. 46 single cysteine substitution mutants encompassing the length of the subunit 8 protein were constructed by site-directed mutagenesis. Expression of each cysteine variant in yeast lacking endogenous subunit 8 restored respiratory phenotype to cells and had little measurable effect on ATP hydrolase function. The exposure of each introduced cysteine residue to the aqueous environment was assessed in isolated mitochondria using the fluorescent thiol-modifying probe fluorescein 5-maleimide. The first 14 and last 13 amino acids of subunit 8 were accessible to fluorescein 5-maleimide in osmotically lysed mitochondria and are thus extrinsic to the lipid bilayer, indicating a 21-amino acid transmembrane span. The C-terminal region of subunit 8 was partially occluded by other ATP synthase subunits, especially in a small region surrounding Val-40 that was demonstrated to play an important role in maintaining the stability of the F(1)-F(0) interaction. Cross-linking using heterobifunctional reagents revealed the proximity of subunit 8 to subunits b, d, and f in the matrix and to subunits b, f, and 6 in the intermembrane space. A disulfide bridge was also formed between subunit 8(F7C) or (M10C) and residue Cys-23 of subunit 6, demonstrating a close interaction between these two hydrophobic membrane subunits and confirming the location of the N termini of each in the intermembrane space. We conclude that subunit 8 is an integral component of the stator stalk of yeast mitochondrial F(1)F(0)-ATP synthase.
Collapse
Affiliation(s)
- Andrew N Stephens
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
13
|
Stephens AN, Roucou X, Artika IM, Devenish RJ, Nagley P. Topology and proximity relationships of yeast mitochondrial ATP synthase subunit 8 determined by unique introduced cysteine residues. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6443-51. [PMID: 11029588 DOI: 10.1046/j.1432-1327.2000.01733.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have used site-directed chemical labelling to demonstrate the membrane topology and to identify neighbouring subunits of subunit 8 (Y8) in yeast mitochondrial ATP synthase (mtATPase). Unique cysteine residues were introduced at the N or C-terminus of Y8 by site-directed mutagenesis. Expression and targeting to mitochondria in vivo of each of these variants in a yeast Y8 null mutant was able to restore activity to an otherwise nonfunctional ATP synthase complex. The position of each introduced cysteine relative to the inner mitochondrial membrane was probed with thiol-specific nonpermeant and permeant reagents in both intact and lysed mitochondria. The data indicate that the N-terminus of Y8 is located in the intermembrane space of mitochondria whereas the C-terminus is located within the mitochondrial matrix. The proximity of Y8 to other proteins of mtATPase was tested using heterobifunctional cross-linking reagents, each with one thiol-specific reactive group and one nonspecific, photoactivatible reactive group. These experiments revealed the proximity of the C-terminal domain of Y8 to subunits d and f, and that of the N-terminal domain to subunit f. It is concluded that Y8 possesses a single transmembrane domain which extends across the inner membrane of intact mitochondria. As subunit d is a likely component of the stator stalk of mitochondrial ATP synthase, we propose, on the basis of the observed cross-links, that Y8 may also be part of the stator stalk.
Collapse
Affiliation(s)
- A N Stephens
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | | | | | | | | |
Collapse
|
14
|
Devenish RJ, Prescott M, Roucou X, Nagley P. Insights into ATP synthase assembly and function through the molecular genetic manipulation of subunits of the yeast mitochondrial enzyme complex. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:428-42. [PMID: 10838056 DOI: 10.1016/s0005-2728(00)00092-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Development of an increasingly detailed understanding of the eucaryotic mitochondrial ATP synthase requires a detailed knowledge of the stoichiometry, structure and function of F(0) sector subunits in the contexts of the proton channel and the stator stalk. Still to be resolved are the precise locations and roles of other supernumerary subunits present in mitochondrial ATP synthase complexes, but not found in the bacterial or chloroplast enzymes. The highly developed system of molecular genetic manipulation available in the yeast Saccharomyces cerevisiae, a unicellular eucaryote, permits testing for gene function based on the effects of gene disruption or deletion. In addition, the genes encoding ATP synthase subunits can be manipulated to introduce specific amino acids at desired positions within a subunit, or to add epitope or affinity tags at the C-terminus, enabling questions of stoichiometry, structure and function to be addressed. Newly emerging technologies, such as fusions of subunits with GFP are being applied to probe the dynamic interactions within mitochondrial ATP synthase, between ATP synthase complexes, and between ATP synthase and other mitochondrial enzyme complexes.
