1
|
Ulloa-Aguirre A, Zariñán T, Dias JA, Kumar TR, Bousfield GR. Biased signaling by human follicle-stimulating hormone variants. Pharmacol Ther 2025; 268:108821. [PMID: 39961417 DOI: 10.1016/j.pharmthera.2025.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025]
Abstract
Follicle-stimulating hormone (FSH) or follitropin plays a fundamental role in several mammalian species, including humans. This gonadotropin is produced by the anterior pituitary gland and has as its main targets the granulosa cells of the ovary and the Sertoli cells of the testis. Structurally, FSH is composed of two non-convalently linked subunits, the α- and β-subunit, as well as highly heterogenous oligosaccharide structures, which play a key role in determining a number of physiological and biological features of the hormone. Glycosylation in FSH and the other members belonging to the glycoprotein hormone family, is essential for many functions of the gonadotropin, including subunit assembly and stability, secretion, circulatory half-life and biological activity. Carbohydrate heterogeneity in FSH comes in two forms, microheterogeneity, which results from variations in the carbohydrate structural complexity in those oligosaccharides attached to the α- or β-subunit of the hormone and macroheterogeneity, which results from the absence of carbohydrate chain at FSHβ Asn-glycosylation sites. A number of in vitro and in vivo studies have conclusively demonstrated differential, unique and even opposing effects provoked by variations in the carbohydrate structures of FSH, including circulatory survival, binding to and activation of its cognate receptor in the gonads, intracellular signaling, and activation/inhibition of a number of FSH-regulated genes essential for follicle development. Herein, we review the effects of the FSH oligosaccharides on several functions of FSH, and how variations in these structures have been shown to lead to functional selectivity of the hormone.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico..
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| |
Collapse
|
2
|
Li W, Li T, Ali T, Mou S, Gong Q, Yu ZJ, Li S. Uncoupling serotonin (2C) and dopamine (D2) receptor heterodimers ameliorate PTSD-like behaviors. J Affect Disord 2025; 380:63-77. [PMID: 40122260 DOI: 10.1016/j.jad.2025.03.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND G-protein-coupled receptors (GPCRs), crucial for various physiological functions, can form complexes with themselves or other GPCRs, influencing their signaling and drug interactions. GPCR oligomerization remains an active area of research in neurological diseases, including Post-Traumatic Stress Disorder (PTSD). Here, we illuminated a novel serotonin and dopamine receptor heterodimerization that played an etiological role in fear conditioning behaviors associated with memory defects in the single prolonger stress (SPS) mice and reverting effects of receptors interaction interfering with peptide. METHODS To assess our projected goal, we prepared a single prolonged stress (SPS) mice model followed by peptide treatment, behavior assays, and biochemical analysis. RESULTS Our study revealed a direct interaction between dopamine D2 receptors (D2R) and serotonin 5-HT2C receptors (5-HT2CR) via the K226-L240 region in the brains of SPS mice. This D2R/5-HT2CR interaction modulated downstream PI3K-AKT signaling and contributed to cognitive deficits in a mouse model of SPS. An interfering peptide (TAT-D2R-KL) designed to disrupt D2R/5-HT2CR heterodimerization reduced the excitatory/inhibitory neuron firing frequency ratio, attenuated PI3K/AKT signaling impairment, and alleviated cognitive deficits in SPS mice. Furthermore, treatment with the PI3K inhibitor, Bisperoxovanadium Compound bpV (pic), reversed the effects of the peptide, confirming the critical role of PI3K/AKT signaling in D2R/5-HT2CR dimerization and the associated pathophysiology of SPS. CONCLUSION These findings revealed a causative role of D2R/5-HT2CR hetero-dimer in PTSD and could be reversed by TAT-D2R-KL treatment.
Collapse
Affiliation(s)
- Weifen Li
- School of Pharmacy, Shenzhen University, Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Tianxiang Li
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518000, China.
| | - Shengnan Mou
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qichao Gong
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen key laboratory for endogenous infections, the 6th Affiliated Hospital of Shenzhen University Health Science Center, No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518000, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Abstract
A survey of protein databases indicates that the majority of enzymes exist in oligomeric forms, with about half of those found in the UniProt database being homodimeric. Understanding why many enzymes are in their dimeric form is imperative. Recent developments in experimental and computational techniques have allowed for a deeper comprehension of the cooperative interactions between the subunits of dimeric enzymes. This review aims to succinctly summarize these recent advancements by providing an overview of experimental and theoretical methods, as well as an understanding of cooperativity in substrate binding and the molecular mechanisms of cooperative catalysis within homodimeric enzymes. Focus is set upon the beneficial effects of dimerization and cooperative catalysis. These advancements not only provide essential case studies and theoretical support for comprehending dimeric enzyme catalysis but also serve as a foundation for designing highly efficient catalysts, such as dimeric organic catalysts. Moreover, these developments have significant implications for drug design, as exemplified by Paxlovid, which was designed for the homodimeric main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Ke-Wei Chen
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computional Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
4
|
Liu J, Hiser C, Li F, Hall R, Garavito RM, Ferguson-Miller S. New TSPO Crystal Structures of Mutant and Heme-Bound Forms with Altered Flexibility, Ligand Binding, and Porphyrin Degradation Activity. Biochemistry 2023; 62:1262-1273. [PMID: 36947867 PMCID: PMC10077581 DOI: 10.1021/acs.biochem.2c00612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Indexed: 03/24/2023]
Abstract
The ancient protein TSPO (translocator protein 18kD) is found in all kingdoms and was originally identified as a binding site of benzodiazepine drugs. Its physiological function remains unclear, although porphyrins are conserved ligands. Several crystal structures of bacterial TSPO and nuclear magnetic resonance structures of a mouse form have revealed monomer and dimer configurations, but there have been no reports of structures with a physiological ligand. Here, we present the first X-ray structures of Rhodobacter sphaeroides TSPO with a physiological ligand bound. Two different variants (substituting threonine for alanine at position 139 (A139T) and phenylalanine for alanine at position 138 (A138F)) yielded well-diffracting crystals giving structures of both apo- and heme-containing forms. Both variants have wild-type micromolar affinity for heme and protoporphyrin IX, but A139T has very low ability to accelerate the breakdown of porphyrin in the presence of light and oxygen. The binding of heme to one protomer of the dimer of either mutant induces a more rigid structure, both in the heme-binding protomer and the protomer without heme bound, demonstrating an allosteric response. Ensemble refinement of the X-ray data reveals distinct regions of altered flexibility in response to single heme binding to the dimer. The A139T variant shows a more rigid structure overall, which may relate to extra hydrogen bonding of waters captured in the heme crevice. As TSPO has been suggested to have a role in heme delivery from mitochondria to the cytoplasm, the new structures provide potential clues regarding the structural basis of such activity.
