1
|
Fei J, Bai X, Jiang C, Yin X, Ni BJ. A state-of-the-art review of environmental behavior and potential risks of biodegradable microplastics in soil ecosystems: Comparison with conventional microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176342. [PMID: 39312976 DOI: 10.1016/j.scitotenv.2024.176342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
As the use of biodegradable plastics becomes increasingly widespread, their environmental behaviors and impacts warrant attention. Unlike conventional plastics, their degradability predisposes them to fragment into microplastics (MPs) more readily. These MPs subsequently enter the terrestrial environment. The abundant functional groups of biodegradable MPs significantly affect their transport and interactions with other contaminants (e.g., organic contaminants and heavy metals). The intermediates and additives released from depolymerization of biodegradable MPs, as well as coexisting contaminants, induce alterations in soil ecosystems. These processes indicate that the impacts of biodegradable MPs on soil ecosystems might significantly diverge from conventional MPs. However, an exhaustive and timely comparison of the environmental behaviors and effects of biodegradable and conventional MPs within soil ecosystems remains scarce. To address this gap, the Web of Science database and bibliometric software were utilized to identify publications with keywords containing biodegradable MPs and soil. Moreover, this review comprehensively summarizes the transport behavior of biodegradable MPs, their role as contaminant carriers, and the potential risks they pose to soil physicochemical properties, nutrient cycling, biota, and CO2 emissions as compared with conventional MPs. Biodegradable MPs, due to their great transport and adsorption capacity, facilitate the mobility of coexisting contaminants, potentially inducing widespread soil and groundwater contamination. Additionally, these MPs and their depolymerization products can disrupt soil ecosystems by altering physicochemical properties, increasing microbial biomass, decreasing microbial diversity, inhibiting the development of plants and animals, and increasing CO2 emissions. Finally, some perspectives are proposed to outline future research directions. Overall, this study emphasizes the pronounced effects of biodegradable MPs on soil ecosystems relative to their conventional counterparts and contributes to the understanding and management of biodegradable plastic contamination within the terrestrial ecosystem.
Collapse
Affiliation(s)
- Jiao Fei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
2
|
Voyiatzis E, Valsami-Jones E, Afantitis A. Atomistic insights into the morphological dynamics of gold and platinum nanoparticles: MD simulations in vacuum and aqueous media. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:995-1009. [PMID: 39136039 PMCID: PMC11318634 DOI: 10.3762/bjnano.15.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
The thermal response of gold and platinum spherical nanoparticles (NPs) upon cooling is studied through atomistic molecular dynamics simulations. The goal is to identify the morphological transformations occurring in the nanomaterials as well as to quantify their dependence on temperature, chemistry, and NP size. For diameters smaller than 3 nm, the transition temperature from a melted/amorphous to a highly crystalline state varies considerably with NP size. For larger NPs, the transition temperature is almost diameter-independent, yet it differs considerably from the transition temperature of the respective bulk materials. The platinum NPs possess a higher level of crystallinity than the gold counterparts under the same conditions because of the stronger cohesive forces that drive the crystallization process. This observation is also supported by the simulated X-ray powder diffraction patterns of the nanomaterials. The larger NPs have a multifaceted crystal surface, and their shape remains almost constant regardless of temperature variations. The smaller NPs have a smoother and more spherical surface, and their shape varies greatly with temperature. By studying the variation of nano-descriptors commonly employed in QSAR models, a qualitative picture of the NPs' toxicity and reactivity emerges: Small/hot NPs are likely more toxic than their large/cold counterparts. Because of the small size of the NPs considered, the observed structural modifications are challenging to be studied by experimental techniques. The present approach can be readily employed to study other metallic and metal oxide nanomaterials.
Collapse
Affiliation(s)
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | |
Collapse
|
3
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. Statuses, shortcomings, and outlooks in studying the fate of nanoplastics and engineered nanoparticles in porous media respectively and borrowable sections from engineered nanoparticles for nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169638. [PMID: 38181944 DOI: 10.1016/j.scitotenv.2023.169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
This review discussed the research statuses, shortcomings, and outlooks for the fate of nanoplastics (NPs) and engineered nanoparticles (ENPs) in porous media and borrowable sections from ENPs for NPs. Firstly, the most important section was that we reviewed the research statuses on the fate of NPs in porous media and the main influencing factors, and explained the influencing mechanisms. Secondly, in order to give NPs a reference of research ideas and influence mechanisms, we also reviewed the research statuses on the fate of ENPs in porous media and the factors and mechanisms influencing the fate. The main mechanisms affecting the transport of ENPs were summarized (Retention or transport modes: advection, diffusion, dispersion, deposition, adsorption, blocking, ripening, and straining; Main forces and actions: Brownian motion, gravity, electrostatic forces, van der Waals forces, hydration, filtration, bridging; Affecting elements of the forces and actions: the ENP and media grain surface functional groups, size, shape, zeta potential, density, hydrophobicity, and roughness). Instead of using the findings of ENPs, thorough study on NPs was required because NPs and ENPs differed greatly. Based on the limited existing studies on the NP transport in porous media, we found that although the conclusions of ENPs could not be applied to NPs, most of the influencing mechanisms summarized from ENPs were applicable to NPs. Combining the research thoughts of ENPs, the research statuses of NPs, and some of our experiences and reflections, we reviewed the shortcomings of the current studies on the NP fate in porous media as well as the outlooks of future research. This review is very meaningful for clarifying the research statuses and influence mechanisms for the NP fate in porous media, as well as providing a great deal of inspiration for future research directions about the NP fate in porous media.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
4
|
Ge Z, Lu X. Impacts of extracellular polymeric substances on the behaviors of micro/nanoplastics in the water environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122691. [PMID: 37797922 DOI: 10.1016/j.envpol.2023.122691] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/01/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Increasing pollution of microplastics (MPs) and nanoplastics (NPs) has caused widespread concern worldwide. Extracellular polymeric substances (EPS) are natural organic polymers mainly produced by microorganisms, the major components of which are polysaccharides and proteins. This review focuses on the interactions that occur between EPS and MPs/NPs in the water environment and evaluates the effects of these interactions on the behaviors of MPs/NPs. EPS-driven formation of eco-corona, biofilm, and "marine snow" can incorporate MPs and NPs into sinking aggregates, resulting in the export of MPs/NPs from the upper water column. EPS coating greatly enhances the adsorption of metals and organic pollutants by MPs due to the larger specific surface area and the abundance of functional groups such as carboxyl, hydroxyl and amide groups. EPS can weaken the physical properties of MPs. Through the synergistic action of different extracellular enzymes, MPs may be decomposed into oligomers and monomers that can enter microbial cells for further mineralization. This review contributes to a comprehensive understanding of the dynamics of MPs and NPs in the water environment and the associated ecological risks.
Collapse
Affiliation(s)
- Zaiming Ge
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaoxia Lu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Witsø IL, Basson A, Vinje H, Llarena AK, Bringas CS, Aspholm M, Wasteson Y, Myrmel M. Freshwater plastispheres as a vector for foodborne bacteria and viruses. Environ Microbiol 2023; 25:2864-2881. [PMID: 37964725 DOI: 10.1111/1462-2920.16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023]
Abstract
There is growing evidence that plastic particles can accumulate microorganisms that are pathogenic to humans or animals. In the current study, the composition of the plastispheres that accumulated on polypropylene (PP), polyvinyl chloride (PVC), and high-density polyethylene (HDPE) pieces submerged in a river in the southeast Norway was characterized by 16S rRNA amplicon sequencing. Seasonal and geographical effects on the bacterial composition of the plastisphere were identified, in addition to the detection of potential foodborne pathogenic bacteria and viruses as part of the plastisphere. The diversity and taxonomic composition of the plastispheres were influenced by the number of weeks in the river, the season, and the location. The bacterial diversity differed significantly in the plastisphere from June and September, with a generally higher diversity in June. Also, the community composition of the plastisphere was significantly influenced by the geographical location, while the type of plastic had less impact. Plastics submerged in river water assembled a variety of microorganisms including potentially pathogenic bacteria and viruses (noro- and adenovirus) detected by qPCR. Cultivation methods detected viable bacteria such as Escherichia coli and Listeria monocytogenes. The results highlight the need for additional research on the risk of contaminating food with plastic particles colonized with human pathogens through irrigation water.
