1
|
Wagner PA, Song M, Ficner R, Kuhle B, Marintchev A. Molecular basis for the interactions of eIF2β with eIF5, eIF2B, and 5MP1 and their regulation by CK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591181. [PMID: 38712236 PMCID: PMC11071521 DOI: 10.1101/2024.04.25.591181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The heterotrimeric GTPase eukaryotic translation initiation factor 2 (eIF2) delivers the initiator Met-tRNA i to the ribosomal translation preinitiation complex (PIC). eIF2β has three lysine-rich repeats (K-boxes), important for binding to the GTPase-activating protein eIF5, the guanine nucleotide exchange factor eIF2B, and the regulator eIF5-mimic protein (5MP). Here, we combine X-ray crystallography with NMR to understand the molecular basis and dynamics of these interactions. The crystal structure of yeast eIF5-CTD in complex with eIF2β K-box 3 reveals an extended binding site on eIF2β, far beyond the K-box. We show that eIF2β contains three distinct binding sites, centered on each of the K-boxes, and human eIF5, eIF2Bε, and 5MP1 can bind to all three sites, while reducing each other's affinities. Our results reveal how eIF2B speeds up the dissociation of eIF5 from eIF2-GDP to promote nucleotide exchange; and how 5MP1 can destabilize eIF5 binding to eIF2 and the PIC, to promote stringent start codon selection. All these affinities are increased by CK2 phosphomimetic mutations, highlighting the role of CK2 in both remodeling and stabilizing the translation apparatus.
Collapse
|
2
|
Hamid A, Ladke J, Shah A, Ganguli S, Pal M, Singh A, Bhandari R. Interaction with IP6K1 supports pyrophosphorylation of substrate proteins by the inositol pyrophosphate 5-InsP7. Biosci Rep 2024; 44:BSR20240792. [PMID: 39230924 PMCID: PMC11461180 DOI: 10.1042/bsr20240792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024] Open
Abstract
Inositol pyrophosphates (PP-InsPs) are a sub-family of water soluble inositol phosphates that possess one or more diphosphate groups. PP-InsPs can transfer their β-phosphate group to a phosphorylated Ser residue to generate pyrophosphorylated Ser. This unique post-translational modification occurs on Ser residues that lie in acidic stretches within an intrinsically disordered protein sequence. Serine pyrophosphorylation is dependent on the presence of Mg2+ ions, but does not require an enzyme for catalysis. The mechanisms by which cells regulate PP-InsP-mediated pyrophosphorylation are still unknown. We performed mass spectrometry to identify interactors of IP6K1, an enzyme responsible for the synthesis of the PP-InsP 5-InsP7. Interestingly, IP6K1 interacted with several proteins that are known to undergo 5-InsP7-mediated pyrophosphorylation, including the nucleolar proteins NOLC1, TCOF and UBF1, and AP3B1, the β subunit of the AP3 adaptor protein complex. The IP6K1 interactome also included CK2, a protein kinase that phosphorylates Ser residues prior to pyrophosphorylation. We observe the formation of a protein complex between IP6K1, AP3B1, and the catalytic α-subunit of CK2, and show that disrupting IP6K1 binding to AP3B1 lowers its in vivo pyrophosphorylation. We propose that assembly of a substrate-CK2-IP6K complex would allow for coordinated pre-phosphorylation and pyrophosphorylation of the target serine residue, and provide a mechanism to regulate this enzyme-independent modification.
Collapse
Affiliation(s)
- Aisha Hamid
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Jayashree S. Ladke
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Monisita Pal
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Arpita Singh
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
3
|
Mudaliar D, Mansky RH, White A, Baudhuin G, Hawkinson J, Wong H, Walters MA, Gomez-Pastor R. Discovery of a CK2α'-Biased ATP-Competitive Inhibitor from a High-Throughput Screen of an Allosteric-Inhibitor-Like Compound Library. ACS Chem Neurosci 2024; 15:2703-2718. [PMID: 38908003 PMCID: PMC11987140 DOI: 10.1021/acschemneuro.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Protein kinase CK2 is a holoenzyme composed of two regulatory subunits (CK2β) and two catalytic subunits (CK2α and CK2α'). CK2 controls several cellular processes, including proliferation, inflammation, and cell death. However, CK2α and CK2α' possess different expression patterns and substrates and therefore impact each of these processes differently. Elevated CK2α participates in the development of cancer, while increased CK2α' has been associated with neurodegeneration, especially Huntington's disease (HD). HD is a fatal disease for which no effective therapies are available. Genetic deletion of CK2α' in HD mouse models has ameliorated neurodegeneration. Therefore, pharmacological inhibition of CK2α' presents a promising therapeutic strategy for treating HD. However, current CK2 inhibitors are unable to discriminate between CK2α and CK2α' due to their high structural homology, especially in the targeted ATP-binding site. Using computational analyses, we found a potential type IV ("D" pocket) allosteric site that contained different residues between CK2α and CK2α' and was distal from the ATP-binding pocket featured in both kinases. We decided to look for allosteric modulators that might interact in a biased fashion with the type IV pocket on both CK2α and CK2α'. We screened a commercial library containing ∼29,000 allosteric-kinase-inhibitor-like compounds using a CK2α' activity-dependent ADP-Glo Kinase assay. Obtained hits were counter-screened against CK2α using the ADP-Glo Kinase assay, revealing two CK2α'-biased compounds. These two compounds might serve as the basis for further medicinal chemistry optimization for the potential treatment of HD.
Collapse
Affiliation(s)
- Deepti Mudaliar
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rachel H Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Angel White
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Grace Baudhuin
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | | | - Henry Wong
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
4
|
Stokes ME, Vasciaveo A, Small JC, Zask A, Reznik E, Smith N, Wang Q, Daniels J, Forouhar F, Rajbhandari P, Califano A, Stockwell BR. Subtype-selective prenylated isoflavonoids disrupt regulatory drivers of MYCN-amplified cancers. Cell Chem Biol 2024; 31:805-819.e9. [PMID: 38061356 PMCID: PMC11031350 DOI: 10.1016/j.chembiol.2023.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/18/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Transcription factors have proven difficult to target with small molecules because they lack pockets necessary for potent binding. Disruption of protein expression can suppress targets and enable therapeutic intervention. To this end, we developed a drug discovery workflow that incorporates cell-line-selective screening and high-throughput expression profiling followed by regulatory network analysis to identify compounds that suppress regulatory drivers of disease. Applying this approach to neuroblastoma (NBL), we screened bioactive molecules in cell lines representing its MYC-dependent (MYCNA) and mesenchymal (MES) subtypes to identify selective compounds, followed by PLATESeq profiling of treated cells. This revealed compounds that disrupt a sub-network of MYCNA-specific regulatory proteins, resulting in MYCN degradation in vivo. The top hit was isopomiferin, a prenylated isoflavonoid that inhibited casein kinase 2 (CK2) in cells. Isopomiferin and its structural analogs inhibited MYC and MYCN in NBL and lung cancer cells, highlighting the general MYC-inhibiting potential of this unique scaffold.
Collapse
Affiliation(s)
- Michael E Stokes
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Alessandro Vasciaveo
- Department of Systems Biology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Jonnell Candice Small
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Arie Zask
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Nailah Smith
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Qian Wang
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Jacob Daniels
- Department of Pharmacology, Columbia University Medical Center, New York City, NY 10032, USA
| | - Farhad Forouhar
- Proteomics and Macromolecular Crystallography Shared Resource (PMCSR), Columbia University Medical Center, New York City, NY 10032, USA
| | - Presha Rajbhandari
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University Medical Center, New York City, NY 10032, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York City, NY 10027, USA; Department of Chemistry, Columbia University, New York City, NY 10027, USA; Department of Pathology and Cell Biology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
5
|
Chesnokova LS, Mosher BS, Fulkerson HL, Nam HW, Shakya AK, Yurochko AD. Distinct early role of PTEN regulation during HCMV infection of monocytes. Proc Natl Acad Sci U S A 2024; 121:e2312290121. [PMID: 38483999 PMCID: PMC10962971 DOI: 10.1073/pnas.2312290121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/01/2023] [Indexed: 03/19/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection of monocytes is essential for viral dissemination and persistence. We previously identified that HCMV entry/internalization and subsequent productive infection of this clinically relevant cell type is distinct when compared to other infected cells. We showed that internalization and productive infection required activation of epidermal growth factor receptor (EGFR) and integrin/c-Src, via binding of viral glycoprotein B to EGFR, and the pentamer complex to β1/β3 integrins. To understand how virus attachment drives entry, we compared infection of monocytes with viruses containing the pentamer vs. those without the pentamer and then used a phosphoproteomic screen to identify potential phosphorylated proteins that influence HCMV entry and trafficking. The screen revealed that the most prominent pentamer-biased phosphorylated protein was the lipid- and protein-phosphatase phosphatase and tensin homolog (PTEN). PTEN knockdown with siRNA or PTEN inhibition with a PTEN inhibitor decreased pentamer-mediated HCMV entry, without affecting trimer-mediated entry. Inhibition of PTEN activity affected lipid metabolism and interfered with the onset of the endocytic processes required for HCMV entry. PTEN inactivation was sufficient to rescue pentamer-null HCMV from lysosomal degradation. We next examined dephosphorylation of a PTEN substrate Rab7, a regulator of endosomal maturation. Inhibition of PTEN activity prevented dephosphorylation of Rab7. Phosphorylated Rab7, in turn, blocked early endosome to late endosome maturation and promoted nuclear localization of the virus and productive infection.
Collapse
Affiliation(s)
- Liudmila S. Chesnokova
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Bailey S. Mosher
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Heather L. Fulkerson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Hyung W. Nam
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Akhalesh K. Shakya
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| | - Andrew D. Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Applied Immunology and Pathological Processes, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Feist-Weller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA 71103, Shreveport, LA71103
- Center for Excellence in Arthritis and Rheumatology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
- Center of Excellence for Emerging Viral Threats, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA71103
| |
Collapse
|
6
|
Hermosilla VE, Gyenis L, Rabalski AJ, Armijo ME, Sepúlveda P, Duprat F, Benítez-Riquelme D, Fuentes-Villalobos F, Quiroz A, Hepp MI, Farkas C, Mastel M, González-Chavarría I, Jackstadt R, Litchfield DW, Castro AF, Pincheira R. Casein kinase 2 phosphorylates and induces the SALL2 tumor suppressor degradation in colon cancer cells. Cell Death Dis 2024; 15:223. [PMID: 38493149 PMCID: PMC10944491 DOI: 10.1038/s41419-024-06591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Spalt-like proteins are Zinc finger transcription factors from Caenorhabditis elegans to vertebrates, with critical roles in development. In vertebrates, four paralogues have been identified (SALL1-4), and SALL2 is the family's most dissimilar member. SALL2 is required during brain and eye development. It is downregulated in cancer and acts as a tumor suppressor, promoting cell cycle arrest and cell death. Despite its critical functions, information about SALL2 regulation is scarce. Public data indicate that SALL2 is ubiquitinated and phosphorylated in several residues along the protein, but the mechanisms, biological consequences, and enzymes responsible for these modifications remain unknown. Bioinformatic analyses identified several putative phosphorylation sites for Casein Kinase II (CK2) located within a highly conserved C-terminal PEST degradation motif of SALL2. CK2 is a serine/threonine kinase that promotes cell proliferation and survival and is often hyperactivated in cancer. We demonstrated that CK2 phosphorylates SALL2 residues S763, T778, S802, and S806 and promotes SALL2 degradation by the proteasome. Accordingly, pharmacological inhibition of CK2 with Silmitasertib (CX-4945) restored endogenous SALL2 protein levels in SALL2-deficient breast MDA-MB-231, lung H1299, and colon SW480 cancer cells. Silmitasertib induced a methuosis-like phenotype and cell death in SW480 cells. However, the phenotype was significantly attenuated in CRISPr/Cas9-mediated SALL2 knockout SW480 cells. Similarly, Sall2-deficient tumor organoids were more resistant to Silmitasertib-induced cell death, confirming that SALL2 sensitizes cancer cells to CK2 inhibition. We identified a novel CK2-dependent mechanism for SALL2 regulation and provided new insights into the interplay between these two proteins and their role in cell survival and proliferation.