Collapse
Affiliation(s)
- Jian Liu
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Carrie Hiser
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Fei Li
- Amgen
Inc., San Francisco, California 94080, United States
| | - Robert Hall
- Pharmacology
and Chemical Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - R. Michael Garavito
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Shelagh Ferguson-Miller
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Agwuegbo UT, Colley E, Albert AP, Butnev VY, Bousfield GR, Jonas KC. Differential FSH Glycosylation Modulates FSHR Oligomerization and Subsequent cAMP Signaling. Front Endocrinol (Lausanne) 2021; 12:765727. [PMID: 34925235 PMCID: PMC8678890 DOI: 10.3389/fendo.2021.765727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023] Open
Abstract
Follicle-stimulating hormone (FSH) and its target G protein-coupled receptor (FSHR) are essential for reproduction. Recent studies have established that the hypo-glycosylated pituitary FSH glycoform (FSH21/18), is more bioactive in vitro and in vivo than the fully-glycosylated variant (FSH24). FSH21/18 predominates in women of reproductive prime and FSH24 in peri-post-menopausal women, suggesting distinct functional roles of these FSH glycoforms. The aim of this study was to determine if differential FSH glycosylation modulated FSHR oligomerization and resulting impact on cAMP signaling. Using a modified super-resolution imaging technique (PD-PALM) to assess FSHR complexes in HEK293 cells expressing FSHR, we observed time and concentration-dependent modulation of FSHR oligomerization by FSH glycoforms. High eFSH and FSH21/18 concentrations rapidly dissociated FSHR oligomers into monomers, whereas FSH24 displayed slower kinetics. The FSHR β-arrestin biased agonist, truncated eLHβ (Δ121-149) combined with asparagine56-deglycosylated eLHα (dg-eLHt), increased FSHR homomerization. In contrast, low FSH21/18 and FSH24 concentrations promoted FSHR association into oligomers. Dissociation of FSHR oligomers correlated with time points where higher cAMP production was observed. Taken together, these data suggest that FSH glycosylation may modulate the kinetics and amplitude of cAMP production, in part, by forming distinct FSHR complexes, highlighting potential avenues for novel therapeutic targeting of the FSHR to improve IVF outcomes.
Collapse
Affiliation(s)
- Uchechukwu T. Agwuegbo
- School of Life Course and Population Sciences, Department of Women and Children’s Health, Guy’s Campus, King’s College London, London, United Kingdom
| | - Emily Colley
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Anthony P. Albert
- Vascular Biology Research Centre, Molecular & Clinical Science Research Centre, St George’s University of London, London, United Kingdom
| | - Viktor Y. Butnev
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, United States
| | - Kim C. Jonas
- School of Life Course and Population Sciences, Department of Women and Children’s Health, Guy’s Campus, King’s College London, London, United Kingdom
- *Correspondence: Kim C. Jonas,
| |
Collapse
|
6
|
Leung NY, Thakur DP, Gurav AS, Kim SH, Di Pizio A, Niv MY, Montell C. Functions of Opsins in Drosophila Taste. Curr Biol 2020; 30:1367-1379.e6. [PMID: 32243853 DOI: 10.1016/j.cub.2020.01.068] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
Rhodopsin is a light receptor comprised of an opsin protein and a light-sensitive retinal chromophore. Despite more than a century of scrutiny, there is no evidence that opsins function in chemosensation. Here, we demonstrate that three Drosophila opsins, Rh1, Rh4, and Rh7, are needed in gustatory receptor neurons to sense a plant-derived bitter compound, aristolochic acid (ARI). The gustatory requirements for these opsins are light-independent and do not require retinal. The opsins enabled flies to detect lower concentrations of aristolochic acid by initiating an amplification cascade that includes a G-protein, phospholipase Cβ, and the TRP channel, TRPA1. In contrast, responses to higher levels of the bitter compound were mediated through direct activation of TRPA1. Our study reveals roles for opsins in chemosensation and raise questions concerning the original roles for these classical G-protein-coupled receptors.
Collapse
Affiliation(s)
- Nicole Y Leung
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Dhananjay P Thakur
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Adishthi S Gurav
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Sang Hoon Kim
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Antonella Di Pizio
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; Leibniz-Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel; The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Craig Montell
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
7
|
Integrated structural modeling and super-resolution imaging resolve GPCR oligomers. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 169:151-179. [PMID: 31952685 DOI: 10.1016/bs.pmbts.2019.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Formation of G protein-coupled receptors (GPCRs) dimers and higher order oligomers represents a key mechanism in pleiotropic signaling, yet how individual protomers function within oligomers remains poorly understood. For the Class A/rhodopsin subfamily of glycoprotein hormone receptors (GpHRs), di/oligomerization has been demonstrated to play a significant role in regulating its signaling activity at a cellular and physiological level and even pathophysiologically. Here we will describe and discuss the developments in our understanding of GPCR oligomerization, in both health and disease, from the study of this unique and complex subfamily of GPCRs with light on the luteinizing hormone receptor (LHR). Focus will be put on the results of an approach relying on the combination of atomistic modeling by protein-protein docking with super-resolution imaging. The latter could resolve single LHR molecules to ~8nm resolution in functional asymmetric dimers and oligomers, using dual-color photoactivatable dyes and localization microscopy (PD-PALM). Structural modeling of functionally asymmetric LHR trimers and tetramers strongly aligned with PD-PALM-imaged spatial arrangements, identifying multiple possible helix interfaces mediating inter-protomer associations. Diverse spatial and structural assemblies mediating GPCR oligomerization may acutely fine-tune the cellular signaling profile.
