1
|
Zhang X, Song W, Liu Y, Han K, Wu Y, Cho E, Fang Z, Jiang L, Hu Y, Zhu X, Jiang J, Huangfu X, Zhao J. Healthy Tendon Stem Cell-Derived Exosomes Promote Tendon-To-Bone Healing of Aged Chronic Rotator Cuff Tears by Breaking the Positive-Feedback Cross-Talk between Senescent Tendon Stem Cells and Macrophages through the Modulation of Macrophage Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311033. [PMID: 38459643 DOI: 10.1002/smll.202311033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/03/2024] [Indexed: 03/10/2024]
Abstract
The re-tear rate of rotator cuff tears (RCT) after surgical repair is high, especially in aged patients with chronic tears. Senescent tendon stem cells (s-TSCs) generally exist in aged and chronically torn rotator cuff tendons and are closely associated with impaired tendon-to-bone healing results. The present study found a positive feedback cross-talk between s-TSCs and macrophages. The conditioned medium (CM) from s-STCs can promote macrophage polarization mainly toward the M1 phenotype, whose CM reciprocally accelerated further s-TSC senescence. Additional healthy tendon stem-cells derived exosomes (h-TSC-Exos) can break this positive feedback cross-talk by skewing macrophage polarization from the M1 phenotype to the M2 phenotype, attenuating s-TSCs senescence. S-TSC senescence acceleration or attenuation effects induced by M1 or M2 macrophages are associated with the inhibition or activation of the bone morphogenetic protein 4 signaling pathway following RNA sequencing analysis. Using an aged-chronic rotator cuff tear rat model, it is found that h-TSC-Exos can shift the microenvironment in the tendon-to-bone interface from a pro-inflammatory to an anti-inflammatory type at the acute postoperative stage and improve the tendon-to-bone healing results, which are associated with the rejuvenated s-TSCs. Therefore, this study proposed a potential strategy to improve the healing of aged chronic RCT.
Collapse
Affiliation(s)
- Xuancheng Zhang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Wei Song
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yuxu Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Eunshinae Cho
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhaoyi Fang
- Biodynamics Lab, Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA, 15203, USA
| | - Lianghua Jiang
- Department of Orthopedic Trauma, The First People's Hospital of Kunshan affiliated with Jiangsu University, Suzhou, 215300, China
| | - Yihe Hu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiaoqiao Huangfu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| |
Collapse
|
2
|
Shu LZ, Zhang XL, Ding YD, Lin H. From inflammation to bone formation: the intricate role of neutrophils in skeletal muscle injury and traumatic heterotopic ossification. Exp Mol Med 2024; 56:1523-1530. [PMID: 38945957 PMCID: PMC11297321 DOI: 10.1038/s12276-024-01270-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 07/02/2024] Open
Abstract
Neutrophils are emerging as an important player in skeletal muscle injury and repair. Neutrophils accumulate in injured tissue, thus releasing inflammatory factors, proteases and neutrophil extracellular traps (NETs) to clear muscle debris and pathogens when skeletal muscle is damaged. During the process of muscle repair, neutrophils can promote self-renewal and angiogenesis in satellite cells. When neutrophils are abnormally overactivated, neutrophils cause collagen deposition, functional impairment of satellite cells, and damage to the skeletal muscle vascular endothelium. Heterotopic ossification (HO) refers to abnormal bone formation in soft tissue. Skeletal muscle injury is one of the main causes of traumatic HO (tHO). Neutrophils play a pivotal role in activating BMPs and TGF-β signals, thus promoting the differentiation of mesenchymal stem cells and progenitor cells into osteoblasts or osteoclasts to facilitate HO. Furthermore, NETs are specifically localized at the site of HO, thereby accelerating the formation of HO. Additionally, the overactivation of neutrophils contributes to the disruption of immune homeostasis to trigger HO. An understanding of the diverse roles of neutrophils will not only provide more information on the pathogenesis of skeletal muscle injury for repair and HO but also provides a foundation for the development of more efficacious treatment modalities for HO.
Collapse
Affiliation(s)
- Lin-Zhen Shu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Xian-Lei Zhang
- Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Yi-Dan Ding
- Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, 330006, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LC, Lucas D, Deepe GS, Jankowski MP. Macrophage memories of early-life injury drive neonatal nociceptive priming. Cell Rep 2024; 43:114129. [PMID: 38640063 PMCID: PMC11197107 DOI: 10.1016/j.celrep.2024.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
The developing peripheral nervous and immune systems are functionally distinct from those of adults. These systems are vulnerable to early-life injury, which influences outcomes related to nociception following subsequent injury later in life (i.e., "neonatal nociceptive priming"). The underpinnings of this phenomenon are unclear, although previous work indicates that macrophages are trained by inflammation and injury. Our findings show that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming, possibly due to a long-lasting remodeling in chromatin structure. The p75 neurotrophic factor receptor is an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This "pain memory" is long lasting in females and can be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
Affiliation(s)
- Adam J Dourson
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Adewale O Fadaka
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anna M Warshak
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin Weinhaus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Luis F Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Megan C Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Heather M Evans
- Division of Infectious Diseases, University of Cincinnati, Cincinnati, OH, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - George S Deepe
- Division of Infectious Diseases, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; Pediatric Pain Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
4
|
de la Guía-Galipienso F, Palau P, Berenguel-Senen A, Perez-Quilis C, Christle JW, Myers J, Haddad F, Baggish A, D'Ascenzi F, Lavie CJ, Lippi G, Sanchis-Gomar F. Being fit in the COVID-19 era and future epidemics prevention: Importance of cardiopulmonary exercise test in fitness evaluation. Prog Cardiovasc Dis 2024; 83:84-91. [PMID: 38452909 DOI: 10.1016/j.pcad.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Endurance and resistance physical activity have been shown to stimulate the production of immunoglobulins and boost the levels of anti-inflammatory cytokines, natural killer cells, and neutrophils in the bloodstream, thereby strengthening the ability of the innate immune system to protect against diseases and infections. Coronavirus disease 19 (COVID-19) greatly impacted people's cardiorespiratory fitness (CRF) and health worldwide. Cardiopulmonary exercise testing (CPET) remains valuable in assessing physical condition, predicting illness severity, and guiding interventions and treatments. In this narrative review, we summarize the connections and impact of COVID-19 on CRF levels and its implications on the disease's progression, prognosis, and mortality. We also emphasize the significant contribution of CPET in both clinical evaluations of recovering COVID-19 patients and scientific investigations focused on comprehending the enduring health consequences of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fernando de la Guía-Galipienso
- School of Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain; REMA Sports Cardiology Clinic, Denia, Alicante, Spain; Ergospirometry Working Group Spanish Society of Cardiology, Madrid, Spain
| | - Patricia Palau
- Ergospirometry Working Group Spanish Society of Cardiology, Madrid, Spain; Cardiology Department, Hospital Clínico Universitario, INCLIVA. Universitat de València, Valencia, Spain
| | - Alejandro Berenguel-Senen
- Ergospirometry Working Group Spanish Society of Cardiology, Madrid, Spain; Cardiovascular Prevention and Sports Cardiology Unit, University Hospital of Toledo, Toledo, Spain
| | - Carme Perez-Quilis
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey W Christle
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan Myers
- Cardiology Division, Veterans Affairs Palo Alto Health Care System and Stanford University, Palo Alto, CA, USA
| | - François Haddad
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron Baggish
- Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA; Cardiovascular Performance Program, Massachusetts General Hospital, Boston, MA, USA; Swiss Olympic Medical Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Institute for Sport Science, University of Lausanne (ISSUL), Lausanne, Switzerland
| | - Flavio D'Ascenzi
- Department of Medical Biotechnologies, Sports Cardiology and Rehab Unit, University of Siena, Siena, Italy
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School - The University of Queensland School of Medicine, New Orleans, LA, USA
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| | - Fabian Sanchis-Gomar
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Dourson AJ, Fadaka AO, Warshak AM, Paranjpe A, Weinhaus B, Queme LF, Hofmann MC, Evans HM, Donmez OA, Forney C, Weirauch MT, Kottyan LT, Lucas D, Deepe GS, Jankowski MP. Macrophage epigenetic memories of early life injury drive neonatal nociceptive priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528015. [PMID: 36824978 PMCID: PMC9948986 DOI: 10.1101/2023.02.13.528015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The developing peripheral nervous and immune systems are functionally distinct from adults. These systems are vulnerable to early life injury, which influences outcomes related to nociception following subsequent injury later in life (neonatal nociceptive priming). The underpinnings of this phenomenon are largely unknown, although previous work indicates that macrophages are epigenetically trained by inflammation and injury. We found that macrophages are both necessary and partially sufficient to drive neonatal nociceptive priming possibly due to a long-lasting epigenetic remodeling. The p75 neurotrophic factor receptor (NTR) was an important effector in regulating neonatal nociceptive priming through modulation of the inflammatory profile of rodent and human macrophages. This pain memory was long lasting in females and could be transferred to a naive host to alter sex-specific pain-related behaviors. This study reveals a novel mechanism by which acute, neonatal post-surgical pain drives a peripheral immune-related predisposition to persistent pain following a subsequent injury.
Collapse
|
6
|
Liao Z, Lan H, Jian X, Huang J, Wang H, Hu J, Liao H. Myofiber directs macrophages IL-10-Vav1-Rac1 efferocytosis pathway in inflamed muscle following CTX myoinjury by activating the intrinsic TGF-β signaling. Cell Commun Signal 2023; 21:168. [PMID: 37403092 DOI: 10.1186/s12964-023-01163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/10/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND To explore the role of skeletal muscle specific TGF-β signaling on macrophages efferocytosis in inflamed muscle caused by Cardiotoxin (CTX) injection. METHODS CTX myoinjury was manipulated in TGF-βr2flox/flox (control) mice or transgenic mice with TGF-β receptor 2 (TGF-βr2) being specifically deleted in skeletal muscle (SM TGF-βr2-/-). Gene levels of TGF-β signal molecules, special inflammatory mediators in damaged muscle or in cultured and differentiated myogenic precursor cells (MPC-myotubes) were monitored by transcriptome microarray or qRT-PCR. TGF-β pathway molecules, myokines and embryonic myosin heavy chain in regenerating myofibers, the phenotype and efferocytosis of macrophages were evaluated by immunofluorescence, immunoblotting, Luminex, or FACS analysis. In vitro apoptotic cells were prepared by UV-irradiation. RESULTS In control mice, TGF-β-Smad2/3 signaling were significantly up-regulated in regenerating centronuclear myofibers after CTX-myoinjury. More severe muscle inflammation was caused by the deficiency of muscle TGF-β signaling, with the increased number of M1, but the decreased number of M2 macrophages. Notably, the deficiency of TGF-β signaling in myofibers dramatically affected on the ability of macrophages to conduct efferocytosis, marked by the decreased number of Annexin-V-F4/80+Tunel+ macrophages in inflamed muscle, and the impaired uptake of macrophages to PKH67+ apoptotic cells transferred into damaged muscle. Further, our study suggested that, the intrinsic TGF-β signaling directed IL-10-Vav1-Rac1 efferocytosis signaling in muscle macrophages. CONCLUSIONS Our data demonstrate that muscle inflammation can be suppressed potentially by activating the intrinsic TGF-β signaling in myofibers to promote IL-10 dependent-macrophages efferocytosis. Video Abstract.