Collapse
Affiliation(s)
- R J Devenish
- Department of Biochemistry and Molecular Biology, Monash University, P.O. Box 13D, Vic. 3800, Australia
| | | | | | | |
Collapse
|
15
|
Roucou X, Artika IM, Devenish RJ, Nagley P. Bioenergetic and structural consequences of allotopic expression of subunit 8 of yeast mitochondrial ATP synthase. The hydrophobic character of residues 23 and 24 is essential for maximal activity and structural stability of the enzyme complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:444-51. [PMID: 10215855 DOI: 10.1046/j.1432-1327.1999.00289.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Subunit 8 (Y8), a mitochondrially encoded subunit of the F0 sector of the F1F0-ATP synthase is essential for oxidative phosphorylation. We have previously introduced the technique of allotopic expression to study the structure/function of Y8, whereby an artificial Y8 gene is expressed in the nucleus of cells lacking a functional mitochondrial Y8, thus generating assembly of a functional F1F0-ATPase complex. In this paper we show that when a gene encoding an essentially unmodified version of Y8 is allotopically expressed, ATP synthesis and hydrolysis rates, as well as efficiency of oxidative phosphorylation, were similar to those of the parental wild-type strain in which Y8 is naturally expressed in mitochondria. We then tested the requirement for the hydrophobicity of the central domain (residues 14-32), which possibly represents a transmembrane stem, by introducing adjacent negative charges at different positions of Y8. One of the variants thus generated, which carries the double substitution Leu23-->Asp, Leu24-->Asp, when expressed in a strain lacking endogenous Y8, gave rise to cells which grew very slowly by oxidative phosphorylation. Measurement of bioenergetic parameters showed two major defects in these cells relative to control cells allotopically expressing unmodified Y8. First, the activity of the F1F0-ATP synthase was significantly decreased. ATP synthesis and state 3 of respiration were reduced by approximately 30-40%. ATP hydrolysis was reduced by approximately 30% and was almost insensitive to the F0 inhibitor oligomycin. Second, the physical coupling between the two sectors of the enzyme, as well as the stability of the F1 sector itself, were affected as shown by decreased recovery of F0 sector [8, 9, b, oligomycin sensitivity-conferring protein (OSCP), d, h and f] and F1 sector (alpha, gamma, delta) subunits in immunoprecipitates of ATP synthase. This study indicates that Y8 not only performs an important role in the structure of the mitochondrial complex but also in its activity. We conclude that the hydrophobic character of amino acids 23 and 24 in the middle of the putative transmembrane stem of Y8 is essential for coupling proton transport through F0 to ATP synthesis on F1.
Collapse
Affiliation(s)
- X Roucou
- Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | | | | | | |
Collapse
|
16
|
Goldschmidt-Clermont M. Coordination of nuclear and chloroplast gene expression in plant cells. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 177:115-80. [PMID: 9378616 DOI: 10.1016/s0074-7696(08)62232-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plastid proteins are encoded in two genomes, one in the nucleus and the other in the organelle. The expression of genes in these two compartments in coordinated during development and in response to environmental parameters such as light. Two converging approaches reveal features of this coordination: the biochemical analysis of proteins involved in gene expression, and the genetic analysis of mutants affected in plastid function or development. Because the majority of proteins implicated in plastid gene expression are encoded in the nucleus, regulatory processes in the nucleus and in the cytoplasm control plastid gene expression, in particular during development. Many nucleus-encoded factors involved in transcriptional and posttranscriptional steps of plastid gene expression have been characterized. We are also beginning to understand whether and how certain developmental or environmental signals perceived in one compartment may be transduced to the other.