Collapse
Affiliation(s)
- V E Hermosilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Dept of Orofacial Sciences and Dept of Anatomy, University of California-San Francisco, San Francisco, CA, USA
| | - L Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - A J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
- Odyssey Therapeutics, Boston, MA, USA
| | - M E Armijo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - P Sepúlveda
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Duprat
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - D Benítez-Riquelme
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - F Fuentes-Villalobos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Inmunovirología. Departamento de Microbiologia. Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - A Quiroz
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - M I Hepp
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - C Farkas
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - M Mastel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg. Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - I González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - R Jackstadt
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg. Cancer Progression and Metastasis Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - D W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - A F Castro
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - R Pincheira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
- Laboratorio de Transducción de Señales y Cáncer, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
7
|
Mudaliar D, Mansky RH, White A, Baudhuin G, Hawkinson J, Wong H, Walters MA, Gomez-Pastor R. Identification of CK2α' selective inhibitors by the screening of an allosteric-kinase-inhibitor-like compound library. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576328. [PMID: 38328231 PMCID: PMC10849513 DOI: 10.1101/2024.01.18.576328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Protein Kinase CK2 is a holoenzyme composed of two regulatory subunits (CK2β) and two catalytic subunits (CK2α and CK2α'). CK2 controls several cellular processes including proliferation, inflammation, and cell death. However, CK2α and CK2α' possess different expression patterns and substrates and therefore impact each of these processes differently. Elevated CK2α participates in the development of cancer, while increased CK2α' has been associated with neurodegeneration, especially Huntington's disease (HD). HD is a fatal disease for which no effective therapies are available. Genetic deletion of CK2α' in HD mouse models has ameliorated neurodegeneration. Therefore, pharmacological inhibition of CK2α' presents a promising therapeutic strategy for treating HD. However, current CK2 inhibitors are unable to discriminate between CK2α and CK2α' due to their high structural homology, especially in the targeted ATP binding site. Using computational analyses, we found a potential Type IV ("D" pocket) allosteric site on CK2α' that contained different residues than CK2α and was distal from the ATP binding pocket featured in both kinases. With this potential allosteric site in mind, we screened a commercial library containing ~29,000 allosteric-kinase-inhibitor-like compounds using a CK2α' activity-dependent ADP-Glo™ Kinase assay. Obtained hits were counter-screened against CK2α revealing two CK2α' selective compounds. These two compounds might serve as the basis for further medicinal chemistry optimization for the potential treatment of HD.
Collapse
Affiliation(s)
- Deepti Mudaliar
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rachel H Mansky
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| | - Angel White
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| | - Grace Baudhuin
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| | - Jon Hawkinson
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Henry Wong
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
8
|
Medley JC, Yim RN, DiPanni J, Sebou B, Shaffou B, Cramer E, Wu C, Kabara M, Song MH. Site-specific phosphorylation of ZYG-1 regulates ZYG-1 stability and centrosome number. iScience 2023; 26:108410. [PMID: 38034351 PMCID: PMC10687292 DOI: 10.1016/j.isci.2023.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Spindle bipolarity is critical for genomic integrity. As centrosome number often dictates bipolarity, tight control of centrosome assembly is vital for faithful cell division. The master centrosome regulator ZYG-1/Plk4 plays a pivotal role in this process. In C. elegans, casein kinase II (CK2) negatively regulates centrosome duplication by controlling centrosome-associated ZYG-1 levels. Here, we investigated CK2 as a regulator of ZYG-1 and its impact on centrosome assembly. We show that CK2 phosphorylates ZYG-1 in vitro and physically interacts with ZYG-1 in vivo. Depleting CK2 or blocking ZYG-1 phosphorylation at CK2 target sites leads to centrosome amplification. Non-phosphorylatable ZYG-1 mutants exhibit elevated ZYG-1 levels, leading to increased ZYG-1 and downstream factors at centrosomes, thus driving centrosome amplification. Moreover, inhibiting the 26S proteasome prevents degradation of the phospho-mimetic ZYG-1. Our findings suggest that CK2-dependent phosphorylation of ZYG-1 controls ZYG-1 levels via proteasomal degradation to limit centrosome number.
Collapse
Affiliation(s)
- Jeffrey C. Medley
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Rachel N. Yim
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Joseph DiPanni
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Brandon Sebou
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Blake Shaffou
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Evan Cramer
- Department of Chemistry, Oakland University, Rochester, MI, USA
| | - Colin Wu
- Department of Chemistry, Oakland University, Rochester, MI, USA
| | - Megan Kabara
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- University of Connecticut School of Medicine, Office of Graduate Medical Education, Farmington, CT, USA
| | - Mi Hye Song
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
9
|
Medley JC, Yim N, DiPanni J, Sebou B, Shaffou B, Cramer E, Wu C, Kabara M, Song MH. Site-Specific Phosphorylation of ZYG-1 Regulates ZYG-1 Stability and Centrosome Number. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539463. [PMID: 37333374 PMCID: PMC10274923 DOI: 10.1101/2023.05.07.539463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Spindle bipolarity is critical for genomic integrity. Given that centrosome number often dictates mitotic bipolarity, tight control of centrosome assembly is vital for the fidelity of cell division. The kinase ZYG-1/Plk4 is a master centrosome factor that is integral for controlling centrosome number and is modulated by protein phosphorylation. While autophosphorylation of Plk4 has been extensively studied in other systems, the mechanism of ZYG-1 phosphorylation in C. elegans remains largely unexplored. In C. elegans, Casein Kinase II (CK2) negatively regulates centrosome duplication by controlling centrosome-associated ZYG-1 levels. In this study, we investigated ZYG-1 as a potential substrate of CK2 and the functional impact of ZYG-1 phosphorylation on centrosome assembly. First, we show that CK2 directly phosphorylates ZYG-1 in vitro and physically interacts with ZYG-1 in vivo. Intriguingly, depleting CK2 or blocking ZYG-1 phosphorylation at putative CK2 target sites leads to centrosome amplification. In the non-phosphorylatable (NP)-ZYG-1 mutant embryo, the overall levels of ZYG-1 are elevated, leading to an increase in centrosomal ZYG-1 and downstream factors, providing a possible mechanism of the NP-ZYG-1 mutation to drive centrosome amplification. Moreover, inhibiting the 26S proteasome blocks degradation of the phospho-mimetic (PM)-ZYG-1, while the NP-ZYG-1 mutant shows partial resistance to proteasomal degradation. Our findings suggest that site-specific phosphorylation of ZYG-1, partly mediated by CK2, controls ZYG-1 levels via proteasomal degradation, limiting centrosome number. We provide a mechanism linking CK2 kinase activity to centrosome duplication through direct phosphorylation of ZYG-1, which is critical for the integrity of centrosome number.
Collapse
Affiliation(s)
| | - Nahyun Yim
- Department of Biological Sciences, Oakland University, MI, USA
| | - Joseph DiPanni
- Department of Biological Sciences, Oakland University, MI, USA
| | - Brandon Sebou
- Department of Biological Sciences, Oakland University, MI, USA
| | - Blake Shaffou
- Department of Biological Sciences, Oakland University, MI, USA
| | - Evan Cramer
- Department of Chemistry, Oakland University, MI, USA
| | - Colin Wu
- Department of Chemistry, Oakland University, MI, USA
| | - Megan Kabara
- Department of Biological Sciences, Oakland University, MI, USA
- University of Connecticut School of Medicine, Office of Graduate Medical Education, Farmington, CT, USA
| | - Mi Hye Song
- Department of Biological Sciences, Oakland University, MI, USA
| |
Collapse
|
10
|
Robinson AE, Binek A, Ramani K, Sundararaman N, Barbier-Torres L, Murray B, Venkatraman V, Kreimer S, Ardle AM, Noureddin M, Fernández-Ramos D, Lopitz-Otsoa F, Gutiérrez de Juan V, Millet O, Mato JM, Lu SC, Van Eyk JE. Hyperphosphorylation of hepatic proteome characterizes nonalcoholic fatty liver disease in S-adenosylmethionine deficiency. iScience 2023; 26:105987. [PMID: 36756374 PMCID: PMC9900401 DOI: 10.1016/j.isci.2023.105987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/15/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Methionine adenosyltransferase 1a (MAT1A) is responsible for hepatic S-adenosyl-L-methionine (SAMe) biosynthesis. Mat1a -/- mice have hepatic SAMe depletion, develop nonalcoholic steatohepatitis (NASH) which is reversed with SAMe administration. We examined temporal alterations in the proteome/phosphoproteome in pre-disease and NASH Mat1a -/- mice, effects of SAMe administration, and compared to human nonalcoholic fatty liver disease (NAFLD). Mitochondrial and peroxisomal lipid metabolism proteins were altered in pre-disease mice and persisted in NASH Mat1a -/- mice, which exhibited more progressive alterations in cytoplasmic ribosomes, ER, and nuclear proteins. A common mechanism found in both pre-disease and NASH livers was a hyperphosphorylation signature consistent with casein kinase 2α (CK2α) and AKT1 activation, which was normalized by SAMe administration. This was mimicked in human NAFLD with a metabolomic signature (M-subtype) resembling Mat1a -/- mice. In conclusion, we have identified a common proteome/phosphoproteome signature between Mat1a -/- mice and human NAFLD M-subtype that may have pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- Aaron E. Robinson
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Aleksandra Binek
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Ben Murray
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Simion Kreimer
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Angela Mc Ardle
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Virginia Gutiérrez de Juan
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Oscar Millet
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
- Corresponding author
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
- Corresponding author
| |
Collapse
|
11
|
Yeast Protein Asf1 Possesses Modulating Activity towards Protein Kinase CK2. Int J Mol Sci 2022; 23:ijms232415764. [PMID: 36555405 PMCID: PMC9779303 DOI: 10.3390/ijms232415764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2 plays an important role in cell survival and protects regulatory proteins from caspase-mediated degradation during apoptosis. The consensus sequence of proteins phosphorylated by CK2 contains a cluster of acidic amino acids around the phosphorylation site. The poly-acidic sequence in yeast protein Asf1 is similar to the acidic loop in CK2β, which possesses a regulatory function. We observed that the overexpression of Asf1 in yeast cells influences cell growth. Experiments performed in vitro and in vivo indicate that yeast protein Asf1 inhibits protein kinase CK2. Our data suggest that each CK2 isoform might be regulated in a different way. Deletion of the amino or carboxyl end of Asf1 reveals that the acidic cluster close to the C-terminus is responsible for the activation or inhibition of CK2 activity.