Collapse
Affiliation(s)
- Zhaohong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, 528000, China
| | - Haiqiang Lan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoting Jian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwen Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Han Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jijie Hu
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Souglis A, Bourdas DI, Gioldasis A, Ispirlidis I, Philippou A, Zacharakis E, Apostolidis A, Efthymiou G, Travlos AK. Time Course of Performance Indexes, Oxidative Stress, Inflammation, and Muscle Damage Markers after a Female Futsal Match. Sports (Basel) 2023; 11:127. [PMID: 37505614 PMCID: PMC10385326 DOI: 10.3390/sports11070127] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/23/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Our aims were to investigate the time-course effects of a futsal match on performance, oxidative stress, and muscle damage markers, as well as inflammatory and antioxidant responses during a 6-day post-match period. METHODS Thirty-four female high-level futsal players were assessed on several oxidative stress, inflammation, subjective muscle soreness, subjective rate perceived exertion, and performance tests before a futsal match, immediately after, and 24 h to 144 h after. RESULTS Counter movement jump, 20 m, and 10 m sprints performance significantly decreased immediately after the match (p < 0.05) and returned to baseline 72 h post-match (p > 0.05). Delayed onset muscle soreness peaked 24 h post-match and rate perceived exertion peaked post-match (p < 0.05) and returned to baseline 96 h post-match (p > 0.05). Inflammatory biomarkers peaked at 24 h (p < 0.05) and remained significantly elevated for 72 h after the match (p < 0.05). Muscle damage biomarkers peaked at 24 h (p < 0.05) and remained significantly (p < 0.05) elevated for at least 72 h after the match. Oxidative stress markers peaked at 24 h-48 h (p < 0.05) and returned to baseline 120 h post-match (p > 0.05). In respect to antioxidant responses, these peaked at 24 h-48 h post-match (p < 0.05) and returned to baseline 120 h after the match (p > 0.05). CONCLUSIONS A single futsal match induces short/mid-term changes in performance, inflammation, oxidative stress, and muscle damage markers for about 72 h-96 h post-match.
Collapse
Affiliation(s)
- Athanasios Souglis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece
| | - Dimitrios I Bourdas
- Section of Sport Medicine & Biology of Exercise, School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece
| | - Aristotelis Gioldasis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece
| | - Ioannis Ispirlidis
- School of Physical Education & Sport Science, Democritus University of Thrace, Panepistimioupoli, 69100 Komotini, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Emmanouil Zacharakis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece
| | - Alexandros Apostolidis
- Section of Didactics and Coaching in Sport Games, School of Physical Education & Sport Science, National and Kapodistrian University of Athens, 41 Ethnikis Antistasis, 17237 Daphne, Greece
| | - Georgios Efthymiou
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Papakiriazi 24, 41222 Larissa, Greece
| | - Antonios K Travlos
- Department of Sports Organization and Management, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Efstathiou and Stamatikis Valioti & Plataion Avenue, 23100 Sparta, Greece
| |
Collapse
|
8
|
Thirupathi A, Yong W, Oflaz O, Agascioglu E, Gu Y. Exercise and COVID-19: exercise intensity reassures immunological benefits of post-COVID-19 condition. Front Physiol 2023; 14:1036925. [PMID: 37275224 PMCID: PMC10233405 DOI: 10.3389/fphys.2023.1036925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
Any form of physical activity, including exercise, has various benefits at the physiological (improving cardiac and respiratory functions, increasing skeletal muscle mass, and maintaining homeostasis) and psychological levels (improving cognitive function, reducing anxiety and depression) which help to combat any type of infection. In contrast, the infectivity ratio could reduce the physical activity of an individual, such as performing a habitual exercise. Adaptation to different exercise strategies including intensity and duration may better increase physical performance and improve the symptoms. For example, low to moderate intensity perhaps fails to induce this adaptive process, while high-intensity of exercise compromises immune health. This can aggravate the infection rate (Open window theory). However, high intensity with a shorter time produces various morphological alterations in the primary organs including the lungs and heart, which facilitate life support in COVID-19 patients. However, less information about exercise protocols failed to assure the benefits of exercise to COVID-19 patients, particularly post-COVID-19 conditions. Therefore, this review will answer how exercise intensity is crucial to reassure the exercise benefits for promoting safe participation before infection and post-COVID-19 conditions.
Collapse
Affiliation(s)
- Anand Thirupathi
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Wang Yong
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ofcan Oflaz
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Eda Agascioglu
- Department of Medical Biology, Faculty of Medicine, Lokman Hekim University, Ankara, Türkiye
| | - Yaodong Gu
- Research Academy of Medicine Combining Sports, Ningbo No 2 Hospital, Ningbo, China
- Faculty of Sports Science, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Xiao J, Huang J, Jian X, Wang H, Lan H, Liao Z, Gu R, Hu J, Liao H. IRE1α arm of unfolded protein response in muscle-specific TGF-β signaling-mediated regulation of muscle cell immunological properties. Cell Mol Biol Lett 2023; 28:15. [PMID: 36849929 PMCID: PMC9972623 DOI: 10.1186/s11658-023-00429-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/06/2023] [Indexed: 03/01/2023] Open
Abstract
Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are involved in various muscle pathological states. The IRE1α arm of UPR can affect immunological properties of myofiber through restraining p38 mitogen-activated protein kinases (MAPK) activation under inflammatory milieu. However, the relevant pathway molecules regulating the initiation of the IRE1α arm in myofiber remain unclear. In this work, expression of transforming growth factor-beta (TGF-β) and TGF-β receptor II (TGF-βr2), and UPR pathway activation were examined in cardiotoxin (CTX)-damaged mouse muscle, which revealed the activation of TGF-β signaling and UPR in CTX-damaged muscle and in regenerating myofibers. Using control or transgenic mice with TGF-βr2 deleted in skeletal muscle (SM TGF-βr2-/-) and the derived primary differentiating myogenic precursor cells (MPCs) treated with/without ERS activator or inhibitor, IRE1α pathway inhibitor, or TGF-β signaling activator, this study further revealed an essential role of intrinsic TGF-β signaling in regulating muscle cell to express inflammation-related molecules including H-2Kb, H2-Eα, TLR3, and special myokines. TGF-β signaling prompted UPR IRE1α arm and restrained p38 MAPK activation in myofiber under inflammatory milieu. This study uncovers a previously unrecognized function of TGF-β signaling acting as an upstream factor controlling myofiber immune capacities in the inflamed state through the UPR-IRE1α-p38 MAPK pathway.
Collapse
Affiliation(s)
- Jiangwei Xiao
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Jingwen Huang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoting Jian
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Han Wang
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Haiqiang Lan
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Zhaohong Liao
- grid.284723.80000 0000 8877 7471Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China
| | - Ruicai Gu
- grid.266902.90000 0001 2179 3618Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK USA
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Chatzinikita E, Maridaki M, Palikaras K, Koutsilieris M, Philippou A. The Role of Mitophagy in Skeletal Muscle Damage and Regeneration. Cells 2023; 12:716. [PMID: 36899852 PMCID: PMC10000750 DOI: 10.3390/cells12050716] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Mitochondria are cellular organelles that play an essential role in generating the chemical energy needed for the biochemical reactions in cells. Mitochondrial biogenesis, i.e., de novo mitochondria formation, results in enhanced cellular respiration, metabolic processes, and ATP generation, while autophagic clearance of mitochondria (mitophagy) is required to remove damaged or useless mitochondria. The balance between the opposing processes of mitochondrial biogenesis and mitophagy is highly regulated and crucial for the maintenance of the number and function of mitochondria as well as for the cellular homeostasis and adaptations to metabolic demands and extracellular stimuli. In skeletal muscle, mitochondria are essential for maintaining energy homeostasis, and the mitochondrial network exhibits complex behaviors and undergoes dynamic remodeling in response to various conditions and pathologies characterized by changes in muscle cell structure and metabolism, such as exercise, muscle damage, and myopathies. In particular, the involvement of mitochondrial remodeling in mediating skeletal muscle regeneration following damage has received increased attention, as modifications in mitophagy-related signals arise from exercise, while variations in mitochondrial restructuring pathways can lead to partial regeneration and impaired muscle function. Muscle regeneration (through myogenesis) following exercise-induced damage is characterized by a highly regulated, rapid turnover of poor-functioning mitochondria, permitting the synthesis of better-functioning mitochondria to occur. Nevertheless, essential aspects of mitochondrial remodeling during muscle regeneration remain poorly understood and warrant further characterization. In this review, we focus on the critical role of mitophagy for proper muscle cell regeneration following damage, highlighting the molecular mechanisms of the mitophagy-associated mitochondrial dynamics and network reformation.
Collapse
Affiliation(s)
- Eirini Chatzinikita
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Maria Maridaki
- Faculty of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Athens, Greece
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Anastassios Philippou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
11
|
Zhang C, Cai YZ, Wang Y. Injection of Leukocyte-Poor Platelet-Rich Plasma for Moderate-to-Large Rotator Cuff Tears Does Not Improve Clinical Outcomes but Reduces Retear Rates and Fatty Infiltration: A Prospective, Single-Blinded Randomized Study. Arthroscopy 2022; 38:2381-2388.e1. [PMID: 35247512 DOI: 10.1016/j.arthro.2022.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/06/2022] [Accepted: 02/06/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To determine whether leukocyte-poor platelet-rich plasma (Lp-PRP) reduced retear rates, reduced fatty infiltration, and improved functional outcomes in patients with degenerative moderate-to-large rotator cuff tears. METHODS This was a randomized controlled study at a single center. A consecutive series of 104 patients with moderate-to-large rotator cuff tears was enrolled and randomly allocated to a control group (double-row suture-bridge arthroscopic rotator cuff repair alone, n = 52) and a study group (double-row suture-bridge repair followed by 3 Lp-PRP injections at the tendon repair site during surgery, at days 7 and 14 after surgery, n = 52). All patients were followed up for 27.2 months (range 24-36 months), with University of California at Los Angeles (UCLA) shoulder rating scale, the Constant score, and a visual analog scale (VAS) evaluated respectively. The integrity and fatty infiltration of repaired tissue were assessed by magnetic resonance imaging using the Sugaya classification and Goutallier grade classification at 24 months after surgery. Statistical analysis was performed based on the t test, χ2 test, and the Kendall tau-b correlation coefficient. RESULTS Four patients refused follow-up, and 11 patients had incomplete data. Eventually, a total of 89 patients were available for 24 months follow-up. The mean UCLA score increased from 14.80 ± 2.53 to 29.37 ± 2.06 in control group and from 13.74 ± 3.30 to 30.14 ± 2.32 in study group (P = .103). The mean Constant score increased from 46.56 ± 5.90 to 86.83 ± 4.94 in control group and from 44.37 ± 7.92 to 88.80 ± 4.92 in study group (P = .063). The VAS score decreased from 3.22 ± 1.24 to 0.97 ± 1.12 in control group and in 3.49 ± 1.52 to 1.16 ± 0.99 in study group (P = .41). All differences in UCLA score, Constant score, and VAS between pre- and postoperation achieved minimal clinically important differences proposed for arthroscopic rotator cuff repair. Of the 89 patients, 76 had magnetic resonance imaging performed at 24 months after surgery. The retear rate was 17.6% in study group, which was lower than that in control group (38.1%, P = .049). In addition, the Goutallier grade was found to be significant difference between groups postoperatively (Kendall tau-b -0.24, P = .03) but no significant difference preoperatively (Kendall tau-b -0.18, P = .11). There were no complications in the patients. CONCLUSIONS Our procedures involving repeated injections of Lp-PRP during surgery and at days 7 and 14, as described in this study, have positive effects on reducing retear rate and promoting Goutallier grade in patients following arthroscopic rotator cuff repair and could also provide substantial clinical outcomes that reach the minimal clinically important difference for surgical treatment. However, given the numbers available for analysis, it did not promote better clinical results when compared with the control group. LEVEL OF EVIDENCE II, randomized controlled study.
Collapse
Affiliation(s)
- Chi Zhang
- Center for Sports Medicine, Hangzhou, China; First Affiliated Hospital, Zhejiang University School of Medicine and Institute of Sports Medicine of Zhejiang University, Hangzhou, China
| | - You-Zhi Cai
- Center for Sports Medicine, Hangzhou, China; First Affiliated Hospital, Zhejiang University School of Medicine and Institute of Sports Medicine of Zhejiang University, Hangzhou, China.