Collapse
|
17
|
Assembly of Multisubunit Complexes in Mitochondria. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1569-2558(09)60019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
18
|
Gray RE, Law RH, Devenish RJ, Nagley P. Allotopic expression of mitochondrial ATP synthase genes in nucleus of Saccharomyces cerevisiae. Methods Enzymol 1996; 264:369-89. [PMID: 8965711 DOI: 10.1016/s0076-6879(96)64035-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R E Gray
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
19
|
Abstract
In the mitochondrion, inherited defects have been identified in the electron transport system by which ATP is formed, as well as in the transport and metabolism of fuels. Clinical findings in diseases due to these defects can be related to abnormal accumulations of metabolic intermediates and inadequate or inefficient ATP generation. In the oxidative process within the mitochondrion, chemical oxidants are generated, which can cause cellular damage. As the body's defences against the oxidants decline, oxidative damage appears to contribute to the ageing process itself as well as to age-related degenerative diseases. Understanding in this area has accelerated with knowledge of the synthesis, structure and function of the mitochondrion and its specific DNA. The frontier is expected to advance rapidly as causal relationships between these diseases and mitochondrial dysfunction, and the potential role of antioxidants in therapy, are better defined.
Collapse
Affiliation(s)
- R Luft
- Rolf Luft Research Institute, Department of Molecular Medicine, Karolinska Hosptial, Stockholm, Sweden
| | | |
Collapse
|
20
|
Papakonstantinou T, Law RH, Manon S, Devenish RJ, Nagley P. Relationship of subunit 8 of yeast ATP synthase and the inner mitochondrial membrane. Subunit 8 variants containing multiple lysine residues in the central hydrophobic domain retain function. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:745-52. [PMID: 7867634 DOI: 10.1111/j.1432-1033.1995.tb20197.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A molecular genetic approach has been used to test the proposition that the central hydrophobic domain of yeast mitochondrial ATP synthase subunit 8 represents a transmembrane stem in contact with the lipid bilayer. The rationale for this approach is the general inability of membrane bilayers to accomodate unshielded charged residues of polypeptide chains. Non-polar residues at several positions within the central hydrophobic domain of subunit 8 were replaced with the positively charged amino acid lysine. This was done in an attempt to disrupt subunit 8 function, and thereby determine the boundaries of the putative transmembrane stem. Each subunit 8 variant was allotopically expressed in vivo as a mitochondrial import precursor encoded by a nuclear gene. It was found that all variants, which included proteins carrying two lysines at various positions in the hydrophobic domain, exhibited the ability to restore growth of subunit-8-deficient cells on the non-fermentable substrate ethanol. This indicated that the function of none of these subunit 8 variants was severely compromised. There was also no detectable change in the proteolipid characteristics of subunit 8, as defined by the chloroform/methanol solubility properties of variant proteins extracted from membranes following import into isolated mitochondria. These data suggest that subunit 8 is located in a hydrophobic niche in the mitochondrial ATP synthase, probably in contact with other protein subunits of the complex. We conclude that the function of subunit 8 does not necessarily require it to be integrated within the inner mitochondrial membrane, in contact with the lipid bilayer. Our findings also suggest that hydropathy plots, indicating hydrophobic domains within polypeptides, cannot reliably be interpreted as transmembrane helices in the absence of independent evidence.
Collapse
|
21
|
|
22
|
Affiliation(s)
- R H Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
23
|
Papakonstantinou T, Galanis M, Nagley P, Devenish RJ. Each of three positively-charged amino acids in the C-terminal region of yeast mitochondrial ATP synthase subunit 8 is required for assembly. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:22-32. [PMID: 8347659 DOI: 10.1016/0005-2728(93)90026-c] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Each of three conserved positively-charged residues in the C-terminal region of subunit 8 of yeast (Saccharomyces cerevisiae) mitochondrial ATP synthase was replaced with isoleucine. The assembly and functional properties of the resulting variants (substituted at Arg-37, Arg-42 and Lys-47) were examined using in-vitro systems to assay import into isolated mitochondria and to monitor assembly into ATP synthase, as well as an in-vivo rescue system using host yeast cells lacking endogenous subunit 8. Each such variant was found to be impaired in assembly in vitro, after import in the form of a chimaeric protein bearing a leader sequence with mitochondrial targeting function. Import precursors bearing a duplicated-leader sequence, engendering enhanced delivery to mitochondria of the passenger variant subunit-8 proteins, enabled assembly of the (Lys-47-->Ile) variant to be detected in vitro but not that of (Arg-37-->Ile) or (Arg-42-->Ile) variants. The respiratory growth of subunit 8-deficient host cells could be rescued with the (Lys-47-->Ile) variant expressed allotopically in the nucleus. Such rescued cells were found to have an enhanced growth rate (comparable to that produced by non-mutagenized parental subunit 8) when delivered to mitochondria with the duplicated-leader sequence, as compared to the single-leader sequence. This confirms that the impediment in the (Lys-47-->Ile) variant lies in the efficiency of its assembly, rather than a functional defect, as such, arising from the loss of that positive charge. In contrast, host cells were unable to be rescued by the (Arg-37-->Ile) and (Arg-42-->Ile) variants, even when they were endowed with the duplicated leader sequence. It is concluded that the positively-charged C-terminal domain of subunit 8, common to fungal and mammalian homologues of this protein, plays a key role in its assembly into mitochondrial ATP synthase.