Collapse
Affiliation(s)
- Ingun Lund Witsø
- Faculty of Veterinary Medicine, Food Safety Unit, The Norwegian University of Life Sciences, Ås, Norway
| | - Adelle Basson
- Faculty of Veterinary Medicine, Food Safety Unit, The Norwegian University of Life Sciences, Ås, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Hilde Vinje
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | - Ann-Katrin Llarena
- Faculty of Veterinary Medicine, Food Safety Unit, The Norwegian University of Life Sciences, Ås, Norway
| | - Carlos Salas Bringas
- Institute for Marine Operations and Civil Engineering, Norwegian University of Science and Technology, Ålesund, Norway
| | - Marina Aspholm
- Faculty of Veterinary Medicine, Food Safety Unit, The Norwegian University of Life Sciences, Ås, Norway
| | - Yngvild Wasteson
- Faculty of Veterinary Medicine, Food Safety Unit, The Norwegian University of Life Sciences, Ås, Norway
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, The Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
6
|
Mahmoudi M, Landry MP, Moore A, Coreas R. The protein corona from nanomedicine to environmental science. NATURE REVIEWS. MATERIALS 2023; 8:1-17. [PMID: 37361608 PMCID: PMC10037407 DOI: 10.1038/s41578-023-00552-2] [Citation(s) in RCA: 189] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 05/15/2023]
Abstract
The protein corona spontaneously develops and evolves on the surface of nanoscale materials when they are exposed to biological environments, altering their physiochemical properties and affecting their subsequent interactions with biosystems. In this Review, we provide an overview of the current state of protein corona research in nanomedicine. We next discuss remaining challenges in the research methodology and characterization of the protein corona that slow the development of nanoparticle therapeutics and diagnostics, and we address how artificial intelligence can advance protein corona research as a complement to experimental research efforts. We then review emerging opportunities provided by the protein corona to address major issues in healthcare and environmental sciences. This Review details how mechanistic insights into nanoparticle protein corona formation can broadly address unmet clinical and environmental needs, as well as enhance the safety and efficacy of nanobiotechnology products.
Collapse
Affiliation(s)
- Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA USA
- Innovative Genomics Institute, Berkeley, CA USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA USA
- Chan Zuckerberg Biohub, San Francisco, CA USA
| | - Anna Moore
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI USA
| | - Roxana Coreas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA USA
| |
Collapse
|
7
|
Corsi I, Venditti I, Trotta F, Punta C. Environmental safety of nanotechnologies: The eco-design of manufactured nanomaterials for environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161181. [PMID: 36581299 DOI: 10.1016/j.scitotenv.2022.161181] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Nanosafety is paramount considering the risks associated with manufactured nanomaterials (MNMs) whose implications could outweigh their advantages for environmental applications. Although nanotechnology-based solutions to implement pollution control, remediation and prevention are incremental with clear benefits for public health and Earth' natural ecosystems, nanoremediation is having a setback due to the risks associated with the safety of MNMs for humans and the environment. MNMs are diverse, work differently and bionano-interactions occurring upon environmental exposure will guide their fate and hazardous outcomes. Here we propose a new ecologically-based design strategy (eco-design) having its roots in green nanoscience and LCA that will ground on an Ecological Risk Assessment approach, which introduces the evaluation of MNMs' ecotoxicity along with their performances and efficacies at the design stage. As such, the proposed eco-design strategy will allow recognition and design-out since the very beginning of material synthesis, those hazardous peculiar features that can be hazardous to living beings and the natural environment. A more ecologically sound eco-design strategy in which nanosafety is conceptually included in MNMs design will sustain safer nanotechnologies including those for the environment as remediation by leveraging any risks for humans and natural ecosystems.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, via della Vasca Navale 79, 00146 Rome, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and INSTM Local Unit, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
8
|
Liu S, Zhang X, Zeng K, He C, Huang Y, Xin G, Huang X. Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159867. [PMID: 36334667 DOI: 10.1016/j.scitotenv.2022.159867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Broad application of nanotechnology inevitably results in the release of nanomaterials (NMs) into the aquatic environment, and the negative effects of NMs on aquatic organisms have received much attention. Notably, in the natural aquatic environment, ubiquitous ecological macromolecules (i.e., natural organic matter, extracellular polymeric substances, proteins, and metabolites) can easily adsorb onto the surfaces of NMs and form an "eco-corona". As most NMs have such an eco-corona modification, the properties of their eco-corona significantly determine the fate and ecotoxicity of NMs in the natural aquatic ecosystem. Therefore, it is of great importance to understand the role of the eco-corona to evaluate the environmental risks NMs pose. However, studies on the mechanism of eco-corona formation and its resulting nanotoxicity on aquatic organisms, especially at molecular levels, are rare. This review systemically summarizes the mechanisms of eco-corona formation by several typical ecological macromolecules. In addition, the similarities and differences in nanotoxicity between pristine and corona-coated NMs to aquatic organisms at different trophic levels were compared. Finally, recent findings about potential mechanisms on how NM coronas act on aquatic organisms are discussed, including cellular internalization, oxidative stress, and genotoxicity. The literature shows that 1) the formation of an eco-corona on NMs and its biological effect highly depend on both the composition and conformation of macromolecules; 2) both feeding behavior and body size of aquatic organisms at different trophic levels result in different responses to corona-coated NMs; 3) genotoxicity can be used as a promising biological endpoint for evaluating the role of eco-coronas in natural waters. This review provides informative insight for a better understanding of the role of eco-corona plays in the nanotoxicity of NMs to aquatic organisms which will aid the safe use of NMs.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinran Zhang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Kai Zeng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuntao He
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
9
|
Zhu M, Zhang Z, Zhang T, Hofmann T, Chen W. Eco-Corona Dictates Mobility of Nanoplastics in Saturated Porous Media: The Critical Role of Preferential Binding of Macromolecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:331-339. [PMID: 36574476 DOI: 10.1021/acs.est.2c07376] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoplastics are an increasing environmental concern. In aquatic environments, nanoplastics will acquire an eco-corona by interacting with macromolecules (e.g., humic substances and extracellular polymeric substances (EPS)). Here, we show that the properties of the eco-corona and, consequently, its ability to enhance the transport of nanoplastics vary significantly with the surface functionality of nanoplastics and sources of macromolecules. The eco-corona derived from the EPS of Gram-negative Escherichia coli MG1655 enhances the transport of polystyrene (PS) nanospheres in saturated porous media to a much greater extent than the eco-corona derived from soil humic acid and fulvic acid. In comparison, the eco-corona from all three sources significantly enhance the transport of carboxylated PS (HOOC-PS). We show that the eco-corona inhibits the deposition of the two types of nanoplastics to the porous media mainly via steric repulsion. Accordingly, an eco-corona consisting of a higher mass of larger-sized macromolecules is generally more effective in enhancing transport. Notably, HOOC-PS tends to acquire macromolecules of lower hydrophobicity than PS. The more disordered and flexible structures of such macromolecules may result in greater elastic repulsion between the nanoplastics and sand grains and, consequently, greater transport enhancement. The findings of this study highlight the critical role of eco-corona formation in regulating the mobility of nanoplastics, as well as the complexity of this process.
Collapse
Affiliation(s)
- Meiling Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Zhanhua Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Thilo Hofmann
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Wien, Austria
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| |
Collapse
|
10
|
Wang L, Hu Z, Yin H, Bradford SA, Luo J, Hou D. Aging of colloidal contaminants and pathogens in the soil environment: Implications for nanoplastic and COVID-19 risk mitigation. SOIL USE AND MANAGEMENT 2022; 39:SUM12849. [PMID: 36711026 PMCID: PMC9874619 DOI: 10.1111/sum.12849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/18/2023]
Abstract
Colloidal contaminants and pathogens are widely distributed in soil, whose tiny sizes and distinct surface properties render unique environmental behaviours. Because of aging, colloids can undergo dramatic changes in their physicochemical properties once in the soil environment, thus leading to diverse or even unpredictable environmental behaviour and fate. Herein, we provide a state-of-art review of colloid aging mechanisms and characteristics and implications for risk mitigation. First, we review aging-induced formation of colloidal contaminants and aging-associated changes. We place a special focus on emerging nanoplastic (NP) contaminants and associated physical, chemical, and biological aging processes in soil environments. Second, we assess aging and survival features of colloidal pathogens, especially viruses. Viruses in soils may survive from several days to months, or even several years in groundwater, depending on their rates of inactivation and the reversibility of attachment. Furthermore, we identify implications for risk mitigation based on aging mechanisms. Hotspots of (photo)chemical aging of NPs, including plastic gauzes at construction sites and randomly discarded plastic waste in rural areas, are identified as area requiring greater research attention. For COVID-19, we suggest taking greater care in regions where viruses are persist for long periods, such as cold climate regions. Soil amendment with quicklime (CaO) may act as an effective means for pathogen disinfection. Future risk mitigation of colloidal contaminants and pathogens relies on a better understanding of aging mechanisms and more sophisticated models accurately depicting processes in real soil environments.