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, Hangzhou, China.
| |
Collapse
|
12
|
Zhang X, Han Z, Han K, Zhang H, Huang J, Huangfu X, Zhao J. Loading Mesenchymal Stem Cell-Derived Exosomes Into a Traditionally Designed Rotator Cuff Patch: A Potential Strategy to Enhance the Repair of Chronic Rotator Cuff Tear Associated With Degenerative Changes. Am J Sports Med 2022; 50:2234-2246. [PMID: 35736557 DOI: 10.1177/03635465221096490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Retraction and degenerative changes of chronic rotator cuff tears limit the healing capacity after routine surgical repair. PURPOSE To fabricate a mesenchymal stem cell-derived exosome (MSC-Exos) loaded patch and evaluate the effect of this patch on the activity of rabbit tenocytes in vitro and on the repair of chronic rotator cuff tears associated with degenerative changes in vivo. STUDY DESIGN Controlled laboratory study. METHODS The MSC-Exos loaded patch was fabricated using a dynamic wet-spinning system. In the in vitro studies, the proliferation and migration activities of tenocytes were evaluated by culturing tenocytes with saline, a fiber-aligned patch, or an MSC-Exos loaded patch. In the in vivo studies, a rabbit model of chronic rotator cuff tear was established and directly repaired, repaired with fiber-aligned patch augmentation (RFPA group), and repaired with MSC-Exos loaded patch augmentation (REPA group). Histological and biomechanical analyses were performed at 4, 8, and 12 weeks after surgery. RESULTS An MSC-Exos loaded patch with inner aligned fibers, a loose microstructure, and reliable initial strength was fabricated using a dynamic wet-spinning system. The MSC-Exos loaded patch significantly promoted tenocyte proliferation and migration activities in vitro. In vivo, the REPA group exhibited significantly higher tendon maturing scores at 8 and 12 weeks after surgery compared with both the control and the RFPA groups. Fatty infiltration was significantly reduced in the REPA group at 4, 8, and 12 weeks compared with both the control and the RFPA groups. Biomechanical properties, including load to failure and stress, were also significantly improved at 12 weeks in the REPA group compared with both the control and the RFPA groups. CONCLUSION Results in the present study suggested that an MSC-Exos loaded patch was able to enhance the repair of a chronic rotator cuff tear by providing mechanical support and minimizing degeneration. CLINICAL RELEVANCE This work supported the idea that loading bioactive MSC-Exos into a traditionally designed rotator cuff patch might exert a better effect on the repair of chronic rotator cuff tears than augmented patch repair alone.
Collapse
Affiliation(s)
- Xuancheng Zhang
- Department of Sports Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhengzhe Han
- Department of Sports Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - He Zhang
- Fengfeng General Hospital of North China Medical and Health Group, Hebei, China
| | - Jinghuan Huang
- Department of Sports Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoqiao Huangfu
- Department of Sports Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Alvarez AM, Alvarez-Flores MP, DeOcesano-Pereira C, Goldfeder MB, Chudzinski-Tavassi AM, Moreira V, Teixeira C. Losac and Lopap Recombinant Proteins from Lonomia obliqua Bristles Positively Modulate the Myoblast Proliferation Process. Front Mol Biosci 2022; 9:904737. [PMID: 35847970 PMCID: PMC9280836 DOI: 10.3389/fmolb.2022.904737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
The pursuit of better therapies for disorders creating deficiencies in skeletal muscle regeneration is in progress, and several biotoxins are used in skeletal muscle research. Since recombinant proteins derived from Lonomia obliqua bristles, recombinant Lonomia obliqua Stuart-factor activator (rLosac) and recombinant Lonomia obliqua prothrombin activator protease (rLopap) act as cytoprotective agents and promote cell survival, we hypothesize that both rLosac and rLopap favour the skeletal muscle regeneration process. In the present work, we investigate the ability of these recombinant proteins rLosac and rLopap to modulate the production of key mediators of the myogenic process. The expression of myogenic regulatory factors (MRFs), cell proliferation, the production of prostaglandin E2 (PGE2) and the protein expression of cyclooxygenases COX-1 and COX-2 were evaluated in C2C12 mouse myoblasts pre-treated with rLosac and rLopap. We found an increased proliferation of myoblasts, stimulated by both recombinant proteins. Moreover, these proteins modulated PGE2 release and MRFs activities. We also found an increased expression of the EP4 receptor in the proliferative phase of C2C12 cells, suggesting the involvement of this receptor in the effects of PGE2 in these cells. Moreover, the recombinant proteins inhibited the release of IL-6 and PGE2, which is induced by an inflammatory stimulus by IL-1β. This work reveals rLopap and rLosac as promising proteins to modulate processes involving tissue regeneration as occurs during skeletal muscle injury.
Collapse
Affiliation(s)
- Angela María Alvarez
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Mauricio Barbugiani Goldfeder
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Innovation and Development Labororatory, Butantan Institute, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Innovation and Development Labororatory, Butantan Institute, São Paulo, Brazil
| | - Vanessa Moreira
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Vanessa Moreira, ; Catarina Teixeira,
| | - Catarina Teixeira
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Pharmacology Laboratory, Butantan Institute, São Paulo, Brazil
- *Correspondence: Vanessa Moreira, ; Catarina Teixeira,
| |
Collapse
|
14
|
Anti-inflammatory and Tendon-Protective Effects of Adipose Stem Cell-Derived Exosomes with Concomitant Use of Glucocorticoids. Stem Cells Int 2022; 2022:1455226. [PMID: 35646125 PMCID: PMC9142315 DOI: 10.1155/2022/1455226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
Glucocorticoid (GC) injections are commonly used in clinical practice to relieve pain and improve function in patients with multiple shoulder disabilities but cause detrimental effects on rotator cuff tendons. Adipose stem cell-derived exosomes (ASC-Exos) reportedly recover impaired tendon matrix metabolism by maintaining tissue homeostasis. However, it is unclear whether additional treatment with ASC-Exos overrides the detrimental effects of GCs without interfering with their anti-inflammatory effects. Thus, we aimed to investigate the anti-inflammatory effect of ASC-Exos with GCs and protective effect of ASC-Exos against GC-induced detriments. The present study comprised in vitro and in vivo studies. In vitro inflammatory analysis revealed that ASC-Exos exerted a synergic anti-inflammatory effect with GCs by significantly decreasing secretion of proinflammatory cytokines by RAW cells and increasing secretion of anti-inflammatory cytokines. In vitro cytoprotective analysis showed that ASC-Exos overrode GC-induced detrimental effects on tenocytes by significantly improving GC-suppressed cellular proliferation, migration, and transcription of tenocytic matrix molecules and degradative enzyme inhibitors and significantly decreasing GC-induced cell senescence, apoptosis, and transcription of ROS and tenocytic degradative enzymes. In vivo studies revealed that additional ASC-Exo injection restored impairments in histological and biomechanical properties owing to GC administration. Collectively, these results suggest that ASC-Exos exert a stronger anti-inflammatory effect in combination with GCs, overriding their detrimental effects on rotator cuff tendons.
Collapse
|
15
|
Serum Indicators of Oxidative Damage from Embedded Metal Fragments in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5394303. [PMID: 35154566 PMCID: PMC8828353 DOI: 10.1155/2022/5394303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Injuries suffered in armed conflicts often result in embedded metal fragments. Standard surgical guidance recommends leaving embedded fragments in place except under certain circumstances in an attempt to avoid the potential morbidity that extensive surgery often brings. However, technological advances in weapon systems and insurgent use of improvised explosive devices now mean that practically any metal can be found in these types of wounds. Unfortunately, in many cases, the long-term toxicological properties of embedded metals are not known, further complicating treatment decisions. Because of concerns over embedded metal fragment injuries, the U.S. Departments of Defense and Veterans' Affairs developed a list of “metals of concern” for these types of injuries. In this study, we selected eight of these metals including tungsten, nickel, cobalt, iron, copper, aluminum, lead, and depleted uranium to investigate the long-term health effects using a rodent model developed in our Institute to study embedded fragment injuries. In this report, we show that metals surgically implanted into the gastrocnemius muscle of laboratory rats to simulate a shrapnel wound induce a variety of cytokines including IFN-γ, IL-4, IL-5, IL-6, IL-10, and IL-13. TNF-α and KC/GRO were not affected, and IL-1β was below the limit of detection. Serum levels of C-reactive protein were also affected, increasing with some metals and decreasing with others. The TBARS assay, an assessment of lipid peroxidation, demonstrated that implanted aluminum and lead increased markers of lipid peroxidation in serum. Taken together, the results suggest that serum cytokine levels, as well as other indicators of oxidative damage, may prove useful in identifying potential adverse health effects of embedded metals.
Collapse
|
16
|
Luk HY, Appell C, Levitt DE, Jiwan NC, Vingren JL. Differential Autophagy Response in Men and Women After Muscle Damage. Front Physiol 2021; 12:752347. [PMID: 34899384 PMCID: PMC8652069 DOI: 10.3389/fphys.2021.752347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Following muscle damage, autophagy is crucial for muscle regeneration. Hormones (e.g., testosterone, cortisol) regulate this process and sex differences in autophagic flux exist in the basal state. However, to date, no study has examined the effect of a transient hormonal response following eccentric exercise-induced muscle damage (EE) between untrained young men and women. Untrained men (n = 8, 22 ± 3 years) and women (n = 8, 19 ± 1 year) completed two sessions of 80 unilateral maximal eccentric knee extensions followed by either upper body resistance exercise (RE; designed to induce a hormonal response; EE + RE) or a time-matched rest period (20 min; EE + REST). Vastus lateralis biopsy samples were collected before (BL), and 12 h, and 24 h after RE/REST. Gene and protein expression levels of selective markers for autophagic initiation signaling, phagophore initiation, and elongation/sequestration were determined. Basal markers of autophagy were not different between sexes. For EE + RE, although initiation signaling (FOXO3) and autophagy-promoting (BECN1) genes were greater (p < 0.0001; 12.4-fold, p = 0.0010; 10.5-fold, respectively) for women than men, autophagic flux (LC3-II/LC3-I protein ratio) did not change for women and was lower (p < 0.0001 3.0-fold) than men. Furthermore, regardless of hormonal changes, LC3-I and LC3-II protein content decreased (p = 0.0090; 0.547-fold, p = 0.0410; 0.307-fold, respectively) for men suggesting increased LC3-I lipidation and autophagosome degradation whereas LC3-I protein content increased (p = 0.0360; 1.485-fold) for women suggesting decreased LC3-I lipidation. Collectively, our findings demonstrated basal autophagy was not different between men and women, did not change after EE alone, and was promoted with the acute hormonal increase after RE only in men but not in women. Thus, the autophagy response to moderate muscle damage is promoted by RE-induced hormonal changes in men only.
Collapse
Affiliation(s)
- Hui-Ying Luk
- Department of Kinesiology and Sports Management, Texas Tech University, Lubbock, TX, United States
| | - Casey Appell
- Department of Kinesiology and Sports Management, Texas Tech University, Lubbock, TX, United States
| | - Danielle E Levitt
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, United States.,Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Nigel C Jiwan
- Department of Kinesiology and Sports Management, Texas Tech University, Lubbock, TX, United States
| | - Jakob L Vingren
- Department of Kinesiology, Health Promotion, and Recreation, University of North Texas, Denton, TX, United States
| |
Collapse
|
17
|
Tacchi F, Orozco-Aguilar J, Gutiérrez D, Simon F, Salazar J, Vilos C, Cabello-Verrugio C. Scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration. Nanomedicine (Lond) 2021; 16:2521-2538. [PMID: 34743611 DOI: 10.2217/nnm-2021-0224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Skeletal muscle is integral to the functioning of the human body. Several pathological conditions, such as trauma (primary lesion) or genetic diseases such as Duchenne muscular dystrophy (DMD), can affect and impair its functions or exceed its regeneration capacity. Tissue engineering (TE) based on natural, synthetic and hybrid biomaterials provides a robust platform for developing scaffolds that promote skeletal muscle regeneration, strength recovery, vascularization and innervation. Recent 3D-cell printing technology and the use of nanocarriers for the release of drugs, peptides and antisense oligonucleotides support unique therapeutic alternatives. Here, the authors present recent advances in scaffold biomaterials and nano-based therapeutic strategies for skeletal muscle regeneration and perspectives for future endeavors.