Collapse
|
12
|
Chojnowski JE, Li R, Tsang T, Alfaran FH, Dick A, Cocklin S, Brady DC, Strochlic TI. Copper Modulates the Catalytic Activity of Protein Kinase CK2. Front Mol Biosci 2022; 9:878652. [PMID: 35755824 PMCID: PMC9224766 DOI: 10.3389/fmolb.2022.878652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/25/2022] Open
Abstract
Casein kinase 2 (CK2) is an evolutionarily conserved serine/threonine kinase implicated in a wide range of cellular functions and known to be dysregulated in various diseases such as cancer. Compared to most other kinases, CK2 exhibits several unusual properties, including dual co-substrate specificity and a high degree of promiscuity with hundreds of substrates described to date. Most paradoxical, however, is its apparent constitutive activity: no definitive mode of catalytic regulation has thus far been identified. Here we demonstrate that copper enhances the enzymatic activity of CK2 both in vitro and in vivo. We show that copper binds directly to CK2, and we identify specific residues in the catalytic subunit of the enzyme that are critical for copper-binding. We further demonstrate that increased levels of intracellular copper result in enhanced CK2 kinase activity, while decreased copper import results in reduced CK2 activity. Taken together, these findings establish CK2 as a copper-regulated kinase and indicate that copper is a key modulator of CK2-dependent signaling pathways.
Collapse
Affiliation(s)
- John E. Chojnowski
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rongrong Li
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Tiffany Tsang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fatimah H. Alfaran
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Donita C. Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Todd I. Strochlic
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States,*Correspondence: Todd I. Strochlic,
| |
Collapse
|
13
|
Ulreich K, Firnau MB, Tagscherer N, Beyer S, Ackermann A, Plotz G, Brieger A. High Expression of Casein Kinase 2 Alpha Is Responsible for Enhanced Phosphorylation of DNA Mismatch Repair Protein MLH1 and Increased Tumor Mutation Rates in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14061553. [PMID: 35326704 PMCID: PMC8946085 DOI: 10.3390/cancers14061553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is associated with DNA mismatch repair (MMR) deficiency. The serine/threonine casein kinase 2 alpha (CK2α) is able to phosphorylate and inhibit MMR protein MLH1 in vitro. This study aimed to analyze the relevance of CK2α for MLH1 phosphorylation in vivo. Around 50% of CRCs were identified to express significantly increased nuclear/cytoplasmic CK2α. High nuclear/cytoplasmic CK2α level could be significantly correlated with reduced 5-year survival outcome of patients, increased MLH1 phosphorylation, and enriched somatic tumor mutation rates. Overall, our study demonstrated, in vivo, that enhanced CK2α leads to an increase of MLH1 phosphorylation, higher tumor mutation rates, and is an unfavorable prognosis for patients. Abstract DNA mismatch repair (MMR) deficiency plays an essential role in the development of colorectal cancer (CRC). We recently demonstrated in vitro that the serine/threonine casein kinase 2 alpha (CK2α) causes phosphorylation of the MMR protein MLH1 at position serine 477, which significantly inhibits the MMR. In the present study, CK2α-dependent MLH1 phosphorylation was analyzed in vivo. Using a cohort of 165 patients, we identified 88 CRCs showing significantly increased nuclear/cytoplasmic CK2α expression, 28 tumors with high nuclear CK2α expression and 49 cases showing a general low CK2α expression. Patients with high nuclear/cytoplasmic CK2α expression demonstrated significantly reduced 5-year survival outcome. By immunoprecipitation and Western blot analysis, we showed that high nuclear/cytoplasmic CK2α expression significantly correlates with increased MLH1 phosphorylation and enriched somatic tumor mutation rates. The CK2α mRNA levels tended to be enhanced in high nuclear/cytoplasmic and high nuclear CK2α-expressing tumors. Furthermore, we identified various SNPs in the promotor region of CK2α, which might cause differential CK2α expression. In summary, we demonstrated that high nuclear/cytoplasmic CK2α expression in CRCs correlates with enhanced MLH1 phosphorylation in vivo and seems to be causative for increased mutation rates, presumably induced by reduced MMR. These observations could provide important new therapeutic targets.
Collapse
|
14
|
Lu WC, Omari R, Ray H, Wang J, Williams I, Jacobs C, Hockaden N, Bochman ML, Carpenter RL. AKT1 mediates multiple phosphorylation events that functionally promote HSF1 activation. FEBS J 2022; 289:3876-3893. [PMID: 35080342 PMCID: PMC9309721 DOI: 10.1111/febs.16375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022]
Abstract
The heat stress response activates the transcription factor heat shock factor 1 (HSF1), which subsequently upregulates heat shock proteins to maintain the integrity of the proteome. HSF1 activation requires nuclear localization, trimerization, DNA binding, phosphorylation and gene transactivation. Phosphorylation at S326 is an important regulator of HSF1 transcriptional activity. Phosphorylation at S326 is mediated by AKT1, mTOR, p38, MEK1 and DYRK2. Here, we observed activation of HSF1 by AKT1 independently of mTOR. AKT2 also phosphorylated S326 of HSF1 but showed weak ability to activate HSF1. Similarly, mTOR, p38, MEK1 and DYRK2 all phosphorylated S326 but AKT1 was the most potent activator. Mass spectrometry showed that AKT1 also phosphorylated HSF1 at T142, S230 and T527 in addition to S326, whereas the other kinases did not. Subsequent investigation revealed that phosphorylation at T142 is necessary for HSF1 trimerization and that S230, S326 and T527 are required for HSF1 gene transactivation and recruitment of TFIIB and CDK9. Interestingly, T527 as a phosphorylated residue has not been previously shown and sits in the transactivation domain, further implying a role for this site in HSF1 gene transactivation. This study suggests that HSF1 hyperphosphorylation is targeted and these specific residues have direct function in regulating HSF1 transcriptional activity.
Collapse
Affiliation(s)
- Wen-Cheng Lu
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Ramsey Omari
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Haimanti Ray
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - John Wang
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Imade Williams
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Curteisha Jacobs
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Natasha Hockaden
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Matthew L Bochman
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN, USA.,Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, IN, USA
| | - Richard L Carpenter
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, IN, USA.,Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, IN, USA
| |
Collapse
|
15
|
Yokoi N, Fukata Y, Okatsu K, Yamagata A, Liu Y, Sanbo M, Miyazaki Y, Goto T, Abe M, Kassai H, Sakimura K, Meijer D, Hirabayashi M, Fukai S, Fukata M. 14-3-3 proteins stabilize LGI1-ADAM22 levels to regulate seizure thresholds in mice. Cell Rep 2021; 37:110107. [PMID: 34910912 DOI: 10.1016/j.celrep.2021.110107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/08/2021] [Accepted: 11/16/2021] [Indexed: 01/17/2023] Open
Abstract
What percentage of the protein function is required to prevent disease symptoms is a fundamental question in genetic disorders. Decreased transsynaptic LGI1-ADAM22 protein complexes, because of their mutations or autoantibodies, cause epilepsy and amnesia. However, it remains unclear how LGI1-ADAM22 levels are regulated and how much LGI1-ADAM22 function is required. Here, by genetic and structural analysis, we demonstrate that quantitative dual phosphorylation of ADAM22 by protein kinase A (PKA) mediates high-affinity binding of ADAM22 to dimerized 14-3-3. This interaction protects LGI1-ADAM22 from endocytosis-dependent degradation. Accordingly, forskolin-induced PKA activation increases ADAM22 levels. Leveraging a series of ADAM22 and LGI1 hypomorphic mice, we find that ∼50% of LGI1 and ∼10% of ADAM22 levels are sufficient to prevent lethal epilepsy. Furthermore, ADAM22 function is required in excitatory and inhibitory neurons. These results suggest strategies to increase LGI1-ADAM22 complexes over the required levels by targeting PKA or 14-3-3 for epilepsy treatment.
Collapse
Affiliation(s)
- Norihiko Yokoi
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| | - Kei Okatsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Atsushi Yamagata
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa 230-0045, Japan
| | - Yan Liu
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yuri Miyazaki
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Teppei Goto
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hidetoshi Kassai
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Dies Meijer
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Masumi Hirabayashi
- Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan; Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
16
|
McKenna M, Balasuriya N, Zhong S, Li SSC, O'Donoghue P. Phospho-Form Specific Substrates of Protein Kinase B (AKT1). Front Bioeng Biotechnol 2021; 8:619252. [PMID: 33614606 PMCID: PMC7886700 DOI: 10.3389/fbioe.2020.619252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
Protein kinase B (AKT1) is hyper-activated in diverse human tumors. AKT1 is activated by phosphorylation at two key regulatory sites, Thr308 and Ser473. Active AKT1 phosphorylates many, perhaps hundreds, of downstream cellular targets in the cytosol and nucleus. AKT1 is well-known for phosphorylating proteins that regulate cell survival and apoptosis, however, the full catalog of AKT1 substrates remains unknown. Using peptide arrays, we recently discovered that each phosphorylated form of AKT1 (pAKT1S473, pAKT1T308, and ppAKT1S473,T308) has a distinct substrate specificity, and these data were used to predict potential new AKT1 substrates. To test the high-confidence predictions, we synthesized target peptides representing putative AKT1 substrates. Peptides substrates were synthesized by solid phase synthesis and their purity was confirmed by mass spectrometry. Most of the predicted peptides showed phosphate accepting activity similar to or greater than that observed with a peptide derived from a well-established AKT1 substrate, glycogen synthase kinase 3β (GSK-3β). Among the novel substrates, AKT1 was most active with peptides representing PIP3-binding protein Rab11 family-interacting protein 2 and cysteinyl leukotriene receptor 1, indicating their potential role in AKT1-dependent cellular signaling. The ppAKT1S473,T308 enzyme was highly selective for peptides containing a patch of basic residues at −5, −4, −3 and aromatic residues (Phe/Tyr) at +1 positions from the phosphorylation site. The pAKT1S473 variant preferred more acidic peptides, Ser or Pro at +4, and was agnostic to the residue at −5. The data further support our hypothesis that Ser473 phosphorylation plays a key role in modulating AKT1 substrate selectivity.