Collapse
Affiliation(s)
- Liuwei Wang
- School of EnvironmentTsinghua UniversityBeijingChina
| | - Zhongtao Hu
- School of EnvironmentTsinghua UniversityBeijingChina
- Faculty of ScienceThe University of MelbourneMelbourneVictoriaAustralia
| | - Hanbing Yin
- School of EnvironmentTsinghua UniversityBeijingChina
- College of Environmental Science and EngineeringBeijing Forestry UniversityBeijingChina
| | - Scott A. Bradford
- United States Department of Agriculture, Agricultural Research ServiceSustainable Agricultural Water Systems UnitDavisCaliforniaUSA
| | - Jian Luo
- School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Deyi Hou
- School of EnvironmentTsinghua UniversityBeijingChina
| |
Collapse
|
11
|
Omeyer LCM, Duncan EM, Aiemsomboon K, Beaumont N, Bureekul S, Cao B, Carrasco LR, Chavanich S, Clark JR, Cordova MR, Couceiro F, Cragg SM, Dickson N, Failler P, Ferraro G, Fletcher S, Fong J, Ford AT, Gutierrez T, Shahul Hamid F, Hiddink JG, Hoa PT, Holland SI, Jones L, Jones NH, Koldewey H, Lauro FM, Lee C, Lewis M, Marks D, Matallana-Surget S, Mayorga-Adame CG, McGeehan J, Messer LF, Michie L, Miller MA, Mohamad ZF, Nor NHM, Müller M, Neill SP, Nelms SE, Onda DFL, Ong JJL, Pariatamby A, Phang SC, Quilliam R, Robins PE, Salta M, Sartimbul A, Shakuto S, Skov MW, Taboada EB, Todd PA, Toh TC, Valiyaveettil S, Viyakarn V, Wonnapinij P, Wood LE, Yong CLX, Godley BJ. Priorities to inform research on marine plastic pollution in Southeast Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156704. [PMID: 35718174 DOI: 10.1016/j.scitotenv.2022.156704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Southeast Asia is considered to have some of the highest levels of marine plastic pollution in the world. It is therefore vitally important to increase our understanding of the impacts and risks of plastic pollution to marine ecosystems and the essential services they provide to support the development of mitigation measures in the region. An interdisciplinary, international network of experts (Australia, Indonesia, Ireland, Malaysia, the Philippines, Singapore, Thailand, the United Kingdom, and Vietnam) set a research agenda for marine plastic pollution in the region, synthesizing current knowledge and highlighting areas for further research in Southeast Asia. Using an inductive method, 21 research questions emerged under five non-predefined key themes, grouping them according to which: (1) characterise marine plastic pollution in Southeast Asia; (2) explore its movement and fate across the region; (3) describe the biological and chemical modifications marine plastic pollution undergoes; (4) detail its environmental, social, and economic impacts; and, finally, (5) target regional policies and possible solutions. Questions relating to these research priority areas highlight the importance of better understanding the fate of marine plastic pollution, its degradation, and the impacts and risks it can generate across communities and different ecosystem services. Knowledge of these aspects will help support actions which currently suffer from transboundary problems, lack of responsibility, and inaction to tackle the issue from its point source in the region. Being profoundly affected by marine plastic pollution, Southeast Asian countries provide an opportunity to test the effectiveness of innovative and socially inclusive changes in marine plastic governance, as well as both high and low-tech solutions, which can offer insights and actionable models to the rest of the world.
Collapse
Affiliation(s)
- Lucy C M Omeyer
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom.
| | - Emily M Duncan
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom; Institute of Marine Sciences - Okeanos, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal.
| | - Kornrawee Aiemsomboon
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nicola Beaumont
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, United Kingdom
| | - Sujaree Bureekul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Luis R Carrasco
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Suchana Chavanich
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Resources Research Institute Chulalongkorn University, Bangkok 10330, Thailand
| | - James R Clark
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, Devon PL1 3DH, United Kingdom
| | - Muhammad R Cordova
- Research Centre for Oceanography, Indonesian Institute of Sciences (LIPI), Jalan Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia; Research Centre for Oceanography, National Research and Innovation Agency (BRIN), Jalan Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Fay Couceiro
- School of Civil Engineering and Surveying, Faculty of Technology, University of Portsmouth, Portsmouth, Hampshire PO1 3AH, United Kingdom
| | - Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire PO4 9LY, United Kingdom; Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Neil Dickson
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Pierre Failler
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom
| | - Gianluca Ferraro
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom
| | - Stephen Fletcher
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom; UN Environment World Conservation Monitoring Centre, Cambridge, United Kingdom
| | - Jenny Fong
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Alex T Ford
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire PO4 9LY, United Kingdom
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Fauziah Shahul Hamid
- Centre for Research in Waste Management, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jan G Hiddink
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Pham T Hoa
- School of Biotechnology, International University, Vietnam National University, Ho Chi Hinh City, Viet Nam
| | - Sophie I Holland
- School of Engineering and Physical Sciences, Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh, United Kingdom
| | - Lowenna Jones
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom; Department of Politics and International Relations, Faculty of Social Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | - Nia H Jones
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Heather Koldewey
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom; Zoological Society of London, London, United Kingdom
| | - Federico M Lauro
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore; Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Charlotte Lee
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Matt Lewis
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Danny Marks
- School of Law and Government, Dublin City University, Dublin 9 Dublin, Ireland
| | - Sabine Matallana-Surget
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | | | - John McGeehan
- Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Lauren F Messer
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Laura Michie
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, Hampshire PO4 9LY, United Kingdom
| | - Michelle A Miller
- Asia Research Institute, National University of Singapore, Singapore
| | - Zeeda F Mohamad
- Department of Science and Technology Studies, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Hazimah Mohamed Nor
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Moritz Müller
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching 93350, Malaysia
| | - Simon P Neill
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Sarah E Nelms
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom
| | - Deo Florence L Onda
- The Marine Science Institute, Velasquez St., University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Joyce J L Ong
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Agamuthu Pariatamby
- Jeffrey Sachs Centre on Sustainable Development, Sunway University, Selangor Darul Ehsan 47500, Malaysia
| | - Sui C Phang
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom; The Nature Conservancy, London Office, 5 Chancery Lane Suite 403, London WC2A 1LG, United Kingdom
| | - Richard Quilliam
- Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Peter E Robins
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Maria Salta
- School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, United Kingdom
| | - Aida Sartimbul
- Faculty of Fisheries and Marine Sciences, Universitas Brawijaya, Malang 65145, East Java, Indonesia; Marine Resources Exploration and Management (MEXMA) Research Group, Universitas Brawijaya, Malang 65145, East Java, Indonesia
| | - Shiori Shakuto
- Department of Anthropology, School of Social and Political Sciences, The University of Sydney, Social Sciences Building, NSW 2006, Australia
| | - Martin W Skov
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, United Kingdom
| | - Evelyn B Taboada
- BioProcess Engineering and Research Centre, Department of Chemical Engineering, School of Engineering, University of San Carlos, Cebu City 6000, Philippines
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Tai Chong Toh
- Tropical Marine Science Institute, National University of Singapore, Singapore; College of Alice & Peter Tan, National University of Singapore, 8 College Avenue East, 138615, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Voranop Viyakarn
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Aquatic Resources Research Institute Chulalongkorn University, Bangkok 10330, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Centre for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok 10900, Thailand; Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Louisa E Wood
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom
| | - Clara L X Yong
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Brendan J Godley
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9EZ, United Kingdom
| |
Collapse
|
12
|
Zhang P, Liu Y, Zhang L, Xu M, Gao L, Zhao B. The interaction of micro/nano plastics and the environment: Effects of ecological corona on the toxicity to aquatic organisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113997. [PMID: 35988380 DOI: 10.1016/j.ecoenv.2022.113997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Concerns about the micro/nano plastics (MNPs) exposure risks have risen in recent years. The ecological corona (EC), which is generated by the interaction between MNPs and environmental substances, has a significant impact on their environmental fate and ecological risks. As the largest sink of MNPs, the aquatic environment is of great significance for understanding the environmental behaviour of MNPs. Transmission Electron Microscope (TME), Fourier Transform Infra-Red (FTIR), Scanning Electron Microscope (SEM), Dynamic Light Scattering (DLS) and other analytical methods have been used as effective methods to analyse the formation process of EC and detect the existing EC directly or indirectly on the surface of MNPs. The physicochemical properties of MNPs, complex aquatic environments and ageing time have been identified as the key factors affecting EC formation in aquatic environments. Moreover, the EC absorbed on MNPs significantly changed their environmental behaviour and toxicity to aquatic organisms. This review gives a full understanding of the EC formation progress on the surface of MNPs and different analytical methods for EC have been summarised which can further assist the ecological risk assessment of MNPs in the aquatic environment.