Collapse
Affiliation(s)
- T Papakonstantinou
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
24
|
Chen G, Jagendorf A. Import and assembly of the beta-subunit of chloroplast coupling factor 1 (CF1) into isolated intact chloroplasts. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53784-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Devenish RJ, Papakonstantinou T, Galanis M, Law RH, Linnane AW, Nagley P. Structure/function analysis of yeast mitochondrial ATP synthase subunit 8. Ann N Y Acad Sci 1992; 671:403-14. [PMID: 1288337 DOI: 10.1111/j.1749-6632.1992.tb43814.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Subunit 8 of yeast mitochondrial ATP synthase is a small hydrophobic component of the membrane-associated F0 sector. Structure/function relations in subunit 8 were studied by focusing on three structural domains: a highly conserved NH2-terminal region, a central hydrophobic region (previously suggested to be a transmembrane stem), and a COOH-terminal region bearing a conserved array of three positively charged residues. A combined approach was used, which encompasses site-directed mutagenesis, in vitro import and assembly tests, and an in vivo allotopic expression system (using host cells unable to synthesise subunit 8 in mitochondria). The results indicate that the NH2-terminal region of subunit 8 is involved functionally in the F0 sector. As the central hydrophobic region can functionally tolerate the introduction of multiple, positively charged residues (which abolishes the proteolipid solubility characteristics of the entire subunit), the role of this hydrophobic region as a transmembrane stem is brought into question. Each of the three positively charged residues toward the COOH-terminus of subunit 8 is required for the efficient assembly of this subunit into the F0 sector. Removal of the more proximal charged residues Arg37 or Arg42 has a more severe impact on subunit 8 assembly than does removal of the most distal residue Lys47 in terms of both in vitro import and assembly as well as the ability of the subunit 8 variant to function in mitochondrial ATP synthase in vivo.
Collapse
Affiliation(s)
- R J Devenish
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
26
|
Bolotin-Fukuhara M, Grivell LA. Genetic approaches to the study of mitochondrial biogenesis in yeast. Antonie Van Leeuwenhoek 1992; 62:131-53. [PMID: 1444332 DOI: 10.1007/bf00584467] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to most other organisms, the yeast Saccharomyces cerevisiae can survive without functional mitochondria. This ability has been exploited in genetic approaches to the study of mitochondrial biogenesis. In the last two decades, mitochondrial genetics have made major contributions to the identification of genes on the mitochondrial genome, the mapping of these genes and the establishment of structure-function relationships in the products they encode. In parallel, more than 200 complementation groups, corresponding to as many nuclear genes necessary for mitochondrial function or biogenesis have been described. Many of the latter are required for post-transcriptional events in mitochondrial gene expression, including the processing of mitochondrial pre-RNAs, the translation of mitochondrial mRNAs, or the assembly of mitochondrial translation products into the membrane. The aim of this review is to describe the genetic approaches used to unravel the intricacies of mitochondrial biogenesis and to summarize recent insights gained from their application.