Collapse
|
8
|
Casadó-Anguera V, Cortés A, Casadó V, Moreno E. Targeting the receptor-based interactome of the dopamine D1 receptor: looking for heteromer-selective drugs. Expert Opin Drug Discov 2019; 14:1297-1312. [DOI: 10.1080/17460441.2019.1664469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Antoni Cortés
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Vicent Casadó
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Estefanía Moreno
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
9
|
León-Navarro DA, Albasanz JL, Martín M. Functional Cross-Talk between Adenosine and Metabotropic Glutamate Receptors. Curr Neuropharmacol 2019; 17:422-437. [PMID: 29663888 PMCID: PMC6520591 DOI: 10.2174/1570159x16666180416093717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Abstract: G-protein coupled receptors are transmembrane proteins widely expressed in cells and their transduction pathways are mediated by controlling second messenger levels through different G-protein interactions. Many of these receptors have been described as involved in the physiopathology of neurodegenerative diseases and even considered as potential targets for the design of novel therapeutic strategies. Endogenous and synthetic allosteric and orthosteric selective ligands are able to modulate GPCRs at both gene and protein expression levels and can also modify their physiological function. GPCRs that coexist in the same cells can homo- and heteromerize, therefore, modulating their function. Adenosine receptors are GPCRs which stimulate or inhibit adenylyl cyclase activity through Gi/Gs protein and are involved in the control of neurotransmitter release as glutamate. In turn, metabotropic glutamate receptors are also GPCRs which inhibit adenylyl cyclase or stimulate phospholipase C activities through Gi or Gq proteins, respectively. In recent years, evidence of crosstalk mechanisms be-tween different GPCRs have been described. The aim of the present review was to summarize the described mechanisms of interaction and crosstalking between adenosine and metabotropic glutamate receptors, mainly of group I, in both in vitro and in vivo systems, and their possible use for the design of novel ligands for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- David Agustín León-Navarro
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - José Luis Albasanz
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain.,Facultad de Medicina de Ciudad Real, Camino Moledores s/n. 13071 Ciudad Real, Spain
| | - Mairena Martín
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain.,Facultad de Medicina de Ciudad Real, Camino Moledores s/n. 13071 Ciudad Real, Spain
| |
Collapse
|
10
|
Lindgren I, Nenonen H, Henic E, Bungum L, Prahl A, Bungum M, Leijonhufvud I, Huhtaniemi I, Yding Andersen C, Lundberg Giwercman Y. Gonadotropin receptor variants are linked to cumulative live birth rate after in vitro fertilization. J Assist Reprod Genet 2018; 36:29-38. [PMID: 30232643 PMCID: PMC6338601 DOI: 10.1007/s10815-018-1318-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/11/2018] [Indexed: 01/06/2023] Open
Abstract
Purpose The objective was to investigate if the gonadotropin receptor variants N680S (N: asparagine, S: serine, rs6166) in the follicle-stimulating hormone receptor (FSHR) and N312S (rs2293275) in the luteinizing hormone/human chorionic gonadotropin receptor (LHCGR) predicted cumulative live birth rate after in vitro fertilization (IVF). Methods A total of 665 women were consecutively enrolled for IVF during the period 2007–2016. Inclusion criteria were < 40 years of age, body mass index < 30 kg/m2, non-smoking, regular menstruation cycle of 21–35 days, and bilateral ovaries. A blood sample was drawn for endocrine hormonal analysis and for DNA extraction with subsequent genotyping of the FSHR N680S and LHCGR N312S polymorphisms. Statistical analyses were done on all completed IVF cycles. Results Women homozygous for S in both receptors combined (4S) had significantly higher live birth rate compared to those with other receptor variants when combining the first three IVF cycles (OR = 2.00, 95% CI [1.02, 3.92], p = 0.043). Cumulatively higher chance of live birth rate, during all IVF cycles, was also evident (HR = 1.89, 95% CI [1.00, 3.57], p = 0.049). Conclusions Gonadotropin receptor variants are promising candidates for the prediction of the possibility to have a baby to take home after IVF treatment.
Collapse
Affiliation(s)
- I. Lindgren
- Department of Translational Medicine, Molecular Genetic Reproductive Medicine, Clinical Research Centre, Lund University, Jan Waldenströms gata 35, Building 91, Plan 10, SE 21428 Malmö, Sweden
| | - H. Nenonen
- Department of Translational Medicine, Molecular Genetic Reproductive Medicine, Clinical Research Centre, Lund University, Jan Waldenströms gata 35, Building 91, Plan 10, SE 21428 Malmö, Sweden
| | - E. Henic
- Reproductive Medicine Centre, Skåne University Hospital, JanWaldenströms gata 47, Plan 3, SE 21428 Malmö, Sweden
| | - L. Bungum
- Department of Obstetrics and Gynecology, Herlev Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - A. Prahl
- Department of Translational Medicine, Molecular Genetic Reproductive Medicine, Clinical Research Centre, Lund University, Jan Waldenströms gata 35, Building 91, Plan 10, SE 21428 Malmö, Sweden
| | - M. Bungum
- Reproductive Medicine Centre, Skåne University Hospital, JanWaldenströms gata 47, Plan 3, SE 21428 Malmö, Sweden
| | - I. Leijonhufvud
- Reproductive Medicine Centre, Skåne University Hospital, JanWaldenströms gata 47, Plan 3, SE 21428 Malmö, Sweden
| | - I. Huhtaniemi
- Hammersmith Campus, Institute of Reproductive and Developmental Biology, Imperial College London, London, SW7 2AZ UK
| | - C. Yding Andersen
- Laboratory of Reproductive Biology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Y. Lundberg Giwercman
- Department of Translational Medicine, Molecular Genetic Reproductive Medicine, Clinical Research Centre, Lund University, Jan Waldenströms gata 35, Building 91, Plan 10, SE 21428 Malmö, Sweden
| |
Collapse
|
11
|
Agwuegbo UC, Jonas KC. Molecular and functional insights into gonadotropin hormone receptor dimerization and oligomerization. ACTA ACUST UNITED AC 2018; 70:539-548. [PMID: 30226027 DOI: 10.23736/s0026-4784.18.04287-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gonadotropin hormones, follicle stimulating hormone and luteinizing hormone, are essential for reproduction. They work in concert to control multiple aspects of gonadal function to ultimately produce meiotically competent and fertilizable gametes, provide the optimal endometrial environment and support for implantation and maintain pregnancy via progesterone production throughout the first trimester of pregnancy. These complex and multidimensional functions are mediated via the gonadotropin hormone receptors, luteinizing hormone receptor and follicle stimulating hormone receptor, Class A G protein-coupled receptors (GPCR), which couple to multiple G protein-dependent and independent signal pathways to control these physiological processes. Over the last two decades, a plethora of experimental evidence has shown that GPCRs can associate to form dimers and oligomers. This association provides a means of mediating the diverse functional requirements of a single receptor subtype and for the gonadotropin hormone receptors, has been shown to alter the pharmacology and signal activation profile of these receptors. This review will detail the historical and current evidence detailing the formation of gonadotropin hormone receptor homomers and heteromers. We will discuss the functional insights gained from in vitro and in vivo studies, and the potential impact in modulating reproductive health and disease.