Collapse
Affiliation(s)
- Peiming Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Long Zhang
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China; State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Liu S, Junaid M, Liao H, Liu X, Wu Y, Wang J. Eco-corona formation and associated ecotoxicological impacts of nanoplastics in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155703. [PMID: 35523339 DOI: 10.1016/j.scitotenv.2022.155703] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs, diameter < 100 nm), are ubiquitously found in the environment including water, atmosphere, and soil because of their widespread applications and degradation resistant nature. Similarly, large quantities of natural organic matter (NOM) are present in the environment, in the form of extracellular polymeric substances (DNA, proteins, carbohydrates, etc.) and humic substances (humic acid, fulvic acid, humin, etc.), respectively released by organisms and degradation products of organic matter. These biomolecules interact with NPs and encapsulate to form a unique layered structure termed as eco-corona, which can alter the physicochemical characteristics, interaction, fate, and effects of plastic particles in the environment. The current study collated and reviewed recent findings emphasizing the progress of ecological (eco)-corona formation on NPs and affiliated toxicological effects in freshwater, marine water, and terrestrial ecosystems. The eco-corona layer formed around NPs may vary in sizes and biochemical composition, attributed mainly to the abundance, properties and physicochemical nature of both biomolecules and plastic particles, as well as medium properties and source of NOM in the ecosystem. Besides, most of the reviewed literature showed that eco-corona can reduces the toxicity of NPs with few exceptions, which demonstrates that eco-corona may enhance the NPs toxicity through the Trojan horse effect and longer retention time in biological system. Overall, this review also highlights future research perspectives for a better understanding of NPs toxicity modified by eco-corona, which is crucial to realizing the complex nature of interactions among plastic particles and NOM in a natural ecosystem.
Collapse
Affiliation(s)
- Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liu
- Guangzhou Dublin International College of Life Sciences and Technology, College of International Education, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wu
- Guangzhou Environmental Monitoring Centre, Guangzhou 510006, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
14
|
Witzmann T, Ramsperger AFRM, Wieland S, Laforsch C, Kress H, Fery A, Auernhammer GK. Repulsive Interactions of Eco-corona-Covered Microplastic Particles Quantitatively Follow Modeling of Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8748-8756. [PMID: 35736564 DOI: 10.1021/acs.langmuir.1c03204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The environmental fate and toxicity of microplastic particles are dominated by their surface properties. In the environment, an adsorbed layer of biomolecules and natural organic matter forms the so-called eco-corona. A quantitative description of how this eco-corona changes the particles' colloidal interactions is still missing. Here, we demonstrate with colloidal probe-atomic force microscopy that eco-corona formation on microplastic particles introduces a compressible film on the surface, which changes the mechanical behavior. We measure single particle-particle interactions and find a pronounced increase of long-range repulsive interactions upon eco-corona formation. These force-separation characteristics follow the Alexander-de Gennes (AdG) polymer brush model under certain conditions. We further compare the obtained fitting parameters to known systems like polyelectrolyte multilayers and propose these as model systems for the eco-corona. Our results show that concepts of fundamental polymer physics, like the AdG model, also help in understanding more complex systems like biomolecules adsorbed to surfaces, i.e., the eco-corona.
Collapse
Affiliation(s)
- Thomas Witzmann
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| | - Anja F R M Ramsperger
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Simon Wieland
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, 95447 Bayreuth, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, 95447 Bayreuth, Germany
| | - Andreas Fery
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Günter K Auernhammer
- Leibniz Institute of Polymer Research Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
15
|
Kianfar B, Tian J, Rozemeijer J, van der Zaan B, Bogaard TA, Foppen JW. Transport characteristics of DNA-tagged silica colloids as a colloidal tracer in saturated sand columns; role of solution chemistry, flow velocity, and sand grain size. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 246:103954. [PMID: 35114497 DOI: 10.1016/j.jconhyd.2022.103954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
In recent years, DNA-tagged silica colloids have been used as an environmental tracer. A major advantage of this technique is that the DNA-coding provides an unlimited number of unique tracers without a background concentration. However, little is known about the effects of physio-chemical subsurface properties on the transport behavior of DNA-tagged silica tracers. We are the first to explore the deposition kinetics of this new DNA-tagged silica tracer for different pore water chemistries, flow rates, and sand grain size distributions in a series of saturated sand column experiments in order to predict environmental conditions for which the DNA-tagged silica tracer can best be employed. Our results indicated that the transport of DNA-tagged silica tracer can be well described by first order kinetic attachment and detachment. Because of massive re-entrainment under transient chemistry conditions, we inferred that attachment was primarily in the secondary energy minimum. Based on calculated sticking efficiencies of the DNA-tagged silica tracer to the sand grains, we concluded that a large fraction of the DNA-tagged silica tracer colliding with the sand grain surface did also stick to that surface, when the ionic strength of the system was higher. The experimental results revealed the sensitivity of DNA-tagged silica tracer to both physical and chemical factors. This reduces its applicability as a conservative hydrological tracer for studying subsurface flow paths. Based on our experiments, the DNA-tagged silica tracer is best applicable for studying flow routes and travel times in coarse grained aquifers, with a relatively high flow rate. DNA-tagged silica tracers may also be applied for simulating the transport of engineered or biological colloidal pollution, such as microplastics and pathogens.
Collapse
Affiliation(s)
- Bahareh Kianfar
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands.
| | - Jingya Tian
- Department of Water Resources and Ecosystems, IHE-Delft Institute for Water Education, Delft, the Netherlands
| | | | | | - Thom A Bogaard
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
| | - Jan Willem Foppen
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands; Department of Water Resources and Ecosystems, IHE-Delft Institute for Water Education, Delft, the Netherlands.
| |
Collapse
|
16
|
Xiong X, Siddique MS, Graham NJD, Yu W. Towards microplastics contribution for membrane biofouling and disinfection by-products precursors: The effect on microbes. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127797. [PMID: 34815124 DOI: 10.1016/j.jhazmat.2021.127797] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Public awareness of plastic pollution and its impact on the ecosystem has increased rapidly. The microplastics in raw waters and their removal during drinking water treatment is receiving growing attention, but the impact on the efficiency of ultrafiltration has not been examined previously, especially in regard to the formation potential of disinfection by-products (DBPs-FP) in effluent water. In this study, two bench-scale continuous-flow ultrafiltration systems, with and without microplastics, were operated to examine the effect of microplastics on ultrafiltration. Results showed that the microplastics not only increased microbial growth, but also affected the microbial community (e.g. families Xanthobacteraceae, Sphingomonadaceae, Leptolyngbyaceae), which can promote the production of extracellular polymeric substances and nitrogen fixation, causing rapid membrane fouling. The formation potential of THM (TCM and BDCM) and N-DBP (TCNM) species in UF permeate increased with the presence of microplastics, due to changes in water quality. Statistical analysis indicated that tyrosine-like components (C3), ammonium (NH4+-N) and tryptophan-like component (C1) can be used as indicators of the DBPs-FP. This study provides new insights into the relationship between microplastics, membrane biofouling and DBPs-FP, and the potential adverse impact of microplastics on drinking water treatment.