Collapse
Affiliation(s)
- Franco Tacchi
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Josué Orozco-Aguilar
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Danae Gutiérrez
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Felipe Simon
- Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD),Universidad de Chile, Santiago, 8370146, Chile.,Department of Biological Sciences, Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
| | - Javier Salazar
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile.,Laboratory of Nanomedicine & Targeted Delivery, Center for Medical Research, School of Medicine, Universidad de Talca, Talca, 3460000, Chile
| | - Cristian Vilos
- Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile.,Laboratory of Nanomedicine & Targeted Delivery, Center for Medical Research, School of Medicine, Universidad de Talca, Talca, 3460000, Chile
| | - Claudio Cabello-Verrugio
- Department of Biological Sciences, Laboratory of Muscle Pathology, Fragility & Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.,Millennium Institute on Immunology & Immunotherapy, Santiago, 8370146, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| |
Collapse
|
18
|
Philippou A, Tryfonos A, Theos A, Nezos A, Halapas A, Maridaki M, Koutsilieris M. Expression of tissue remodelling, inflammation- and angiogenesis-related factors after eccentric exercise in humans. Mol Biol Rep 2021; 48:4047-4054. [PMID: 34028651 DOI: 10.1007/s11033-021-06412-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
Eccentric exercise has been extensively used as a model to study the contraction-induced muscle damage and its consequent processes. This study aimed at examining molecular responses associated with tissue remodelling, inflammation and angiogenesis in skeletal muscle during the recovery period after eccentric exercise in humans. Ten healthy men performed 50 maximal eccentric muscle actions with the knee extensors and muscle biopsies were collected from the vastus lateralis before and 6 h, 48 h and 120 h post eccentric exercise. Real Time-PCR was utilized to investigate alterations in gene expression of various tissue remodelling-, inflammation- and angiogenesis-related factors: uPA, uPA-R, TGF-β1, MMP-9, TNF-α, IL-6, IL-8, VEGF, VEGFR-2, HIF-1a, Ang-1, Ang-2 and Tie-2. The uPA/uPA-R system exhibited a similar time-expression pattern increasing 6 h post exercise (p < 0.05), while the other tissue remodelling factors TGF-β1 and MMP-9 did not change significantly over time. Transcriptional responses of inflammatory factors TNF-α and IL-8 increased significantly and peaked 6 h post eccentric exercise (p < 0.05), while IL-6 exhibited a similar, though not statistically significant, expression profile (p > 0.05). Similarly, the expression of angiopoietin receptor Tie-2 showed an early increase only at 6 h after the completion of exercise (p < 0.05), while the other angiogenic factors failed to reach statistical significance due a high interindividual variability in the gene expression responses. The early transcriptional upregulation of tissue remodelling, inflammation- and angiogenesis-related factors post eccentric exercise may indicate the acute intramuscular activation of these processes functionally related to muscle damage-induced adaptation.
Collapse
Affiliation(s)
- Anastassios Philippou
- Department of Physiology, Medical School, National & Kapodistrian University of Athens, 75 Micras Asias, 115 27, Goudi-Athens, Greece
| | - Andrea Tryfonos
- Department of Physiology, Medical School, National & Kapodistrian University of Athens, 75 Micras Asias, 115 27, Goudi-Athens, Greece.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Apostolos Theos
- Department of Physiology, Medical School, National & Kapodistrian University of Athens, 75 Micras Asias, 115 27, Goudi-Athens, Greece.,Sports Medicine Unit, Department of Community Medicine and Rehabilitation, Umea University, Umeå, Sweden
| | - Adrianos Nezos
- Department of Physiology, Medical School, National & Kapodistrian University of Athens, 75 Micras Asias, 115 27, Goudi-Athens, Greece
| | - Antonis Halapas
- Department of Physiology, Medical School, National & Kapodistrian University of Athens, 75 Micras Asias, 115 27, Goudi-Athens, Greece.,Transcatheter Heart Valves Department, HYGEIA Hospital, Athens, Greece
| | - Maria Maridaki
- Faculty of Physical Education & Sport Science, Department of Sports Medicine & Biology of Physical Activity, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Koutsilieris
- Department of Physiology, Medical School, National & Kapodistrian University of Athens, 75 Micras Asias, 115 27, Goudi-Athens, Greece.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Heart failure (HF) is a structural or functional cardiac abnormality which leads to failure of the heart to deliver oxygen commensurately with the requirements of the tissues and it may progress to a generalized wasting of skeletal muscle, fat tissue, and bone tissue (cardiac cachexia). Clinically, dyspnea, fatigue, and exercise intolerance are some typical signs and symptoms that characterize HF patients. This review focused on the phenotypic characteristics of HF-induced skeletal myopathy as well as the mechanisms of muscle wasting due to HF and highlighted possible therapeutic strategies for skeletal muscle wasting in HF. RECENT FINDINGS The impaired exercise capacity of those patients is not attributed to the reduced blood flow in the exercising muscles, but rather to abnormal metabolic responses, myocyte apoptosis and atrophy of skeletal muscle. Specifically, the development of skeletal muscle wasting in chronic HF is characterized by structural, metabolic, and functional abnormalities in skeletal muscle and may be a result not only of reduced physical activity, but also of metabolic or hormonal derangements that favour catabolism over anabolism. In particular, abnormal energy metabolism, mitochondrial dysfunction, transition of myofibers from type I to type II, muscle atrophy, and reduction in muscular strength are included in skeletal muscle abnormalities which play a central role in the decreased exercise capacity of HF patients. Skeletal muscle alterations and exercise intolerance observed in HF are reversible by exercise training, since it is the only demonstrated intervention able to improve skeletal muscle metabolism, growth factor activity, and functional capacity and to reverse peripheral abnormalities.
Collapse
|
20
|
Early Life Nociception is Influenced by Peripheral Growth Hormone Signaling. J Neurosci 2021; 41:4410-4427. [PMID: 33888610 DOI: 10.1523/jneurosci.3081-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
A number of cellular systems work in concert to modulate nociceptive processing in the periphery, but the mechanisms that regulate neonatal nociception may be distinct compared with adults. Our previous work indicated a relationship between neonatal hypersensitivity and growth hormone (GH) signaling. Here, we explored the peripheral mechanisms by which GH modulated neonatal nociception under normal and injury conditions (incision) in male and female mice. We found that GH receptor (GHr) signaling in primary afferents maintains a tonic inhibition of peripheral hypersensitivity. After injury, a macrophage dependent displacement of injury-site GH was found to modulate neuronal transcription at least in part via serum response factor (SRF) regulation. A single GH injection into the injured hindpaw muscle effectively restored available GH signaling to neurons and prevented acute pain-like behaviors, primary afferent sensitization, and neuronal gene expression changes. GH treatment also inhibited long-term somatosensory changes observed after repeated peripheral insult. Results may indicate a novel mechanism of neonatal nociception.SIGNIFICANCE STATEMENT Although it is noted that mechanisms of pain development in early life are unique compared with adults, little research focuses on neonatal-specific peripheral mechanisms of nociception. This gap is evident in the lack of specialized care for infants following an injury including surgeries. This report evaluates how distinct cellular systems in the periphery including the endocrine, immune and nervous systems work together to modulate neonatal-specific nociception. We uncovered a novel mechanism by which muscle injury induces a macrophage-dependent sequestration of peripheral growth hormone (GH) that effectively removes its normal tonic inhibition of neonatal nociceptors to promote acute pain-like behaviors. Results indicate a possible new strategy for treatment of neonatal postsurgical pain.
Collapse
|
21
|
Zhang X, Cai Z, Wu M, Huangfu X, Li J, Liu X. Adipose Stem Cell-Derived Exosomes Recover Impaired Matrix Metabolism of Torn Human Rotator Cuff Tendons by Maintaining Tissue Homeostasis. Am J Sports Med 2021; 49:899-908. [PMID: 33719604 DOI: 10.1177/0363546521992469] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Adipose stem cell-derived exosomes (ASC-Exos) are reported to effectively prevent muscle atrophy and degeneration of torn rat rotator cuff, but their influence on human samples and their potential mechanism are still unclear. PURPOSE We aimed to investigate the effects of ASC-Exos on the metabolic activities of torn human rotator cuff tendons and explore the potential mechanism behind it. STUDY DESIGN Controlled laboratory study. METHODS Diseased supraspinatus tendons were harvested from 15 patients with a mean ± SD age of 65.8 ± 3.2 years who underwent reverse shoulder arthroplasty for chronic rotator cuff tears associated with glenohumeral pathological changes. Each tendon was dissected into 3 × 4 × 4-mm explants: the ones derived from the same tendon were placed into 12-well plates and cultured in complete culture media (control) or in complete culture media supplemented with ASC-Exos for 72 hours. Afterward, the concentrations of cytokines secreted into the culture media-including interleukin 1β (IL-1β), IL-6, IL-8, and matrix metalloproteinase 9 (MMP-9)-were measured using enzyme-linked immunosorbent assay (ELISA). Tendons were stained with hematoxylin and eosin and immunohistochemistry (type I and III collagens) for histological analyses. Moreover, the expression of anabolic genes (TIMP-1 and TIMP-3; type I and III collagen encoding) and catabolic genes (MMP-9 and MMP-13) in tendons were measured using real-time quantitative polymerase chain reaction. Phosphorylated AMPKα and Wnt/β-catenin pathways were assayed by western blotting to explore the potential mechanism of action of ASC-Exos. RESULTS Secretion of proinflammatory cytokines, including IL-1β, IL-6, and MMP-9, was significantly reduced in the ASC-Exos group as compared with the control group. Supraspinatus tendons in the ASC-Exos group exhibited superior histological properties, as demonstrated by higher tendon maturing scores and more type I collagen content, but there was no significant difference in type III collagen content between groups. Expression of MMP-9 and MMP-13 genes was decreased in the ASC-Exos group versus the control group. Increased expression of type I and III collagens and an elevated type I/III ratio were found in the ASC-Exos group when compared with the control group. There was no significant difference in the secretion of IL-8 and expression of TIMP-1 and TIMP-3 genes between the ASC-Exos and control groups. Western blotting revealed that ASC-Exos enhanced phosphorylated AMPKα and decreased β-catenin levels to prevent tendon degeneration. CONCLUSION ASC-Exos maintained metabolic homeostasis of torn human rotator cuff tendons to improve their histological properties, which might be achieved by enhancing AMPK signaling to suppress Wnt/β-catenin activity. CLINICAL RELEVANCE ASC-Exos could be used as an effective biological tool to promote healing in torn human rotator cuff tendons.
Collapse
Affiliation(s)
- Xuancheng Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhuochang Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Minghu Wu
- Department of Orthopaedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqiao Huangfu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Juehong Li
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xudong Liu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
22
|
Characterization of macrophages, giant cells and granulomas during muscle regeneration after irradiation. Cytokine 2020; 137:155318. [PMID: 33045525 DOI: 10.1016/j.cyto.2020.155318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022]
Abstract
Macrophages play a fundamental role in the different stages of muscle regeneration although the precise mechanisms involved are not entirely understood. Here we investigated the types of macrophages and cytokines that appeared in muscles after local gamma irradiation of mini-pigs that underwent no subsequent treatment or received three successive adipose tissue-derived stem cell (ASC) injections. Although some variability was observed among the three animals included in each study group, a general picture emerged. No macrophages appeared in control muscles from regions that had not been irradiated nor in muscles from irradiated regions derived from two animals. A third irradiated, but untreated animal, with characteristic muscle fibrosis and necrosis due to irradiation, showed invasion of M2 macrophages within small muscle lesions. In contrast, among the three ASC-treated and irradiated animals, one of them had completely recovered normal muscle architecture at the time of sampling with no invading macrophages, muscle from a second one contained mostly M1 macrophages and some M2-like macrophages whereas muscle from a third one displayed granulomas and giant cells. ASC treatment was associated with the presence of similar levels of pro-inflammatory cytokines within the two animals in the process of muscle regeneration whereas the levels of IL-4 and IL-10 expression were distinct from one animal to another. Microspectrofluorimetry and in situ hybridization revealed strong expression of TGF-β1 and TNFα in regenerating muscle. Overall, the data confirm the critical role of macrophages in muscle regeneration and suggest the involvement of a complex network of cytokine expression for successful recovery.