Collapse
Affiliation(s)
- Uche C Agwuegbo
- Vascular Biology Research Center, St George's University of London, London, UK
| | - Kim C Jonas
- Vascular Biology Research Center, St George's University of London, London, UK - .,Institute of Medical and Biomedical Education, St George's University of London, London, UK
| |
Collapse
|
12
|
Mallory DP, Gutierrez E, Pinkevitch M, Klinginsmith C, Comar WD, Roushar FJ, Schlebach JP, Smith AW, Jastrzebska B. The Retinitis Pigmentosa-Linked Mutations in Transmembrane Helix 5 of Rhodopsin Disrupt Cellular Trafficking Regardless of Oligomerization State. Biochemistry 2018; 57:5188-5201. [PMID: 30085663 DOI: 10.1021/acs.biochem.8b00403] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors can exist as dimers and higher-order oligomers in biological membranes. The specific oligomeric assembly of these receptors is believed to play a major role in their function, and the disruption of native oligomers has been implicated in specific human pathologies. Computational predictions and biochemical analyses suggest that two molecules of rhodopsin (Rho) associate through the interactions involving its fifth transmembrane helix (TM5). Interestingly, there are several pathogenic loss-of-function mutations within TM5 that face the lipid bilayer in a manner that could potentially influence the dimerization of Rho. Though several of these mutations are known to induce misfolding, the pathogenic defects associated with V209M and F220C Rho remain unclear. In this work, we utilized a variety of biochemical and biophysical approaches to elucidate the effects of these mutations on the dimerization, folding, trafficking, and function of Rho in relation to other pathogenic TM5 variants. Chemical cross-linking, bioluminescence energy transfer, and pulsed-interleaved excitation fluorescence cross-correlation spectroscopy experiments revealed that each of these mutants exhibits a wild type-like propensity to self-associate within the plasma membrane. However, V209M and F220C each exhibit subtle defects in cellular trafficking. Together, our results suggest that the RP pathology associated with the expression of the V209M and F220C mutants could arise from defects in folding and cellular trafficking rather than the disruption of dimerization, as has been previously proposed.
Collapse
Affiliation(s)
- D Paul Mallory
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Elizabeth Gutierrez
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| | - Margaret Pinkevitch
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Christie Klinginsmith
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - William D Comar
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Francis J Roushar
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Jonathan P Schlebach
- Department of Chemistry , Indiana University , 800 East Kirkwood Avenue , Bloomington , Indiana 47405-7102 , United States
| | - Adam W Smith
- Department of Chemistry , University of Akron , 190 Buchtel Common , Akron , Ohio 44325 , United States
| | - Beata Jastrzebska
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine , Case Western Reserve University , 10900 Euclid Avenue , Cleveland , Ohio 44106 , United States
| |
Collapse
|
13
|
Nataraja S, Sriraman V, Palmer S. Allosteric Regulation of the Follicle-Stimulating Hormone Receptor. Endocrinology 2018; 159:2704-2716. [PMID: 29800292 DOI: 10.1210/en.2018-00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/16/2018] [Indexed: 01/08/2023]
Abstract
Follicle-stimulating hormone receptor (FSHR) belongs to the leucine-rich repeat family of the G protein-coupled receptor (LGR), which includes the glycoprotein hormone receptors luteinizing hormone receptor, thyrotropin receptor, and other LGRs 4, 5, 6, and 7. FSH is the key regulator of folliculogenesis in females and spermatogenesis in males. FSH elicits its physiological response through its cognate receptor on the cell surface. Binding of the hormone FSH to its receptor FSHR brings about conformational changes in the receptor that are transduced through the transmembrane domain to the intracellular region, where the downstream effector interaction takes place, leading to activation of the downstream signaling cascade. Identification of small molecules that could activate or antagonize FSHR provided interesting tools to study the signal transduction mechanism of the receptor. However, because of the nature of the ligand-receptor interaction of FSH-FSHR, which contains multiple sites in the extracellular binding domain, most of the small-molecule modulators of FSHR are unable to bind to the orthosteric site of the receptors. Rather they modulate receptor activation through allosteric sites in the transmembrane region. This review will discuss allosteric modulation of FSHR primarily through the discovery of small-molecule modulators, focusing on current data on the status of development and the utility of these as tools to better understand signaling mechanisms.
Collapse
|
14
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E, Gutiérrez-Sagal R, Dias JA. Structure-Function Relationships of the Follicle-Stimulating Hormone Receptor. Front Endocrinol (Lausanne) 2018; 9:707. [PMID: 30555414 PMCID: PMC6281744 DOI: 10.3389/fendo.2018.00707] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/09/2018] [Indexed: 12/16/2022] Open
Abstract
The follicle-stimulating hormone receptor (FSHR) plays a crucial role in reproduction. This structurally complex receptor is a member of the G-protein coupled receptor (GPCR) superfamily of membrane receptors. As with the other structurally similar glycoprotein hormone receptors (the thyroid-stimulating hormone and luteinizing hormone-chorionic gonadotropin hormone receptors), the FSHR is characterized by an extensive extracellular domain, where binding to FSH occurs, linked to the signal specificity subdomain or hinge region. This region is involved in ligand-stimulated receptor activation whereas the seven transmembrane domain is associated with receptor activation and transmission of the activation process to the intracellular loops comprised of amino acid sequences, which predicate coupling to effectors, interaction with adapter proteins, and triggering of downstream intracellular signaling. In this review, we describe the most important structural features of the FSHR intimately involved in regulation of FSHR function, including trafficking, dimerization, and oligomerization, ligand binding, agonist-stimulated activation, and signal transduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- *Correspondence: Alfredo Ulloa-Aguirre
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eduardo Jardón-Valadez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana Unidad Lerma, Lerma, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A. Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, United States
| |
Collapse
|
15
|
Szymańska K, Kałafut J, Przybyszewska A, Paziewska B, Adamczuk G, Kiełbus M, Rivero-Müller A. FSHR Trans-Activation and Oligomerization. Front Endocrinol (Lausanne) 2018; 9:760. [PMID: 30619090 PMCID: PMC6301190 DOI: 10.3389/fendo.2018.00760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Follicle stimulating hormone (FSH) plays a key role in human reproduction through, among others, induction of spermatogenesis in men and production of estrogen in women. The function FSH is performed upon binding to its cognate receptor-follicle-stimulating hormone receptor (FSHR) expressed on the surface of target cells (granulosa and Sertoli cells). FSHR belongs to the family of G protein-coupled receptors (GPCRs), a family of receptors distinguished by the presence of various signaling pathway activation as well as formation of cross-talking aggregates. Until recently, it was claimed that the FSHR occurred naturally as a monomer, however, the crystal structure as well as experimental evidence have shown that FSHR both self-associates and forms heterodimers with the luteinizing hormone/chorionic gonadotropin receptor-LHCGR. The tremendous gain of knowledge is also visible on the subject of receptor activation. It was once thought that activation occurs only as a result of ligand binding to a particular receptor, however there is mounting evidence of trans-activation as well as biased signaling between GPCRs. Herein, we describe the mechanisms of aforementioned phenomena as well as briefly describe important experiments that contributed to their better understanding.