Collapse
Affiliation(s)
- M Bolotin-Fukuhara
- Laboratoire de Génétique Moléculaire, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
27
|
Cox G, Devenish R, Gibson F, Howitt S, Nagley P. Chapter 12 The structure and assembly of ATP synthase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
28
|
Grasso DG, Nero D, Law RH, Devenish RJ, Nagley P. The C-terminal positively charged region of subunit 8 of yeast mitochondrial ATP synthase is required for efficient assembly of this subunit into the membrane F0 sector. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 199:203-9. [PMID: 1829679 DOI: 10.1111/j.1432-1033.1991.tb16110.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper deals with a truncated derivative of subunit 8 of yeast mitochondrial ATP synthase in which a conserved positively charged residue (Lys47) has been removed by site-directed mutagenesis together with the C-terminal residue (Leu48). This derivative has been expressed as a chimaeric precursor N9L/Y8-1(K47-STP) carrying an N-terminal cleavable leader sequence (N9L), fused by a short bridging sequence to the truncated subunit-8 passenger protein. Allotopic expression of N9L/Y8-1(K47-STP) in vivo in an aap1 mit- host yeast strain lacking endogenous subunit 8 leads to partial restoration of bioenergetic function in the transformant strain denoted T475. Import and assembly studies were carried out in vitro using target mitochondria from strain YGL-1 partially depleted in subunit 8; such controlled depletion has been previously shown to be required for the efficient assembly (monitored immunochemically) of full-length subunit 8 imported in vitro as the precursor N9L/Y8-1. It was found that N9L/Y8-1(K47-STP) synthesized in vitro was imported successfully into YGL-1 mitochondria, but no significant assembly of the truncated subunit 8 was observed in these or any other mitochondria tested. The bioenergetic defects in T475 mitochondria are ascribed to the impaired assembly of the subunit-8 variant in vivo, resulting from the truncation at Lys47. In consequence, T475 mitochondria behave as though partially depleted of subunit 8. This conclusion was supported by the ability of isolated T475 mitochondria to provide a vehicle for the efficient import and assembly of subunit 8 processed from full-length N9L/Y8-1. Two related aspects of import and assembly have been addressed as part of the analysis of truncated subunit 8. First, mitochondria from strain T2-1, an aap1 mit- mutant genetically reconstituted by allotopic expression of N9L/Y8-1, were also found to be effective in the in vitro assembly of subunit 8 derived from imported N9L/Y8-1. This suggests an intramitochondrial shortage of subunit 8 delivered by allotopic expression of N9L/Y8-1 in vivo, which may underlie the incomplete restoration of energy coupling in T2-1 mitochondria compared to those of wild-type yeast. Second, on allotopic expression of N9L/Y8-2 (containing subunit 8 directly fused to N9L) in the aap1 mit- host, a rescued transformant strain T10-1 was generated which displays bioenergetic defects superficially similar to those of T475. Processed subunit 8 clearly assembled into the ATP synthase of isolated YGL-1 mitochondria, in spite of the relatively weak import of N9L/Y8-2 in vitro.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D G Grasso
- Department of Biochemistry, Monash University, Clayton, Australia
| | | | | | | | | |
Collapse
|
29
|
Galanis M, Devenish RJ, Nagley P. Duplication of leader sequence for protein targeting to mitochondria leads to increased import efficiency. FEBS Lett 1991; 282:425-30. [PMID: 1828039 DOI: 10.1016/0014-5793(91)80529-c] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We describe a novel method for enhancing protein import into mitochondria, by tandemly duplicating the N-terminal cleavable leader peptide using a gene manipulation strategy. The import into isolated yeast mitochondria of passenger proteins (yeast mitochondrial ATP synthase subunits 8 and 9 and some mutagenised derivatives) that show little or no import when endowed with one such leader (that of Neurospora crassa mitochondrial ATP synthase subunit 9) is remarkably improved when the leader is tandemly duplicated. The import of these chimaeric proteins bearing a double leader is so rapid that a series of partially processed precursor intermediates accumulates inside the mitochondria before the final proteolytic release of leader sequences from the passenger proteins. It is considered that the duplicated leader greatly accelerates delivery of the import precursors to outer membrane receptor elements and the associated translocation systems, thereby enhancing precursor uptake into mitochondria.