Collapse
Affiliation(s)
- Xuejun Xiong
- Key laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100086, China
| | - Muhammad Saboor Siddique
- Key laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100086, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenzheng Yu
- Key laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100086, China.
| |
Collapse
|
17
|
The stimulation of microbial activity by microplastic contributes to membrane fouling in ultrafiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Junaid M, Wang J. Interaction of nanoplastics with extracellular polymeric substances (EPS) in the aquatic environment: A special reference to eco-corona formation and associated impacts. WATER RESEARCH 2021; 201:117319. [PMID: 34130084 DOI: 10.1016/j.watres.2021.117319] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/16/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Nanoplastics (NPs) are plastic particles with sizes ranging between 1 and 1000 nm, exhibiting exceptional qualities such as large surface area, lightweight, durability; therefore, are widely used in cosmetics, paints, electronics, etc. NPs are inevitability released into the aquatic environment where they tend to interact with both, the extracellular polymeric substances (EPS) and other fractions of natural organic matter (NOM), respectively secreted by organisms (e.g., DNA, proteins, and carbohydrates) and degradation byproducts of organic materials (e.g., humic acid and fulvic acid) fluxed into the water bodies. These biomolecules robustly encapsulate NPs to develop an eco-corona layer that alters not only the physicochemical properties but also the fate, bioreactivity, and ecological impacts of NPs. Therefore, this review summarized the documented studies highlighting the eco-corona formation on NPs and associated ecological implications in the aquatic environment. After presenting the precise background information on the occurrence of NPs and EPS in the aquatic environment, we demonstrated the basic difference between eco-corona and bio-corona formation. The reviewed studies showed that the eco-corona formed on NPs have varying sizes and composition, mainly depending on the properties of parent biomolecules, characteristics of NPs, and physicochemical parameters of the aquatic environment. Further, the potential methods for characterization and quantification of eco-corona and its composition have been also highlighted. Moreover, the ecological implications (both toxic and non-toxic) of eco-corona formation on NPs in marine and freshwater environments have been also summarized. Last but not the least, challenges and future research directions are also given, e.g., conducting field studies on eco-corona formation in the aquatic environment, optimizing methods for its characterization and quantification, and considering eco-corona concept in the future toxicity studies on NPs. Finally, understanding eco-corona formation will be critical to unveil the complex NP interactions occurring in natural aquatic systems.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Eco-Interactions of Engineered Nanomaterials in the Marine Environment: Towards an Eco-Design Framework. NANOMATERIALS 2021; 11:nano11081903. [PMID: 34443734 PMCID: PMC8398366 DOI: 10.3390/nano11081903] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Marine nano-ecotoxicology has emerged with the purpose to assess the environmental risks associated with engineered nanomaterials (ENMs) among contaminants of emerging concerns entering the marine environment. ENMs’ massive production and integration in everyday life applications, associated with their peculiar physical chemical features, including high biological reactivity, have imposed a pressing need to shed light on risk for humans and the environment. Environmental safety assessment, known as ecosafety, has thus become mandatory with the perspective to develop a more holistic exposure scenario and understand biological effects. Here, we review the current knowledge on behavior and impact of ENMs which end up in the marine environment. A focus on titanium dioxide (n-TiO2) and silver nanoparticles (AgNPs), among metal-based ENMs massively used in commercial products, and polymeric NPs as polystyrene (PS), largely adopted as proxy for nanoplastics, is made. ENMs eco-interactions with chemical molecules including (bio)natural ones and anthropogenic pollutants, forming eco- and bio-coronas and link with their uptake and toxicity in marine organisms are discussed. An ecologically based design strategy (eco-design) is proposed to support the development of new ENMs, including those for environmental applications (e.g., nanoremediation), by balancing their effectiveness with no associated risk for marine organisms and humans.
Collapse
|
20
|
Wheeler KE, Chetwynd AJ, Fahy KM, Hong BS, Tochihuitl JA, Foster LA, Lynch I. Environmental dimensions of the protein corona. NATURE NANOTECHNOLOGY 2021; 16:617-629. [PMID: 34117462 DOI: 10.1038/s41565-021-00924-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/04/2021] [Indexed: 05/02/2023]
Abstract
The adsorption of biomolecules to the surface of engineered nanomaterials, known as corona formation, defines their biological identity by altering their surface properties and transforming the physical, chemical and biological characteristics of the particles. In the first decade since the term protein corona was coined, studies have focused primarily on biomedical applications and human toxicity. The relevance of the environmental dimensions of the protein corona is still emerging. Often referred to as the eco-corona, a biomolecular coating forms upon nanomaterials as they enter the environment and may include proteins, as well as a diverse array of other biomolecules such as metabolites from cellular activity and/or natural organic matter. Proteins remain central in studies of eco-coronas because of the ease of monitoring and structurally characterizing proteins, as well as their crucial role in receptor engagement and signalling. The proteins within the eco-corona are optimal targets to establish the biophysicochemical principles of corona formation and transformation, as well as downstream impacts on nanomaterial uptake, distribution and impacts on the environment. Moreover, proteins appear to impart a biological identity, leading to cellular or organismal recognition of nanomaterials, a unique characteristic compared with natural organic matter. We contrast insights into protein corona formation from clinical samples with those in environmentally relevant systems. Principles specific to the environment are also explored to gain insights into the dynamics of interaction with or replacement by other biomolecules, including changes during trophic transfer and ecotoxicity. With many challenges remaining, we also highlight key opportunities for method development and impactful systems on which to focus the next phase of eco-corona studies. By interrogating these environmental dimensions of the protein corona, we offer a perspective on how mechanistic insights into protein coronas in the environment can lead to more sustainable, environmentally safe nanomaterials, as well as enhancing the efficacy of nanomaterials used in remediation and in the agri-food sector.
Collapse
Affiliation(s)
- Korin E Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA.
| | - Andrew J Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kira M Fahy
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Brian S Hong
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Jose A Tochihuitl
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Lilah A Foster
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
21
|
Khort A, Hedberg J, Mei N, Romanovski V, Blomberg E, Odnevall I. Corrosion and transformation of solution combustion synthesized Co, Ni and CoNi nanoparticles in synthetic freshwater with and without natural organic matter. Sci Rep 2021; 11:7860. [PMID: 33846485 PMCID: PMC8042015 DOI: 10.1038/s41598-021-87250-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/24/2021] [Indexed: 11/09/2022] Open
Abstract
Pure metallic Co, Ni, and their bimetallic compositions of Co3Ni, CoNi, and CoNi3 nanomaterials were prepared by solution combustion synthesis. Microstructure, phase composition, and crystalline structure of these nanoparticles (NPs) were characterized along with studies of their corrosion and dissolution properties in synthetic freshwater with and without natural organic matter (NOM). The nanomaterials consisted of aggregates of fine NPs (3-30 nm) of almost pure metallic and bimetallic crystal phases with a thin surface oxide covered by a thin carbon shell. The nanomaterials were characterized by BET surface areas ranging from ~ 1 to 8 m2/g for the Ni and Co NPs, to 22.93 m2/g, 14.86 m2/g, and 10.53 m2/g for the Co3Ni, CoNi, CoNi3 NPs, respectively. More Co and Ni were released from the bimetallic NPs compared with the pure metals although their corrosion current densities were lower. In contrast to findings for the pure metal NPs, the presence of NOM increased the release of Co and Ni from the bimetallic NPs in freshwater compared to freshwater only even though its presence reduced the corrosion rate (current density). It was shown that the properties of the bimetallic nanomaterials were influenced by multiple factors such as their composition, including carbon shell, type of surface oxides, and the entropy of mixing.
Collapse
Affiliation(s)
- Alexander Khort
- Division of Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden.
- Center of Functional Nano-Ceramics, National University of Science and Technology "MISIS", Moscow, Russia.
| | - Jonas Hedberg
- Division of Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- Surface Science Western, Western University, London, Canada
| | - Nanxuan Mei
- Division of Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Valentin Romanovski
- Center of Functional Nano-Ceramics, National University of Science and Technology "MISIS", Moscow, Russia
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Eva Blomberg
- Division of Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
- Division Bioscience and Materials, RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Inger Odnevall
- Division of Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden.
- AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Insitutet and KTH Royal Institute of Technology, Stockholm, Sweden.