Collapse
Affiliation(s)
- Kamila Szymańska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Alicja Przybyszewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Beata Paziewska
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Lublin, Poland
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- *Correspondence: Adolfo Rivero-Müller ;
| |
Collapse
|
16
|
Song Y, Ge B, Lao J, Wang Z, Yang B, Wang X, He H, Li J, Huang F. Regulation of the Oligomeric Status of CCR3 with Binding Ligands Revealed by Single-Molecule Fluorescence Imaging. Biochemistry 2017; 57:852-860. [PMID: 28994588 DOI: 10.1021/acs.biochem.7b00676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between the oligomeric status and functions of chemokine receptor CCR3 is still controversial. We use total internal reflection fluorescence microscopy at the single-molecule level to visualize the oligomeric status of CCR3 and its regulation of the membrane of stably transfected T-REx-293 cells. We find that the population of the dimers and oligomers of CCR3 can be modulated by the binding of ligands. Natural agonists can induce an increase in the level of dimers and oligomers at high concentrations, whereas antagonists do not have a significant influence on the oligomeric status. Moreover, monomeric CCR3 exhibits a stronger chemotactic response in the migration assay of stably transfected CCR3 cells. Together, these data support the notion that CCR3 exists as a mixture of monomers and dimers under nearly physiological conditions and the monomeric CCR3 receptor is the minimal functional unit in cellular signaling transduction. To the best of our knowledge, these results constitute the first report of the oligomeric status of CCR3 and its regulation.
Collapse
Affiliation(s)
- Yanzhuo Song
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Jun Lao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Zhencai Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Bin Yang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Hua He
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Jiqiang Li
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China) , Qingdao 266580, P. R. China
| |
Collapse
|
17
|
Winkelman MJ. The Mechanisms of Psychedelic Visionary Experiences: Hypotheses from Evolutionary Psychology. Front Neurosci 2017; 11:539. [PMID: 29033783 PMCID: PMC5625021 DOI: 10.3389/fnins.2017.00539] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Neuropharmacological effects of psychedelics have profound cognitive, emotional, and social effects that inspired the development of cultures and religions worldwide. Findings that psychedelics objectively and reliably produce mystical experiences press the question of the neuropharmacological mechanisms by which these highly significant experiences are produced by exogenous neurotransmitter analogs. Humans have a long evolutionary relationship with psychedelics, a consequence of psychedelics' selective effects for human cognitive abilities, exemplified in the information rich visionary experiences. Objective evidence that psychedelics produce classic mystical experiences, coupled with the finding that hallucinatory experiences can be induced by many non-drug mechanisms, illustrates the need for a common model of visionary effects. Several models implicate disturbances of normal regulatory processes in the brain as the underlying mechanisms responsible for the similarities of visionary experiences produced by psychedelic and other methods for altering consciousness. Similarities in psychedelic-induced visionary experiences and those produced by practices such as meditation and hypnosis and pathological conditions such as epilepsy indicate the need for a general model explaining visionary experiences. Common mechanisms underlying diverse alterations of consciousness involve the disruption of normal functions of the prefrontal cortex and default mode network (DMN). This interruption of ordinary control mechanisms allows for the release of thalamic and other lower brain discharges that stimulate a visual information representation system and release the effects of innate cognitive functions and operators. Converging forms of evidence support the hypothesis that the source of psychedelic experiences involves the emergence of these innate cognitive processes of lower brain systems, with visionary experiences resulting from the activation of innate processes based in the mirror neuron system (MNS).
Collapse
Affiliation(s)
- Michael J Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
18
|
Tóth AD, Gyombolai P, Szalai B, Várnai P, Turu G, Hunyady L. Angiotensin type 1A receptor regulates β-arrestin binding of the β 2-adrenergic receptor via heterodimerization. Mol Cell Endocrinol 2017; 442:113-124. [PMID: 27908837 DOI: 10.1016/j.mce.2016.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/26/2016] [Accepted: 11/26/2016] [Indexed: 02/06/2023]
Abstract
Heterodimerization between angiotensin type 1A receptor (AT1R) and β2-adrenergic receptor (β2AR) has been shown to modulate G protein-mediated effects of these receptors. Activation of G protein-coupled receptors (GPCRs) leads to β-arrestin binding, desensitization, internalization and G protein-independent signaling of GPCRs. Our aim was to study the effect of heterodimerization on β-arrestin coupling. We found that β-arrestin binding of β2AR is affected by activation of AT1Rs. Costimulation with angiotensin II and isoproterenol markedly enhanced the interaction between β2AR and β-arrestins, by prolonging the lifespan of β2AR-induced β-arrestin2 clusters at the plasma membrane. While candesartan, a conventional AT1R antagonist, had no effect on the β-arrestin2 binding to β2AR, TRV120023, a β-arrestin biased agonist, enhanced the interaction. These findings reveal a new crosstalk mechanism between AT1R and β2AR, and suggest that enhanced β-arrestin2 binding to β2AR can contribute to the pharmacological effects of biased AT1R agonists.
Collapse
Affiliation(s)
- András D Tóth
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary
| | - Pál Gyombolai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Bence Szalai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary
| | - Gábor Turu
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Faculty of Medicine, Semmelweis University, P. O. Box 2, H-1428 Budapest, Hungary; MTA-SE Laboratory of Molecular Physiology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
| |
Collapse
|
19
|
Greife A, Felekyan S, Ma Q, Gertzen CGW, Spomer L, Dimura M, Peulen TO, Wöhler C, Häussinger D, Gohlke H, Keitel V, Seidel CAM. Structural assemblies of the di- and oligomeric G-protein coupled receptor TGR5 in live cells: an MFIS-FRET and integrative modelling study. Sci Rep 2016; 6:36792. [PMID: 27833095 PMCID: PMC5105069 DOI: 10.1038/srep36792] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
TGR5 is the first identified bile acid-sensing G-protein coupled receptor, which has emerged as a potential therapeutic target for metabolic disorders. So far, structural and multimerization properties are largely unknown for TGR5. We used a combined strategy applying cellular biology, Multiparameter Image Fluorescence Spectroscopy (MFIS) for quantitative FRET analysis, and integrative modelling to obtain structural information about dimerization and higher-order oligomerization assemblies of TGR5 wildtype (wt) and Y111 variants fused to fluorescent proteins. Residue 111 is located in transmembrane helix 3 within the highly conserved ERY motif. Co-immunoprecipitation and MFIS-FRET measurements with gradually increasing acceptor to donor concentrations showed that TGR5 wt forms higher-order oligomers, a process disrupted in TGR5 Y111A variants. From the concentration dependence of the MFIS-FRET data we conclude that higher-order oligomers - likely with a tetramer organization - are formed from dimers, the smallest unit suggested for TGR5 Y111A variants. Higher-order oligomers likely have a linear arrangement with interaction sites involving transmembrane helix 1 and helix 8 as well as transmembrane helix 5. The latter interaction is suggested to be disrupted by the Y111A mutation. The proposed model of TGR5 oligomer assembly broadens our view of possible oligomer patterns and affinities of class A GPCRs.