Collapse
Affiliation(s)
- M Galanis
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
30
|
Regulation of Nuclear Gene Expression for Plastidogenesis as Affected by Developmental Stage of Plastids. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0015-3796(11)80198-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Mignotte F, Gueride M, Champagne AM, Mounolou JC. Direct repeats in the non-coding region of rabbit mitochondrial DNA. Involvement in the generation of intra- and inter-individual heterogeneity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:561-71. [PMID: 2269281 DOI: 10.1111/j.1432-1033.1990.tb15653.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In rabbit we observed heteroplasmy at an exceptionally high level, the heterogeneity occurring within the non-coding region of the DNA. Mitochondrial DNA (mt DNA) was cloned in pBR322 and the nucleotide sequence analysis of an EcoRI-Hind III fragment encompassing the non-coding region revealed that although there are common features with other mammalian mtDNAs (termed large central-conserved-sequence block, conserved-sequence blocks 1, 2 and 3 and termination-associated elements) the non-coding region shows an unusual organization; two stretches of tandem repeats of 20 bp and 153 bp are present in a part containing the origin of H-strand replication (OH) and probably the promoters for transcription as judged from other vertebrates. The long repeats are located between tRNA(Phe) and conserved sequence block 3 and the short repeats are located between conserved sequence blocks 1 and 2. When cloned in Escherichia coli (recA or recBC sbcb) DNA fragments containing the short repeats show length differences corresponding to various copy numbers of repeats. Electrophoretic analysis of the appropriate restriction fragments of rabbit mtDNA reveals extended intra- and inter-individual length heterogeneity. Both sets of repeats are involved in the generation of heterogeneity and are present in variable copy numbers from one mtDNA molecule to another. Moreover, rearrangement of the motives of the short repeat are observed to different extents in the mtDNA from one animal to another. The occurrence, maintenance and possible involvement of these repeated sequences, capable of forming stable secondary structures, are discussed in relation to their location in the region of control signals.
Collapse
Affiliation(s)
- F Mignotte
- Laboratoire de Biologie Générale-URA 1354, Université de Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
32
|
Nero D, Ekkel SM, Wang LF, Grasso DG, Nagley P. Site directed mutagenesis of subunit 8 of yeast mitochondrial ATP synthase. Functional and import properties of a series of C-terminally truncated forms. FEBS Lett 1990; 270:62-6. [PMID: 2226791 DOI: 10.1016/0014-5793(90)81235-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The function of the positively charged C-terminal region of mitochondrially encoded subunit 8 of yeast mitochondrial ATP synthase was investigated using derivatives truncated at each of the 3 positively charged residues (Arg37, Arg42 and Lys47). Each construct, allotopically expressed in the nucleus, was tested for its ability to import and assemble functionally into ATP synthase in yeast cells unable to synthesize mitochondrial subunit 8. The efficiency of import of each construct into isolated wild-type yeast mitochondria was also determined. One construct truncated at the penultimate residue of subunit 8 (Lys47) functions in vivo and shows efficient import in vitro. Thus subunit 8 can function with only two positively charged residues. The remainder of the subunit 8 variants failed to rescue in vivo. Since they all show greatly reduced or undetectable import in vitro, presumably because of the increased hydrophobic character of the subunit 8 moiety in the chimaeric precursors, the status of these variants as regards assembly and function is not clear.
Collapse
Affiliation(s)
- D Nero
- Department of Biochemistry, Monash University, Clayton, Vict., Australia
| | | | | | | | | |
Collapse
|
33
|
Law RH, Nagley P. Import into mitochondria of precursors containing hydrophobic passenger proteins: pretreatment of precursors with urea inhibits import. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1027:141-8. [PMID: 2168755 DOI: 10.1016/0005-2736(90)90077-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have studied the import into isolated yeast mitochondria of three hydrophobic passenger proteins attached to the N-terminal cleavable presequence of mitochondrial ATPase subunit 9 from Neurospora crassa. One natural precursor (pN9) contained N. crassa subunit 9; two chimaeric precursors, N9L/Y8-1 and N9L/Y9-2, respectively contained yeast mitochondrial ATPase subunits 8 and 9. In the absence of urea, pN9 and N9L/Y8-1 are imported efficiently but N9L/Y9-2 is not imported. After pretreatment of precursors in 4 M urea, binding of pN9 to mitochondria is marginally affected while its import is substantially inhibited; the binding to mitochondria of chimaeric proteins, N9L/Y8-1 and N9L/Y9-2, is greatly enhanced but no import is observed. This behaviour of import precursors containing hydrophobic passenger proteins is contrasted with that of a hydrophilic chimaeric precursor pCOXIV-DHFR, whose binding and import are enhanced by pretreatment with a high concentration of urea (8 M). The import of N9L/Y8-1 is very sensitive to the presence of low concentrations of urea in the import reaction mixture, and is abolished above 0.5 M urea although precursor binding to mitochondria is increased. By contrast, neither the import nor binding of pCOXIV-DHFR is affected directly by urea up to 0.8 M. These deleterious effects of urea on import of the chimaeric precursors N9L/Y8-1 and N9L/Y9-2 are interpreted in terms of a non-productive binding of these precursors to mitochondria, brought about by exposure of their hydrophobic domains resulting from urea unfolding. The generalization that membrane translocation of mitochondrial import precursors is enhanced by their prior unfolding in urea thus does not apply in the case of these precursors containing hydrophobic passenger proteins.