Collapse
|
23
|
Carvalho MTX, Real AA, Cabeleira ME, Schiling E, Lopes I, Bianchin J, da Silva AMV, Annoni R, de Albuquerque IM. Acute effect of passive cycling exercise on serum levels of interleukin-8 and interleukin-10 in mechanically ventilated critically ill patients. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2020. [DOI: 10.12968/ijtr.2018.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background/aimsA growing body of evidence has demonstrated that early mobilisation is beneficial for patients in the intensive care unit. The aim of this prospective study was to investigate the acute effect of an early passive cycling exercise session on serum interleukin-8 and interleukin-10 levels in critically ill patients.MethodsA total of 11 haemodynamically stable and deeply sedated (Richmond Agitation and Sedation Scale-4) adult patients within the first 48 hours of mechanical ventilation received a single 20-minute session of passive cycle ergometer. Serum interleukin-8 and interleukin-10 levels were measured at baseline, immediately after the intervention and 60 minutes after the intervention.FindingsInterleukin-8 levels decreased significantly 60 minutes after the passive cycle ergometer session compared to baseline (P=0.001). The serum levels of interleukin-10 increased immediately after the end of the 20 minutes and at 60 minutes after the intervention (P<0.001).ConclusionsA single 20-minute session of passive cycle ergometer seems to have a positive effect on the inflammatory response in critically ill patients.
Collapse
Affiliation(s)
| | - Amanda Albiero Real
- Functional Rehabilitation Post-Graduate Program, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Maria Eduarda Cabeleira
- School of Physiotherapy, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Emilly Schiling
- School of Physiotherapy, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Isabela Lopes
- School of Physiotherapy, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Jéssica Bianchin
- School of Physiotherapy, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | | | - Raquel Annoni
- Department of Applied Physiotherapy, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | |
Collapse
|
24
|
IL-1β and TNF-α Modulation of Proliferated and Committed Myoblasts: IL-6 and COX-2-Derived Prostaglandins as Key Actors in the Mechanisms Involved. Cells 2020; 9:cells9092005. [PMID: 32882817 PMCID: PMC7564831 DOI: 10.3390/cells9092005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the effects and mechanisms of the pro-inflammatory cytokines IL-1β and TNF-α on the proliferation and commitment phases of myoblast differentiation. C2C12 mouse myoblast cells were cultured to reach a proliferated or committed status and were incubated with these cytokines for the evaluation of cell proliferation, cyclooxygenase 2 (COX-2) expression, release of prostaglandins (PGs) and myokines, and activation of myogenic regulatory factors (MRFs). We found that inhibition of the IL-6 receptor reduced IL-1β- and TNF-α-induced cell proliferation, and that the IL-1β effect also involved COX-2-derived PGs. Both cytokines modulated the release of the myokines myostatin, irisin, osteonectin, and IL-15. TNF-α and IL-6 reduced the activity of Pax7 in proliferated cells and reduced MyoD and myogenin activity at both proliferative and commitment stages. Otherwise, IL-1β increased myogenin activity only in committed cells. Our data reveal a key role of IL-6 and COX-2-derived PGs in IL-1β and TNF-α-induced myoblast proliferation and support the link between TNF-α and IL-6 and the activation of MRFs. We concluded that IL-1β and TNF-α induce similar effects at the initial stages of muscle regeneration but found critical differences between their effects with the progression of the process, bringing new insights into inflammatory signalling in skeletal muscle regeneration.
Collapse
|
25
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
26
|
Smoak M, Mikos A. Advances in biomaterials for skeletal muscle engineering and obstacles still to overcome. Mater Today Bio 2020; 7:100069. [PMID: 32695987 PMCID: PMC7363708 DOI: 10.1016/j.mtbio.2020.100069] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022] Open
Abstract
Repair of injured skeletal muscle is a sophisticated process that uses immune, muscle, perivascular, and neural cells. In acute injury, the robust endogenous repair process can facilitate complete regeneration with little to no functional deficit. However, in severe injury, the damage is beyond the capacity for self-repair, often resulting in structural and functional deficits. Aside from the insufficiencies in muscle function, the aesthetic deficits can impact quality of life. Current clinical treatments are significantly limited in their capacity to structurally and functionally repair the damaged skeletal muscle. Therefore, alternative approaches are needed. Biomaterial therapies for skeletal muscle engineering have leveraged natural materials with sophisticated scaffold fabrication techniques to guide cell infiltration, alignment, and differentiation. Advances in biomaterials paired with a standardized and rigorous assessment of resulting tissue formation have greatly advanced the field of skeletal muscle engineering in the last several years. Herein, we discuss the current trends in biomaterials-based therapies for skeletal muscle regeneration and present the obstacles still to be overcome before clinical translation is possible. With millions of people affected by muscle trauma each year, the development of a therapy that can repair the structural and functional deficits after severe muscle injury is pivotal.
Collapse
Affiliation(s)
- M.M. Smoak
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - A.G. Mikos
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| |
Collapse
|
27
|
Contrepois K, Wu S, Moneghetti KJ, Hornburg D, Ahadi S, Tsai MS, Metwally AA, Wei E, Lee-McMullen B, Quijada JV, Chen S, Christle JW, Ellenberger M, Balliu B, Taylor S, Durrant MG, Knowles DA, Choudhry H, Ashland M, Bahmani A, Enslen B, Amsallem M, Kobayashi Y, Avina M, Perelman D, Schüssler-Fiorenza Rose SM, Zhou W, Ashley EA, Montgomery SB, Chaib H, Haddad F, Snyder MP. Molecular Choreography of Acute Exercise. Cell 2020; 181:1112-1130.e16. [PMID: 32470399 PMCID: PMC7299174 DOI: 10.1016/j.cell.2020.04.043] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/10/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways. Although studies have examined selected changes in these pathways, the system-wide molecular response to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome, and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated choreography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair, and growth factor response, as well as regulatory pathways. Most of these processes were dampened and some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in cardiopulmonary exercise response and developed prediction models revealing potential resting blood-based biomarkers of peak oxygen consumption.
Collapse
Affiliation(s)
- Kévin Contrepois
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kegan J Moneghetti
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, St. Vincent's Hospital, University of Melbourne, Melbourne, VIC, Australia; Stanford Sports Cardiology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel Hornburg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Sara Ahadi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ming-Shian Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ahmed A Metwally
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric Wei
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jeniffer V Quijada
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Songjie Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey W Christle
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Sports Cardiology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Mathew Ellenberger
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brunilda Balliu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shalina Taylor
- Pediatrics Department, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew G Durrant
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - David A Knowles
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Radiology, Stanford University, Stanford, CA, USA
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Melanie Ashland
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Amir Bahmani
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Brooke Enslen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Myriam Amsallem
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yukari Kobayashi
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Monika Avina
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dalia Perelman
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Wenyu Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Euan A Ashley
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA
| | - Stephen B Montgomery
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | - Hassan Chaib
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Francois Haddad
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Phua WWT, Tan WR, Yip YS, Hew ID, Wee JWK, Cheng HS, Leow MKS, Wahli W, Tan NS. PPARβ/δ Agonism Upregulates Forkhead Box A2 to Reduce Inflammation in C2C12 Myoblasts and in Skeletal Muscle. Int J Mol Sci 2020; 21:ijms21051747. [PMID: 32143325 PMCID: PMC7084392 DOI: 10.3390/ijms21051747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Daily activities expose muscles to innumerable impacts, causing accumulated tissue damage and inflammation that impairs muscle recovery and function, yet the mechanism modulating the inflammatory response in muscles remains unclear. Our study suggests that Forkhead box A2 (FoxA2), a pioneer transcription factor, has a predominant role in the inflammatory response during skeletal muscle injury. FoxA2 expression in skeletal muscle is upregulated by fatty acids and peroxisome proliferator-activated receptors (PPARs) but is refractory to insulin and glucocorticoids. Using PPARβ/δ agonist GW501516 upregulates FoxA2, which in turn, attenuates the production of proinflammatory cytokines and reduces the infiltration of CD45+ immune cells in two mouse models of muscle inflammation, systemic LPS and intramuscular injection of carrageenan, which mimic localized exercise-induced inflammation. This reduced local inflammatory response limits tissue damage and restores muscle tetanic contraction. In line with these results, a deficiency in either PPARβ/δ or FoxA2 diminishes the action of the PPARβ/δ agonist GW501516 to suppress an aggravated inflammatory response. Our study suggests that FoxA2 in skeletal muscle helps maintain homeostasis, acting as a gatekeeper to maintain key inflammation parameters at the desired level upon injury. Therefore, it is conceivable that certain myositis disorders or other forms of painful musculoskeletal diseases may benefit from approaches that increase FoxA2 activity in skeletal muscle.
Collapse
Affiliation(s)
- Wendy Wen Ting Phua
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University Singapore, Singapore 637551, Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
| | - Yun Sheng Yip
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Ivan Dongzheng Hew
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Jonathan Wei Kiat Wee
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Hong Sheng Cheng
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
| | - Melvin Khee Shing Leow
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- Department of Endocrinology, Division of Medicine, Endocrine and Diabetes Clinic, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, 31300 Toulouse, France
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; (W.W.T.P.); (Y.S.Y.); (I.D.H.); (J.W.K.W.); (H.S.C.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore; (W.R.T.); (M.K.S.L.); (W.W.)
- Correspondence: ; Tel.: +65-6904-1295; Fax: +65-6339-2889
| |
Collapse
|
29
|
Torre-Villalvazo I, Alemán-Escondrillas G, Valle-Ríos R, Noriega LG. Protein intake and amino acid supplementation regulate exercise recovery and performance through the modulation of mTOR, AMPK, FGF21, and immunity. Nutr Res 2019; 72:1-17. [DOI: 10.1016/j.nutres.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
|
30
|
Wang C, Song W, Chen B, Liu X, He Y. Exosomes Isolated From Adipose-Derived Stem Cells: A New Cell-Free Approach to Prevent the Muscle Degeneration Associated With Torn Rotator Cuffs. Am J Sports Med 2019; 47:3247-3255. [PMID: 31560856 DOI: 10.1177/0363546519876323] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Fatty infiltration, inflammation, and apoptosis are common degenerative changes in patients with chronic rotator cuff tears that can lead to muscle atrophy and can even result in massive irreparable rotator cuff tears. Some data have demonstrated the proregenerative, anti-inflammatory, and anti-apoptotic properties of stem cell-derived exosomes in some orthopaedic disorders, but their effect on torn rotator cuff muscles has never been investigated. PURPOSE To study the effect of exosomes isolated from human adipose-derived stem cells (ASCs-Exos) on muscle degeneration, regeneration, and biomechanical properties in a rat model of a massive rotator cuff tear (MRCT). STUDY DESIGN Controlled laboratory study. METHODS A bilateral supraspinatus and infraspinatus tenotomy was performed on rats to create an MRCT model. Forty-two rats were randomly assigned to 3 groups: the sham surgery group, the saline group (lesions treated with a saline injection), and the ASCs-Exos group (lesions treated with an ASCs-Exos injection). Wet muscle weight, fatty infiltration, inflammation, vascularization, regeneration, and biomechanical properties were evaluated at 8 and 16 weeks after surgery. RESULTS The results revealed that the ASCs-Exos treatment could prevent the atrophy, fatty infiltration, inflammation, and vascularization of muscles in the MRCT model (P < .001). Additionally, the myofiber regeneration and biomechanical properties of ASCs-Exos-treated rotator cuffs were significantly elevated compared with those in the saline-treated group (P < .001). CONCLUSION This study demonstrates that ASCs-Exos can effectively decrease atrophy and degeneration and improve muscle regeneration and biomechanical properties in torn rotator cuff muscles. CLINICAL RELEVANCE ASCs-Exos can be used as a new cell-free approach to prevent the muscle degeneration associated with torn rotator cuffs and may be helpful to repair torn rotator cuffs. Nevertheless, further work needs to be done in a large animal model owing to the inherent regenerative potential possessed by rodents.