Collapse
Affiliation(s)
- Annemarie Greife
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Suren Felekyan
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Qijun Ma
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christoph G W Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lina Spomer
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mykola Dimura
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas O Peulen
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Christina Wöhler
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Butini S, Nikolic K, Kassel S, Brückmann H, Filipic S, Agbaba D, Gemma S, Brogi S, Brindisi M, Campiani G, Stark H. Polypharmacology of dopamine receptor ligands. Prog Neurobiol 2016; 142:68-103. [PMID: 27234980 DOI: 10.1016/j.pneurobio.2016.03.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 01/26/2016] [Accepted: 03/15/2016] [Indexed: 01/11/2023]
Abstract
Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular.
Collapse
Affiliation(s)
- S Butini
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - K Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Kassel
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - H Brückmann
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - S Filipic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - D Agbaba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000 Belgrade, Serbia
| | - S Gemma
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - S Brogi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - M Brindisi
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - G Campiani
- Department of Biotechnology, Chemistry and Pharmacy, European Research Centre for Drug Discovery and Development, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - H Stark
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
21
|
Doly S, Marullo S. Gatekeepers Controlling GPCR Export and Function. Trends Pharmacol Sci 2016; 36:636-644. [PMID: 26435209 DOI: 10.1016/j.tips.2015.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/15/2015] [Accepted: 06/25/2015] [Indexed: 12/17/2022]
Abstract
Regulated export of G protein-coupled receptors (GPCRs) from intracellular stores involves chaperones and escort proteins, which promote their progression to the cell surface, and gatekeepers, which retain them in intracellular compartments. Functional γ-aminobutyric acid (GABA)B receptors, the paradigm of this phenomenon, comprise GB1 and GB2 subunits forming a heterodimer. GB1 is retained in the endoplasmic reticulum (ER) in the absence of GB2. A specific ER-resident gatekeeper, prenylated Rab acceptor family 2 (PRAF2), is involved in GB1 retention and prevents its progression into the biosynthetic pathway. GB1 can be released from PRAF2 only on competitive interaction with GB2. PRAF2 is ubiquitous and belongs to a subgroup of the mammalian Ypt-interacting protein (Yip) family. Several other GPCRs are likely to be regulated by Yip proteins, which might be involved in the pathophysiology of human diseases that are associated with impaired receptor targeting to the cell surface.
Collapse
Affiliation(s)
- Stéphane Doly
- Institut Cochin, INSERM, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Stefano Marullo
- Institut Cochin, INSERM, CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
22
|
Łukasiewicz S, Błasiak E, Szafran-Pilch K, Dziedzicka-Wasylewska M. Dopamine D2 and serotonin 5-HT1A receptor interaction in the context of the effects of antipsychotics - in vitro studies. J Neurochem 2016; 137:549-60. [PMID: 26876117 DOI: 10.1111/jnc.13582] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/11/2022]
Abstract
The serotonin 5-HT1A receptor (5-HT1 A R) and dopamine D2 receptor (D2 R) have been implicated as important sites of action in antipsychotics. Several lines of evidence indicate the key role of G protein-coupled receptors (GPCRs) heteromers in pathophysiology of schizophrenia and highlight these complexes as novel drug targets. Because heterodimers can form only on those cells co-expressing constituent receptors, they present a target of high pharmacological specificity in the context of biochemical effects induced by antipsychotic drugs. In studies conducted in the HEK 293 cell line, we demonstrated that 5-HT1 A R and D2 R are able to form constitutive heterodimers, and antipsychotic drugs (clozapine, olanzapine, aripiprazole, and lurasidone) enhanced this process, with clozapine being most effective. Various functional tests (cAMP and IP1 as well as ERK activation) indicated that the drugs had different effects on signal transduction by the heteromer. Interestingly, co-incubation of heterodimer-expressing HEK 293 cells with clozapine and the 5-HT1 A R agonist 8-OH DPAT potentiated post-synaptic effects, especially with respect to ERK activation. Our results indicate that the D2 -5-HT1A complex possesses biochemical, pharmacological, and functional properties distinct from those of mono- and homomers. This result has implications for the development of improved pharmacotherapy for schizophrenia or other disorders (activating the heteromer might be cognitive enhancing, since it is expressed in frontal cortex) through the specific targeting of heterodimers. We reported the constitutive formation of D2 -5-HT1A heteromers, which possess biochemical, pharmacological, and functional properties distinct from those of mono- and homomers, as revealed by antipsychotics action. We also showed that these two receptors are co-expressed in mouse cortical neurons; therefore their potential to heterodimerize may comprise an essential target for the development of novel strategies for schizophrenia treatment.
Collapse
Affiliation(s)
- Sylwia Łukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
23
|
|
24
|
Jastrzebska B, Chen Y, Orban T, Jin H, Hofmann L, Palczewski K. Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface. J Biol Chem 2015; 290:25728-44. [PMID: 26330551 DOI: 10.1074/jbc.m115.662684] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
Although homo- and heterodimerizations of G protein-coupled receptors (GPCRs) are well documented, GPCR monomers are able to assemble in different ways, thus causing variations in the interactive interface between receptor monomers among different GPCRs. Moreover, the functional consequences of this phenomenon, which remain to be clarified, could be specific for different GPCRs. Synthetic peptides derived from transmembrane (TM) domains can interact with a full-length GPCR, blocking dimer formation and affecting its function. Here we used peptides corresponding to TM helices of bovine rhodopsin (Rho) to investigate the Rho dimer interface and functional consequences of its disruption. Incubation of Rho with TM1, TM2, TM4, and TM5 peptides in rod outer segment (ROS) membranes shifted the resulting detergent-solubilized protein migration through a gel filtration column toward smaller molecular masses with a reduced propensity for dimer formation in a cross-linking reaction. Binding of these TM peptides to Rho was characterized by both mass spectrometry and a label-free assay from which dissociation constants were calculated. A BRET (bioluminescence resonance energy transfer) assay revealed that the physical interaction between Rho molecules expressed in membranes of living cells was blocked by the same four TM peptides identified in our in vitro experiments. Although disruption of the Rho dimer/oligomer had no effect on the rates of G protein activation, binding of Gt to the activated receptor stabilized the dimer. However, TM peptide-induced disruption of dimer/oligomer decreased receptor stability, suggesting that Rho supramolecular organization could be essential for ROS stabilization and receptor trafficking.