Collapse
Affiliation(s)
- McShane McKenna
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Shanshan Zhong
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Shawn Shun-Cheng Li
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada.,Department of Chemistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
17
|
Sahoo PK, Kar AN, Samra N, Terenzio M, Patel P, Lee SJ, Miller S, Thames E, Jones B, Kawaguchi R, Coppola G, Fainzilber M, Twiss JL. A Ca 2+-Dependent Switch Activates Axonal Casein Kinase 2α Translation and Drives G3BP1 Granule Disassembly for Axon Regeneration. Curr Biol 2020; 30:4882-4895.e6. [PMID: 33065005 DOI: 10.1016/j.cub.2020.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/15/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
The main limitation on axon regeneration in the peripheral nervous system (PNS) is the slow rate of regrowth. We recently reported that nerve regeneration can be accelerated by axonal G3BP1 granule disassembly, releasing axonal mRNAs for local translation to support axon growth. Here, we show that G3BP1 phosphorylation by casein kinase 2α (CK2α) triggers G3BP1 granule disassembly in injured axons. CK2α activity is temporally and spatially regulated by local translation of Csnk2a1 mRNA in axons after injury, but this requires local translation of mTor mRNA and buffering of the elevated axonal Ca2+ that occurs after axotomy. CK2α's appearance in axons after PNS nerve injury correlates with disassembly of axonal G3BP1 granules as well as increased phospho-G3BP1 and axon growth, although depletion of Csnk2a1 mRNA from PNS axons decreases regeneration and increases G3BP1 granules. Phosphomimetic G3BP1 shows remarkably decreased RNA binding in dorsal root ganglion (DRG) neurons compared with wild-type and non-phosphorylatable G3BP1; combined with other studies, this suggests that CK2α-dependent G3BP1 phosphorylation on Ser 149 after axotomy releases axonal mRNAs for translation. Translation of axonal mRNAs encoding some injury-associated proteins is known to be increased with Ca2+ elevations, and using a dual fluorescence recovery after photobleaching (FRAP) reporter assay for axonal translation, we see that translational specificity switches from injury-associated protein mRNA translation to CK2α translation with endoplasmic reticulum (ER) Ca2+ release versus cytoplasmic Ca2+ chelation. Our results point to axoplasmic Ca2+ concentrations as a determinant for the temporal specificity of sequential translational activation of different axonal mRNAs as severed axons transition from injury to regenerative growth.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Nitzan Samra
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovat, Israel
| | - Marco Terenzio
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovat, Israel; Molecular Neuroscience Unit, Okinawa Institute of Science and Technology, Kunigami, Okinawa 904-0412, Japan
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sharmina Miller
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Blake Jones
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Riki Kawaguchi
- Department of Neurology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Giovanni Coppola
- Department of Neurology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovat, Israel
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
18
|
Integrated structural and functional analysis of the protective effects of kinetin against oxidative stress in mammalian cellular systems. Sci Rep 2020; 10:13330. [PMID: 32770053 PMCID: PMC7414151 DOI: 10.1038/s41598-020-70253-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/16/2020] [Indexed: 01/04/2023] Open
Abstract
Metabolism and signaling of cytokinins was first established in plants, followed by cytokinin discoveries in all kingdoms of life. However, understanding of their role in mammalian cells is still scarce. Kinetin is a cytokinin that mitigates the effects of oxidative stress in mammalian cells. The effective concentrations of exogenously applied kinetin in invoking various cellular responses are not well standardized. Likewise, the metabolism of kinetin and its cellular targets within the mammalian cells are still not well studied. Applying vitality tests as well as comet assays under normal and hyper-oxidative states, our analysis suggests that kinetin concentrations of 500 nM and above cause cytotoxicity as well as genotoxicity in various cell types. However, concentrations below 100 nM do not cause any toxicity, rather in this range kinetin counteracts oxidative burst and cytotoxicity. We focus here on these effects. To get insights into the cellular targets of kinetin mediating these pro-survival functions and protective effects we applied structural and computational approaches on two previously testified targets for these effects. Our analysis deciphers vital residues in adenine phosphoribosyltransferase (APRT) and adenosine receptor (A2A-R) that facilitate the binding of kinetin to these two important human cellular proteins. We finally discuss how the therapeutic potential of kinetin against oxidative stress helps in various pathophysiological conditions.
Collapse
|
19
|
Hanáková K, Bernatík O, Kravec M, Micka M, Kumar J, Harnoš J, Ovesná P, Paclíková P, Rádsetoulal M, Potěšil D, Tripsianes K, Čajánek L, Zdráhal Z, Bryja V. Comparative phosphorylation map of Dishevelled 3 links phospho-signatures to biological outputs. Cell Commun Signal 2019; 17:170. [PMID: 31870452 PMCID: PMC6927192 DOI: 10.1186/s12964-019-0470-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background Dishevelled (DVL) is an essential component of the Wnt signaling cascades. Function of DVL is controlled by phosphorylation but the molecular details are missing. DVL3 contains 131 serines and threonines whose phosphorylation generates complex barcodes underlying diverse DVL3 functions. In order to dissect the role of DVL phosphorylation we analyzed the phosphorylation of human DVL3 induced by previously reported (CK1ε, NEK2, PLK1, CK2α, RIPK4, PKCδ) and newly identified (TTBK2, Aurora A) DVL kinases. Methods Shotgun proteomics including TiO2 enrichment of phosphorylated peptides followed by liquid chromatography tandem mass spectrometry on immunoprecipitates from HEK293T cells was used to identify and quantify phosphorylation of DVL3 protein induced by 8 kinases. Functional characterization was performed by in-cell analysis of phospho-mimicking/non-phosphorylatable DVL3 mutants and supported by FRET assays and NMR spectroscopy. Results We used quantitative mass spectrometry and calculated site occupancies and quantified phosphorylation of > 80 residues. Functional validation demonstrated the importance of CK1ε-induced phosphorylation of S268 and S311 for Wnt-3a-induced β-catenin activation. S630–643 cluster phosphorylation by CK1, NEK2 or TTBK2 is essential for even subcellular distribution of DVL3 when induced by CK1 and TTBK2 but not by NEK2. Further investigation showed that NEK2 utilizes a different mechanism to promote even localization of DVL3. NEK2 triggered phosphorylation of PDZ domain at S263 and S280 prevents binding of DVL C-terminus to PDZ and promotes an open conformation of DVL3 that is more prone to even subcellular localization. Conclusions We identify unique phosphorylation barcodes associated with DVL function. Our data provide an example of functional synergy between phosphorylation in structured domains and unstructured IDRs that together dictate the biological outcome. Video Abtract.
Graphical abstract ![]()
Collapse
Affiliation(s)
- Kateřina Hanáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ondřej Bernatík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marek Kravec
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Miroslav Micka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Jitender Kumar
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jakub Harnoš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Petra Ovesná
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petra Paclíková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Matěj Rádsetoulal
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - David Potěšil
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Konstantinos Tripsianes
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lukáš Čajánek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic. .,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic.
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic. .,Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
20
|
Gain-of-Function Mutations in KCNN3 Encoding the Small-Conductance Ca 2+-Activated K + Channel SK3 Cause Zimmermann-Laband Syndrome. Am J Hum Genet 2019; 104:1139-1157. [PMID: 31155282 DOI: 10.1016/j.ajhg.2019.04.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/15/2019] [Indexed: 01/16/2023] Open
Abstract
Zimmermann-Laband syndrome (ZLS) is characterized by coarse facial features with gingival enlargement, intellectual disability (ID), hypertrichosis, and hypoplasia or aplasia of nails and terminal phalanges. De novo missense mutations in KCNH1 and KCNK4, encoding K+ channels, have been identified in subjects with ZLS and ZLS-like phenotype, respectively. We report de novo missense variants in KCNN3 in three individuals with typical clinical features of ZLS. KCNN3 (SK3/KCa2.3) constitutes one of three members of the small-conductance Ca2+-activated K+ (SK) channels that are part of a multiprotein complex consisting of the pore-forming channel subunits, the constitutively bound Ca2+ sensor calmodulin, protein kinase CK2, and protein phosphatase 2A. CK2 modulates Ca2+ sensitivity of the channels by phosphorylating SK-bound calmodulin. Patch-clamp whole-cell recordings of KCNN3 channel-expressing CHO cells demonstrated that disease-associated mutations result in gain of function of the mutant channels, characterized by increased Ca2+ sensitivity leading to faster and more complete activation of KCNN3 mutant channels. Pretreatment of cells with the CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole revealed basal inhibition of wild-type and mutant KCNN3 channels by CK2. Analogous experiments with the KCNN3 p.Val450Leu mutant previously identified in a family with portal hypertension indicated basal constitutive channel activity and thus a different gain-of-function mechanism compared to the ZLS-associated mutant channels. With the report on de novo KCNK4 mutations in subjects with facial dysmorphism, hypertrichosis, epilepsy, ID, and gingival overgrowth, we propose to combine the phenotypes caused by mutations in KCNH1, KCNK4, and KCNN3 in a group of neurological potassium channelopathies caused by an increase in K+ conductance.
Collapse
|
21
|
Beale AD, Kruchek E, Kitcatt SJ, Henslee EA, Parry JS, Braun G, Jabr R, von Schantz M, O’Neill JS, Labeed FH. Casein Kinase 1 Underlies Temperature Compensation of Circadian Rhythms in Human Red Blood Cells. J Biol Rhythms 2019; 34:144-153. [PMID: 30898060 PMCID: PMC6458989 DOI: 10.1177/0748730419836370] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Temperature compensation and period determination by casein kinase 1 (CK1) are conserved features of eukaryotic circadian rhythms, whereas the clock gene transcription factors that facilitate daily gene expression rhythms differ between phylogenetic kingdoms. Human red blood cells (RBCs) exhibit temperature-compensated circadian rhythms, which, because RBCs lack nuclei, must occur in the absence of a circadian transcription-translation feedback loop. We tested whether period determination and temperature compensation are dependent on CKs in RBCs. As with nucleated cell types, broad-spectrum kinase inhibition with staurosporine lengthened the period of the RBC clock at 37°C, with more specific inhibition of CK1 and CK2 also eliciting robust changes in circadian period. Strikingly, inhibition of CK1 abolished temperature compensation and increased the Q10 for the period of oscillation in RBCs, similar to observations in nucleated cells. This indicates that CK1 activity is essential for circadian rhythms irrespective of the presence or absence of clock gene expression cycles.
Collapse
Affiliation(s)
- Andrew D. Beale
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Emily Kruchek
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Stephen J. Kitcatt
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Erin A. Henslee
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Jack S.W. Parry
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Gabriella Braun
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Rita Jabr
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Malcolm von Schantz
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - John S. O’Neill
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Fatima H. Labeed
- Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
22
|
Sager RA, Woodford MR, Backe SJ, Makedon AM, Baker-Williams AJ, DiGregorio BT, Loiselle DR, Haystead TA, Zachara NE, Prodromou C, Bourboulia D, Schmidt LS, Linehan WM, Bratslavsky G, Mollapour M. Post-translational Regulation of FNIP1 Creates a Rheostat for the Molecular Chaperone Hsp90. Cell Rep 2019; 26:1344-1356.e5. [PMID: 30699359 PMCID: PMC6370319 DOI: 10.1016/j.celrep.2019.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022] Open
Abstract
The molecular chaperone Hsp90 stabilizes and activates client proteins. Co-chaperones and post-translational modifications tightly regulate Hsp90 function and consequently lead to activation of clients. However, it is unclear whether this process occurs abruptly or gradually in the cellular context. We show that casein kinase-2 phosphorylation of the co-chaperone folliculin-interacting protein 1 (FNIP1) on priming serine-938 and subsequent relay phosphorylation on serine-939, 941, 946, and 948 promotes its gradual interaction with Hsp90. This leads to incremental inhibition of Hsp90 ATPase activity and gradual activation of both kinase and non-kinase clients. We further demonstrate that serine/threonine protein phosphatase 5 (PP5) dephosphorylates FNIP1, allowing the addition of O-GlcNAc (O-linked N-acetylglucosamine) to the priming serine-938. This process antagonizes phosphorylation of FNIP1, preventing its interaction with Hsp90, and consequently promotes FNIP1 lysine-1119 ubiquitination and proteasomal degradation. These findings provide a mechanism for gradual activation of the client proteins through intricate crosstalk of post-translational modifications of the co-chaperone FNIP1.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Bryanna T DiGregorio
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - David R Loiselle
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy A Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Laura S Schmidt
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
23
|
Grañe-Boladeras N, Williams D, Tarmakova Z, Stevanovic K, Villani LA, Mehrabi P, Siu KWM, Pastor-Anglada M, Coe IR. Oligomerization of equilibrative nucleoside transporters: a novel regulatory and functional mechanism involving PKC and PP1. FASEB J 2018; 33:3841-3850. [PMID: 30521377 DOI: 10.1096/fj.201800440rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Equilibrative nucleoside transporters (ENTs) translocate nucleosides and nucleobases across plasma membranes, as well as a variety of anti-cancer, -viral, and -parasite nucleoside analogs. They are also key members of the purinome complex and regulate the protective and anti-inflammatory effects of adenosine. Despite their important role, little is known about the mechanisms involved in their regulation. We conducted membrane yeast 2-hybrid and coimmunoprecipitation studies and identified, for the first time to our knowledge, the existence of protein-protein interactions between human ENT1 and ENT2 (hENT1 and hENT2) proteins in human cells and the formation of hetero- and homo-oligomers at the plasma membrane and the submembrane region. The use of NanoLuc Binary Technology allowed us to analyze changes in the oligomeric status of hENT1 and hENT2 and how they rapidly modify the uptake profile for nucleosides and nucleobases and allow cells to respond promptly to external signals or changes in the extracellular environment. These changes in hENTs oligomerization are triggered by PKC activation and subsequent action of protein phosphatase 1.-Grañe-Boladeras, N., Williams, D., Tarmakova, Z., Stevanovic, K., Villani, L. A., Mehrabi, P., Siu, K. W. M., Pastor-Anglada, M., Coe, I. R. Oligomerization of equilibrative nucleoside transporters: a novel regulatory and functional mechanism involving PKC and PP1.