Collapse
Affiliation(s)
- Chongyang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Song
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Bi Chen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xudong Liu
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yaohua He
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Department of Orthopedics, Shanghai Sixth People's Hospital, Jinshan Branch, Shanghai, China
| |
Collapse
|
31
|
Duan Y, Zheng C, Zhong Y, Song B, Yan Z, Kong X, Deng J, Li F, Yin Y. Beta-hydroxy beta-methyl butyrate decreases muscle protein degradation via increased Akt/FoxO3a signaling and mitochondrial biogenesis in weanling piglets after lipopolysaccharide challenge. Food Funct 2019; 10:5152-5165. [PMID: 31373594 DOI: 10.1039/c9fo00769e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aim of this study was to investigate the effects of dietary β-hydroxy-β-methylbutyrate (HMB) on lipopolysaccharide (LPS)-induced muscle atrophy and to investigate the mechanisms involved. Sixty pigs (21 ± 2 days old, 5.86 ± 0.18 kg body weight) were used in a 2 × 3 factorial design and the main factors included diet (0, 0.60%, or 1.20% HMB) and immunological challenge (LPS or saline). After 15 d of treatment with LPS and/or HMB, growth performance, blood parameters, and muscle protein degradation rate were measured. The results showed that in LPS-injected pigs, 0.60% HMB supplementation increased the average daily gain and average daily feed intake and decreased the feed : gain ratio (P < 0.05), with a concurrent increase of lean percentage. Moreover, 0.60% HMB supplementation decreased the serum concentrations of blood urea nitrogen, IL-1β, and TNF-α and the rate of protein degradation as well as cell apoptosis in selected muscles (P < 0.05). In addition, dietary HMB supplementation (0.60%) regulated the expression of genes involved in mitochondrial biogenesis and increased the phosphorylation of Akt and Forkhead Box O3a (FoxO3a) in selected muscles, accompanied by decreased protein expression of muscle RING finger 1 and muscle atrophy F-box. These results indicate that HMB may exert protective effects against LPS-induced muscle atrophy by normalizing the Akt/FoxO3a axis that regulates ubiquitin proteolysis and by improving mitochondrial biogenesis.
Collapse
Affiliation(s)
- Yehui Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liao ZH, Huang T, Xiao JW, Gu RC, Ouyang J, Wu G, Liao H. Estrogen signaling effects on muscle-specific immune responses through controlling the recruitment and function of macrophages and T cells. Skelet Muscle 2019; 9:20. [PMID: 31358063 PMCID: PMC6661750 DOI: 10.1186/s13395-019-0205-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background Estrogen signaling is indispensable for muscle regeneration, yet the role of estrogen in the development of muscle inflammation, especially in the intramuscular T cell response, and the influence on the intrinsic immuno-behaviors of myofibers remain largely unknown. We investigated this issue using the mice model of cardiotoxin (CTX)-induced myoinjury, with or without estrogen level adjustment. Methods CTX injection i.m. (tibialis anterior, TA) was performed for preparing mice myoinjury model. Injection s.c. of 17β-estradiol (E2) or estrogen receptor antagonist 4-OHT, or ovariectomy (OVX), was used to change estrogen level of animal models in vivo. Serum E2 level was evaluated by ELISA. Gene levels of estrogen receptor (ERs) and cytokines/chemokines in inflamed muscle were monitored by qPCR. Inflammatory infiltration was observed by immunofluorescence. Macrophage and T cell phenotypes were analyzed by FACS. Immunoblotting was used to assess protein levels of ERs and immunomolecules in C2C12 myotubes treated with E2 or 4-OHT, in the presence of IFN-γ. Results We monitored the increased serum E2 level and the upregulated ERβ in regenerated myofibres after myotrauma. The absence of estrogen in vivo resulted in the more severe muscle inflammatory infiltration, involving the recruitment of monocyte/macrophage and CD4+ T cells, and the heightened proinflammatory (M1) macrophage. Moreover, estrogen signaling loss led to Treg cells infiltration decrease, Th1 response elevation in inflamed muscle, and the markedly expression upregulation of immunomolecules in IFN-γ-stimulated C2C12 myotubes in vitro. Conclusion Our data suggest that estrogen is a positive intervention factor for muscle inflammatory response, through its effects on controlling intramuscular infiltration and phenotypes of monocytes/macrophages, on affecting accumulation and function of Treg cells, and on suppressing Th1 response in inflamed muscle. Our findings also imply an inhibition effect of estrogen on the intrinsic immune behaviors of muscle cells.
Collapse
Affiliation(s)
- Zhao Hong Liao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Tao Huang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Jiang Wei Xiao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Rui Cai Gu
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China
| | - Gang Wu
- Department of Emergency, NanFang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Medical Biomechanics, Department of Anatomy, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
33
|
Pastuszak-Lewandoska D, Domańska-Senderowska D, Kiszałkiewicz J, Szmigielska P, Snochowska A, Ratkowski W, Spieszny M, Klocek T, Godlewski P, Cięszczyk P, Brzeziańska-Lasota E, September AV, Laguette MJ. Expression levels of selected cytokines and microRNAs in response to vitamin D supplementation in ultra-marathon runners. Eur J Sport Sci 2019; 20:219-228. [PMID: 31241425 DOI: 10.1080/17461391.2019.1635649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ultra-marathon (UM) running is an extreme endurance exercise. However, the mechanisms triggered with its practice remain unclear. While it is documented that strenuous physical activity activates immune responses and vitamin D plays a role in immune system suppression, data on the relationship between vitamin D status and cytokine profile in athletic populations are limited. To analyse the relative mRNA expression levels of selected pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-17, TNF-α), COX-2, vitamin D receptor and abundance of selected inflammatory microRNAs (Hsa-miR-21, -miR-146a, -miR-150, -miR-155, -miR-222, -miR-223) before and after a 100 km race in amateur runners in the presence or absence of vitamin D supplementation. Twenty runners aged 36-40years were divided into two groups: with and without vitamin D3 supplementation (10,000units daily). Blood samples were collected before and 12 h after the UM. The mRNA expression levels of selected cytokines, COX-2 and VDR in peripheral blood and abundance of serum exosomal miRNAs were investigated using q-RT-PCR. After UM, the significant up-regulation of TNF-α and hsa-miR-155 and down-regulation of IL-1β were observed in the group with vitamin D supplementation. In its absence, hsa-miR-155 and -miR-223 were significantly up-regulated. Additionally, a reverse correlation was observed between IL-6 expression level and abundance of hsa-miR-155 and -miR-223 in both groups. No statistical differences were noted when the other miRNAs and genes were examined in the groups and at the time points. The UM-induced mRNA expression pattern of pro-inflammatory cytokines could be influenced by vitamin D supplementation and/or miRNA.
Collapse
Affiliation(s)
| | | | - J Kiszałkiewicz
- Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland
| | - P Szmigielska
- Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland
| | - A Snochowska
- Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland
| | - W Ratkowski
- Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - M Spieszny
- Institute of Sports, University of Physical Education in Krakow, Krakow, Poland
| | - T Klocek
- Institute of Sports, University of Physical Education in Krakow, Krakow, Poland
| | - P Godlewski
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - P Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdansk, Poland.,Faculty of Physical Education, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - E Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland
| | - A V September
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,UCT Research Centre for Health through Physical Activity, Lifestyle and Sport (HPALS), University of Cape Town, Cape Town, South Africa
| | - M J Laguette
- Division of Exercise Science and Sports Medicine, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,UCT Research Centre for Health through Physical Activity, Lifestyle and Sport (HPALS), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
34
|
Nakayama KH, Shayan M, Huang NF. Engineering Biomimetic Materials for Skeletal Muscle Repair and Regeneration. Adv Healthc Mater 2019; 8:e1801168. [PMID: 30725530 PMCID: PMC6589032 DOI: 10.1002/adhm.201801168] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Indexed: 11/12/2022]
Abstract
Although skeletal muscle is highly regenerative following injury or disease, endogenous self-regeneration is severely impaired in conditions of volume traumatic muscle loss. Consequently, tissue engineering approaches are a promising means to regenerate skeletal muscle. Biological scaffolds serve as not only structural support for the promotion of cellular ingrowth but also impart potent modulatory signaling cues that may be beneficial for tissue regeneration. In this work, the progress of tissue engineering approaches for skeletal muscle engineering and regeneration is overviewed, with a focus on the techniques to create biomimetic engineered tissue using extracellular cues. These factors include mechanical and electrical stimulation, geometric patterning, and delivery of growth factors or other bioactive molecules. The progress of evaluating the therapeutic efficacy of these approaches in preclinical models of muscle injury is further discussed.
Collapse
Affiliation(s)
- Karina H Nakayama
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Mahdis Shayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
35
|
Systemic Inflammatory Response and Multiple Organ Dysfunctions Following Crush Injury: a New Experimental Model in Rabbits. Inflammation 2018; 41:240-248. [PMID: 29071515 DOI: 10.1007/s10753-017-0683-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we aim to develop a new, reproducible crush injury (CI) model in rabbits. Anesthetized rabbits were compressed on both hind limbs using a special instrument for 6 h followed by 3 h of reperfusion. Blood samples and injured muscles were collected for biochemical analysis and morphological evaluation. Survival observation lasted for 72 h. Bilateral compressions with 10 kg/kg body weight (BW), but not with 5 kg/kg BW, reduced serious systemic impairment. Bilateral compressions with 10 kg/kg BW resulted in severe lactic acidosis; increased serum K+, creatine phosphokinase, aspartate transaminase, alanine transaminase, blood urea nitrogen, and creatinine levels; and a sharply decreased mean arterial blood pressure after compression release. Serious tissue edema and inflammation were observed in the damaged muscles. The mortality rates in compression groups were 20% (5 kg/kg BW) and 60% (10 kg/kg BW). There was a significant increase in plasma concentrations of TNF-α and IL-1β after compression. Plasma IL-1β levels returned to control levels at 6 h after compression release, whereas TNF-α peaked at 12 h following reperfusion. Furthermore, antiinflammatory cytokines, including IL-4 and IL-10, were also increased after compression, and these two cytokines peaked at 12 h after compression release. Our data suggested that bilateral compression with 10 kg/kg BW on rabbits' hind limbs is a reproducible CI model, and we also reported the CI-induced systemic inflammatory responses and changes of cytokines over time.