Collapse
Affiliation(s)
- Beata Jastrzebska
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Yuanyuan Chen
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Tivadar Orban
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Hui Jin
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Lukas Hofmann
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| | - Krzysztof Palczewski
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965
| |
Collapse
|
25
|
Devillier P, Naline E, Grassin-Delyle S. The pharmacology of bitter taste receptors and their role in human airways. Pharmacol Ther 2015; 155:11-21. [PMID: 26272040 DOI: 10.1016/j.pharmthera.2015.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The receptors involved in bitter taste perception (bitter taste receptors--T2Rs) constitute a family of G-protein-coupled receptors, of which around 29 subtypes have been identified in humans. T2R expression was initially thought to be confined to the oral cavity but has recently been described in a range of other tissues (such as the heart, gut, nasal cavity and lungs) and cell types (chemosensory, smooth muscle, endothelial, epithelial and inflammatory cells). Although it is still not clear whether endogenous T2R agonists exist, the T2R receptors recognize many natural and synthetic compounds, such as the acyl-homoserine lactones produced by bacteria, caffeine, chloroquine, and erythromycin. In the upper airways, T2Rs are involved in neurogenic inflammation and bacterial clearance. Their known effects in the lungs are exerted at three different levels. Firstly, T2R agonists increase the beating frequency of cilia on epithelial cells. Secondly, the T2Rs induce bronchial smooth muscle cells to relax. Thirdly, the T2R receptors expressed on immune cells (such as macrophages and mast cells) modulate production of pro-inflammatory mediators. Furthermore, T2R agonists are effective in inhibiting lung inflammation or smooth muscle contraction in ex vivo and asthma animal models, and are known to be involved in bacterial killing in the nasal cavity and enhancing lung function in humans. This review focuses on the pharmacology and physiological functions of T2R receptors in the upper and lower airways. It presents recently acquired knowledge suggesting that T2Rs may become valuable drug targets in the treatment of diseases such as asthma and chronic rhinosinusitis.
Collapse
Affiliation(s)
- Philippe Devillier
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Emmanuel Naline
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Stanislas Grassin-Delyle
- Laboratoire de Pharmacologie, UPRES EA220, Hôpital Foch, 11 rue Guillaume Lenoir, 92150 Suresnes, France; Université Versailles Saint Quentin en Yvelines, UFR Sciences de la Santé, 2 avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France.
| |
Collapse
|
26
|
Chaves-Almagro C, Castan-Laurell I, Dray C, Knauf C, Valet P, Masri B. Apelin receptors: From signaling to antidiabetic strategy. Eur J Pharmacol 2015; 763:149-59. [PMID: 26007641 DOI: 10.1016/j.ejphar.2015.05.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/09/2015] [Accepted: 05/11/2015] [Indexed: 01/14/2023]
Abstract
The G protein-coupled receptor APJ and its cognate ligand, apelin, are widely expressed throughout human body. They are implicated in different key physiological processes such as angiogenesis, cardiovascular functions, fluid homeostasis and energy metabolism regulation. On the other hand, this couple ligand-receptor is also involved in the development and progression of different pathologies including diabetes, obesity, cardiovascular disease and cancer. Recently, a new endogenous peptidic ligand of APJ, named Elabela/Toddler, has been identified and shown to play a crucial role in embryonic development. Whereas nothing is yet known regarding Elabela/Toddler functions in adulthood, apelin has been extensively described as a beneficial adipokine regarding to glucose and lipid metabolism and is endowed with anti-diabetic and anti-obesity properties. Indeed, there is a growing body of evidence supporting apelin signaling as a novel promising therapeutic target for metabolic disorders (obesity, type 2 diabetes). In this review, we provide an overview of the pharmacological properties of APJ and its endogenous ligands. We also report the activity of peptidic and non-peptidic agonists and antagonists targeting APJ described in the literature. Finally, we highlight the important role of this signaling pathway in the control of energy metabolism at the peripheral level and in the central nervous system in both physiological conditions and during obesity or diabetes.
Collapse
Affiliation(s)
- C Chaves-Almagro
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - I Castan-Laurell
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - C Dray
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - C Knauf
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - P Valet
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France
| | - B Masri
- Institute of Cardiovascular and Metabolic Diseases (I2MC) - INSERM U1048, University Paul Sabatier, Toulouse, France.
| |
Collapse
|
27
|
Ward RJ, Pediani JD, Godin AG, Milligan G. Regulation of oligomeric organization of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor observed by spatial intensity distribution analysis. J Biol Chem 2015; 290:12844-57. [PMID: 25825490 PMCID: PMC4432300 DOI: 10.1074/jbc.m115.644724] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 12/19/2022] Open
Abstract
The questions of whether G protein-coupled receptors exist as monomers, dimers, and/or oligomers and if these species interconvert in a ligand-dependent manner are among the most contentious current issues in biology. When employing spatial intensity distribution analysis to laser scanning confocal microscope images of cells stably expressing either a plasma membrane-associated form of monomeric enhanced green fluorescent protein (eGFP) or a tandem version of this fluorophore, the eGFP tandem was identified as a dimer. Similar studies on cells stably expressing an eGFP-tagged form of the epidermal growth factor receptor demonstrated that, although largely a monomer in the basal state, this receptor rapidly became predominantly dimeric upon the addition of its ligand epidermal growth factor. In cells induced to express an eGFP-tagged form of the serotonin 5-hydroxytryptamine 2C (5-HT2C) receptor, global analysis of construct quantal brightness was consistent with the predominant form of the receptor being dimeric. However, detailed spatial intensity distribution analysis demonstrated the presence of multiple forms ranging from monomers to higher-order oligomers. Furthermore, treatment with chemically distinct 5-HT2C receptor antagonists resulted in a time-dependent change in the quaternary organization to one in which there was a preponderance of receptor monomers. This antagonist-mediated effect was reversible, because washout of the ligand resulted in the regeneration of many of the oligomeric forms of the receptor.
Collapse
Affiliation(s)
- Richard J Ward
- From the Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - John D Pediani
- From the Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Antoine G Godin
- the University of Bordeaux, LP2N, UMR 5298, F-33405 Talence, France, and the Institut d'Optique Graduate School and CNRS, LP2N, UMR 5298, F-33405 Talence, France
| | - Graeme Milligan
- From the Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom,
| |
Collapse
|
28
|
Sposini S, Caltabiano G, Hanyaloglu AC, Miele R. Identification of transmembrane domains that regulate spatial arrangements and activity of prokineticin receptor 2 dimers. Mol Cell Endocrinol 2015; 399:362-72. [PMID: 25449422 DOI: 10.1016/j.mce.2014.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/10/2014] [Accepted: 10/30/2014] [Indexed: 11/17/2022]
Abstract
The chemokine prokineticin 2 (PK2) activates its cognate G protein-coupled receptor (GPCR) PKR2 to elicit various downstream signaling pathways involved in diverse biological processes. Many GPCRs undergo dimerization that can modulate a number of functions including membrane delivery and signal transduction. The aim of this study was to elucidate the interface of PKR2 protomers within dimers by analyzing the ability of PKR2 transmembrane (TM) deletion mutants to associate with wild type (WT) PKR2 in yeast using co-immunoprecipitation and mammalian cells using bioluminescence resonance energy transfer. Deletion of TMs 5-7 resulted in a lack of detectable association with WT PKR2, but could associate with a truncated mutant lacking TMs 6-7 (TM1-5). Interestingly, TM1-5 modulated the distance, or organization, between protomers and positively regulated Gαs signaling and surface expression of WT PKR2. We propose that PKR2 protomers form type II dimers involving TMs 4 and 5, with a role for TM5 in modulation of PKR2 function.