Collapse
Affiliation(s)
- Natalia Grañe-Boladeras
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada.,Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,National Biomedical Research Institute of Liver and Gastrointestinal Diseases, Barcelona, Spain
| | - Declan Williams
- Department of Chemistry, York University, Toronto, Ontario, Canada; and
| | - Zlatina Tarmakova
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Katarina Stevanovic
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Linda A Villani
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Pedram Mehrabi
- Department of Biology, York University, Toronto, Ontario, Canada
| | - K W Michael Siu
- Department of Chemistry, York University, Toronto, Ontario, Canada; and
| | - Marçal Pastor-Anglada
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,National Biomedical Research Institute of Liver and Gastrointestinal Diseases, Barcelona, Spain
| | - Imogen R Coe
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Yu W, Yu M, Papasergi-Scott MM, Tall GG. Production of Phosphorylated Ric-8A proteins using protein kinase CK2. Protein Expr Purif 2018; 154:98-103. [PMID: 30290220 DOI: 10.1016/j.pep.2018.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 01/13/2023]
Abstract
Resistance to Inhibitors of Cholinesterase-8 (Ric-8) proteins are molecular chaperones that fold heterotrimeric G protein α subunits shortly after biosynthesis. Ric-8 proteins also act as test tube guanine nucleotide exchange factors (GEF) that promote Gα subunit GDP for GTP exchange. The GEF and chaperoning activities of Ric-8A are regulated by phosphorylation of five serine and threonine residues within protein kinase CK2 consensus sites. The traditional way that Ric-8A proteins have been purified is from Spodoptera frugiperda (Sf9) or Trichoplusia ni (Tni) insect cells. Endogenous insect cell kinases do phosphorylate the critical regulatory sites of recombinant Ric-8A reasonably well, but there is batch-to-batch variability among recombinant Ric-8A preparations. Additionally, insect cell-production of some Ric-8 proteins with phosphosite alanine substitution mutations is proscribed as there seems to be interdependency of multi-site phosphorylation for functional protein production. Here, we present a method to produce wild type and phosphosite mutant Ric-8A proteins that are fully occupied with bound phosphate at each of the regulatory positions. Ric-8A proteins were expressed and purified from E. coli. Purified Ric-8A was phosphorylated in vitro with protein kinase CK2 and then re-isolated to remove kinase. The phosphorylated Ric-8A proteins were ∼99% pure and the completeness of phosphorylation was verified by chromatography, phos-tag SDS-PAGE mobility shifts, immunoblotting using phospho-site specific antibodies, and mass spectrometry analysis. E. coli-produced Ric-8A that was phosphorylated using this method promoted a faster rate of Gα subunit guanine nucleotide exchange than Ric-8A that was variably phosphorylated during production in insect cells.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maiya Yu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Gregory G Tall
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Callejas-Hernández F, Rastrojo A, Poveda C, Gironès N, Fresno M. Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity. Sci Rep 2018; 8:14631. [PMID: 30279473 PMCID: PMC6168536 DOI: 10.1038/s41598-018-32877-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/13/2018] [Indexed: 12/19/2022] Open
Abstract
Chagas disease is a complex illness caused by the protozoan Trypanosoma cruzi displaying highly diverse clinical outcomes. In this sense, the genome sequence elucidation and comparison between strains may lead to disease understanding. Here, two new T. cruzi strains, have been sequenced, Y using Illumina and Bug2148 using PacBio, assembled, analyzed and compared with the T. cruzi annotated genomes available to date. The assembly stats from the new sequences show effective improvement of T. cruzi genome over the actual ones. Such as, the largest contig assembled (1.3 Mb in Bug2148) in de novo attempts and the highest mean assembly coverage (71X for Y). Our analysis reveals a new genomic expansion and greater complexity for those multi-copy gene families related to infection process and disease development, such as Trans-sialidases, Mucins and Mucin Associated Surface Proteins, among others. On one side, we demonstrate that multi-copy gene families are located near telomeric regions of the "chromosome-like" 1.3 Mb contig assembled of Bug2148, where they likely suffer high evolutive pressure. On the other hand, we identified several strain-specific single copy genes that might help to understand the differences in infectivity and physiology among strains. In summary, our results indicate that T. cruzi has a complex genomic architecture that may have promoted its evolution.
Collapse
Affiliation(s)
- Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Cristina Poveda
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| |
Collapse
|
26
|
Canedo-Antelo M, Serrano MP, Manterola A, Ruiz A, Llavero F, Mato S, Zugaza JL, Pérez-Cerdá F, Matute C, Sánchez-Gómez MV. Inhibition of Casein Kinase 2 Protects Oligodendrocytes From Excitotoxicity by Attenuating JNK/p53 Signaling Cascade. Front Mol Neurosci 2018; 11:333. [PMID: 30271323 PMCID: PMC6146035 DOI: 10.3389/fnmol.2018.00333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
Oligodendrocytes are highly vulnerable to glutamate excitotoxicity, a central mechanism involved in tissue damage in Multiple Sclerosis (MS). Sustained activation of AMPA receptors in rat oligodendrocytes induces cytosolic calcium overload, mitochondrial depolarization, increase of reactive oxygen species, and activation of intracelular pathways resulting in apoptotic cell death. Although many signals driven by excitotoxicity have been identified, some of the key players are still under investigation. Casein kinase 2 (CK2) is a serine/threonine kinase, constitutively expressed in all eukaryotic tissues, involved in cell proliferation, malignant transformation and apoptosis. In this study, we identify CK2 as a critical regulator of oligodendrocytic death pathways and elucidate its role as a signal inductor following excitotoxic insults. We provide evidence that CK2 activity is up-regulated in AMPA-treated oligodendrocytes and CK2 inhibition significantly diminished AMPA receptor-induced oligodendroglial death. In addition, we analyzed mitogen-activated protein kinase (MAPK) signaling after excitotoxic insult. We observed that AMPA receptor activation induced a rapid increase in c-Jun N-terminal kinase (JNK) and p38 phosphorylation that was reduced after CK2 inhibition. Moreover, blocking their phosphorylation, we enhanced oligodendrocyte survival after excitotoxic insult. Finally, we observed that the tumor suppressor p53 is activated during AMPA receptor-induced cell death and, interestingly, down-regulated by JNK or CK2 inhibition. Together, these data indicate that the increase in CK2 activity induced by excitotoxic insults regulates MAPKs, triggers p53 activation and mediates subsequent oligodendroglial loss. Therefore, targeting CK2 may be a useful strategy to prevent oligodendrocyte death in MS and other diseases involving central nervous system (CNS) white matter.
Collapse
Affiliation(s)
- Manuel Canedo-Antelo
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Mari Paz Serrano
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Andrea Manterola
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Asier Ruiz
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Francisco Llavero
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Genética, Antropología Física y Fisiología Animal, Universidad del País Vasco (UPV/EHU), Leioa, Spain
| | - Susana Mato
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - José Luis Zugaza
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Genética, Antropología Física y Fisiología Animal, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Fernando Pérez-Cerdá
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| | - María Victoria Sánchez-Gómez
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,Centro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED), Leioa, Spain
| |
Collapse
|
27
|
Phosphorylation-Dependent Inhibition of Akt1. Genes (Basel) 2018; 9:genes9090450. [PMID: 30205513 PMCID: PMC6162393 DOI: 10.3390/genes9090450] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 11/16/2022] Open
Abstract
Protein kinase B (Akt1) is a proto-oncogene that is overactive in most cancers. Akt1 activation requires phosphorylation at Thr308; phosphorylation at Ser473 further enhances catalytic activity. Akt1 activity is also regulated via interactions between the kinase domain and the N-terminal auto-inhibitory pleckstrin homology (PH) domain. As it was previously difficult to produce Akt1 in site-specific phosphorylated forms, the contribution of each activating phosphorylation site to auto-inhibition was unknown. Using a combination of genetic code expansion and in vivo enzymatic phosphorylation, we produced Akt1 variants containing programmed phosphorylation to probe the interplay between Akt1 phosphorylation status and the auto-inhibitory function of the PH domain. Deletion of the PH domain increased the enzyme activity for all three phosphorylated Akt1 variants. For the doubly phosphorylated enzyme, deletion of the PH domain relieved auto-inhibition by 295-fold. We next found that phosphorylation at Ser473 provided resistance to chemical inhibition by Akti-1/2 inhibitor VIII. The Akti-1/2 inhibitor was most effective against pAkt1T308 and showed four-fold decreased potency with Akt1 variants phosphorylated at Ser473. The data highlight the need to design more potent Akt1 inhibitors that are effective against the doubly phosphorylated and most pathogenic form of Akt1.
Collapse
|
28
|
Werner A, Baur R, Teerikorpi N, Kaya DU, Rape M. Multisite dependency of an E3 ligase controls monoubiquitylation-dependent cell fate decisions. eLife 2018; 7:35407. [PMID: 29999490 PMCID: PMC6057744 DOI: 10.7554/elife.35407] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/07/2018] [Indexed: 12/31/2022] Open
Abstract
Metazoan development depends on tightly regulated gene expression programs that instruct progenitor cells to adopt specialized fates. Recent work found that posttranslational modifications, such as monoubiquitylation, can determine cell fate also independently of effects on transcription, yet how monoubiquitylation is implemented during development is poorly understood. Here, we have identified a regulatory circuit that controls monoubiquitylation-dependent neural crest specification by the E3 ligase CUL3 and its substrate adaptor KBTBD8. We found that CUL3KBTBD8 monoubiquitylates its essential targets only after these have been phosphorylated in multiple motifs by CK2, a kinase whose levels gradually increase during embryogenesis. Its dependency on multisite phosphorylation allows CUL3KBTBD8 to convert the slow rise in embryonic CK2 into decisive recognition of ubiquitylation substrates, which in turn is essential for neural crest specification. We conclude that multisite dependency of an E3 ligase provides a powerful mechanism for switch-like cell fate transitions controlled by monoubiquitylation.
Collapse
Affiliation(s)
- Achim Werner
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Regina Baur
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nia Teerikorpi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Deniz U Kaya
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
29
|
N6-Furfuryladenine is protective in Huntington's disease models by signaling huntingtin phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E7081-E7090. [PMID: 29987005 DOI: 10.1073/pnas.1801772115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The huntingtin N17 domain is a modulator of mutant huntingtin toxicity and is hypophosphorylated in Huntington's disease (HD). We conducted high-content analysis to find compounds that could restore N17 phosphorylation. One lead compound from this screen was N6-furfuryladenine (N6FFA). N6FFA was protective in HD model neurons, and N6FFA treatment of an HD mouse model corrects HD phenotypes and eliminates cortical mutant huntingtin inclusions. We show that N6FFA restores N17 phosphorylation levels by being salvaged to a triphosphate form by adenine phosphoribosyltransferase (APRT) and used as a phosphate donor by casein kinase 2 (CK2). N6FFA is a naturally occurring product of oxidative DNA damage. Phosphorylated huntingtin functionally redistributes and colocalizes with CK2, APRT, and N6FFA DNA adducts at sites of induced DNA damage. We present a model in which this natural product compound is salvaged to provide a triphosphate substrate to signal huntingtin phosphorylation via CK2 during low-ATP stress under conditions of DNA damage, with protective effects in HD model systems.