Collapse
|
36
|
Elastic polyurethane bearing pendant TGF-β1 affinity peptide for potential tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:67-77. [DOI: 10.1016/j.msec.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 09/05/2017] [Accepted: 10/11/2017] [Indexed: 12/18/2022]
|
37
|
Convente MR, Chakkalakal SA, Yang E, Caron RJ, Zhang D, Kambayashi T, Kaplan FS, Shore EM. Depletion of Mast Cells and Macrophages Impairs Heterotopic Ossification in an Acvr1 R206H Mouse Model of Fibrodysplasia Ossificans Progressiva. J Bone Miner Res 2018; 33:269-282. [PMID: 28986986 PMCID: PMC7737844 DOI: 10.1002/jbmr.3304] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 09/27/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Heterotopic ossification (HO) is a clinical condition that often reduces mobility and diminishes quality of life for affected individuals. The most severe form of progressive HO occurs in those with fibrodysplasia ossificans progressiva (FOP; OMIM #135100), a genetic disorder caused by a recurrent heterozygous gain-of-function mutation (R206H) in the bone morphogenetic protein (BMP) type I receptor ACVR1/ALK2. In individuals with FOP, episodes of HO frequently follow injury. The first sign of active disease is commonly an inflammatory "flare-up" that precedes connective tissue degradation, progenitor cell recruitment, and endochondral HO. We used a conditional-on global knock-in mouse model expressing Acvr1R206H (referred to as Acvr1cR206H/+ ) to investigate the cellular and molecular inflammatory response in FOP lesions following injury. We found that the Acvr1 R206H mutation caused increased BMP signaling in posttraumatic FOP lesions and early divergence from the normal skeletal muscle repair program with elevated and prolonged immune cell infiltration. The proinflammatory cytokine response of TNFα, IL-1β, and IL-6 was elevated and prolonged in Acvr1cR206H/+ lesions and in Acvr1cR206H/+ mast cells. Importantly, depletion of mast cells and macrophages significantly impaired injury-induced HO in Acvr1cR206H/+ mice, reducing injury-induced HO volume by ∼50% with depletion of each cell population independently, and ∼75% with combined depletion of both cell populations. Together, our data show that the immune system contributes to the initiation and development of HO in FOP. Further, the expression of Acvr1R206H in immune cells alters cytokine expression and cellular response to injury and unveils novel therapeutic targets for treatment of FOP and nongenetic forms of HO. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Michael R Convente
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salin A Chakkalakal
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - EnJun Yang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Caron
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deyu Zhang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,The Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
38
|
Delaney K, Kasprzycka P, Ciemerych MA, Zimowska M. The role of TGF-β1 during skeletal muscle regeneration. Cell Biol Int 2017; 41:706-715. [PMID: 28035727 DOI: 10.1002/cbin.10725] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023]
Abstract
The injury of adult skeletal muscle initiates series of well-coordinated events that lead to the efficient repair of the damaged tissue. Any disturbances during muscle myolysis or reconstruction may result in the unsuccessful regeneration, characterised by strong inflammatory response and formation of connective tissue, that is, fibrosis. The switch between proper regeneration of skeletal muscle and development of fibrosis is controlled by various factors. Amongst them are those belonging to the transforming growth factor β family. One of the TGF-β family members is TGF-β1, a multifunctional cytokine involved in the regulation of muscle repair via satellite cells activation, connective tissue formation, as well as regulation of the immune response intensity. Here, we present the role of TGF-β1 in myogenic differentiation and muscle repair. The understanding of the mechanisms controlling these processes can contribute to the better understanding of skeletal muscle atrophy and diseases which consequence is fibrosis disrupting muscle function.
Collapse
Affiliation(s)
- Kamila Delaney
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Paulina Kasprzycka
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Maria Anna Ciemerych
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Malgorzata Zimowska
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| |
Collapse
|
39
|
Puts R, Albers J, Kadow-Romacker A, Geissler S, Raum K. Influence of Donor Age and Stimulation Intensity on Osteogenic Differentiation of Rat Mesenchymal Stromal Cells in Response to Focused Low-Intensity Pulsed Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2965-2974. [PMID: 27680572 DOI: 10.1016/j.ultrasmedbio.2016.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
A focused low-intensity pulsed ultrasound (FLIPUS) was used to investigate the effects of stimulation period, acoustic intensity and donor age on the osteogenic differentiation potential of rat mesenchymal stromal cells (rMSCs). rMSCs from 3- and 12-mo-old female Sprague Drawly rats were isolated from bone marrow and stimulated 20 min/d with either 11.7 or 44.5 mW/cm2 (spatial average temporal average intensity) for 7 or 14 d. Osteogenic differentiation markers, i.e., Runt-related transcription factor 2 (RUNX2), osteocalcin (OCN) and degree of matrix calcification were analyzed. On day 7 of stimulation, OCN gene expression was enhanced 1.9-fold in cells from young rats when stimulated with low intensity. The low intensity also led to a 40% decrease in RUNX2 expression on day 7 in aged cells, whereas high intensity enhanced expression of RUNX2 on day 14. FLIPUS treatment with low intensity resulted in a 15% increase in extracellular matrix mineralization in young but not old rMSCs. These differences suggest the necessity of a donor-age related optimization of stimulation parameters.
Collapse
Affiliation(s)
- Regina Puts
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
| | - Josefine Albers
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
| | - Anke Kadow-Romacker
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
| | - Sven Geissler
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany; Julius Wolff Institute, Charité-Universitätsmedizin, Berlin, Germany
| | - Kay Raum
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
40
|
Zimowska M, Kasprzycka P, Bocian K, Delaney K, Jung P, Kuchcinska K, Kaczmarska K, Gladysz D, Streminska W, Ciemerych MA. Inflammatory response during slow- and fast-twitch muscle regeneration. Muscle Nerve 2016; 55:400-409. [PMID: 27396429 DOI: 10.1002/mus.25246] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/29/2016] [Accepted: 07/07/2016] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Skeletal muscles are characterized by their unique ability to regenerate. Injury of a so-called fast-twitch muscle, extensor digitorum longus (EDL), results in efficient regeneration and reconstruction of the functional tissue. In contrast, slow-twitch muscle (soleus) fails to properly reconstruct and develops fibrosis. This study focuses on soleus and EDL muscle regeneration and associated inflammation. METHODS We determined differences in the activity of neutrophils and M1 and M2 macrophages using flow cytometry and differences in the levels of proinflammatory cytokines using Western blotting and immunolocalization at different times after muscle injury. RESULTS Soleus muscle repair is accompanied by increased and prolonged inflammation, as compared to EDL. The proinflammatory cytokine profile is different in the soleus and ED muscles. CONCLUSIONS Muscle repair efficiency differs by muscle fiber type. The inflammatory response affects the repair efficiency of slow- and fast-twitch muscles. Muscle Nerve 55: 400-409, 2017.
Collapse
Affiliation(s)
- Malgorzata Zimowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Paulina Kasprzycka
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Katarzyna Bocian
- Department of Immunology, Institute of Zoology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Kamila Delaney
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Piotr Jung
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Kinga Kuchcinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Karolina Kaczmarska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Daria Gladysz
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096, Warsaw, Poland
| |
Collapse
|
41
|
Martin KS, Virgilio KM, Peirce SM, Blemker SS. Computational Modeling of Muscle Regeneration and Adaptation to Advance Muscle Tissue Regeneration Strategies. Cells Tissues Organs 2016; 202:250-266. [DOI: 10.1159/000443635] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Skeletal muscle has an exceptional ability to regenerate and adapt following injury. Tissue engineering approaches (e.g. cell therapy, scaffolds, and pharmaceutics) aimed at enhancing or promoting muscle regeneration from severe injuries are a promising and active field of research. Computational models are beginning to advance the field by providing insight into regeneration mechanisms and therapies. In this paper, we summarize the contributions computational models have made to understanding muscle remodeling and the functional implications thereof. Next, we describe a new agent-based computational model of skeletal muscle inflammation and regeneration following acute muscle injury. Our computational model simulates the recruitment and cellular behaviors of key inflammatory cells (e.g. neutrophils and M1 and M2 macrophages) and their interactions with native muscle cells (muscle fibers, satellite stem cells, and fibroblasts) that result in the clearance of necrotic tissue and muscle fiber regeneration. We demonstrate the ability of the model to track key regeneration metrics during both unencumbered regeneration and in the case of impaired macrophage function. We also use the model to simulate regeneration enhancement when muscle is primed with inflammatory cells prior to injury, which is a putative therapeutic intervention that has not yet been investigated experimentally. Computational modeling of muscle regeneration, pursued in combination with experimental analyses, provides a quantitative framework for evaluating and predicting muscle regeneration and enables the rational design of therapeutic strategies for muscle recovery.
Collapse
|
42
|
Passipieri JA, Christ GJ. The Potential of Combination Therapeutics for More Complete Repair of Volumetric Muscle Loss Injuries: The Role of Exogenous Growth Factors and/or Progenitor Cells in Implantable Skeletal Muscle Tissue Engineering Technologies. Cells Tissues Organs 2016; 202:202-213. [PMID: 27825153 DOI: 10.1159/000447323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Despite the robust regenerative capacity of skeletal muscle, there are a variety of congenital and acquired conditions in which the volume of skeletal muscle loss results in major permanent functional and cosmetic deficits. These latter injuries are referred to as volumetric muscle loss (VML) injuries or VML-like conditions, and they are characterized by the simultaneous absence of multiple tissue components (i.e., nerves, vessels, muscles, satellite cells, and matrix). There are currently no effective treatment options. Regenerative medicine/tissue engineering technologies hold great potential for repair of these otherwise irrecoverable VML injuries. In this regard, three-dimensional scaffolds have been used to deliver sustained amounts of growth factors into a variety of injury models, to modulate host cell recruitment and extracellular matrix remodeling. However, this is a nascent field of research, and more complete functional improvements require more precise control of the spatiotemporal distribution of critical growth factors over a physiologically relevant range. This is especially true for VML injuries where incorporation of a cellular component into the scaffolds might provide not only a source of new tissue formation but also additional signals for host cell migration, recruitment, and survival. To this end, we review the major features of muscle repair and regeneration for largely recoverable injuries, and then discuss recent cell- and/or growth factor-based approaches to repair the more profound and irreversible VML and VML-like injuries. The underlying supposition is that more rationale incorporation of exogenous growth factors and/or cellular components will be required to optimize the regenerative capacity of implantable therapeutics for VML repair.
Collapse
|
43
|
The effect of post‑resistance exercise alcohol ingestion on lipopolysaccharide‑stimulated cytokines. Eur J Appl Physiol 2016; 116:311-8. [PMID: 26501345 DOI: 10.1007/s00421-015-3278-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/04/2015] [Indexed: 01/10/2023]
Abstract
PURPOSE To examine the effect of post-resistance exercise alcohol ingestion on lipopolysaccharide (LPS)-stimulated production of IFNγ, TNF-α, IL-1β, IL-6, IL-8, and IL-10. METHODS Recreationally resistance-trained men (n = 10, 25 ± 3 year, 177 ± 7 cm, 83.8 ± 15.7 kg, 14.8 ± 8.5% body fat) and women (n = 8, 23 ± 2 year, 161 ± 3 cm, 59.5 ± 6.0 kg, 26.5 ± 3.0% body fat) completed two identical heavy back squat sessions (6 × 10 at 80% 1 repetition maximum) followed by ingestion of either an alcohol (ALC; 1.09 g ethanol · kg fat-free mass(-1)) or water (PLA) drink. Blood samples were collected before exercise (PRE), and at 3 h (3 h), and 5 h (5 h) after exercise, stimulated with LPS, and analyzed for IFNγ, TNF-α, IL-1β, IL-6, IL-8, and IL-10 concentrations. RESULTS There were no drink conditions by time effects for IFNγ, TNF-α, IL-1β, or IL-10. Regardless of condition, resistance exercise induce an increase in IFNγ, TNF-α, and IL-1β at 5 h compared to PRE but a decrease in IL-10 at 3 and 5 h compared to PRE. For ALC, IL-8 was reduced at 5 h compared to PLA. From PRE to 3 h, IL-6 was reduced for ALC but increased for PLA; resistance exercise induced an increase in IL-6 for both conditions at 5 h. CONCLUSIONS Heavy resistance exercise increased production of IFNγ, TNF-α, IL-1β, and Il-6 and decreased production of IL-10. Alcohol ingestion after resistance exercise affected aspects of inflammatory capacity (IL-6 and IL-8 production). It appears that some of the effects previously observed for alcohol ingestion alone on the LPS-stimulated cytokine production were overwhelmed by the response to resistance exercise.