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
22
|
Vaz VP, Nogueira DJ, Vicentini DS, Matias WG. Can the sonication of polystyrene nanoparticles alter the acute toxicity and swimming behavior results for Daphnia magna? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14192-14198. [PMID: 33517532 DOI: 10.1007/s11356-021-12455-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
The seemingly ubiquitous presence of plastic debris led to a greater focus on micro- and nanoplastics research derived from the degradation process of macroplastics. The ingestion and consequent accumulation of plastics on the biota are the main concerns. Researchers strive to make assay conditions as close as possible to those of the environment. In this regard, sonication can be applied to de-agglomerate the plastic particles, but this may alter significantly their toxicity. The aim of this study was to understand the effects of the sonication process on the acute toxicity and swimming behavior of polystyrene nanoparticles using Daphnia magna as the test organism. The results show a 2-fold reduction in the acute toxicity after the sonication process; the EC50 of the PSNP-NS was 1.28 ± 0.17 mmol while for PSNP-S the EC50 was 2.77 ± 0.32 mmol, possibly through the formation of an eco-corona on the nanoplastic surface, formed from the ions dispersed in the medium or proteins secreted by the test organisms. The mean swimming distance was reduced when compared to the control group for both the PSNP-S and PSNP-NS. This is the first research stating the toxicological differences between sonicated and non-sonicated polystyrene nanoparticle samples using Daphnia magna as test organism.
Collapse
Affiliation(s)
- Vitor P Vaz
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, Florianópolis, SC, CEP: 88040-970, Brasil
| | - Diego J Nogueira
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, Florianópolis, SC, CEP: 88040-970, Brasil
| | - Denice S Vicentini
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, Florianópolis, SC, CEP: 88040-970, Brasil
| | - William G Matias
- Laboratório de Toxicologia Ambiental, LABTOX, Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Santa Catarina, Florianópolis, SC, CEP: 88040-970, Brasil.
| |
Collapse
|
23
|
Sikder M, Croteau MN, Poulin BA, Baalousha M. Effect of Nanoparticle Size and Natural Organic Matter Composition on the Bioavailability of Polyvinylpyrrolidone-Coated Platinum Nanoparticles to a Model Freshwater Invertebrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2452-2461. [PMID: 33529523 DOI: 10.1021/acs.est.0c05985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The bioavailability of dissolved Pt(IV) and polyvinylpyrrolidone-coated platinum nanoparticles (PtNPs) of five different nominal hydrodynamic diameters (20, 30, 50, 75, and 95 nm) was characterized in laboratory experiments using the model freshwater snail Lymnaea stagnalis. Dissolved Pt(IV) and all nanoparticle sizes were bioavailable to L. stagnalis. Platinum bioavailability, inferred from conditional uptake rate constants, was greater for nanoparticulate than dissolved forms and increased with increasing nanoparticle hydrodynamic diameter. The effect of natural organic matter (NOM) composition on PtNP bioavailability was evaluated using six NOM samples at two nanoparticle sizes (20 and 95 nm). NOM suppressed the bioavailability of 95 nm PtNPs in all cases, and DOM reduced sulfur content exhibited a positive correlation with 95 nm PtNP bioavailability. The bioavailability of 20 nm PtNPs was only suppressed by NOM with a low reduced sulfur content. The physiological elimination of Pt accumulated after dissolved Pt(IV) exposure was slow and constant. In contrast, the elimination of Pt accumulated after PtNP exposures exhibited a triphasic pattern likely involving in vivo PtNP dissolution. This work highlights the importance of PtNP size and interfacial interactions with NOM on Pt bioavailability and suggests that in vivo PtNP transformations could yield unexpectedly higher adverse effects to organisms than dissolved exposure alone.
Collapse
Affiliation(s)
- Mithun Sikder
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | | | - Brett A Poulin
- U.S. Geological Survey, Boulder, CO 80303, United States
- Department of Environmental Toxicology, University of California Davis, Davis, California 95616, United States (current address)
| | - Mohammed Baalousha
- South Carolina SmartState Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
24
|
Kihara S, Köper I, Mata JP, McGillivray DJ. Reviewing nanoplastic toxicology: It's an interface problem. Adv Colloid Interface Sci 2021; 288:102337. [PMID: 33385776 DOI: 10.1016/j.cis.2020.102337] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023]
Abstract
Multiple international agencies have recently raised environmental and health concerns regarding plastics in nanoforms (nanoplastics), but there is insufficient knowledge of their properties to allow for an accurate risk assessment to be conducted and any risks managed. For this reason, research into the toxicity of nanoplastics has focused strongly on documenting their impacts on biological organisms. One scope of this review is to summarise the recent findings on the adverse effects on biological organisms and strategies which can be adopted to advance our understanding of nanoplastic properties and their toxicity. Specifically, a mechanistic approach has already been employed in nanotoxicology, which focuses on the cause-and-effect relationships to establish a tool that predicts the biological impacts based on nanoparticle characteristics. Identifying the chemical and biological bases behind the observed biological effects (such as in vitro cellular response) is a major challenge, due to the intricate nature of nanoparticle-biological molecule complexes and an unawareness of their interaction with other biological targets, particularly at interfacial level. An exemplary case includes protein corona formation and ecological molecule corona (eco-corona) for nanoplastics. Therefore, the second scope of this review is to discuss recent findings and importance of (for both non-plastic and plastic nanoparticles) coronae formation and structure. Finally, we discuss the opportunities provided by model system approaches (model protein corona and lipid bilayer) to deepen the understanding of the above-mentioned perspectives, and corroborate the findings from in vitro experiments.
Collapse
Affiliation(s)
- Shinji Kihara
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234, Australia.
| | - Duncan J McGillivray
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|
25
|
Pikula K, Zakharenko A, Chaika V, Em I, Nikitina A, Avtomonov E, Tregubenko A, Agoshkov A, Mishakov I, Kuznetsov V, Gusev A, Park S, Golokhvast K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to Sea Urchin Strongylocentrotus Intermedius. NANOMATERIALS 2020; 10:nano10091825. [PMID: 32933127 PMCID: PMC7557930 DOI: 10.3390/nano10091825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
With the increasing annual production of nanoparticles (NPs), the risks of their harmful influence on the environment and human health are rising. However, our knowledge about the mechanisms of interaction between NPs and living organisms is limited. Prior studies have shown that echinoderms, and especially sea urchins, represent one of the most suitable models for risk assessment in environmental nanotoxicology. To the best of the authors’ knowledge, the sea urchin Strongylocentrotus intermedius has not been used for testing the toxicity of NPs. The present study was designed to determine the effect of 10 types of common NPs on spermatozoa activity, egg fertilization, and early stage of embryo development of the sea urchin S. intermedius. In this research, we used two types of multiwalled carbon nanotubes (CNT-1 and CNT-2), two types of carbon nanofibers (CNF-1 and CNF-2), two types of silicon nanotubes (SNT-1 and SNT-2), nanocrystals of cadmium and zinc sulfides (CdS and ZnS), gold NPs (Au), and titanium dioxide NPs (TiO2). The results of the embryotoxicity test showed the following trend in the toxicity level of used NPs: Au > SNT-2 > SNT-1 > CdS > ZnS > CNF-2 > CNF-1 > TiO2 > CNT-1 > CNT-2. This research confirmed that the sea urchin S. intermedius can be considered as a sensitive and stable test model in marine nanotoxicology.
Collapse
Affiliation(s)
- Konstantin Pikula
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Correspondence:
| | - Alexander Zakharenko
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
| | - Vladimir Chaika
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Iurii Em
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Anna Nikitina
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Evgenii Avtomonov
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Anna Tregubenko
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Alexander Agoshkov
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Ilya Mishakov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (I.M.); (V.K.)
| | - Vladimir Kuznetsov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (I.M.); (V.K.)
| | - Alexander Gusev
- Tambov State University Named after G.R. Derzhavin, Internatsionalnaya 33, 392000 Tambov, Russia;
- National University of Science and Technology «MISIS», Leninskiy prospekt 4, 119049 Moscow, Russia
| | - Soojin Park
- Inha University, 100 Inharo, Nam-gu, Incheon 22212, Korea;
| | - Kirill Golokhvast
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| |
Collapse
|
26
|
Xu L, Xu M, Wang R, Yin Y, Lynch I, Liu S. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003691. [PMID: 32780948 DOI: 10.1002/smll.202003691] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/26/2020] [Indexed: 06/11/2023]
Abstract
In aquatic environments, a large number of ecological macromolecules (e.g., natural organic matter (NOM), extracellular polymeric substances (EPS), and proteins) can adsorb onto the surface of engineered nanomaterials (ENMs) to form a unique environmental corona. The presence of environmental corona as an eco-nano interface can significantly alter the bioavailability, biocompatibility, and toxicity of pristine ENMs to aquatic organisms. However, as an emerging field, research on the impact of the environmental corona on the fate and behavior of ENMs in aquatic environments is still in its infancy. To promote a deeper understanding of its importance in driving or moderating ENM toxicity, this study systemically recapitulates the literature of representative types of macromolecules that are adsorbed onto ENMs; these constitute the environmental corona, including NOM, EPS, proteins, and surfactants. Next, the ecotoxicological effects of environmental corona-coated ENMs on representative aquatic organisms at different trophic levels are discussed in comparison to pristine ENMs, based on the reported studies. According to this analysis, molecular mechanisms triggered by pristine and environmental corona-coated ENMs are compared, including membrane adhesion, membrane damage, cellular internalization, oxidative stress, immunotoxicity, genotoxicity, and reproductive toxicity. Finally, current knowledge gaps and challenges in this field are discussed from the ecotoxicology perspective.