Collapse
|
30
|
Vrathasha V, Booksh K, Duncan RL, Nohe A. Mechanisms of Cellular Internalization of Quantum Dot® Conjugated Bone Formation Mimetic Peptide CK2.3. NANOMATERIALS 2018; 8:nano8070513. [PMID: 29987256 PMCID: PMC6071089 DOI: 10.3390/nano8070513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 11/17/2022]
Abstract
Osteoporosis is a debilitating skeletal disorder that is characterized by loss of bone density over time. It affects one in two women and one in four men, age 50 and older. New treatments that specifically drive bone formation are desperately needed. We developed a peptide, CK2.3, that acts downstream of the bone morphogenetic protein receptor type Ia and it induces osteogenesis in-vitro and in-vivo. However, its mechanism of action, especially its mode of uptake by cells remains unknown. To demonstrate CK2.3 internalization within a cell, we conjugated CK2.3 to Quantum Dot®s (Qdot®s), semiconductor nanoparticles. We purified CK2.3-Qdot®s by size exclusion chromatography and verified the conjugation and stability using UV/VIS and Fourier transform infrared spectroscopy. Our results show that CK2.3 was conjugated to the Qdot®s and the conjugate was stable for at least 4 days at 37 °C. Moreover, CK2.3-Qdot®s exerted biological response similar to CK2.3. Addition of CK2.3-Qdot®s to cells followed by confocal imaging revealed that CK2.3-Qdot®s were internalized at 6 h post stimulation. Furthermore, using pharmacological inhibitors against endocytic pathways, we demonstrated that CK2.3-Qdot®s were internalized by caveolae. These results show for the first time that the novel peptide CK2.3 is taken up by the cell through caveolae mediated endocytosis.
Collapse
Affiliation(s)
- Vrathasha Vrathasha
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Karl Booksh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Randall L Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
31
|
Balasuriya N, Kunkel MT, Liu X, Biggar KK, Li SSC, Newton AC, O'Donoghue P. Genetic code expansion and live cell imaging reveal that Thr-308 phosphorylation is irreplaceable and sufficient for Akt1 activity. J Biol Chem 2018; 293:10744-10756. [PMID: 29773654 DOI: 10.1074/jbc.ra118.002357] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/08/2018] [Indexed: 01/05/2023] Open
Abstract
The proto-oncogene Akt/protein kinase B (PKB) is a pivotal signal transducer for growth and survival. Growth factor stimulation leads to Akt phosphorylation at two regulatory sites (Thr-308 and Ser-473), acutely activating Akt signaling. Delineating the exact role of each regulatory site is, however, technically challenging and has remained elusive. Here, we used genetic code expansion to produce site-specifically phosphorylated Akt1 to dissect the contribution of each regulatory site to Akt1 activity. We achieved recombinant production of full-length Akt1 containing site-specific pThr and pSer residues for the first time. Our analysis of Akt1 site-specifically phosphorylated at either or both sites revealed that phosphorylation at both sites increases the apparent catalytic rate 1500-fold relative to unphosphorylated Akt1, an increase attributable primarily to phosphorylation at Thr-308. Live imaging of COS-7 cells confirmed that phosphorylation of Thr-308, but not Ser-473, is required for cellular activation of Akt. We found in vitro and in the cell that pThr-308 function cannot be mimicked with acidic residues, nor could unphosphorylated Thr-308 be mimicked by an Ala mutation. An Akt1 variant with pSer-308 achieved only partial enzymatic and cellular signaling activity, revealing a critical interaction between the γ-methyl group of pThr-308 and Cys-310 in the Akt1 active site. Thus, pThr-308 is necessary and sufficient to stimulate Akt signaling in cells, and the common use of phosphomimetics is not appropriate for studying the biology of Akt signaling. Our data also indicate that pThr-308 should be regarded as the primary diagnostic marker of Akt activity.
Collapse
Affiliation(s)
| | - Maya T Kunkel
- the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | | | | | | | - Alexandra C Newton
- the Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Patrick O'Donoghue
- From the Departments of Biochemistry and .,Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada and
| |
Collapse
|
32
|
McMillan EA, Longo SM, Smith MD, Broskin S, Lin B, Singh NK, Strochlic TI. The protein kinase CK2 substrate Jabba modulates lipid metabolism during Drosophila oogenesis. J Biol Chem 2018; 293:2990-3002. [PMID: 29326167 DOI: 10.1074/jbc.m117.814657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/07/2018] [Indexed: 11/06/2022] Open
Abstract
Lipid metabolism plays a critical role in female reproduction. During oogenesis, maturing oocytes accumulate high levels of neutral lipids that are essential for both energy production and the synthesis of other lipid molecules. Metabolic pathways within the ovary are partially regulated by protein kinases that link metabolic status to oocyte development. Although the functions of several kinases in this process are well established, the roles that many other kinases play in coordinating metabolic state with female germ cell development are unknown. Here, we demonstrate that the catalytic activity of casein kinase 2 (CK2) is essential for Drosophila oogenesis. Using an unbiased biochemical screen that leveraged an unusual catalytic property of the kinase, we identified a novel CK2 substrate in the Drosophila ovary, the lipid droplet-associated protein Jabba. We show that Jabba is essential for modulating ovarian lipid metabolism and for regulating female fertility in the fly. Our findings shed light on a CK2-dependent signaling pathway governing lipid metabolism in the ovary and provide insight into the long-recognized but poorly understood association between energy metabolism and female reproduction.
Collapse
Affiliation(s)
- Emily A McMillan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Sheila M Longo
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Michael D Smith
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Sarah Broskin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Baicheng Lin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Nisha K Singh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Todd I Strochlic
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102.
| |
Collapse
|
33
|
Singal SS, Nygard K, Dhruv MR, Biggar K, Shehab MA, Li SSC, Jansson T, Gupta MB. Co-Localization of Insulin-Like Growth Factor Binding Protein-1, Casein Kinase-2β, and Mechanistic Target of Rapamycin in Human Hepatocellular Carcinoma Cells as Demonstrated by Dual Immunofluorescence and in Situ Proximity Ligation Assay. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:111-124. [PMID: 29037858 PMCID: PMC5745526 DOI: 10.1016/j.ajpath.2017.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/05/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022]
Abstract
Insulin-like growth factor binding protein (IGFBP)-1 influences fetal growth by modifying insulin-like growth factor-I (IGF-I) bioavailability. IGFBP-1 phosphorylation, which markedly increases its affinity for IGF-I, is regulated by mechanistic target of rapamycin (mTOR) and casein kinase (CSNK)-2. However, the underlying molecular mechanisms remain unknown. We examined the cellular localization and potential interactions of IGFBP-1, CSNK-2β, and mTOR as a prerequisite for protein-protein interaction. Analysis of dual immunofluorescence images indicated a potential perinuclear co-localization between IGFBP-1 and CSNK-2β and a nuclear co-localization between CSNK-2β and mTOR. Proximity ligation assay (PLA) indicated proximity between IGFBP-1 and CSNK-2β as well as mTOR and CSNK-2β but not between mTOR and IGFBP-1. Three-dimensional rendering of the PLA images validated that IGFBP-1 and CSNK-2β interactions were in the perinuclear region and mTOR and CSNK-2β interactions were also predominantly perinuclear rather than nuclear as indicated by mTOR and CSNK-2β co-localization. Compared with control, hypoxia and rapamycin treatment showed markedly amplified PLA signals for IGFBP-1 and CSNK-2β (approximately 18-fold, P = 0.0002). Stable isotope labeling with multiple reaction monitoring-mass spectrometry demonstrated that hypoxia and rapamycin treatment increased IGFBP-1 phosphorylation at Ser98/Ser101/Ser119/Ser174 but most considerably (106-fold) at Ser169. We report interactions between CSNK-2β and IGFBP-1 as well as mTOR and CSNK-2β, providing strong evidence of a mechanistic link between mTOR and IGF-I signaling, two critical regulators of cell growth via CSNK-2.
Collapse
Affiliation(s)
- Sahil S Singal
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Karen Nygard
- Biotron Laboratory, University of Western Ontario, London, Ontario, Canada
| | - Manthan R Dhruv
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
| | - Kyle Biggar
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada; Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Majida A Shehab
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
| | - Shawn S-C Li
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Thomas Jansson
- Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, Canada
| | - Madhulika B Gupta
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada; Department of Pediatrics, University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
34
|
Wei Z, Wu G, Chen BS. Regulation of SAP102 Synaptic Targeting by Phosphorylation. Mol Neurobiol 2017; 55:6215-6226. [PMID: 29282697 DOI: 10.1007/s12035-017-0836-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/12/2017] [Indexed: 11/29/2022]
Abstract
Synapse-associated protein 102 (SAP102) is a scaffolding protein highly expressed early in development and plays a critical role in mediating glutamate receptor trafficking during synaptogenesis. Mutations in human SAP102 have been reported to cause intellectual disability, which is thought to be due to mislocalization of the mutant protein. However, little is known about the regulation of SAP102 synaptic targeting. Here, we investigate the role of phosphorylation of SAP102 in regulating its synaptic targeting. Previous studies have shown that synaptic targeting of SAP102 is regulated by C-terminal splicing. We now identify a phosphorylation site, serine 632, within the C-terminal alternatively spliced region, which is phosphorylated by casein kinase II (CK2). We show that Ser632 on SAP102 is phosphorylated in vitro, in heterologous cells, and in neurons. Moreover, we demonstrate that synaptic enrichment of SAP102 is increased by Ser632 phosphorylation. Consistently, elevation of synaptic activity that suppresses Ser632 phosphorylation reduces synaptic enrichment of SAP102. Furthermore, the mobility of SAP102 is decreased by Ser632 phosphorylation. Therefore, not only SAP102 synaptic targeting but also its mobility is regulated by Ser632 phosphorylation. These data provide evidence for a novel mechanism in regulating SAP102 function and glutamate receptor trafficking.
Collapse
Affiliation(s)
- Zhe Wei
- Department of Neuroscience and Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta University, CA3008, 1120 15th Street, Augusta, GA, 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Bo-Shiun Chen
- Department of Neuroscience and Regenerative Medicine and Department of Neurology, Medical College of Georgia, Augusta University, CA3008, 1120 15th Street, Augusta, GA, 30912, USA.
| |
Collapse
|
35
|
Baier A, Nazaruk J, Galicka A, Szyszka R. Inhibitory influence of natural flavonoids on human protein kinase CK2 isoforms: effect of the regulatory subunit. Mol Cell Biochem 2017; 444:35-42. [PMID: 29188536 PMCID: PMC6002439 DOI: 10.1007/s11010-017-3228-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/24/2017] [Indexed: 11/25/2022]
Abstract
CK2 is a pleiotropic, constitutively active protein kinase responsible for the phosphorylation of more than 300 physiological substrates. Typically, this enzyme is found in tetrameric form consisting of two regulatory subunits CK2β and two catalytic subunits CK2α or CK2α′. Several natural occurring flavonoids were tested for their ability to inhibit both CK2 holoenzymes, CK2α2β2 and CK2α′2β2. We identified few substances selectively inhibiting only the α′ subunit. Other compounds showed similar effect towards all four isoforms. In some cases, like chrysoeriol, pedalitin, apigenin, and luteolin, the α2β2 holoenzyme was at least six times better inhibited than the free α subunit. Otherwise, we have found a luteolin derivative decreased the kinase activity of CK2α′ with an IC50 value of 0.8 μM, but the holoenzyme only with 9.5 µM.