Collapse
Affiliation(s)
- R H Law
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
34
|
Abstract
Evolutionary gene transfer is a basic corollary of the now widely accepted endosymbiotic theory, which proposes that mitochondria and chloroplasts originated from once free-living eubacteria. The small organellar chromosomes are remnants of larger bacterial genomes, with most endosymbiont genes having been either transferred to the nucleus soon after endosymbiosis or lost entirely, with some being functionally replaced by pre-existing nuclear genes. Several lines of evidence indicate that relocation of some organelle genes could have been more recent. These include the abundance of non-functional organelle sequences of recent origin in nuclear DNA, successful artificial transfer of functional organelle genes to the nucleus, and several examples of recently lost organelle genes, although none of these is known to have been replaced by a nuclear homologue that is clearly of organellar ancestry. We present gene sequence and molecular phylogenetic evidence for the transfer of the chloroplast tufA gene to the nucleus in the green algal ancestor of land plants.
Collapse
Affiliation(s)
- S L Baldauf
- Department of Biology, University of Michigan, Ann Arbor 48109
| | | |
Collapse
|
35
|
Law RH, Devenish RJ, Nagley P. Assembly of imported subunit 8 into the ATP synthase complex of isolated yeast mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 188:421-9. [PMID: 2138540 DOI: 10.1111/j.1432-1033.1990.tb15419.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study concerns the assembly into a multisubunit enzyme complex of a small hydrophobic protein imported into isolated mitochondria. Subunit 8 of yeast mitochondrial ATPase (normally a mitochondrial gene product) was expressed in vitro as a chimaeric precursor N9L/Y8-1, which includes an N-terminal-cleavable transit peptide to direct its import into mitochondria. Assembly into the enzyme complex of the imported subunit 8 was monitored by immunoadsorption using an immobilized anti-F1-beta monoclonal antibody. Preliminary experiments showed that N9L/Y8-1 imported into normal rho+ mitochondria, with its complement of fully assembled ATPase, did not lead to an appreciable assembly of the exogenous subunit 8. With the expectation that mitochondria previously depleted of subunit 8 could allow such assembly in vitro, target mitochondria were prepared from genetically modified yeast cells in which synthesis of subunit 8 was specifically blocked. Initially, mitochondria were prepared from strain M31, a mit- mutant completely incapable of intramitochondrial biosynthesis of subunit 8. These mit- mitochondria however were unsuitable for assembly studies because they could not import protein in vitro. A controlled depletion strategy was then evolved. An artificial nuclear gene encoding N9L/Y8-1 was brought under the control of a inducible promoter GAL1. This regulated gene construct, in a low copy number yeast expression vector, was introduced into strain M31 to generate strain YGL-1. Galactose control of the expression of N9L/Y8-1 was demonstrated by the ability of strain YGL-1 to grow vigorously on galactose as a carbon source, and by the inability to utilize ethanol alone for prolonged periods of growth. The measurement of bioenergetic parameters in mitochondria from YGL-1 cells experimentally depleted of subunit 8, by transferring growing cells from galactose to ethanol, was consistent with the presence in mitochondria of a mosaic of ATPase, namely fully assembled functional ATPase complexes and partially assembled complexes with defective F0 sectors. These mitochondria demonstrated very efficient import of N9L/Y8-1 and readily incorporated the imported processed subunit 8 protein into ATPase. Comparison of the kinetics of import and assembly of subunit 8 showed that assembly was noticeably delayed with respect to import. These findings open the way to a new systematic analysis of the assembly of imported proteins into multisubunit mitochondrial enzyme complexes.
Collapse
Affiliation(s)
- R H Law
- Department of Biochemistry, Monash University, Clayton, Victoria, Australia
| | | | | |
Collapse
|
36
|
Grivell LA. Nucleo-mitochondrial interactions in yeast mitochondrial biogenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 182:477-93. [PMID: 2666128 DOI: 10.1111/j.1432-1033.1989.tb14854.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- L A Grivell
- Department of Molecular Cell Biology, University of Amsterdam, The Netherlands
| |
Collapse
|
37
|
|