Collapse
Affiliation(s)
- S Sposini
- Department of Biochemical Science, Sapienza Università di Roma, Italy; Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, UK
| | - G Caltabiano
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain
| | - A C Hanyaloglu
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, UK.
| | - R Miele
- Department of Biochemical Science, Sapienza Università di Roma, Italy
| |
Collapse
|
29
|
Jonas KC, Fanelli F, Huhtaniemi IT, Hanyaloglu AC. Single molecule analysis of functionally asymmetric G protein-coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies. J Biol Chem 2014; 290:3875-92. [PMID: 25516594 PMCID: PMC4326798 DOI: 10.1074/jbc.m114.622498] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Formation of G protein-coupled receptors (GPCRs) into dimers and higher order oligomers represents a key mechanism in pleiotropic signaling, yet how individual protomers function within oligomers remains poorly understood. We present a super-resolution imaging approach, resolving single GPCR molecules to ∼8 nm resolution in functional asymmetric dimers and oligomers using dual-color photoactivatable dyes and localization microscopy (PD-PALM). PD-PALM of two functionally defined mutant luteinizing hormone receptors (LHRs), a ligand-binding deficient receptor (LHRB−) and a signaling-deficient (LHRS−) receptor, which only function via intermolecular cooperation, favored oligomeric over dimeric formation. PD-PALM imaging of trimers and tetramers revealed specific spatial organizations of individual protomers in complexes where the ratiometric composition of LHRB− to LHRS− modulated ligand-induced signal sensitivity. Structural modeling of asymmetric LHR oligomers strongly aligned with PD-PALM-imaged spatial arrangements, identifying multiple possible helix interfaces mediating inter-protomer associations. Our findings reveal that diverse spatial and structural assemblies mediating GPCR oligomerization may acutely fine-tune the cellular signaling profile.
Collapse
Affiliation(s)
- Kim C Jonas
- From the Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom
| | - Francesca Fanelli
- the Computational Structural Biology Lab, Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 183-41100 Modena, Italy, and
| | - Ilpo T Huhtaniemi
- From the Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom, the Institute for Biomedicine, Department of Physiology, University of Turku, 20520 Turku, Finland
| | - Aylin C Hanyaloglu
- From the Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, Du Cane Road, London W12 0NN, United Kingdom,
| |
Collapse
|
30
|
Verleyen D, Luyten FP, Tylzanowski P. Orphan G-protein coupled receptor 22 (Gpr22) regulates cilia length and structure in the zebrafish Kupffer's vesicle. PLoS One 2014; 9:e110484. [PMID: 25335082 PMCID: PMC4204907 DOI: 10.1371/journal.pone.0110484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
GPR22 is an orphan G protein-coupled receptor (GPCR). Since the ligand of the receptor is currently unknown, its biological function has not been investigated in depth. Many GPCRs and their intracellular effectors are targeted to cilia. Cilia are highly conserved eukaryotic microtubule-based organelles that protrude from the membrane of most mammalian cells. They are involved in a large variety of physiological processes and diseases. However, the details of the downstream pathways and mechanisms that maintain cilia length and structure are poorly understood. We show that morpholino knock down or overexpression of gpr22 led to defective left-right (LR) axis formation in the zebrafish embryo. Specifically, defective LR patterning included randomization of the left-specific lateral plate mesodermal genes (LPM) (lefty1, lefty2, southpaw and pitx2a), resulting in randomized cardiac looping. Furthermore, gpr22 inactivation in the Kupffer’s vesicle (KV) alone was still able to generate the phenotype, indicating that Gpr22 mainly regulates LR asymmetry through the KV. Analysis of the KV cilia by immunofluorescence and transmission electron microscopy (TEM), revealed that gpr22 knock down or overexpression resulted in changes of cilia length and structure. Further, we found that Gpr22 does not act upstream of the two cilia master regulators, Foxj1a and Rfx2. To conclude, our study characterized a novel player in the field of ciliogenesis.
Collapse
Affiliation(s)
- Daphne Verleyen
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
| | - Przemko Tylzanowski
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
- Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
- * E-mail:
| |
Collapse
|
31
|
Manglik A, Kobilka B. The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Curr Opin Cell Biol 2014; 27:136-43. [PMID: 24534489 DOI: 10.1016/j.ceb.2014.01.008] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 11/25/2022]
Abstract
G protein-coupled receptors (GPCRs) are versatile signaling proteins that mediate complex cellular responses to hormones and neurotransmitters. Recent advances in GPCR crystallography have provided inactive and active state structures for rhodopsin and the β2 adrenergic receptor (β2AR). Although these structures suggest a two-state 'on-off' mechanism of receptor activation, other biophysical studies and observed signaling versatility suggest that GPCRs are highly dynamic and exist in a multitude of functionally distinct conformations. To fully understand how GPCRs work, we must characterize these conformations and determine how ligands affect their energetics and rates of interconversion. This brief review will compare and contrast the dynamic properties of rhodopsin and β2AR that shed light on the role of structural dynamics in their distinct signaling behaviors.
Collapse
Affiliation(s)
- Aashish Manglik
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Brian Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
32
|
G protein-coupled receptors: what a difference a 'partner' makes. Int J Mol Sci 2014; 15:1112-42. [PMID: 24441568 PMCID: PMC3907859 DOI: 10.3390/ijms15011112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 01/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are important cell signaling mediators, involved in essential physiological processes. GPCRs respond to a wide variety of ligands from light to large macromolecules, including hormones and small peptides. Unfortunately, mutations and dysregulation of GPCRs that induce a loss of function or alter expression can lead to disorders that are sometimes lethal. Therefore, the expression, trafficking, signaling and desensitization of GPCRs must be tightly regulated by different cellular systems to prevent disease. Although there is substantial knowledge regarding the mechanisms that regulate the desensitization and down-regulation of GPCRs, less is known about the mechanisms that regulate the trafficking and cell-surface expression of newly synthesized GPCRs. More recently, there is accumulating evidence that suggests certain GPCRs are able to interact with specific proteins that can completely change their fate and function. These interactions add on another level of regulation and flexibility between different tissue/cell-types. Here, we review some of the main interacting proteins of GPCRs. A greater understanding of the mechanisms regulating their interactions may lead to the discovery of new drug targets for therapy.
Collapse
|