Collapse
Affiliation(s)
- Andrea Baier
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynow 1i, 20-708, Lublin, Poland.
| | - Jolanta Nazaruk
- Department of Pharmacognosy, Medical University of Białystok, ul. Mickiewicza 2a, 15-089, Białystok, Poland
| | - Anna Galicka
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-089, Białystok, Poland
| | - Ryszard Szyszka
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, ul. Konstantynow 1i, 20-708, Lublin, Poland
| |
Collapse
|
36
|
Rusin SF, Adamo ME, Kettenbach AN. Identification of Candidate Casein Kinase 2 Substrates in Mitosis by Quantitative Phosphoproteomics. Front Cell Dev Biol 2017; 5:97. [PMID: 29214152 PMCID: PMC5702644 DOI: 10.3389/fcell.2017.00097] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022] Open
Abstract
Protein phosphorylation is a crucial regulatory mechanism that controls many aspects of cellular signaling. Casein kinase 2 (CK2), a constitutively expressed and active kinase, plays key roles in an array of cellular events including transcription and translation, ribosome biogenesis, cell cycle progression, and apoptosis. CK2 is implicated in cancerous transformation and is a therapeutic target in anti-cancer therapy. The specific and selective CK2 ATP competitive inhibitor, CX-4945 (silmitaseratib), is currently in phase 2 clinical trials. While many substrates and interactors of CK2 have been identified, less is known about CK2 substrates in mitosis. In the present work, we utilize CX-4945 and quantitative phosphoproteomics to inhibit CK2 activity in mitotically arrested HeLa cells and determine candidate CK2 substrates. We identify 330 phosphorylation sites on 202 proteins as significantly decreased in abundance upon inhibition of CK2 activity. Motif analysis of decreased sites reveals a linear kinase motif with aspartic and glutamic amino acids downstream of the phosphorylated residues, which is consistent with known substrate preferences for CK2. To validate specific candidate CK2 substrates, we perform in vitro kinase assays using purified components. Furthermore, we identified CK2 interacting proteins by affinity purification-mass spectrometry (AP-MS). To investigate the biological processes regulated by CK2 in mitosis, we perform network analysis and identify an enrichment of proteins involved in chromosome condensation, chromatin organization, and RNA processing. We demonstrate that overexpression of CK2 in HeLa cells affects proper chromosome condensation. Previously, we found that phosphoprotein phosphatase 6 (PP6), but not phosphoprotein phosphatase 2A (PP2A), opposes CK2 phosphorylation of the condensin I complex, which is essential for chromosome condensation. Here, we extend this observation and demonstrate that PP6 opposition of CK2 is a more general cellular regulatory mechanism.
Collapse
Affiliation(s)
- Scott F Rusin
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Mark E Adamo
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
| |
Collapse
|
37
|
Banerjee Mustafi S, Chakraborty PK, Dwivedi SKD, Ding K, Moxley KM, Mukherjee P, Bhattacharya R. BMI1, a new target of CK2α. Mol Cancer 2017; 16:56. [PMID: 28270146 PMCID: PMC5341428 DOI: 10.1186/s12943-017-0617-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The polycomb group protein, BMI1 plays important roles in chromatin modification, stem cell function, DNA damage repair and mitochondrial bioenergetics. Such diverse cellular functions of BMI1 could be, in part, due to post-translational modifications, especially phosphorylation. To date, AKT has been reported as a kinase that by site specific phosphorylation of BMI1 modulates its oncogenic functions. METHODS Immunoprecipitation in conjunction with kinase assay and mass spectrometry was used to determine association with and site specific phosphorylation of BMI1 by CK2α. Functional implications of the BMI1/CK2α axis was examined in cancer cells utilizing siRNA and exogenous gene expression followed by biochemical and phenotypic studies. Correlations between expression of CK2α and BMI1 were determined from cell lines and formalin fixed paraffin embedded tissues representing the normal fallopian tube epithelium and high grade serous ovarian cancer samples. RESULTS Here we report that CK2α, a nuclear serine threonine kinase, phosphorylates BMI1 at Serine 110 as determined by in-vitro/ex-vivo kinase assay and mass spectrometry. In ovarian cancer cell lines, expression of CK2α correlated with the phospho-species, as well as basal BMI1 levels. Preventing phosphorylation of BMI1 at Serine 110 significantly decreased half-life and stability of the protein. Additionally, re-expression of the phosphorylatable but not non-phosphorylatable BMI1 rescued clonal growth in endogenous BMI1 silenced cancer cells leading us to speculate that CK2α-mediated phosphorylation stabilizes BMI1 and promotes its oncogenic function. Clinically, compared to normal fallopian tube epithelial tissues, the expression of both BMI1 and CK2α were significantly higher in tumor tissues obtained from high-grade serous ovarian cancer patients. Among tumor samples, the expression of BMI1 and CK2α positively correlated (Spearman coefficient = 0.62, P = 0.0021) with each other. CONCLUSION Taken together, our findings establish an important regulatory role of CK2α on BMI1 phosphorylation and stability and implicate the CK2α/BMI1 axis in ovarian cancer.
Collapse
Affiliation(s)
- Soumyajit Banerjee Mustafi
- Peggy and Charles Stephenson Cancer Center (OUHSC), University of Oklahoma Health Science Center, 975 NE 10th Street, BRC-1409B, Oklahoma City, OK 73104 USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK USA
| | - Prabir Kumar Chakraborty
- Peggy and Charles Stephenson Cancer Center (OUHSC), University of Oklahoma Health Science Center, 975 NE 10th Street, BRC-1409B, Oklahoma City, OK 73104 USA
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center (OUHSC), University of Oklahoma Health Science Center, 975 NE 10th Street, BRC-1409B, Oklahoma City, OK 73104 USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK USA
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Katherine M. Moxley
- Peggy and Charles Stephenson Cancer Center (OUHSC), University of Oklahoma Health Science Center, 975 NE 10th Street, BRC-1409B, Oklahoma City, OK 73104 USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center (OUHSC), University of Oklahoma Health Science Center, 975 NE 10th Street, BRC-1409B, Oklahoma City, OK 73104 USA
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center (OUHSC), University of Oklahoma Health Science Center, 975 NE 10th Street, BRC-1409B, Oklahoma City, OK 73104 USA
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK USA
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, OK USA
| |
Collapse
|
38
|
Nuñez de Villavicencio-Diaz T, Rabalski AJ, Litchfield DW. Protein Kinase CK2: Intricate Relationships within Regulatory Cellular Networks. Pharmaceuticals (Basel) 2017; 10:ph10010027. [PMID: 28273877 PMCID: PMC5374431 DOI: 10.3390/ph10010027] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 01/20/2023] Open
Abstract
Protein kinase CK2 is a small family of protein kinases that has been implicated in an expanding array of biological processes. While it is widely accepted that CK2 is a regulatory participant in a multitude of fundamental cellular processes, CK2 is often considered to be a constitutively active enzyme which raises questions about how it can be a regulatory participant in intricately controlled cellular processes. To resolve this apparent paradox, we have performed a systematic analysis of the published literature using text mining as well as mining of proteomic databases together with computational assembly of networks that involve CK2. These analyses reinforce the notion that CK2 is involved in a broad variety of biological processes and also reveal an extensive interplay between CK2 phosphorylation and other post-translational modifications. The interplay between CK2 and other post-translational modifications suggests that CK2 does have intricate roles in orchestrating cellular events. In this respect, phosphorylation of specific substrates by CK2 could be regulated by other post-translational modifications and CK2 could also have roles in modulating other post-translational modifications. Collectively, these observations suggest that the actions of CK2 are precisely coordinated with other constituents of regulatory cellular networks.
Collapse
Affiliation(s)
| | - Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
- Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
39
|
Casein Kinase 2 Is Linked to Stress Granule Dynamics through Phosphorylation of the Stress Granule Nucleating Protein G3BP1. Mol Cell Biol 2017; 37:MCB.00596-16. [PMID: 27920254 DOI: 10.1128/mcb.00596-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022] Open
Abstract
Stress granules (SGs) are large macromolecular aggregates that contain translation initiation complexes and mRNAs. Stress granule formation coincides with translational repression, and stress granules actively signal to mediate cell fate decisions by signaling to the translation apparatus to (i) maintain translational repression, (ii) mount various transcriptional responses, including innate immunity, and (iii) repress apoptosis. Previous work showed that G3BP1 is phosphorylated at serine 149, which regulates G3BP1 oligomerization, stress granule assembly, and RNase activity intrinsic to G3BP1. However, the kinase that phosphorylates G3BP1 was not identified, leaving a key step in stress granule regulation uncharacterized. Here, using chemical inhibition, genetic depletion, and overexpression experiments, we show that casein kinase 2 (CK2) promotes stress granule dynamics. These results link CK2 activity with SG disassembly. We also show that casein kinase 2 phosphorylates G3BP1 at serine 149 in vitro and in cells. These data support a role for casein kinase 2 in regulation of protein synthesis by downregulating stress granule formation through G3BP1.
Collapse
|
40
|
Rozovski U, Harris DM, Li P, Liu Z, Jain P, Veletic I, Ferrajoli A, Burger J, O'Brien S, Bose P, Thompson P, Jain N, Wierda W, Keating MJ, Estrov Z. Constitutive Phosphorylation of STAT3 by the CK2-BLNK-CD5 Complex. Mol Cancer Res 2017; 15:610-618. [PMID: 28130399 DOI: 10.1158/1541-7786.mcr-16-0291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022]
Abstract
In chronic lymphocytic leukemia (CLL), STAT3 is constitutively phosphorylated on serine 727 and plays a role in the pathobiology of CLL. However, what induces constitutive phosphorylation of STAT3 is currently unknown. Mass spectrometry was used to identify casein kinase 2 (CK2), a serine/threonine kinase that coimmunoprecipitated with serine phosphorylated STAT3 (pSTAT3). Furthermore, activated CK2 incubated with recombinant STAT3 induced phosphorylation of STAT3 on serine 727. Although STAT3 and CK2 are present in normal B- and T cells, STAT3 is not constitutively phosphorylated in these cells. Further study found that CD5 and BLNK coexpressed in CLL, but not in normal B- or T cells, are required for STAT3 phosphorylation. To elucidate the relationship of CD5 and BLNK to CK2 and STAT3, STAT3 was immunoprecipitated from CLL cells, and CK2, CD5, and BLNK were detected in the immunoprecipitate. Conversely, STAT3, CD5, and BLNK were in the immunoprecipitate of CLL cells immunoprecipitated with CK2 antibodies. Furthermore, siRNA knockdown of CD5 or BLNK, or treatment with CD5-neutralizing antibodies significantly reduced the levels of serine pSTAT3 in CLL cells. Finally, confocal microscopy determined that CD5 is cell membrane bound, and fractionation studies revealed that the CK2/CD5/BLNK/STAT3 complex remains in the cytoplasm, whereas serine pSTAT3 is shuttled to the nucleus.Implications: These data show that the cellular proteins CK2, CD5, and BLNK are required for constitutive phosphorylation of STAT3 in CLL. Whether this protein complex phosphorylates other proteins or inhibiting its activity would have clinical benefit in patients has yet to be determined. Mol Cancer Res; 15(5); 610-8. ©2017 AACR.