Collapse
Affiliation(s)
- Lining Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Iseult Lynch
- School of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Precupas A, Gheorghe D, Botea-Petcu A, Leonties AR, Sandu R, Popa VT, Mariussen E, Naouale EY, Rundén-Pran E, Dumit V, Xue Y, Cimpan MR, Dusinska M, Haase A, Tanasescu S. Thermodynamic Parameters at Bio-Nano Interface and Nanomaterial Toxicity: A Case Study on BSA Interaction with ZnO, SiO 2, and TiO 2. Chem Res Toxicol 2020; 33:2054-2071. [PMID: 32600046 DOI: 10.1021/acs.chemrestox.9b00468] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding nanomaterial (NM)-protein interactions is a key issue in defining the bioreactivity of NMs with great impact for nanosafety. In the present work, the complex phenomena occurring at the bio/nano interface were evaluated in a simple case study focusing on NM-protein binding thermodynamics and protein stability for three representative metal oxide NMs, namely, zinc oxide (ZnO; NM-110), titanium dioxide (TiO2; NM-101), and silica (SiO2; NM-203). The thermodynamic signature associated with the NM interaction with an abundant protein occurring in most cell culture media, bovine serum albumin (BSA), has been investigated by isothermal titration and differential scanning calorimetry. Circular dichroism spectroscopy offers additional information concerning adsorption-induced protein conformational changes. The BSA adsorption onto NMs is enthalpy-controlled, with the enthalpic character (favorable interaction) decreasing as follows: ZnO (NM-110) > SiO2 (NM-203) > TiO2 (NM-101). The binding of BSA is spontaneous, as revealed by the negative free energy, ΔG, for all systems. The structural stability of the protein decreased as follows: TiO2 (NM-101) > SiO2 (NM-203) > ZnO (NM-110). As protein binding may alter NM reactivity and thus the toxicity, we furthermore assessed its putative influence on DNA damage, as well as on the expression of target genes for cell death (RIPK1, FAS) and oxidative stress (SOD1, SOD2, CAT, GSTK1) in the A549 human alveolar basal epithelial cell line. The enthalpic component of the BSA-NM interaction, corroborated with BSA structural stability, matched the ranking for the biological alterations, i.e., DNA strand breaks, oxidized DNA lesions, cell-death, and antioxidant gene expression in A549 cells. The relative and total content of BSA in the protein corona was determined using mass-spectrometry-based proteomics. For the present case study, the thermodynamic parameters at bio/nano interface emerge as key descriptors for the dominant contributions determining the adsorption processes and NMs toxicological effect.
Collapse
Affiliation(s)
- Aurica Precupas
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Daniela Gheorghe
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Alina Botea-Petcu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Anca Ruxandra Leonties
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Romica Sandu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Vlad Tudor Popa
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| | - Espen Mariussen
- NILU-Norwegian Institute for Air Research, Kjeller 2027, Norway
| | | | | | - Veronica Dumit
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin 10589, Germany
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen 5020, Norway
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen 5020, Norway
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Kjeller 2027, Norway
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Berlin 10589, Germany
| | - Speranta Tanasescu
- Institute of Physical Chemistry "Ilie Murgulescu" of the Romanian Academy, Bucharest 060021, Romania
| |
Collapse
|
28
|
Guggenheim EJ, Rappoport JZ, Lynch I. Mechanisms for cellular uptake of nanosized clinical MRI contrast agents. Nanotoxicology 2020; 14:504-532. [PMID: 32037933 DOI: 10.1080/17435390.2019.1698779] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Engineered Nanomaterials (NMs), such as Superparamagnetic Iron Oxide Nanoparticles (SPIONs), offer significant benefits in a wide range of applications, including cancer diagnostic and therapeutic strategies. However, the use of NMs in biomedicine raises safety concerns due to lack of knowledge on possible biological interactions and effects. The initial basis for using SPIONs as biomedical MRI contrast enhancement agents was the idea that they are selectively taken up by macrophage cells, and not by the surrounding cancer cells. To investigate this claim, we analyzed the uptake of SPIONs into well-established cancer cell models and benchmarked this against a common macrophage cell model. In combination with fluorescent labeling of compartments and siRNA silencing of various proteins involved in common endocytic pathways, the mechanisms of internalization of SPIONs in these cell types has been ascertained utilizing reflectance confocal microscopy. Caveolar mediated endocytosis and macropinocytosis are both implicated in SPION uptake into cancer cells, whereas in macrophage cells, a clathrin-dependant route appears to predominate. Colocalization studies confirmed the eventual fate of SPIONs as accumulation in the degradative lysosomes. Dissolution of the SPIONs within the lysosomal environment has also been determined, allowing a fuller understanding of the cellular interactions, uptake, trafficking and effects of SPIONs within a variety of cancer cells and macrophages. Overall, the behavior of SPIONS in non-phagocytotic cell lines is broadly similar to that in the specialist macrophage cells, although some differences in the uptake patterns are apparent.
Collapse
Affiliation(s)
- Emily J Guggenheim
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Joshua Z Rappoport
- Center for Advanced Microscopy, and Nikon Imaging Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Core Technologies for Life Sciences, Boston College, MA, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
29
|
Nasser F, Constantinou J, Lynch I. Nanomaterials in the Environment Acquire an "Eco-Corona" Impacting their Toxicity to Daphnia Magna-a Call for Updating Toxicity Testing Policies. Proteomics 2019; 20:e1800412. [PMID: 31750982 DOI: 10.1002/pmic.201800412] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/06/2019] [Indexed: 01/07/2023]
Abstract
Nanomaterials (NMs) are particles with at least one dimension between 1 and 100 nm and a large surface area to volume ratio, providing them with exceptional qualities that are exploited in a variety of industrial fields. Deposition of NMs into environmental waters during or after use leads to the adsorption of an ecological (eco-) corona, whereby a layer of natural biomolecules coats the NM changing its stability, identity and ultimately toxicity. The eco-corona is not currently incorporated into ecotoxicity tests, although it has been shown to alter the interactions of NMs with organisms such as Daphnia magna (D. magna). Here, the literature on environmental biomolecule interactions with NMs is synthesized and a framework for understanding the eco-corona composition and its role in modulating NMs ecotoxicity is presented, utilizing D. magna as a model. The importance of including biomolecules as part of the current international efforts to update the standard testing protocols for NMs, is highlighted. Facilitating the formation of an eco-corona prior to NMs ecotoxicity testing will ensure that signaling pathways perturbed by the NMs are real rather than being associated with the damage arising from reactive NM surfaces "acquiring" a corona by pulling biomolecules from the organism's surface.
Collapse
Affiliation(s)
- Fatima Nasser
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Julia Constantinou
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| |
Collapse
|
30
|
Briffa SM, Lynch I, Hapiuk D, Valsami-Jones E. Physical and chemical transformations of zirconium doped ceria nanoparticles in the presence of phosphate: Increasing realism in environmental fate and behaviour experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:974-981. [PMID: 31252136 DOI: 10.1016/j.envpol.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/08/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
During their lifecycle, many engineered nanoparticles (ENPs) undergo significant transformations that may modify their toxicity, behaviour, and fate in the environment. Therefore, understanding the possible environmentally relevant transformations that ENPs may undergo as a result of their surroundings is becoming increasingly important. This work considers industrially produced ceria (CeO2) and focuses on a particle library consisting of seven zirconium-doped variants (Ce1-xZrxO2) where the Zr doping range is x = 0-1. The study assesses their potential transformation in the presence of environmentally relevant concentrations of phosphate. These ENPs have an important role in the operation of automotive catalysts and therefore may end up in the environment where transformations can take place. Samples were exposed to pH adjusted (c. 5.5) solutions made up of either 1 mM or 5 mM each of KH2PO4, citric acid and ascorbic acid and the transformed particles were characterised by means of DLS - size and zeta potential, UV/VIS, TEM, FT-IR, EDX and XRD. Exposure to the phosphate solutions resulted in chemical and physical changes in all ceria-containing samples to cerium phosphate (with the monazite structure). The transformations were dependent on time, ceria concentration in the particles (Ce:Zr ratio) and phosphate to ceria ratio. The presence of Zr within the doped samples did not inhibit these transformations, yet the pure end member ZrO2 ENPs showed no conversion to phosphate. The quite dramatic changes in size, structure and composition observed raise important questions regarding the relevant form of the materials to investigate in ecotoxicity tests, and for regulations based on one or more dimensions in the nanoscale.