Collapse
|
44
|
Asparagine reduces the mRNA expression of muscle atrophy markers via regulating protein kinase B (Akt), AMP-activated protein kinase α, toll-like receptor 4 and nucleotide-binding oligomerisation domain protein signalling in weaning piglets after lipopolysaccharide challenge. Br J Nutr 2016; 116:1188-1198. [PMID: 27572423 DOI: 10.1017/s000711451600297x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pro-inflammatory cytokines are critical in mechanisms of muscle atrophy. In addition, asparagine (Asn) is necessary for protein synthesis in mammalian cells. We hypothesised that Asn could attenuate lipopolysaccharide (LPS)-induced muscle atrophy in a piglet model. Piglets were allotted to four treatments (non-challenged control, LPS-challenged control, LPS+0·5 % Asn and LPS+1·0 % Asn). On day 21, the piglets were injected with LPS or saline. At 4 h post injection, piglet blood and muscle samples were collected. Asn increased protein and RNA content in muscles, and decreased mRNA expression of muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1). However, Asn had no effect on the protein abundance of MAFbx and MuRF1. In addition, Asn decreased muscle AMP-activated protein kinase (AMPK) α phosphorylation, but increased muscle protein kinase B (Akt) and Forkhead Box O (FOXO) 1 phosphorylation. Moreover, Asn decreased the concentrations of TNF-α, cortisol and glucagon in plasma, and TNF-α mRNA expression in muscles. Finally, Asn decreased mRNA abundance of muscle toll-like receptor (TLR) 4 and nucleotide-binding oligomerisation domain protein (NOD) signalling-related genes, and regulated their negative regulators. The beneficial effects of Asn on muscle atrophy may be associated with the following: (1) inhibiting muscle protein degradation via activating Akt and inactivating AMPKα and FOXO1; and (2) decreasing the expression of muscle pro-inflammatory cytokines via inhibiting TLR4 and NOD signalling pathways by modulation of their negative regulators.
Collapse
|
45
|
Pumberger M, Qazi TH, Ehrentraut MC, Textor M, Kueper J, Stoltenburg-Didinger G, Winkler T, von Roth P, Reinke S, Borselli C, Perka C, Mooney DJ, Duda GN, Geißler S. Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials 2016; 99:95-108. [DOI: 10.1016/j.biomaterials.2016.05.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023]
|
46
|
Wang L, Yi D, Hou Y, Ding B, Li K, Li B, Zhu H, Liu Y, Wu G. Dietary Supplementation with α-Ketoglutarate Activates mTOR Signaling and Enhances Energy Status in Skeletal Muscle of Lipopolysaccharide-Challenged Piglets. J Nutr 2016; 146:1514-20. [PMID: 27385764 DOI: 10.3945/jn.116.236000] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Skeletal muscle undergoes rapid loss in response to inflammation. α-Ketoglutarate (AKG) has been reported to enhance muscle growth in piglets, but the underlying mechanisms are largely unknown. OBJECTIVES This study tested the hypothesis that dietary AKG supplementation activates mechanistic target of rapamycin (mTOR) signaling and improves skeletal muscle energy metabolism in lipopolysaccharide (LPS)-challenged piglets. METHODS Forty-eight male piglets (Duroc × Landrace × Yorkshire) were weaned at 21 d of age to a corn- and soybean meal-based diet. After a 3-d period of adaptation, piglets with a mean weight of 7.21 kg were randomly assigned to control, LPS (intraperitoneal administration of 80 μg LPS/kg body weight on days 10, 12, 14, and 16), or LPS plus 1% dietary AKG (LPS+AKG) groups. On day 16, blood samples were collected from 8 piglets/group 3 h after LPS administration. On day 17, piglets were killed to obtain gastrocnemius muscle from 8 piglets/group for biochemical analysis. RESULTS Compared with the control group, LPS administration increased (P < 0.05) plasma concentrations of globulin (by 14%) and tumor necrosis factor α (by 59%) and the intramuscular ratio of AMP to ATP (by 93%) and abundance of phosphorylated acetyl-coenzyme A carboxylase (ACC) β protein (by 64%). Compared with the control group, LPS administration reduced (P < 0.05) weight gain (by 15%); plasma concentrations of glutamine (by 20%), glucose (by 23%), insulin, insulin-like growth factor I, and epidermal growth factor; intramuscular concentrations of glutamine (by 27%), ATP (by 12%), ADP (by 22%), and total adenine nucleotides; and intramuscular ratios of phosphorylated mTOR to total mTOR (by 38%) and of phosphorylated 70-kDa ribosomal protein S6 kinase (p70S6K) to total p70S6K (by 39%). These adverse effects of LPS were ameliorated (P < 0.05) by AKG supplementation. CONCLUSIONS Dietary AKG supplementation activated mTOR signaling, inhibited ACC-β, and improved energy status in skeletal muscle of LPS-challenged piglets. These results provide a biochemical basis for the use of AKG to enhance piglet growth under inflammatory or practical postweaning conditions.
Collapse
Affiliation(s)
- Lei Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Dan Yi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Kang Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Baocheng Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and
| | - Guoyao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan Polytechnic University, Wuhan, China; and Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
47
|
Baumert P, Lake MJ, Stewart CE, Drust B, Erskine RM. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing. Eur J Appl Physiol 2016; 116:1595-625. [PMID: 27294501 PMCID: PMC4983298 DOI: 10.1007/s00421-016-3411-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 02/06/2023]
Abstract
Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Philipp Baumert
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mark J Lake
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Claire E Stewart
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Barry Drust
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Robert M Erskine
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| |
Collapse
|
48
|
Liu Y, Wang X, Wu H, Chen S, Zhu H, Zhang J, Hou Y, Hu CAA, Zhang G. Glycine enhances muscle protein mass associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing TLR4 and NOD2 signaling in piglets challenged with LPS. Am J Physiol Regul Integr Comp Physiol 2016; 311:R365-73. [PMID: 27225947 DOI: 10.1152/ajpregu.00043.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/16/2016] [Indexed: 12/25/2022]
Abstract
Pro-inflammatory cytokines play a critical role in the pathophysiology of muscle atrophy. We hypothesized that glycine exerted an anti-inflammatory effect and alleviated lipopolysaccharide (LPS)-induced muscle atrophy in piglets. Pigs were assigned to four treatments including the following: 1) nonchallenged control, 2) LPS-challenged control, 3) LPS+1.0% glycine, and 4) LPS+2.0% glycine. After receiving the control, 1.0 or 2.0% glycine-supplemented diets, piglets were treated with either saline or LPS. At 4 h after treatment with saline or LPS, blood and muscle samples were harvested. We found that 1.0 or 2.0% glycine increased protein/DNA ratio, protein content, and RNA/DNA ratio in gastrocnemius or longissimus dorsi (LD) muscles. Glycine also resulted in decreased mRNA expression of muscle atrophy F-box (MAFbx) and muscle RING finger 1 (MuRF1) in gastrocnemius muscle. In addition, glycine restored the phosphorylation of Akt, mammalian target of rapamycin (mTOR), eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and Forkhead Box O 1 (FOXO1) in gastrocnemius or LD muscles. Furthermore, glycine resulted in decreased plasma tumor necrosis factor-α (TNF-α) concentration and muscle TNF-α mRNA abundance. Moreover, glycine resulted in decreased mRNA expresson of Toll-like receptor 4 (TLR4), nucleotide-binding oligomerization domain protein 2 (NOD2), and their respective downstream molecules in gastrocnemius or LD muscles. These results indicate glycine enhances muscle protein mass under an inflammatory condition. The beneficial roles of glycine on the muscle are closely associated with maintaining Akt-mTOR-FOXO1 signaling and suppressing the activation of TLR4 and/or NOD2 signaling pathways.
Collapse
Affiliation(s)
- Yulan Liu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China;
| | - Xiuying Wang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Huanting Wu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Shaokui Chen
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Huiling Zhu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Jing Zhang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yongqing Hou
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chien-An Andy Hu
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China; Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico; and
| | - Guolong Zhang
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China; Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
49
|
Sterile post-traumatic immunosuppression. Clin Transl Immunology 2016; 5:e77. [PMID: 27195120 PMCID: PMC4855263 DOI: 10.1038/cti.2016.13] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 03/09/2016] [Accepted: 03/09/2016] [Indexed: 02/07/2023] Open
Abstract
After major trauma, the human immune system initiates a series of inflammatory events at the injury site that is later followed by suppression of local inflammation favoring the repair and remodeling of the damaged tissues. This local immune response involves complex interactions between resident cells such as macrophages and dendritic cells, soluble mediators such as cytokines and chemokines, and recruited cells such as neutrophils, monocytes and mesenchymal stromal cells. If of sufficient magnitude, these initial immune responses nevertheless have systemic consequences resulting in a state called post-traumatic immunosuppression (PTI). However, controversy exists regarding the exact immunological changes occurring in systemic compartments triggered by these local immune responses. PTI is one of the leading causes of post-surgical mortality and makes patients vulnerable to hospital-acquired infections, multiple organ failure and many other complications. In addition, hemorrhage, blood transfusion, immunesenescence and immunosuppressant drugs aggravate PTI. PTI has been intensively studied, but published results are frequently cloudy. The purpose of this review is to focus on the contributions made by different responsive modalities to immunosuppression following sterile trauma and to try to integrate these into an overall scheme of PTI.
Collapse
|
50
|
Chen T, Moore TM, Ebbert MTW, McVey NL, Madsen SR, Hallowell DM, Harris AM, Char RE, Mackay RP, Hancock CR, Hansen JM, Kauwe JS, Thomson DM. Liver kinase B1 inhibits the expression of inflammation-related genes postcontraction in skeletal muscle. J Appl Physiol (1985) 2016; 120:876-88. [PMID: 26796753 DOI: 10.1152/japplphysiol.00727.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/20/2016] [Indexed: 01/06/2023] Open
Abstract
Skeletal muscle-specific liver kinase B1 (LKB1) knockout mice (skmLKB1-KO) exhibit elevated mitogen-activated protein kinase (MAPK) signaling after treadmill running. MAPK activation is also associated with inflammation-related signaling in skeletal muscle. Since exercise can induce muscle damage, and inflammation is a response triggered by damaged tissue, we therefore hypothesized that LKB1 plays an important role in dampening the inflammatory response to muscle contraction, and that this may be due in part to increased susceptibility to muscle damage with contractions in LKB1-deficient muscle. Here we studied the inflammatory response and muscle damage with in situ muscle contraction or downhill running. After in situ muscle contractions, the phosphorylation of both NF-κB and STAT3 was increased more in skmLKB1-KO vs. wild-type (WT) muscles. Analysis of gene expression via microarray and RT-PCR shows that expression of many inflammation-related genes increased after contraction only in skmLKB1-KO muscles. This was associated with mild skeletal muscle fiber membrane damage in skmLKB1-KO muscles. Gene markers of oxidative stress were also elevated in skmLKB1-KO muscles after contraction. Using the downhill running model, we observed significantly more muscle damage after running in skmLKB1-KO mice, and this was associated with greater phosphorylation of both Jnk and STAT3 and increased expression of SOCS3 and Fos. In conclusion, we have shown that the lack of LKB1 in skeletal muscle leads to an increased inflammatory state in skeletal muscle that is exacerbated by muscle contraction. Increased susceptibility of the muscle to damage may underlie part of this response.
Collapse
Affiliation(s)
- Ting Chen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Timothy M Moore
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Mark T W Ebbert
- Department of Biology, Brigham Young University, Provo, Utah
| | - Natalie L McVey
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Steven R Madsen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - David M Hallowell
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Alexander M Harris
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Robin E Char
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Ryan P Mackay
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Chad R Hancock
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, Utah; and
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - John S Kauwe
- Department of Biology, Brigham Young University, Provo, Utah
| | - David M Thomson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah;
| |
Collapse
|