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Division of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tiqva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jan Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Susan O'Brien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philip Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
41
|
Malkani N, Biggar K, Shehab MA, Li SSC, Jansson T, Gupta MB. Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC. Mol Cell Endocrinol 2016; 425:48-60. [PMID: 26733150 PMCID: PMC4811673 DOI: 10.1016/j.mce.2015.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/11/2023]
Abstract
Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth.
Collapse
Affiliation(s)
- Niyati Malkani
- Dept of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kyle Biggar
- Dept of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Majida Abu Shehab
- Children's Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Shawn Shun-Cheng Li
- Dept of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Thomas Jansson
- Dept of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhulika B Gupta
- Dept of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada; Children's Health Research Institute, University of Western Ontario, London, ON, Canada; Dept of Pediatrics, University of Western Ontario, London, Canada.
| |
Collapse
|
42
|
Abstract
Compensatory growth and regeneration of skeletal muscle is dependent on the resident stem cell population, satellite cells (SCs). Self-renewal and maintenance of the SC niche is coordinated by the paired-box transcription factor Pax7, and yet continued expression of this protein inhibits the myoblast differentiation program. As such, the reduction or removal of Pax7 may denote a key prerequisite for SCs to abandon self-renewal and acquire differentiation competence. Here, we identify caspase 3 cleavage inactivation of Pax7 as a crucial step for terminating the self-renewal process. Inhibition of caspase 3 results in elevated Pax7 protein and SC self-renewal, whereas caspase activation leads to Pax7 cleavage and initiation of the myogenic differentiation program. Moreover, in vivo inhibition of caspase 3 activity leads to a profound disruption in skeletal muscle regeneration with an accumulation of SCs within the niche. We have also noted that casein kinase 2 (CK2)-directed phosphorylation of Pax7 attenuates caspase-directed cleavage. Together, these results demonstrate that SC fate is dependent on opposing posttranslational modifications of the Pax7 protein.
Collapse
|
43
|
Shu YN, Zhang F, Bi W, Dong LH, Zhang DD, Chen R, Lv P, Xie XL, Lin YL, Xue ZY, Li H, Miao SB, Zhao LL, Wang H, Han M. SM22α inhibits vascular inflammation via stabilization of IκBα in vascular smooth muscle cells. J Mol Cell Cardiol 2015; 84:191-9. [DOI: 10.1016/j.yjmcc.2015.04.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 12/14/2022]
|
44
|
Matsumoto G, Shimogori T, Hattori N, Nukina N. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum Mol Genet 2015; 24:4429-42. [DOI: 10.1093/hmg/ddv179] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/11/2015] [Indexed: 01/09/2023] Open
|
45
|
Systematic investigation of hierarchical phosphorylation by protein kinase CK2. J Proteomics 2014; 118:49-62. [PMID: 25449829 DOI: 10.1016/j.jprot.2014.10.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/17/2014] [Accepted: 10/27/2014] [Indexed: 11/21/2022]
Abstract
UNLABELLED Although multiple phosphorylation sites are often clustered in substrates, the mechanism of phosphorylation within clusters has not been systematically investigated. Intriguingly, in addition to acidic residues, protein kinase CK2 can use phosphoserine residues as consensus determinants suggesting that CK2 may act in concert with other kinases. We used a peptide array approach to outline optimal consensus sequences for hierarchical phosphorylation by CK2, both in the context of processive, multisite phosphorylation, and in concert with a priming proline-directed kinase. Results suggest that hierarchical phosphorylation involving CK2 requires precise positioning of either multiple phosphodeterminant residues or specific combinations of canonical determinants and phosphodeterminants, and can be as enzymatically favorable as canonical CK2 phosphorylation. Over 1600 human proteins contain at least one CK2 hierarchical consensus motif, and ~20% of these motifs contain at least one reported in vivo phosphorylation site. These motifs occur non-randomly in the human proteome, with significant enrichment in proteins controlling specific cellular processes. Taken together, our results provide strong in vitro evidence that hierarchical phosphorylation may contribute to the regulation of crucial biological processes. In addition, the results suggest a mechanism by which CK2, a constitutively active kinase, can be a regulatory participant in cellular processes. BIOLOGICAL SIGNIFICANCE Phosphorylation is a crucial regulatory mechanism governing cellular signal transduction pathways, and despite the large number of identified sites to date, most mechanistic studies remain focused on individual phosphorylation sites. This study is the first to systematically determine specific consensus sequences for hierarchical phosphorylation events. The results indicate that individual phosphorylation sites should not be studied in isolation, and that larger, multisite phosphorylation motifs may have profound impact on cellular signaling. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.
Collapse
|
46
|
Lima-Fernandes E, Misticone S, Boularan C, Paradis JS, Enslen H, Roux PP, Bouvier M, Baillie GS, Marullo S, Scott MGH. A biosensor to monitor dynamic regulation and function of tumour suppressor PTEN in living cells. Nat Commun 2014; 5:4431. [PMID: 25028204 DOI: 10.1038/ncomms5431] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023] Open
Abstract
Tumour suppressor PTEN is a phosphatase that negatively regulates the PI3K/AKT pathway. The ability to directly monitor PTEN conformation and function in a rapid, sensitive manner is a key step towards developing anti-cancer drugs aimed at enhancing or restoring PTEN-dependent pathways. Here we developed an intramolecular bioluminescence resonance energy transfer (BRET)-based biosensor, capable of detecting signal-dependent PTEN conformational changes in live cells. The biosensor retains intrinsic properties of PTEN, enabling structure-function and kinetic analyses. BRET shifts, indicating conformational change, were detected following mutations that disrupt intramolecular PTEN interactions, promoting plasma membrane targeting and also following physiological PTEN activation. Using the biosensor as a reporter, we uncovered PTEN activation by several G protein-coupled receptors, previously unknown as PTEN regulators. Trastuzumab, used to treat ERBB2-overexpressing breast cancers also elicited activation-associated PTEN conformational rearrangement. We propose the biosensor can be used to identify pathways regulating PTEN or molecules that enhance its anti-tumour activity.
Collapse
Affiliation(s)
- Evelyne Lima-Fernandes
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France [4]
| | - Stanislas Misticone
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France [4]
| | - Cédric Boularan
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France [4]
| | - Justine S Paradis
- 1] Molecular Biology Program, Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [2] Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [3]
| | - Hervé Enslen
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Philippe P Roux
- 1] Molecular Biology Program, Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [2] Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7
| | - Michel Bouvier
- 1] Molecular Biology Program, Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [2] Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stefano Marullo
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Mark G H Scott
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| |
Collapse
|
47
|
Spring K, Lapointe L, Caron C, Langlois S, Royal I. Phosphorylation of DEP-1/PTPRJ on threonine 1318 regulates Src activation and endothelial cell permeability induced by vascular endothelial growth factor. Cell Signal 2014; 26:1283-93. [DOI: 10.1016/j.cellsig.2014.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/18/2014] [Indexed: 12/23/2022]
|
48
|
Inositol pyrophosphates mediate the DNA-PK/ATM-p53 cell death pathway by regulating CK2 phosphorylation of Tti1/Tel2. Mol Cell 2014; 54:119-132. [PMID: 24657168 DOI: 10.1016/j.molcel.2014.02.020] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/16/2013] [Accepted: 02/13/2014] [Indexed: 11/20/2022]
Abstract
The apoptotic actions of p53 require its phosphorylation by a family of phosphoinositide-3-kinase-related-kinases (PIKKs), which include DNA-PKcs and ATM. These kinases are stabilized by the TTT (Tel2, Tti1, Tti2) cochaperone family, whose actions are mediated by CK2 phosphorylation. The inositol pyrophosphates, such as 5-diphosphoinositol pentakisphosphate (IP7), are generated by a family of inositol hexakisphosphate kinases (IP6Ks), of which IP6K2 has been implicated in p53-associated cell death. In the present study we report an apoptotic signaling cascade linking CK2, TTT, the PIKKs, and p53. We demonstrate that IP7, formed by IP6K2, binds CK2 to enhance its phosphorylation of the TTT complex, thereby stabilizing DNA-PKcs and ATM. This process stimulates p53 phosphorylation at serine 15 to activate the cell death program in human cancer cells and in murine B cells.
Collapse
|
49
|
Han Y, Donovan J, Rath S, Whitney G, Chitrakar A, Korennykh A. Structure of human RNase L reveals the basis for regulated RNA decay in the IFN response. Science 2014; 343:1244-8. [PMID: 24578532 PMCID: PMC4731867 DOI: 10.1126/science.1249845] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the hallmark mechanisms activated by type I interferons (IFNs) in human tissues involves cleavage of intracellular RNA by the kinase homology endoribonuclease RNase L. We report 2.8 and 2.1 angstrom crystal structures of human RNase L in complexes with synthetic and natural ligands and a fragment of an RNA substrate. RNase L forms a crossed homodimer stabilized by ankyrin (ANK) and kinase homology (KH) domains, which positions two kinase extension nuclease (KEN) domains for asymmetric RNA recognition. One KEN protomer recognizes an identity nucleotide (U), whereas the other protomer cleaves RNA between nucleotides +1 and +2. The coordinated action of the ANK, KH, and KEN domains thereby provides regulated, sequence-specific cleavage of viral and host RNA targets by RNase L.
Collapse
Affiliation(s)
| | | | | | - Gena Whitney
- Department of Molecular Biology, Princeton University, 216 Schultz Laboratory, Princeton, NJ 08540, USA
| | - Alisha Chitrakar
- Department of Molecular Biology, Princeton University, 216 Schultz Laboratory, Princeton, NJ 08540, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, 216 Schultz Laboratory, Princeton, NJ 08540, USA
| |
Collapse
|
50
|
Turowec JP, Vilk G, Gabriel M, Litchfield DW. Characterizing the convergence of protein kinase CK2 and caspase-3 reveals isoform-specific phosphorylation of caspase-3 by CK2α': implications for pathological roles of CK2 in promoting cancer cell survival. Oncotarget 2013; 4:560-71. [PMID: 23599180 PMCID: PMC3720604 DOI: 10.18632/oncotarget.948] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Protein kinase CK2 has emerged as a promising candidate for the treatment of a number of cancers. This enzyme is comprised of two catalytic subunits (CK2 and/or CK2α′) that form complexes with homodimers of regulatory CK2β subunits. While catalytic and regulatory CK2 subunits are generally expressed at similar levels to form tetrameric complexes, asymmetric expression of CK2 subunits has been associated with various forms of cancer and the enhanced survival of cancer cells. To elucidate mechanisms responsible for regulation of cancer cell survival by CK2, we recently employed computational and experimental strategies that revealed widespread overlap between sites for CK2 phosphorylation and caspase cleavage. Among candidates with overlapping CK2 and caspase cleavage sites was caspase-3 that is phosphorylated by CK2 to prevent its activation by upstream caspases. To elucidate the precise relationship between CK2 and caspase-3, we modulated expression of individual CK2 subunits and demonstrated that CK2α′ exhibits a striking preference for caspase-3 phosphorylation in cells as compared to CK2α and that CK2β exhibits the capacity to abolish caspase-3 phosphorylation. Since caspase-3 represents the first CK2 substrate selectively phosphorylated by CK2α′ in cells, our work highlights divergent functions of the different forms of CK2. Given the involvement of CK2 in a diverse series of biological events and its association with various cancers, this work has important implications for identifying pathological roles of distinct forms of CK2 that could instruct efforts to selectively target individual CK2 subunits for therapy.
Collapse
Affiliation(s)
- Jacob P Turowec
- Department of Biochemistry, Schulich School of Medicine, Western University, London, ON, Canada
| | | | | | | |
Collapse
|