Collapse
Affiliation(s)
- Sophie Marie Briffa
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK.
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, UK
| | - Dimitri Hapiuk
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, UK
| | | |
Collapse
|
31
|
Afantitis A, Melagraki G, Tsoumanis A, Valsami-Jones E, Lynch I. A nanoinformatics decision support tool for the virtual screening of gold nanoparticle cellular association using protein corona fingerprints. Nanotoxicology 2018; 12:1148-1165. [PMID: 30182778 DOI: 10.1080/17435390.2018.1504998] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The increasing use of nanoparticles (NPs) in a wide range of consumer and industrial applications has necessitated significant effort to address the challenge of characterizing and quantifying the underlying nanostructure - biological response relationships to ensure that these novel materials can be exploited responsibly and safely. Such efforts demand reliable experimental data not only in terms of the biological dose-response, but also regarding the physicochemical properties of the NPs and their interaction with the biological environment. The latter has not been extensively studied, as a large surface to bind biological macromolecules is a unique feature of NPs that is not relevant for chemicals or pharmaceuticals, and thus only limited data have been reported in the literature quantifying the protein corona formed when NPs interact with a biological medium and linking this with NP cellular association/uptake. In this work we report the development of a predictive model for the assessment of the biological response (cellular association, which can include both internalized NPs and those attached to the cell surface) of surface-modified gold NPs, based on their physicochemical properties and protein corona fingerprints, utilizing a dataset of 105 unique NPs. Cellular association was chosen as the end-point for the original experimental study due to its relevance to inflammatory responses, biodistribution, and toxicity in vivo. The validated predictive model is freely available online through the Enalos Cloud Platform ( http://enalos.insilicotox.com/NanoProteinCorona/ ) to be used as part of a regulatory or NP safe-by-design decision support system. This online tool will allow the virtual screening of NPs, based on a list of the significant NP descriptors, identifying those NPs that would warrant further toxicity testing on the basis of predicted NP cellular association.
Collapse
Affiliation(s)
| | | | | | - Eugenia Valsami-Jones
- b School of Geography Earth and Environmental Sciences , University of Birmingham , Birmingham , United Kingdom
| | - Iseult Lynch
- b School of Geography Earth and Environmental Sciences , University of Birmingham , Birmingham , United Kingdom
| |
Collapse
|
32
|
Chen J, Banaszak Holl MM. Dendrimer and dendrimer–conjugate protein complexes and protein coronas. CAN J CHEM 2017; 95:903-906. [DOI: 10.1139/cjc-2017-0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Dendrimers and dendrimer conjugates are widely employed for biological applications such as bio-imaging and drug delivery. Understanding the interaction between dendrimers and their biological environment is key to evaluating the efficacy and safety of these materials. Proteins can form an adsorbed layer, termed a “protein corona”, on dendrimers in either a non-specific or specific fashion. A tight-binding, non-exchangeable corona is defined as a “hard” corona, whereas a loosely bound, highly exchangeable corona is called a “soft” corona. Recent research indicates that small molecules conjugated to the polymer surface can induce protein structural change, leading to tighter protein–dendrimer binding and further protein aggregation. This “triggered” corona formation on dendrimer and dendrimer conjugates is reviewed and discussed along with the existing hard or soft corona model. This review describes the triggered corona model to further the understanding of protein corona formation.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mark M. Banaszak Holl
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Yue Y, Li X, Sigg L, Suter MJF, Pillai S, Behra R, Schirmer K. Interaction of silver nanoparticles with algae and fish cells: a side by side comparison. J Nanobiotechnology 2017; 15:16. [PMID: 28245850 PMCID: PMC5331694 DOI: 10.1186/s12951-017-0254-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/22/2017] [Indexed: 12/05/2022] Open
Abstract
Background Silver nanoparticles (AgNP) are widely applied and can, upon use, be released into the aquatic environment. This raises concerns about potential impacts of AgNP on aquatic organisms. We here present a side by side comparison of the interaction of AgNP with two contrasting cell types: algal cells, using the algae Euglena gracilis as model, and fish cells, a cell line originating from rainbow trout (Oncorhynchus mykiss) gill (RTgill-W1). The comparison is based on the AgNP behavior in exposure media, toxicity, uptake and interaction with proteins. Results (1) The composition of exposure media affected AgNP behavior and toxicity to algae and fish cells. (2) The toxicity of AgNP to algae was mediated by dissolved silver while nanoparticle specific effects in addition to dissolved silver contributed to the toxicity of AgNP to fish cells. (3) AgNP did not enter into algal cells; they only adsorbed onto the cell surface. In contrast, AgNP were taken up by fish cells via endocytic pathways. (4) AgNP can bind to both extracellular and intracellular proteins and inhibit enzyme activity. Conclusion Our results showed that fish cells take up AgNP in contrast to algal cells, where AgNP sorbed onto the cell surface, which indicates that the cell wall of algae is a barrier to particle uptake. This particle behaviour results in different responses to AgNP exposure in algae and fish cells. Yet, proteins from both cell types can be affected by AgNP exposure: for algae, extracellular proteins secreted from cells for, e.g., nutrient acquisition. For fish cells, intracellular and/or membrane-bound proteins, such as the Na+/K+-ATPase, are susceptible to AgNP binding and functional impairment. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0254-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Yue
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.,Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences (NMBU), Oslo, 0454, Norway
| | - Xiaomei Li
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Laura Sigg
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland.,, Wattstrasse 13a, 8307, Effretikon, Switzerland
| | - Marc J-F Suter
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland
| | - Smitha Pillai
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland
| | - Renata Behra
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland. .,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland.
| | - Kristin Schirmer
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland. .,School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland. .,Department of Environmental Systems Science (D-USYS), ETH-Zürich, 8092, Zürich, Switzerland.
| |
Collapse
|
34
|
Lynch I, Afantitis A, Leonis G, Melagraki G, Valsami-Jones E. Strategy for Identification of Nanomaterials’ Critical Properties Linked to Biological Impacts: Interlinking of Experimental and Computational Approaches. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2017. [DOI: 10.1007/978-3-319-56850-8_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Römer I, Wang ZW, Merrifield RC, Palmer RE, Lead J. High Resolution STEM-EELS Study of Silver Nanoparticles Exposed to Light and Humic Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2183-2190. [PMID: 26792384 DOI: 10.1021/acs.est.5b04088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanoparticles (NPs) are defined as particles with at least one dimension between 1 and 100 nm or with properties that differ from their bulk material, which possess unique properties. The extensive use of NPs means that discharge to the environment is likely increasing, but fate, behavior, and effects under environmentally relevant conditions are insufficiently studied. This paper focuses on the transformations of silver nanoparticles (AgNPs) under simulated but realistic environmental conditions. High resolution aberration-corrected scanning transmission electron microscopy (HAADF STEM) coupled with electron energy loss spectroscopy (EELS) and UV-vis were used within a multimethod approach to study morphology, surface chemistry transformations, and corona formation. Although loss, most likely by dissolution, was observed, there was no direct evidence of oxidation from the STEM-EELS. However, in the presence of fulvic acid (FA), a 1.3 nm oxygen-containing corona was observed around the AgNPs in water; modeled data based on the HAADF signal at near atomic resolution suggest this was an FA corona was formed and was not silver oxide, which was coherent (i.e., fully coated in FA), where observed. The corona further colloidally stabilized the NPs for periods of weeks to months, dependent on the solution conditions.
Collapse
Affiliation(s)
- Isabella Römer
- School of Geography Earth and Environmental Sciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zhi Wei Wang
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
- Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences, Beijing 100083, China
| | - Ruth C Merrifield
- Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Richard E Palmer
- Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jamie Lead
- School of Geography Earth and Environmental Sciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom
- Center for Environmental Nanoscience and Risk (CENR), Arnold School of Public Health, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|